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Simple Summary: Cancer is one of the most dangerous diseases in humans, and no permanent
therapy has been developed yet. Breast cancer (BC) is one of the most common cancers in women.
The purpose of this review was to clarify how natural products may play a role in the prevention,
treatment and progression of BC. For all the compounds examined, in vitro and in vivo studies, as
well as clinical studies on BC, are described.

Abstract: In this review, we summarize the most used natural products as useful adjuvants in BC by
clarifying how these products may play a critical role in the prevention, treatment and progression of
this disease. BC is the leading cancer, in terms of incidence, that affects women. The epidemiology and
pathophysiology of BC were widely reported. Inflammation and cancer are known to influence each
other in several tumors. In the case of BC, the inflammatory component precedes the development of
the neoplasm through a slowly increasing and prolonged inflammation that also favors its growth. BC
therapy involves a multidisciplinary approach comprising surgery, radiotherapy and chemotherapy.
There are numerous observations that showed that the effects of some natural substances, which, in
integration with the classic protocols, can be used not only for prevention or integration in order to
prevent recurrences and induce a state of chemoquiescence but also as chemo- and radiosensitizers
during classic therapy.
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1. Introduction

The onset, maintenance and progression of BC are influenced by multiple pathophysi-
ological aspects and signaling pathways [1,2]. Neoplastic phenomena recognize genetic
and epigenetic components, and alterations of the differentiation program are often asso-
ciated with the onset of neoplastic pathologies that involve the inhibition of the end of
the replicative cycle in the differentiated cells and their permanence in the G0 phase [3].
Inflammation and cancer influence each other [4], and in some tumors, specifically BC,
the inflammatory component precedes the development of the neoplasm, and a slowly in-
creasing and prolonged inflammation linked to the neoplasm also favors tumor growth [5].
Several factors are related to cancer onset, progression and therapy. Many pathophysio-
logical elements play important roles in the onset, maintenance and progression of BC,
including inflammation, heat shock proteins (HSPs), matrix metalloproteinases (MMPs),
immunological modulation, peritumoral inflammation, microRNAs and neoplastic stem
cells, where the role of each of them appears to be linked to the others such that the signal-
ing pathways that favor the BC are activated. In fact, the pro-inflammatory nuclear factor
kB (NF-kB) is involved in cancer development [6]; cytokines, such as cyclooxygenase-2
(COX-2), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF),
are the effectors of tumor tissue promotion [7]; HSPs, such as heat shock factor 1 (HFS-1)
and hypoxia inducing factor (HIF-1), are widely studied in relation to BC [8]. Moreover, the
involvement of reactive oxygen species (ROS) and superoxide dismutase (SOD) in BC were
widely documented [9], as well MMPs [10], insulin-like growth factor (IGF) [11], fibrob-
last growth factors (FGFs) [12], microRNA [13] and so on. The mechanisms responsible
for their involvement in cancer are briefly summarized here. Surgery, radiotherapy and
chemotherapy are the main treatments for BC [14]. Moreover, nutritional intervention in
BC patients is considered an integral part of the multimodal therapeutic approach [15].
However, most common therapies for BC lead to the occurrence of side effects and may
also damage healthy tissues and organs. In this context, the use of natural agents integrated
with conventional therapies can interact favorably with the onset of BC and classic surgical
and medical therapy in order to reduce resistance to chemotherapy drugs, allow for better
pharmacological aggression to neoplastic cells through chemosensitization and radiosensi-
tization to allow for the chemoquiescence of neoplastic stem cells, which are insensitive to
classic treatments [16]. Indeed, about 83% of the Food and Drug Administration (FDA)-
approved chemotherapeutics are from natural sources [17]. Numerous natural products,
such as meadowsweet, witch hazel, linseed, hops, Melissa leaves, Orthosiphon, Rosemary
leaves, Goldenrod, green anise, Arnica flowers, Boldo leaves, Calendula, Echinacea root,
Eleutherococcus, Humulone and feverfew, were examined for their generic antitumor
characteristics and, in particular, their influence on BC [18]. Several plant-based anticancer
compounds were studied for the treatment of cancer [19], and specifically for BC [20]. Our
attention was focused particularly on curcumin, epigallocatechin gallate (EGCG), indole-3-
carbinol (I3C), artesunate, ginger, flavonoids and bioflavonoids (xanthohumol and citrus
bioflavonoids), myrrh, sulforaphane, vitamin D, medicinal mushrooms, acetylsalicylic acid
and metformin for their direct influence on BC. In this review, we highlight and summarize
these compounds and their interference in the onset, maintenance and progression of BC
due to their influence on multiple pathophysiological and signaling aspects involved in this
disease and we underline the usefulness of these compounds in the management of BC.

