Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth’s monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

MASIELLO, Guido;SERIO, Carmine
2009-01-01

Abstract

Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth’s monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.
2009
9780735406353
File in questo prodotto:
File Dimensione Formato  
52915_UPLOAD.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 401.11 kB
Formato Adobe PDF
401.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/13685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact