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Abstract: We propose a thermodynamic model describing the thermoelastic behavior of composition
graded materials. The compatibility of the model with the second law of thermodynamics is explored
by applying a generalized Coleman–Noll procedure. For the material at hand, the specific entropy
and the stress tensor may depend on the gradient of the unknown fields, resulting in a very general
theory. We calculate the speeds of coupled first- and second-sound pulses, propagating either
trough nonequilibrium or equilibrium states. We characterize several different types of perturbations
depending on the value of the material coefficients. Under the assumption that the deformation of
the body can produce changes in its stoichiometry, altering locally the material composition, the
possibility of propagation of pure stoichiometric waves is pointed out. Thermoelastic perturbations
generated by the coupling of stoichiometric and thermal effects are analyzed as well.

Keywords: composition graded materials; thermoelastic solids; generalized Coleman–Noll proce-
dure; thermoelastic-wave propagation

1. Introduction

Functionally graded systems are new materials whose behavior varies along some
given directions inside the system [1,2]. Such a property can be used to optimize their
performances in several applications [3]. For example, at nanoscale, graded alloys of type
Sic Ge1−c with the stoichimetric variable c ∈ [0; 1] changing along a given direction are used
in the design of thermal diodes [4–10] or to enhance the efficiency of thermoelectric energy
conversion [11,12]. Graduation can be also induced by the anisotropic dependency of the
properties of the material on spatial gradients of some thermodynamic variables, since a
spatial gradient in the microstructure along a certain direction results in changes in the
local material properties. For instance, many biological materials exhibit spatial gradients
in the local chemical composition, which can be used to improve the mechanical properties
of biomaterials and to activate their functionality. In the last decades, substantial effort
was dedicated to fabricating functionally graded materials, with the scope of controlling
their physical properties such as heat conduction, electric conductivity and resistance to
enhanced stresses. That research ranged over a characteristic length scale from nanometers
to millimeters [13]. The study of elastic and thermal properties of composition graded
systems is a promising field of research, since applied mechanical stresses may influence
their thermal conductivity, thus providing a wider degree of control of their thermal
behavior [8,14,15].

In the present paper, we focus on the thermodynamics of composition graded ther-
moelastic systems, by postulating a set of balance equations modeling their behavior and
investigating its compatibility with second law of thermodynamics [16]. A system of
thermodynamic restrictions, giving necessary and sufficient conditions for the thermo-
dynamic compatibility, is derived by applying a generalized Coleman-Noll procedure
for the exploitation of the entropy inequality [17–19]. Furthermore, we investigate the
propagation of thermoelastic waves. We derive the necessary and sufficient conditions for
the propagation of the acceleration waves and analyze them in different physical situations.
In such a way, we obtain useful information on what could be derived from experimental
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thermoelastic–perturbation measurements and how such measurements can be used in
material design and fabrication process.

Our investigation is focused on graded systems at a nanometric scale. In nanosystems,
nonlinear effects influence the propagation of thermomechanical disturbances [20–23].
Then, new mathematical models beyond the classical thermoelasticity [20,24–28] are nec-
essary. In fact, at nanoscale, even small differences in temperature or displacement may
produce strong gradients in such a way that linear constitutive equations are no longer
valid. Furthermore, when a transient thermal pulse is applied to one end of a system, it
arrives at the opposite end in a very short time, i.e., before reaching its equilibrium value.
Thus, when studying thermoelastic nanosystems, a nonlinear heat-transport equation al-
lowing propagation of thermomechanical disturbances with a finite speed is also needed.
Due to the considerations above, we assume that:

• the heat-transport equation couples thermal and elastic effects;
• the effective thermal conductivity and the relaxation time depend on deformation,

too;
• the stoichiometric variable c ∈ [0, 1] and its gradient enter the state space;
• the variable c can change with time due to the changes in volume produced by

deformation and thermal expansion.