2. Molecular Basis of BC

The pro-inflammatory NF-kB is implicated in tissue inflammatory status, specifically
in BC activation and progression through the stimulation of the cell proliferation, pro-
survival and metastatic pathways of angiogenesis. Commonly used therapeutic agents,
such as radiotherapy and chemotherapy, can also lead to the activation of NF-kB. This
effect can contribute to the resistance of neoplastic cells to the agents themselves and the
use of NF-kB inhibitors as sensitizers for therapy could improve the therapeutic target [21].
NF-kB is also regulated by a zinc finger deubiquitating regulatory enzyme A20/TNFaIP3
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(tumor necrosis factor, alpha-induced protein 3), and new A20/TNFAIP3 functions were
recently described, including the control of necroptosis, inflammasome activity [22] and
the strong upregulation of the negative inflammatory regulator A20 (Tnfaip3), which
is accompanied by a pronounced downregulation of the canonical NF-kB pathway [23].
Peritumor inflammation plays an important role in breast carcinogenesis. It allows BC cells
to acquire the ability to survive, proliferate and disseminate. Inflammatory cells release
some cytokines, such as COX-2, EGF and VEGF, which are the effectors of tumor tissue
promotion; an alteration of immunity cells, both in number and in function, at sites of tumor
progression is the generic constituent of the tumor microenvironment [24]. Moreover, HSPs
play an important role in malignant transformation and progression by means of their
intrinsic molecular chaperone properties that allow for the expression of new malignant
traits through a facilitated accumulation of altered oncoproteins. In BC, the levels of HSPs
are high. Their concentration in BC is directly related to the concentration of HFS-1, which
then enables HSP transcription since HFS-1 inactivators are normally bound to HSPs [25].
Furthermore, the cells of the organism can be altered and undergo pathological phenomena
when an excess of ROS comes into contact with the biological molecules that constitute them.
Through an excessive presence of ROS, proteins, lipids and nucleic acids can be altered,
but above all, there is an amplification of the inflammatory response and the induction of
mutagenesis, promotion and neoplastic progression. ROS are able to damage lipids, nucleic
acids and proteins with the alteration of their functional properties, and generally, the levels
of enzymes that allow for antioxidant action are lower in cancer patients [26]. Through the
ROS, the activation of signals is facilitated, which, through the intracellular Ca++, triggers
the response of NF-kB. ROS are responsible for spontaneous mutations, where they can
cause DNA breakage of 1 or 2 strands, deletions, insertions, loss of a base, substitution of a
base and a deficiency of SOD in the mitochondria and cytoplasm of many solid neoplasms.
The possibility of neoplastic cells exploiting all the resources contributes to growth and
cachexia and also derives from the increase in a factor, namely, HIF-1, which increases if
stimulated by growth factors [27]. MMPs are frequently overexpressed in neoplastic cells
and are associated with a poorer prognosis. MMPs mediate the increase in growth factors,
including IGF and FGF. There is a strong change in the tissue into which the tumor grows,
especially in multifocal breast neoplasms. The growth factor IGF-1 strongly stimulates
the production of aromatase, which is the major enzyme responsible for the synthesis
of estradiol. Moreover, normal peritumoral cells cross-talk with tumor cells, supplying
them with growth factors, such as EGF, IGF-2, FGF, transforming growth factor-beta (TGF-
beta), human platelet-derived growth factor (PDGF) and VEGF, as well as regulating their
motility. TGF-beta is a growth factor commonly secreted by tumor cells to evade immune
surveillance and impair the regulation of cyclins [28]. An abnormal increase in cyclins
affects the onset and maintenance of neoplastic cells. Cyclin A is inhibited by sulforaphane
at dosages of 25 µM and by taxol (a commonly used chemotherapy sourced from the yew
plant), which also inhibits cyclin B1. Cyclin D1 is inhibited by blocking NF-kB, which
inhibits glycogen synthetase, which prevents its degradation; curcumin dephosphorylates
retinoblastoma protein with the downregulation of D1 [29]. This dephosphorylation also
inhibits cyclins E and A. Selectins with an EGF-like domain, such as L, P and E, are strongly
implicated in BC. Selectin E is responsible for the reactivation of micrometastases even
beyond 10 years, as well as the metastatic increase of the neoplasm. In addition, the
receptors expressed on the membrane of the neoplastic cells, such as CD44+, are necessary
for the process of bone invasion and cell survival. During the neoplastic transformation,
the cells of breast tissue lose all the mechanism regulators of cell cycle control, such as
P53, retinoblastoma protein (pRB) and P27. Moreover, two genes homologous to P53,
namely, P63 and P73, may interact with P53. Cancer stem cells (CSCs) were proposed
as one of the determining factors contributing to tumor heterogeneity [30]. They are
insensitive or very insensitive to chemotherapy. Neoplastic stem cells are long-lived, almost
perennial cells that have been exposed to true genotoxic stress more than their differentiated
progeny, which, in any case, have a shorter lifespan. The view that neoplastic stem cells



