It’s well known that the microstructure dramatically affects the strain behaviour of superplastic materials. Virtually, each batch should be characterized ex novo: optimal ranges of temperature and strain rate as well as material constants have to be defined. An accurate and simple characterization methodology based on a strain condition close enough to the real forming process is of great industrial interest. In this work, a characterization methodology based on an experimental and numerical approach is proposed. Experimental free inflation tests with a pressure jump were carried out on a titanium alloy. Results were used as reference data for an inverse analysis based on the height evolution of the dome. Material constants were calculated by means of a genetic algorithm. The approach was verified with further experimental results and a good correlation was found.
Characterization of a superplastic titanium alloy with an experimental and numerical approach based on free-inflation tests
SORGENTE, DONATO;
2016-01-01
Abstract
It’s well known that the microstructure dramatically affects the strain behaviour of superplastic materials. Virtually, each batch should be characterized ex novo: optimal ranges of temperature and strain rate as well as material constants have to be defined. An accurate and simple characterization methodology based on a strain condition close enough to the real forming process is of great industrial interest. In this work, a characterization methodology based on an experimental and numerical approach is proposed. Experimental free inflation tests with a pressure jump were carried out on a titanium alloy. Results were used as reference data for an inverse analysis based on the height evolution of the dome. Material constants were calculated by means of a genetic algorithm. The approach was verified with further experimental results and a good correlation was found.File | Dimensione | Formato | |
---|---|---|---|
2016_ICSAM2015_Ti.pdf
non disponibili
Tipologia:
Pdf editoriale
Licenza:
DRM non definito
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.