SAGARIA, Valeria
SAGARIA, Valeria
Mostra
records
Risultati 1 - 5 di 5 (tempo di esecuzione: 0.009 secondi).
A numerical method for linear Volterra integral equations on infinite intervals and its application to the resolution of metastatic tumor growth models
2022-01-01 De Bonis, M. C.; Laurita, C.; Sagaria, V.
MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models
2022-01-01 Bulai, I. M.; De Bonis, M. C.; Laurita, C.; Sagaria, V.
Modeling metastatic tumor evolution, numerical resolution and growth prediction
2023-01-01 Bulai, I. M.; De Bonis, M. C.; Laurita, C.; Sagaria, V.
Numerical method for boundary value problems on the real line
2024-01-01 De Bonis, M. C.; Sagaria, V.
Numerical method for hypersingular integrals of highly oscillatory functions on the positive semiaxis
2022-01-01 De Bonis, M. C.; Sagaria, V.
Titolo | Data di pubblicazione | Autore(i) | File |
---|---|---|---|
A numerical method for linear Volterra integral equations on infinite intervals and its application to the resolution of metastatic tumor growth models | 1-gen-2022 | De Bonis, M. C.; Laurita, C.; Sagaria, V. | |
MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models | 1-gen-2022 | Bulai, I. M.; De Bonis, M. C.; Laurita, C.; Sagaria, V. | |
Modeling metastatic tumor evolution, numerical resolution and growth prediction | 1-gen-2023 | Bulai, I. M.; De Bonis, M. C.; Laurita, C.; Sagaria, V. | |
Numerical method for boundary value problems on the real line | 1-gen-2024 | De Bonis, M. C.; Sagaria, V. | |
Numerical method for hypersingular integrals of highly oscillatory functions on the positive semiaxis | 1-gen-2022 | De Bonis, M. C.; Sagaria, V. |