Cancers 2023, 15, 2981 4 of 21

exist is related to two observations: heterogeneity and cell hierarchy. The first is based
on the observation that almost all tumors can arise from a single cell, while within the
tumor, the cells are not all the same; the second is that the tumor is able to self-regenerate
through a small number of cells [31,32]. Within these cells, some signaling pathways are
also deregulated, such as the Hedgehog, Wnt/β-catenin, Notch, phosphatase and tensin
homologs, deleted on chromosome TEN (PTEN) and TGF-beta/BMP pathways. They can
remain dormant for a long time and, luckily, they are very rare [31]. A microenvironment
favorable to them promotes the maintenance of stem cells, which are essential for the
regulation of homeostasis and contribute to tumorigenesis if altered during adulthood [33].
During experiments in guinea pigs, the neoplastic cells can only be transplanted into
immunodeficient mice. The main modulators in the elimination of tumor cells are CD8+
lymphocytes and cytotoxic lymphocytes (CTLs) [34]. CTLs are obviously assisted by CD4+
lymphocytes and NK cells, and it has long been known that neoplastic growth is associated
with functional alterations of the cytotoxic effectors and reduced NK-mediated cytotoxic
activity. Some of the immunosuppressive factors of the immune system locally linked
to the tumor are VEGF, TGF-beta and prostaglandin E2 [35]. There are short stretches of
RNA in the cytoplasm, namely, microRNAs, that do not encode proteins, but the molecules
produced by these short stretches are able to influence the regulation of gene expression
contrary to the classic tumor suppressor or oncofacilitator genes. MicroRNAs can undergo
binding with messenger RNAs; in this way, the blockage of a protein or its early degradation
with the loss of function of that specific protein is determined. MicroRNAs function as
oncogenes when their overexpression negatively regulates tumor suppressor genes or
genes that control differentiation and apoptosis at the end of the cell life cycle. On the other
hand, when microRNAs are underexpressed, they allow the blockade of a protein to be
impaired and, therefore, function as oncofacilitators. The role of a microRNA depends on
its target exclusively in that particular tissue and a decrease of tumor suppressor miRNAs is
observed during neoplastic phenomena. The microRNA can, therefore, interfere with breast
carcinogenesis. MicroRNA 30 A inhibits vimentin, while microRNA 31 is overexpressed
in cell lines resistant to aromatase inhibitors that have strong oxidative stress [36]. The
latter, in turn, inhibits metastasis in MDA-MD-231, while its downregulation allows for the
migration of MCF-7 cells [37]. MicroRNA 34A is regulated by P53, and in BC, mutations
in P53 can be observed and those present in P63 are resistant to contaxan chemotherapy
and aromatase inhibitors. Through its transcription and presence, microRNA 644a allows
for sensitization to drug therapy and the inhibition of the progression of the disease [38].
An overexpression or increase in oncofacilitator microRNAs, such as 15a/16-1 microRNAs,
targets B-cell leukemia/lymphoma 2 protein (BCL2) messenger RNA that protects cells
from apoptosis. Their down-expression by E2 transcription factor 7 (E2F7) enables cells to
resist tamoxifen [39]. MicroRNAs 15/16/21 target PTEN, which encodes a phosphatase
that transduces the phosphoinositide 3-kinase (PI3-kinase) signal. PTEN is mutated or
deleted in BC [40]. MicroRNAs 221 and 222 regulate the protein P27, which inhibits the
transition from the G1 phase to the S phase. MicroRNA 222 is down-expressed in aromatase
inhibitor-resistant cell lines [36]. Preclinical studies on BC cell lines are often carried out
on MCF-7 cells, which are the wild population of human BC cells. They possess histone
deacetylase and are ER+. The P53 mutants are T47D (C44 and selectin). MDA-MB-231 cell
lines belong to the highly invasive BC cell line (CERB+, C44+ and E+ selectin). MCF-10AT
are the preneoplastic cells of the BC.

3. Polyphenols

Polyphenols are antioxidant substances capable of protecting cells from damage caused
by free radicals [41]. Polyphenols present several therapeutic effects against different
pathological states, including cancer; inflammation; diabetes; and heart, cardiovascular
and related diseases [42]. Their involvement in the prevention and treatment of cancer was
widely described [43,44]. The extraordinary ability of polyphenols to remit oxidative stress,
lipid metabolism, insulin resistance and especially inflammation related to the onset of
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neoplastic diseases has attracted interest in clinical studies [45]. The mechanism of action for
the anticancer effect of polyphenols is likely related to the modulation of microRNAs [46],
mitogen-activated protein kinase (MAPK) signaling [47] and epigenetics [48]. Polyphenols
may also affect the ability to overcome chemoresistance in cancer cells [49]. After decades
in which polyphenols were considered highly safe compounds, nowadays, depending on
the conditions, dose and interactions with the environment, the possibility for polyphenols
to also exert harmful effects is now being investigated [50]. For example, in particular
situations, the consequences of their ability to block iron uptake in some subpopulations can
be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal
microbiota, interactions of polyphenolic compounds with drugs and impact on hormonal
balance [50].