The meaning of the last condition is that, in practice, we regard c as a a scalar internal
variable whose dependency on the points of the system is known when the process starts,
but changes as a consequence of thermoelastic deformation. As usual for internal variables,
the kinetic equation giving the evolution of c is defined on the state space. It is worth
observing the derivation of such equation does not follow either from experimental results
or from kinetic modeling because both are lacking in the literature, but it is a theoretical
postulate based on the assumption that changes in strain and temperature necessarily
induce variation in the composition. In order to justify such an assumption, one should
note that variable composition is related to the internal microstructure, such as, for instance,
the presence of a grain structure, of dislocations, or of multiple metastable phases, leading
to multiple deformation mechanisms which can be manipulated by controlling the local
chemistry [29]. Then, to our view, time-dependent deformation and heating of such
material necessarily lead to changes in time of microstructure, i.e., to a time dependency of
the stoichiometric variable. We observe that in future research such a hypothesis can be
tested by comparing the results on the speeds of thermomechanical disturbances shown in
Section 4 with numerical simulation of wave propagation, (see, for instance, Ref. [30]). The
usefulness of the present analysis becomes more evident if one considers that the variation
with respect to time of c can be established in the phase of fabrication of the graded material
in order to optimize its performance. In the following, we focus on small deformations so
that our model equations remain within the frame of linear thermoelasticity, although due
to the nonlinear dependency of the constitutive equations on the strain and on the heat
flux, the full model is nonlinear. In such a framework we develop a mathematical model
which couples two thermodynamic theories, namely Rational Thermodynamics [17,31] and
Extended Irreversible Thermodynamics [25]. The following set of equations is postulated.

$üi − Tij,j = 0, (1a)

$ε̇− TijĖij + qi,i = 0, (1b)

τq Aq q̇i + qi + κ̄AKε ,i −
2τQ

$ε
qj,iqj − τEĖijqj − acc,i = 0, (1c)

ċ = H(Σ), (1d)

where

• the indices i, j, range from 1 to 3, and notation f,i means the partial derivative of the
regular function f with respect to the cartesian coordinates xi;

• ui is the local displacement vector with respect to a reference material configuration;
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• Tij is the (symmetric) Cauchy stress tensor;
• $ is the mass density;
• ε is the internal energy per unit mass;
• qi is the local heat flux;

• Eij is the strain tensor (i.e., Eij =
ui,j + uj,i

2
);

• c̄ is the specific heat related to the internal energy per unit of mass by relation ε = c̄ϑ,

where ϑ ≡
(

∂s
∂ε

)−1
is the absolute temperature;

• κ is the thermal conductivity and κAK ≡ κ(1 + aκEhkEhk) is the effective thermal
conductivity, depending on the deformation;

• κ̄ = κ/c̄;
• τq is a material parameter, depending on ε and c, such that τq Aq ≡ τq(1 + aτEhkEhk)

represents the total relaxation time of the heat flux (i.e., the time elapsed between the
application of a difference of temperature and the appearance of a heat flux);

• τE is the relaxation time of the strain (i.e., the time elapsed between the application of
a stress and the appearance of a deformation);

• τQ is the relaxation time of the heat carriers, i.e., the quantity
`

v̄
, with ` as the mean

free path and v̄ as the mean speed of the heat carriers (phonons, electrons, holes);
• aτ , aκ and ac are material functions depending on ε and c;
• Σ denotes the set of the elements of the state space which is specified better below.

Equations (1a)–(1d) represent an undetermined system of 8 partial differential in the
15 unknown quantities ui, Tij, qi, ε, c, H. Then, seven additional constitutive equations for
Tij and H are needed. Those equations are defined on the following state space

Σ ≡
{

ε, ε ,k, c, c,k, qh, qh,k, Ehk
}

. (2)

The second law of thermodynamics imposes that the local rate of entropy production

σs ≡ ρṡ + Ji,i , (3)

with s as the internal entropy per unit of mass and Ji as the local entropy flux, has to be
nonnegative for arbitrary thermodynamic processes [16], i.e.,

ρṡ + Ji,i ≥ 0 . (4)

The dissipation principle, postulated by Coleman and Noll in 1963 [17,32,33], requires that
the constitutive equations for the seven constitutive quantities Tij and H must be assigned
in such a way that the unilateral differential constraint (4) is satisfied whatever the solution
of the system (1a)–(1d) is.

