Even though shock-capturing techniques are the de-facto standard in the CFD simulation of turbo-machinery flows, the accurate estimation of shock-induced losses in transonic flows can be severely hindered by the numerical errors that are generated along a captured shock and convected downstream. Indeed, and despite their widespread use, shock-capturing techniques are known to be plagued by a number of drawbacks that are inherent to the numerical details of the shock-capturing process. In recent works, the authors have developed a novel unstructured shock fitting technique that has been applied to the computation of transonic, supersonic and hypersonic flows in both two and three space dimensions. The use of unstructured meshes allows to relieve most of the algorithmic difficulties that have contributed to the dismissal of the shock-fitting technique in the framework of structured meshes. In this paper, the proposed technique is applied to flows of turbo-machinery interest.
Unstructured Shock-Fitting Calculations of Transonic Turbo-Machinery Flows
BONFIGLIOLI, Aldo;
2015-01-01
Abstract
Even though shock-capturing techniques are the de-facto standard in the CFD simulation of turbo-machinery flows, the accurate estimation of shock-induced losses in transonic flows can be severely hindered by the numerical errors that are generated along a captured shock and convected downstream. Indeed, and despite their widespread use, shock-capturing techniques are known to be plagued by a number of drawbacks that are inherent to the numerical details of the shock-capturing process. In recent works, the authors have developed a novel unstructured shock fitting technique that has been applied to the computation of transonic, supersonic and hypersonic flows in both two and three space dimensions. The use of unstructured meshes allows to relieve most of the algorithmic difficulties that have contributed to the dismissal of the shock-fitting technique in the framework of structured meshes. In this paper, the proposed technique is applied to flows of turbo-machinery interest.File | Dimensione | Formato | |
---|---|---|---|
ETC2015-100.pdf
non disponibili
Tipologia:
Pdf editoriale
Licenza:
DRM non definito
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.