3.1. Curcumin

Curcumin (Table 1), which is a polyphenolic compound, is an extract from Curcuma
longa and is obtained via solvent extraction from the dried and ground rhizome of the
Curcuma longa plant. Curcumin and its active metabolites are capable of directly binding to
DNA and RNA, thereby sensitizing chemotherapeutics through the modulation of protein
kinase C, telomerase, NF-kB and histone deacetylase (HDAC). Curcumin induces cell death
and restores sensitivity to tamoxifen in antiestrogen-resistant BC cell lines [51]. From this,
NF-kB, SRc and AKT/mTor are inactivated; enhancer of zeste 2 policomb repressive com-
plex 2 subunit (EZH2) is epigenetically modified; cyclin-dependent kinase (CDK), P21, CIPI
and P53 are upregulated; and transcription factors are inhibited and deactivated. Curcumin
may regulate the gene expression of NF-kB, activator protein-1 (AP1), TNF, interleukin
(IL), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-
activated receptor gamma (PPARγ), C-myc, BCL2, COX-2, nitric oxide synthase (NOS),
cyclin D1, MMP-9, growth factors bFGF, EGF, granulocyte colony-stimulating factor (GCSF),
IL-8, PDGF, TGF-alpha, VEGF, fibronectin and vibronectin [52,53]. Curcumin demonstrated
inhibition of MCF-7 BC cell viability in a concentration-dependent manner and synergizes
with mitomycin-c through p38 [54,55]. Moreover, curcumin increases the sensitivity of BC
cells to the chemotherapeutics paclitaxel, cisplatin and doxorubicin [56,57]. It has antipro-
liferative effects on various hormone-dependent, independent and chemotherapy-resistant
BC cell lines by inhibiting multi-drug resistance (MDR) [58] and confers a sensitizing effect
during radiotherapy [59,60]. It induces concentration-dependent G2/M growth arrest [61].
Curcumin shows effects on miRNAs: it inhibits oncogenic ones, such as miR-21 and miR-
186, and downregulates cyclin D1, cyclin E and mouse double minute 2 homolog (MDM2),
while upregulating tumor suppressors, such as miR-15, miR-16, miR-22, retrovirus 27a,
miR-34, miR-22, P21, p27 and p53. It has potential antiproliferative, anti-invasive and
antiangiogenic effects as a mediator of chemoresistance and radioresistance. Curcumin is
safe, even at 8 g per day for three months [62], enhances the antitumor activity of gemc-
itabine [63], inhibits E-selectin in vitro [64,65], inhibits HIF-1 [66] and Hedgehog signaling
pathways [67,68], and regulates the P63 subfamily of the P53 family [69].

3.2. Epigallocatechin-3-Gallate

EGCG is an important polyphenolic component originating from green tea extract.
It possesses various biological functions, including anti-cancer and anti-inflammatory
properties [70]. EGCG was shown to enhance the expression levels of let-7, miR-15 and
miR-16, and inhibits miR-20 and the progression of breast neoplasia [71]. The effects of
EGCG on several types of MMPs were recently under study in the context of its anticancer
activity [72]. Its importance as a cancer epigenetic regulator was recently reported [73]. It
acts as a potential chemopreventive agent in BC [74]. Recently, its efficacy in preventing
dermatitis in patients with BC was also highlighted [75]. The dose indicated by ESCOP
ranges from 50 to 1600 mg (approximately 0.7–23 mg/kg body weight, based on a 70 kg
body weight) [18].
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Table 1. Natural products used in the treatment of BC.
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4. Indole-3-Carbinol

I3C is a natural organic substance derived from the degradation of glucobrassicin
glucosinolate, which is present in almost all cruciferous plants. Diindolylmethane is the
biologically active derivative that spontaneously forms from I3C due to the action of
gastric juices [76]. I3C is capable of limiting the proteolytic process of cyclin E in proto-
oncogenes, inhibiting ERK in the signaling process of MCF/7 cells, inducing apoptosis
in cells expressing EGFR and SRC, and eliminating the expression of IGF receptors [77].
It induces the overexpression of P21, P27 and GADD 457; translocation of FOX03A; and
inhibition of AKT. It downregulates estrogen and downregulates cyclin E [78]. It induces
apoptosis by externalizing membrane phosphatidylserine with DNA fragmentation and
activation of caspase 3. It allows the upregulation of P21 and P27 and inhibition of CDK
and their association with cyclins D1 and E. It inhibits the phosphorylation of pRB and
downregulates NF-kB; it induces G1 phase arrest and the apoptosis of neoplastic cells [79].
It directs neoplastic stem cells toward differentiation [80]. It allows for the re-expression of
microRNA31a [81] and interferes positively with aromatization [82]. It negatively influences
the viability of ERa+ cells and synergizes the action of doxorubicin and cisplatin [83]. It
negatively influences the viability of triple-negative cells [84]. It induces arrest in G2 cells
and apoptosis in MCF7 and MB-MDA-231 cells [85]. It inhibits cyclin E, which is inhibited
through I3C that limits the proteolytic process of cyclin E in proto-oncogenes, and C-Myc is
the target of estrogen, which, when inhibited, reduces the expression of cyclin D1 [86] and
arrests cells in a quiescent state. I3C is described as having significant safety and efficacy in
biomedical fields [87]; its safety in normal cells was demonstrated [88]. It can be considered
a safe natural substance from 300 mg to 600 mg/die [18].

5. Artesunate

Artesunate is a compound obtained from the plant derivative of Artemisia (Artemisia
annus). It was found to have biological activity against a variety of cancers [89]. It is
generally used in 600 mg/die [18]. Artesunate inhibits the expression of HSP70 and Bcl-
2 in mammary BC 4T1 and MCF-7 cell lines [90]. It is able to regulate microRNA-34a,
which is, in turn, regulated by P53 [91,92]. MicroRNA-34 was found to be unregulated
in many human cancers and is considered a tumor suppressor microRNA due to its syn-
ergistic effect with the known tumor suppressor p53. miR-34 plays a key role in the
inhibition of BC progression by not allowing the epithelial–mesenchymal transition (EMT)
via the transcription factors’ EMT, p53 and some important signaling pathways [91]. Arte-
sunate promotes mesenchymal/epithelial differentiation via the miR-34a pathway [92].
The lack of regulation of P53 via mutation on microRNA-31a confers resistance to tax-
ane chemotherapy and aromatase inhibitors; therefore, the regulation of microRNA-31a
positively influences chemoquiescence.