We note that in Equation (1c), the strain influences both the total relaxation time and
the heat conductivity according to the results in [34,35]. We also note that we are supposing
τq 6= τQ. Indeed, at nanoscale size, effects on the relaxation of the heat flux become as
mportant as the characteristic dimension decreases. Consequently, in the present approach,
the total relaxation time of the heat flux (namely τq) does not coincide with the relaxation
time of the heat carriers (namely τQ) [36,37]. At macroscopic scale, instead, where the size
effects are absent, τq reduces to τQ, and the strain does not influence the evolution equation
of the heat flux, so that τE = aτ = aκ = 0. Then, Equation (1c) reduces to

τQ q̇i + qi +
κ

c̄
ε ,i −

2τQ

$ε
qj,iqj = 0, (5)

which is the nonlinear Maxwell–Cattaneo equation derived in [38,39].
The novelties of the present research can be summarized as follows:
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• a thermodynamic model of composition graded material with nonlocal constitutive
equations is studied, for the first time, by a generalized Coleman–Noll procedure;

• the specific entropy and the stress tensor of the material at hand may depend on the
gradient of the unknown fields;

• several different types of coupled first- and second-sound pulses, depending on the
value of the material coefficients characterizing the system, may propagate;

• for the first time, the possibility of propagation of pure stoichiometric waves generated
by the presence of a composition gradient is proved.

The paper has the following layout.
In Section 2, we derive by some general physical laws the model equations postulated

in Section 1.
In Section 3, we prove the compatibility of such equations with the second law of

thermodynamics and derive some possible expressions of the Cauchy stress tensor, of the
specific entropy, and of the time derivative of c (function H).

In Section 4, we calculate the speeds of propagation of thermoelastic pulses both in
equilibrium states and in nonequilibrium states.

In Section 5, a discussion of the obtained results is given, and possible developments
of the theory are analyzed.

2. Balance Equations and Entropy Inequality

In this section, we point out the fundamental physical laws on which Equations (1a)–(1d)
are based and derive those equations by such laws. We let B be a continuous body and
b ⊂ B a compact and connected subset of B. We call b the material particle included in B.
The scalars,

Qi(c, t) =
∫
b

$ẋidb , (6)

with ẋi as the components of the velocity of the points of b, denote the components of the
linear momentum of b. Then, the balance of linear momentum of b can be written as

d
dt

Qi(b, t) = Fi(b, t) , (7)

wherein Fi(b, t) are the components of the total force acting on b. It is assumed that [17]

Fi(b, t) =
∫
b

ρbidb+
∫

∂b
tidσ , (8)

wherein bi are the components of the body force acting on the points of B, and ti are
the components of the surface force acting on ∂b due to the interaction of b with the
external world.

Theorem 1. If bi = 0, Equations (7) and (8) hold for an arbitrary material particle b if, and only if,
Equation (1a) is true.

Proof. The celebrated Cauchy theorem on the stress allows to write∫
∂b

tidσ =
∫

∂b
Tijnjdσ =

∫
b

Tij,jdb , (9)

wherein nj are the components of the exterior normal to ∂b and Tij(x, t) are the components
of the Cauchy stress tensor. By the balance of angular momentum, it follows that the stress
tensor is symmetric [17]. Thus, Equation (7) writes as

d
dt

∫
b

ρẋidb =
∫
b

ρbidb+
∫
b

Tij,jdb . (10)
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By applying the transport theorem to the left-hand side of Equation (10), we finally
obtain ∫

b

[
ρẍi − ρbi − Tij,j

]
db = 0 , (11)

with the superposed dot denoting the material time derivative. Due to the arbitrariness of
the domain b and to the regularity of the integrand function, Equation (11) holds if, and
only if,

ρẍi − ρbi − Tij,j = 0 , (12)

which represents the local balance of linear momentum. In the absence of body forces
(bi = 0), once the displacement vector ui = xi −XI , with XI as the coordinates of the points
of B in the reference configuration, Equation (12) reduces to Equation (1a).

