The analysis of the rarefaction effects in predicting the main aero-thermal loads of a Space re-entry vehicle is presented. It is well known that the Navier-Stokes equations fail in rarefied regimes and other approaches must be used. In the present paper different configurations have been simulated by using the Direct Simulation Monte Carlo method. Moreover, slip flow boundary conditions have been implemented in a Navier-Stokes code in order to extend the validity of the continuum approach to the transitional flow regime. Finally, bridging formulas for high altitude aerodynamics of winged bodies have been used. Firstly, two simple geometries have been analysed, specifically designed to study the phenomenon of shock wave boundary layer interaction: a hollow cylinder flare, for which some experiments are available; and a blunt-nosed flat plate/flap model designed and tested at the Italian Aerospace Research Centre. The other configurations taken into account are, respectively, an experimental winged re-entry vehicle and a capsule, for which global aerodynamic coefficients and local wall heating have been determined with different approaches. The Navier-Stokes code with slip flow boundary conditions has shown good predicting capabilities compared with experiments in the hollow cylinder flare case; however, for the winged vehicle and capsule cases, the CFD results are not fully satisfactory and the Monte Carlo method remains the most reliable approach, together with the bridging formula, that provides good results for the aerodynamic coefficients.
Advanced Models for Prediction of High Altitude Aero-Thermal Loads of a Space Re-entry Vehicle
BONFIGLIOLI, Aldo
2011-01-01
Abstract
The analysis of the rarefaction effects in predicting the main aero-thermal loads of a Space re-entry vehicle is presented. It is well known that the Navier-Stokes equations fail in rarefied regimes and other approaches must be used. In the present paper different configurations have been simulated by using the Direct Simulation Monte Carlo method. Moreover, slip flow boundary conditions have been implemented in a Navier-Stokes code in order to extend the validity of the continuum approach to the transitional flow regime. Finally, bridging formulas for high altitude aerodynamics of winged bodies have been used. Firstly, two simple geometries have been analysed, specifically designed to study the phenomenon of shock wave boundary layer interaction: a hollow cylinder flare, for which some experiments are available; and a blunt-nosed flat plate/flap model designed and tested at the Italian Aerospace Research Centre. The other configurations taken into account are, respectively, an experimental winged re-entry vehicle and a capsule, for which global aerodynamic coefficients and local wall heating have been determined with different approaches. The Navier-Stokes code with slip flow boundary conditions has shown good predicting capabilities compared with experiments in the hollow cylinder flare case; however, for the winged vehicle and capsule cases, the CFD results are not fully satisfactory and the Monte Carlo method remains the most reliable approach, together with the bridging formula, that provides good results for the aerodynamic coefficients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.