6. Ginger and Its Constituents
6.1. 6-Gingerol

6-Gingerol is a natural analog of curcumin derived from the root of ginger (Zingiber
officinale) belonging to the Zingiberaceae family, which has a biological activity profile
similar to that of curcumin [93]. Ginger is one of the oldest spices and contains bioactive
compounds, among which 6-gingerol is the compound with the most interesting pharmaco-
logical properties [94]. 6-Gingerol may be extracted with conventional and nonconventional
extraction techniques. Hydroalcoholic solutions and liquid CO2 are the most appropriate
solvents for the extraction of 6-gingerol, whereas microwave-assisted extraction is the
best extraction method [95,96]. The highest purity of 6-gingerol may be obtained with
high-speed counter-current chromatography [97]. 6-Gingerol may also be obtained from
other sources, including traditional Tibetan medicine Dracocephalum heterophyllum [98].
6-Gingerol exerts its action through important mediators and cellular signaling path-
ways, including Bax/Bcl2, p38/MAPK, Nrf2, p65/NF-κB, TNF-α, ERK1/2, SAPK/JNK,
ROS/NFκB/COX-2, caspase-3 and -9, and p53, and is able to provide antiproliferative,
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antitumor, antimetastatic and anti-inflammatory activities [99]. 6-Gingerol selectively kills
BC stem cells (BCSCs) and increases sensitivity to paclitaxel, especially in those expressing
CD44+ [100]. It is able to significantly decrease cell viability in a dose-dependent man-
ner, particularly in osteosarcoma cells [101]. It sensitizes cell death induced by TRIAL
(Tumor necrosis factor (TNF)-related apoptosis-inducing ligand) via apoptosis [102,103]
and sensitizes the chemotherapy protocol with cyclophosphamide/adriamycin, prevent-
ing the initiation and progression of BC through inhibitory effects [104,105]. Despite the
numerous biological properties of 6-gingerol, its low bioavailability is the main challenge
that limits its application. Novel encapsulation and solubilization techniques, including
nano-emulsion, complexation, micelles and solid dispersion methods, were introduced to
enhance the bioavailability of 6-gingerol, overcoming its limitations [106]. To date, no side
effects affecting any organ or body district have been reported. However, it was recently
suggested to carry out clinical trials to further estimate the acute and chronic toxicity to
assess the safety of ginger and related bioactive compounds [107]. In doses up 2 g/die os,
6-gingerol can be considered an absolutely safe natural substance [18].

6.2. 6-Shogaol (6SG)

6-Shogaol is a compound found in ginger and was shown to interact with a cellular re-
ceptor functioning as an antiproliferative, antimetastatic and proapoptotic agent [108–110].
A recent study reported that Notch signaling downregulation (Hes1 and CyclinD1 genes)
caused by 6-shogaol leads to antiproliferative activity in breast cancer cells. Moreover,
treatment with 6-shogaol induced significative and time-dependent cell cycle accumulation
in G2/M-phase. It also induced significant apoptosis in BC cells and inhibited autophagy
in BC cell lines, which might force these cells to undergo apoptosis [111].

7. Flavonoids and Bioflavonoids
7.1. Xanthohumol

Xanthohumol is a prenylated flavonoid derived from Humulus lupulus L. (hop plant) [112].
Its properties and strategies for extraction from hops and brewery residues were recently
described [113]. The involvement of xanthohumol in human malignancies is widely docu-
mented [114]. Xanthohumol dose-dependently reduces the growth of human MCF-7 BC
cells and is cytotoxic to the MCF-7 cell line at a concentration of 100 µM [115]. It was demon-
strated to inhibit cellular proliferation in MDA-MB231 BC cell lines through an intrinsic
mitochondrial-dependent pathway [116]. It also inhibits the invasion of triple-negative
and hormone-dependent BCs [117] and interacts with efflux transporter BC resistance pro-
tein (BCRP)/adenosine triphosphate binding cassette G2 (ABCG2) [118]. Xanthohumol is
radiosensitizing in doxorubicin-resistant MCF-7 cells. The radio-sensitizing effect of xantho-
humol is likely mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7
human BC cells [119]. Moreover, xanthohumol acts on oxidative estrogen metabolism by
inhibiting aromatase [120,121]. Xanthohumol suppresses estrogen signaling in BC through
the inhibition of BIG3-PHB2 interactions [122–124]. To date, no side effects affecting any
organ or body district have been described. A recent review summarized the effects of
xanthohumol supplementation in diverse studies on humans [125]. None of these stud-
ies on xanthohumol pharmacokinetics described in the review led to adverse effects. A
placebo-controlled clinical trial (the XMaS Trial) on the safety and tolerability of xantho-
humol showed that a daily intake of 24 mg xanthohumol over 8 weeks is safe and well
tolerated with all clinical biomarkers and anthropometrics being unaffected and/or staying
within the clinically normal reference range [126]. The doses indicated by ESCOP are
30 mg/kg/die [18].