The first law of thermodynamics in a differential form reads

dU
dt

=
dQ
dt
− dL

dt
, (13)

wherein U is the total internal energy of the system, L is the work performed by the
system toward the external ambient, and Q is the heat exchanged by the system along the
thermodynamic transformation. On the other hand, we can suppose that

dLe

dt
=

dEk
dt
− dL

dt
, (14)

wherein Ek is the total kinetic energy of the system, and Le is the work performed by the
external forces on the system. Therefore, we obtain

dU
dt

=
dQ
dt

+
dLe

dt
− dEk

dt
. (15)

Theorem 2. In the absence of external heat souce, Equation (15) holds for an arbitrary material
particle b if, and only if, Equation (1b) is true.

Proof. We first suppose that there exists a regular function ε, the internal energy per unit
of mass, such that

U =
∫
b

ρεdb . (16)

Thus,
dU
dt

=
d
dt

∫
b

ρεdb =
∫
b

ρε̇db . (17)

Moreover, along with Coleman and Noll [17], it is assumed that

dQ
dt

=
∫
b

ρrdb−
∫

∂b
qinidσ =

∫
b

ρrdb−
∫
b

qi,idb , (18)

with r as the radiative power per unit of mass absorbed by the system and qi as the
components of the local heat flux on ∂b. Moreover,

dLe

dt
=
∫
b

ρbi ẋidb+
∫

∂b
ti ẋidσ =

∫
b

ρbi ẋidb+
∫

∂b
ẋiTijnjdσ =

∫
b

ρbi ẋidb+
∫
b
(ẋiTij),jdb =

=
∫
b

ẋiρbidb+
∫
b

ẋi,jTijdb+
∫

c
ẋiTij,jdb . (19)

On the other hand, the kinetic energy can be written as

Ek =
∫
b

1
2

ρẋi ẋidb . (20)
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Hence,
d
dt

Ek =
∫
b

ρẋi ẍidb . (21)

Finally, after substitution of the previous expressions in Equation (15), we obtain∫
b

ρε̇db = −
∫
b

qi,idb+
∫
b

ρrdb+
∫
b

ẋi
(
−ρẍi + Tij,j + ρbi

)
db+

∫
b

ẋi,jTijdb . (22)

Once the balance of linear momentum and the symmetry of Tij are taken into account,
we obtain ∫

b

(
ρε̇ + qi,i − TijDij − ρr

)
db = 0 , (23)

wherein Dij =
ẋi,j + ẋj,i

2
. Due to the arbitrariness of the domain b and to the regularity of

the integrand function, Equation (23) holds if, and only if,

ρε̇ + qi,i − TijDij − ρr = 0 . (24)

Equation (24) is the local balance of the total energy, namely the first law of thermodynamics
for the continuum at hand. When expressed in terms of displacement, it yields Equation (1b)
in the absence of external heat source, i.e., if r = 0.

As far as the heat flux is concerned, we regard it as and independent thermodynamic
variable entering the state space together with its gradient and endowed by its own
governing equation. For such variable, we postulate a global balance equation for the rate
of variation of the total heat flux in the form of

d
dt

∫
b

ρqidb+
∫
b

Φij,jdb = ri + Pi , (25)

wherein Φij is the flux of heat flux, ri is the heat flux production not related to the time
variation of the strain, and Pi is the additional heat flux production generated by the strain
rate. In other words, we are supposing that the velocity of deformation influences the
evolution of the heat flux. Hence, we assume

ri = −
∫
b

ρqi
τq Aq

db , (26)

and
Pi =

∫
b

ρτE
τq Aq

Ėijqjdb . (27)

Remark 1. Although the inclusion of the heat flux in the state space copes with the tenets of
Extended Irreversible Thermodynamics, assumption (27) goes beyond such a theory, because Pi
depends also on the rate of a thermodynamic variable. Thus, our system can be also regarded as a
generalized rate-type material.