7.2. Citrus Bioflavonoids

Citrus bioflavonoids are flavonoids present in all types of citrus fruits, including
oranges, grapefruits, lemons and limes, and constitute the pigments responsible for the
typical yellow-orange color of such fruits. Citrus fruits contain high concentrations of sev-
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eral classes of phenols, including numerous hydroxycinnamates, flavonoid glycosides and
polymethoxylated flavones. The latter group of compounds occurred without glycosidic
bonds and was shown to inhibit the proliferation of several cancer cell lines, including
that of BC [127]. The anti-estrogenic and anti-aromatase activities of citrus peel major
compounds in BC were reported [128]. Citrus bioflavonoids include rutin, which is a
quercetin glucoside [129], and hesperidin [130]. Until now, no side effects affecting any
organ or body district have been reported. Hesperidin is safely administered, even with
pregnancy, with no detected side effects and noncumulative properties [131]. Among the
secondary metabolites of great benefit to humans are flavonoids, which are polyphenolic
compounds widely distributed in the plant kingdom and, in particular, synthesized by
plants in response to microbial infections. Citrus flavonoids are effective inhibitors of both
human MDA-MB-435 breast carcinoma cells negative for estrogen receptor and MCF-7
positive for estrogen receptor in vitro [132,133]. Moreover, 1:1 combinations of flavonoids
with tocotrienols and/or tamoxifen inhibit cell proliferation more effectively than single
compounds. This synergy may be due to the fact that the compounds are exerting their
inhibitory effects with different mechanisms [134]. Furthermore, citrus bioflavonoids are
potentially able to inhibit dormant neoplastic stem cells [135].

8. Myrrh

Myrrh is an aromatic gum resin extracted from a tree or shrub of the genus Com-
miphora in the Burseraceae family. It is studied for its anti-cancer, anti-inflammatory and
antibacterial activities [136–138]. Myrrh was approved by the FDA in 1992 as a safe ad-
ditive and is included in the list of generally recognized as safe (GRAS) substances and
included in the plant and part list by the Council of Europe [139]. Three species of myrrh
are known, namely Commiphora myrrh, Commifora molmol and Commiphora wightii. They are
all studied for their anticancerogenic potential [140,141]. Specifically, Commiphora molmol
(oleo-resin) was studied in vivo at 150 and 500 mg/kg in mice bearing Ehrlich’s ascites
and normal carcinoma cells; the viability of these cells revealed a cytotoxic and antitu-
mor activity similar to that of the drug cyclophosphamide, as evaluated in terms of the
changes of liver cells and bone marrow on the basis of the frequency of micronuclei and
polychromatic and normochromatic cells. It also possesses chemosensitizing activity by
inhibiting glycoprotein-P, which is an ABC pump responsible for transporting various
substances across the plasma membrane, mitochondrial membrane, endoplasmic reticulum
and peroxisomes. It inhibits MMP-P through the inhibition of NF-kB and AP1, which are
responsible for its activation. Moreover, it inhibits proliferation by arresting the cell cycle in
the S phase [142]. The significant therapeutic benefits of myrrh have been attributed to the
activity of its diverse metabolites, which were recently identified by Suliman et al. [143];
in this work, the authors analyzed the action in vitro of active metabolites from a myrrh
resin methanolic extract against leukemia and BC cell lines. Particularly, for BC, the myrrh
extract showed moderate cytotoxic activity against the KAIMRC1 BC cell line. Furthermore,
the oleo-gum resin of Commiphora myrrh was recently studied in vitro against HeLa BC
cell lines, showing that myrrh triterpenes showed cytotoxicity against these cell lines [144].
The effects of Commiphora myrrh in triple-negative BC (TNBC) were recently investigated
by studying its component Z-guggulsterone. It inhibits the proliferation of the TNBC
cell lines MDA-MB-468 and BT-549 in vitro. In vivo studies demonstrated that it inhibits
TNBC progression via the p53/cyclin B1 (CCNB1)/polo-like Kinase 1 (PLK1) pathway,
inducing cell cycle arrest and apoptosis [145]. In a recent study, the synergism of myrrh
with paclitaxel was demonstrated. Specifically, paclitaxel was incorporated in an effective
nanocarrier formulation, namely, a nanoemulsion formulated by using myrrh essential
oil and polyethylene glycol distearoylphosphatidylethanolamine (PEG-DSPE) leading to
enhanced cytotoxicity against MDA-MB231 BC cell lines [146]. To our knowledge, there
is no NCT regarding the use of myrrh in the treatment of BC. Messina et al. described a
randomized study of complementary supportive medicine with Aloe arborescens vs. Aloe
+ myrrh using doses of 10 mL twice/day in metastatic solid tumor patients who did not



Cancers 2023, 15, 2981 11 of 21

respond to the standard anticancer therapies. Both therapies induced disease control in a
percentage that was significantly higher for patients treated with Aloe plus myrrh than that
achieved in patients treated with Aloe alone [147]. Myrrh can be used in 150–500 mg/kg
doses [18].