Theorem 3. The global balance law (25), with ri and Pi given by Equations (26) and (27), holds
for an arbitrary material particle b if, and only if, Equation (1c) is true.

Proof. Once Equations (26) and (27) are taken into account, Equation (25) can be rear-
ranged as ∫

b

[
ρq̇i + Φij,j +

ρqi
τq Aq

− ρτE
τq Aq

Ėijqj

]
db = 0 . (28)
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Due to the arbitrariness of domain b and to the regularity of the integrand function,
Equation (28) holds if, and only if,

ρq̇i + Φij,j +
ρqi

τq Aq
− ρτE

τq Aq
Ėijqj = 0 . (29)

Then, if the spatial variation of the material functions is negligible, Equation (1c) can be
recovered under the constitutive assumption

Φij =

(
ρκ̄AK
τq Aq

ε−
τQ

ετq Aq
q2

k −
ρac

τq Aq
c
)

δij , (30)

where δij denotes the Kronecker symbol, i.e., the identity matrix.

For composition variable c, the general balance equation,

d
dt

∫
b

ρcdb+
∫

∂b
Cinidσ =

∫
b

ρHdb , (31)

with Ci as the flux of c through ∂b and H as the production of c per unit of mass, can be
postulated. However, here, we regard c as an internal variable whose evolution is related
to the variation of the internal composition of B. As a consequence, the flux of c through
the boundary is absent, i.e., Ci = 0.

Theorem 4. If Ci = 0, Equation (31) holds for an arbitrary material particle b if, and only if,
Equation (1d) is true.

Proof. Under the hypothesis Ci = 0, Equation (31) reduces to∫
b
(ċ− H)db . (32)

Due to the arbitrariness of the domain b and to the regularity of the integrand function,
Equation (32) is equivalent to Equation (1d).

According to second law of thermodynamics, the production of entropy along an
arbitrary thermodynamic process, represented by a regular curve in the state space, cannot
be negative. In the absence of external radiation (r = 0), such a constraint can be expressed
by the integral inequality

d
dt

∫
b

ρsdb+
∫

∂b
Jinidσ =

d
dt

∫
b

ρsdb+
∫
b

Ji,idb ≥ 0 , (33)

where s is the internal entropy per unit of mass and Ji is the local entropy flux through the
boundary of b.

Theorem 5. The integral inequality (33) holds for an arbitrary material particle b if, and only if,
the differential inequality (4) is true.

Proof. It is enough to observe that the integral inequality (33) can be reformulated as follows:∫
b
(ρṡ + Ji,i)db ≥ 0 . (34)

Due to the arbitrariness of the domain b and to the regularity of the integrand function, the
global inequality (34) is equivalent to the local inequality (4).

3. Thermodynamic Compatibility

In the present section, we explore the compatibility of Equation (1) with the second law
of thermodynamics, namely with differential constraint (4). In order to better specify the
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theoretical framework of the present theory, we observe that the heat flux, whose evolution
is ruled by Equation (1c), enters the state space. We observe also that the gradients of the
independent thermodynamic variables belong to Σ. Such considerations allow to conclude
that our model is within the frame of Extended Irreversible Thermodynamics (EIT), a
weakly nonlocal thermodynamic theory in which the dissipative fluxes have the rank of
independent thermodynamic variables [16,20,24,25,40]. According to the basic tenets of
EIT, the gradients of the basic unknown fields can enter the state space.