9. Sulforaphane

Sulforaphane (1-isothiocyanate-4-(methylsulfinyl)butane) is a chemical compound
belonging to the class of isothiocyanates (ITCs) and naturally present as a metabolite of
the phytochemical glucoraphanin in plants belonging to the cruciferous group (broccoli,
cabbage, Brussels sprouts, cauliflower, turnip greens). Numerous in vitro, in vivo and
clinical studies were reported on its anticancer activity [148]. Several studies documented
the cancer-preventive activity of a significant number of ITCs, the majority of which occur
in plants, especially in cruciferous vegetables. Its potential as an anticancer agent was
recently reviewed [149]. Recently, the molecular mechanisms related to sulforaphane as
an adjuvant treatment in BC were described [150]. Sulforaphane is capable of inhibiting
histone deacetylase through global demethylation, modulating microRNAs by demethylat-
ing the first 5 GPGs, affecting microtubules and inhibiting the expression of MMPs [151].
Sulforaphane can activate the Erythroid Nuclear Factor (Nrf-2), which is an important tran-
scription factor in controlling the antioxidant system, which is silenced during mammary
tumorigenesis [152]. It allows for the decrease of survivin and inhibits selectin E, which
is responsible for bone micrometastases, which can remain dormant for more than ten
years [153]. It sensitizes HER-2 BC cells positive to chemotherapy [154] and inhibits the
Hedgehog signaling pathway in stem cells for the self-maintenance of cancer cells [68].
Sulforaphane is generally safe and well-tolerated at low doses [155]. During therapy with
doxacicline, sulforaphane at a dosage of 4 mg/kg as an adjuvant helps to reduce cardiotoxi-
city by enhancing mitochondrial activity. Moreover, sulforaphane plus doxacicline showed
significantly greater tumor regression than sulforaphane or doxacicline alone [156]. For
high doses, the safety of sulforaphane is under study: some authors report that it can lead
to toxicity and adverse effects [157]. It is used in colorectal cancer, even though evidence
about its safety in these patients are still lacking [158]. Doses indicated by ESCOP range
from 600 to 1200 mg/die [18].

10. Vitamin D

Vitamin D exists in two forms: vitamin D2 or ergocalciferol, of plant origin, and
vitamin D3 or cholecalciferol, derived from cholesterol and produced directly by the
organism. It is a prohormone and needs to be hydroxylated at the liver and kidney
levels. It is mainly synthesized during sun exposure, while dietary intake provides about
10–15% of it. Elevated blood levels of 5-hydroxyvitamin D (25OHD), or vitamin D, are
directly correlated with better overall survival in patients with BC, providing compelling
observational evidence of an inverse correlation between vitamin D levels, mortality and
BC progression risk [159]. Vitamin D3 was shown to reduce the incidence of BC in humans
and induce apoptosis and cell cycle arrest of various tumor cells. In 2001, Palmer et al.
demonstrated that vitamin D3 promoted the differentiation of colon carcinoma cells by
inducing E-cadherin expression and inhibiting β-catenin signaling. The vitamin D ligand-
activated receptor competed with TCF-4 for β-catenin binding, thus reducing the levels of
c-Myc, peroxisome proliferator-activated receptor, TCF-1 and CD44.

11. Mushrooms

Mushrooms belong to the astounding dominion of Fungi and are known as a macro-
fungus. Significant health benefits of mushrooms were reported worldwide, including
anticancer, antioxidant and radical scavenging effects. Mushrooms primarily contain low-
and high-molecular-weight polysaccharides, fatty acids, lectins and glucans that are re-
sponsible for their therapeutic action [160]. Their activity is related to CD8+ lymphocytes
and CTLs, which are the main modulators in the elimination of tumor cells. Their use
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may be indicated, especially when anomalies are found in the lymphocyte subpopulation
responsible for eliminating cancer cells [161–164].

12. Acetylsalicylic Acid

Acetylsalicylic acid (ASA), better known as aspirin, is a chemical modification of
salicin, which was originally derived from the bark of the willow tree. When salicin is
dissolved in water, it is acidic, and a saturated solution of it has a pH of 2.4, which is why it
was renamed salicylic acid. The use of low doses of acetylsalicylic acid is associated with a
significant increase in survival in neoplastic disease [165–168]. Recently, its effects on BC
epithelial cells was studied [169].

13. Metformin

Metformin is a hypoglycemic drug belonging to the group of biguanides that are
derived from the plant Galega officinalis L. Metformin reduces the expression of genes that
encode for IGF-1 and the expression of IGF-1R receptors [170]. It inhibits the transition of
malignant epithelial cells to mesenchymal through the blockade of TGF-beta1, reducing
metastasis and their progression [171–173]. It upregulates the tumor suppressor microRNA
34A [174]. It can be used as a chemopreventive for primary prevention in association with
anti-hormonal drugs in BC [175,176], as it acts metabolically and epigenetically on cancer
cells [177,178]. It can be used as a sensitizer during gemcitabine, 5-fluorouracil, epirubicin
and cyclophosphamide chemotherapies [179,180], as well as during radiotherapy, as it
sensitizes cells to radiotherapeutic treatment [181,182].

14. Clinical Studies

In this section, the recent clinical studies (National Clinical Trials (NCTs)) on BC with
the involvement of the natural products described are summarized (Table 2).

Table 2. Clinical studies on natural products involving BC.