When the dependency of s and Ji on the state variables is made explicit, the inequality
(4) reads

$

(
∂s
∂ε

ε̇ +
∂s

∂ε ,i
ε̇ ,i +

∂s
∂qi

q̇i +
∂s

∂qj,i
q̇j,i +

∂s
∂Eij

Ėij +
∂s
∂c

ċ +
∂s
∂c,i

ċ,i

)
+

∂Ji
∂ε

ε ,i +
∂Ji
∂ε ,j

ε ,ji +
∂Ji
∂qj

qj,i +
∂Ji

∂qj,k
qj,ki +

∂Ji
∂Ehk

Ehk,i +
∂Ji
∂c

c,i +
∂Ji
∂c,k

c,ki ≥ 0. (35)

Inequality (35) is exploited by a generalization of the classical Coleman–Noll procedure [17–19],
which consists in substituting in (35) the evolution Equations (1b)–(1d) and their gradients
up to the order of the gradients of ε, qi and c entering the state space (see also [41,42] for
more details on the generalized exploitation procedures of the entropy inequality). Doing
that, we consider of the first order of magnitude the gradients of the independent thermo-
dynamic variables. Then, in a first-order approximation, we neglect the terms containing
the products of such gradients as, for instance, the term qhEhk,iqk,i. In this way, we obtain
the following inequality:(

∂s
∂qi

τEqj

τq Aq
+

∂s
∂qi,k

τEqj,k −
∂s
∂ε

Tij + $
∂s

∂Eij

)
Ėij+(

∂s
∂c,k

∂H
∂ε ,i
− ∂s

∂qi,k

κAK
c̄τq Aq

− ∂Ji
∂ε ,k

)
ε ,ki+(

∂s
∂c,k

∂H
∂qj,i

+
∂s

∂qi,k

2τQqj

τq$εAq
− ∂s

∂ε ,i
δjk +

∂Ji
∂qj,k

)
qj,ki+(

∂Ji
∂Ehk

+
∂s
∂c,i

∂H
∂Ehk

)
Ehk,i+(

∂s
∂qi,k

τEqj −
∂s

∂ε ,i
Tjk

)
Ėij,k+(

∂s
∂c,k

∂H
∂c,i

+
∂s

∂qi,k
ac +

∂Ji
∂c,k

)
c,ki + f (Σ) ≥ 0, (36)

wherein f (Σ) is a scalar-valued function defined on the state space whose expression is
omitted for the sake of concision.
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Theorem 6. Inequality (36) is satisfied whenever the thermodynamic process is if, and only if, the
following thermodynamic restrictions hold:〈

∂s
∂qi

τEqj

τq Aq
+

∂s
∂qi,k

τEqj,k −
∂s
∂ε

Tij + $
∂s

∂Eij

〉
= 0, (37a)〈

∂s
∂c,k

∂H
∂ε ,i
− ∂s

∂qi,k

κAK
c̄τq Aq

− ∂Ji
∂ε ,k

〉
= 0, (37b)〈

∂s
∂c,k

∂H
∂qj,i

+
∂s

∂qi,k

2τQqj

τq$εAq
− ∂s

∂ε ,i
δjk +

∂Ji
∂qj,k

〉
(ki)

= 0, (37c)

〈
∂Ji

∂Ehk
+

∂s
∂c,i

∂H
∂Ehk

〉
(hk)

= 0, (37d)〈
∂s

∂qi,k
τEqj −

∂s
∂ε ,i

Tjk

〉
(ij)

= 0, (37e)〈
∂s

∂c,k

∂H
∂c,i

+
∂s

∂qi,k
ac +

∂Ji
∂c,k

〉
= 0, (37f)

f (Σ) ≥ 0, (37g)

wherein symbol 〈F〉 denotes the symmetric part of the tensor function F, while symbol 〈F〉
(ab...)

denotes the symmetric part of F with respect to the indicated indices.