Natural Product Name of the Clinical Trial NCT Number Doses Phase Trial Status

Curcumin
“Curcumin” in Combination With
Chemotherapy in Advanced Breast
Cancer

NCT03072992 300 mg i.v. Phase 2 Completed

Curcumin

Phase II Study of Curcumin vs.
Placebo for Chemotherapy-Treated
Breast Cancer Patients
Undergoing Radiotherapy

NCT01740323
500 mg BID MERIVA
corresponding to
~90 mg of curcumin

Phase 2 Completed

Epigallocatechin-3-
gallate (EGCG)

Study of Topically Applied Green
Tea Extract for
Radio Dermatitis and Radiation
Mucositis

NCT01481818

Application of
0.01~0.05 mL/cm2

3 times a day to the
area under treatment
during radiotherapy

Phase 2 Unknown

Indole-3-Carbinol

Indole-3-Carbinol in Preventing
Breast Cancer in Nonsmoking
Women Who Are at High Risk For
Breast Cancer (clinical trial:
NCT00033345)

NCT00033345 400–800 mg pill
taken daily Phase 1 Completed

Artesunate Study of Artesunate in Metastatic
Breast Cancer NCT00764036

Add-on therapy with
daily single oral doses:
100, 150 or 200 mg

Phase 1 Completed

Ginger (6-gingerol
and 6-shogaol)

Ginger in Treating Nausea in
Patients Receiving Chemotherapy
for Cancer

NCT00040742
0.5–1.5 g oral
high-dose ginger
twice daily

Phase 3 Completed
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Table 2. Cont.

Natural Product Name of the Clinical Trial NCT Number Doses Phase Trial Status

Xanthohumol Xanthohumol and Prevention of
DNA Damage NCT02432651 6–24 mg xanthohumol

per day Phase 1 Completed

Bioflavonoids

Defined Green Tea Catechin Extract
in Treating Women With Hormone
Receptor Negative Stage I-III Breast
Cancer

NCT00516243
Green tea catechin
extract PO BID
(amount not given)

Phase 1 Completed

Bioflavonoids Green Tea and Reduction of Breast
Cancer Risk NCT00917735

Two green tea extract
capsules, each
containing 80.7% total
catechins (51.7%
EGCG) twice daily

Phase 2 Completed

Bioflavonoids

Disposition of Dietary Polyphenols
and Methylxanthines in Mammary
Tissues From Breast Cancer Patients
(POLYSEN)

NCT03482401 3 capsules/day
(474 mg phenolics/day) NA Completed

Sulforaphane
Study to Evaluate the Effect of
Sulforaphane in Broccoli Sprout
Extract on Breast Tissue

NCT00982319

100 µmol of
sulforaphane
(dissolvable) in
Broccoli sprout extract

Phase 2 Completed

SFX-01
(Sulforaphane +
alpha-cyclodextrin)

SFX-01 in the Treatment and
Evaluation of Metastatic Breast
Cancer (STEM)

NCT02970682
SFX-01, provided as
300 mg capsules, one
to be taken twice daily

Phase 2 Completed

Vitamin D

Vitamin D can Increase Pathological
Response of the Breast Cancer
Patients Treated with Neoadjuvant
Therapy

NCT03986268 50,000 IU weekly NA Unknown

Mushrooms

White Button Mushroom Extract in
Preventing the Recurrence of Breast
Cancer in Postmenopausal Breast
Cancer Survivors

NCT00709020

Escalating doses:
5 g/day, then 8 g/day,
then 10 g/day, then
13 g/day

Phase 1 Completed

Acetylsalicylic
acid

Aspirin in Preventing Recurrence of
Cancer in Patients with HER2
Negative Stage II-III Breast Cancer
After Chemotherapy, Surgery,
and/or Radiation Therapy

NCT02927249 300 mg daily Phase 3 Terminated

Acetylsalicylic
acid

Low Dose Chemotherapy With
Aspirin in Patients With Breast
Cancer After Neoadjuvant
Chemotherapy

NCT01612247 325 mg PO daily NA Unknown

Metformin
Hydrocloride

Metformin Hydrochloride vs.
Placebo in Overweight or Obese
Patients at Elevated Risk for Breast
Cancer

NCT01793948 850 mg PO BID Early
phase 1 Completed

Metformin

Metformin Hydrochloride in
Preventing Breast Cancer in
Patients With Atypical Hyperplasia
or in Situ
Breast Cancer

NCT01905046 850 mg PO BID Phase 3 Active, not
recruiting

BID—twice-daily; NA—not applicable; PO—orally.

15. Conclusions

BC is the most frequent cancer among women. Numerous mechanisms are related
to the onset and progression of BC. In BC, inflammation and cancer influence each other,
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and the inflammatory component precedes the development of the neoplasm, but slowly
increasing and prolonged inflammation related to the neoplastic phenomenon also favors
its growth. Peritumoral inflammation plays an important role in carcinogenesis, and
HSPs play an active part in malignant transformation and progression by allowing the
expression of new malignant traits through an accumulation of altered oncoproteins. In
this context, natural products play a crucial role. Curcumin; EGCG; I3C; artesunate;
ginger; flavonoids and bioflavonoids, such as xanthohumol and citrus bioflavonoids;
myrrh; sulforaphane; vitamin D; medicinal mushrooms; acetylsalicylic acid; and metformin
were analyzed in detail in order to underline their importance in the onset, progression
and/or treatment of BC. The clinical studies on these compounds in BCs were detailed.
The integration with these products can be implemented both during therapy in the attack
phase, and subsequently to classic protocols. It was shown that some natural substances,
through their integration into the classic protocol, produce a synergistic effect with the
latter through the stabilization of altered signaling pathways, inhibition of inflammatory
factors and increase in immune capabilities. Moreover, some aspects regarding the safety
and toxicological involvement of these compounds were analyzed. It must be considered
that during the chemotherapy and radiotherapy phase, the dosages taken as integration
should be congruent with those that can be taken in the follow-up phase. Some more
clinical studies are needed in order to assess the importance of these compounds.
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