Proof. Preliminarily, let us evaluate inequality (36) in a fixed point P̄ of the body at a fixed
instant t̄. Then, taking into account that, in a fixed point, the values of a function and those
of its derivative are independent quantities, Equation (36) can be regarded as an algebraic
inequality which is linear with respect to the elements of the set

H(P̄, t̄) ≡
{

ε ,ki(P̄, t̄), c,ki(P̄, t̄), qj,ki(P̄, t̄), Ehk,i(P̄, t̄), Ėhk(P̄, t̄), Ėhk,i(P̄, t̄)
}

(38)

called the set of the higher derivatives in (P̄, t̄). Such derivatives are independent of the
quantities in the brackets, which, instead, depend on the elements of

Σ(P̄, t̄) ≡
{

ε(P̄, t̄), ε ,k(P̄, t̄), c(P̄, t̄), c,k(P̄, t̄), qh(P̄, t̄), qh,k(P̄, t̄), Ehk(P̄, t̄)
}

.

Moreover, since inequality (36) must hold for arbitrary thermodynamic processes, the
elements ofH(P̄, t̄) can have arbitrary sign and, consequently, the same is true for each of
the linear terms entering such inequality. This implies that the inequality can be violated for
some values of the elements ofH(P̄, t̄), unless all the linear terms in it vanish. This happens
if, and only if, the thermodynamic restrictions (37) hold in (P̄, t̄), once the symmetry of
the elements of H(P̄, t̄) is taken into account. On the other hand, since the point (P̄, t̄) is
arbitrary, thermodynamic restrictions (37) ensue.

Remark 2. Inequality (37g) is also called reduced-entropy inequality since it represents the effective
local rate of entropy production once restrictions (37a)–(37f) have been satisfied.

Remark 3. The classical Coleman–Noll procedure [17] consists in substituting in Equation (35)
the sole evolution Equations (1b)–(1d). Thus, the set of the higher derivatives becomes

H(P̄, t̄) ≡
{

ε ,ki(P̄, t̄), c,ki(P̄, t̄), qj,ki(P̄, t̄), Ehk,i(P̄, t̄), Ėhk(P̄, t̄), Ėhk,i(P̄, t̄), ε̇ ,i(P̄, t̄), ċ,k(P̄, t̄), q̇i,k(P̄, t̄)
}

,

and the set of coefficients which must vanish is different with respect to the previous one. In
particular, according to such a procedure, the coefficients of the quantities ε̇ ,i, ċ,k, and q̇i,k must be
zero, preventing so the dependency of s on ε ,i, c,k, and qi,k.
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It is expected that such a methodology implies more severe restrictions on the constitutive
quantities because it requires that the entropy inequality is satisfied under constraints (1b)–(1d),
independently of the form of the evolution equations of the quantities ε̇ ,i, ċ,k, and q̇i,k. It is very
efficient in those physical situations in which it is expected that the partial derivatives of s with
respect to the gradients of the unknown fields vanish. However, for some systems as, for instance,
Korteweg fluids [18,19], such derivatives should not vanish, so that the generalized method seems
to be more suited for the exploitation of the entropy inequality. Below, we analyze some cases for
the system at hand in which s should depend on the gradients. The generalized Coleman–Noll
method reduces to the classical one if the form of the gradients of the unknown fields is not taken
into account.

Corollary 1. If inequality (35) is restricted by sole constraints (1b)–(1d), the following thermody-
namic restrictions hold:

s = s(ε, c, qi, Eij), (39a)〈
∂s
∂qi

τEqj

τq Aq
− ∂s

∂ε
Tij + $

∂s
∂Eij

〉
(ij)

= 0, (39b)

〈
∂Ji
∂ε ,k

〉
= 0, (39c)〈

∂Ji
∂qj,k

〉
(ki)

= 0, (39d)

〈
∂Ji

∂Ehk

〉
(hk)

= 0, (39e)〈
∂Ji
∂c,k

〉
= 0, (39f)

g(Σ) ≥ 0, (39g)

wherein g is a new scalar-valued function which can be obtained by f once quantities
∂s

∂ε ,i
,

∂s
∂qi,k

,

and
∂s

∂c,k
are put equal to zero.

Proof. To prove the Corollary, it is enough to observe that, without the substitution of the

gradient extensions of Equations (1b)–(1d) into entropy inequality (35), the terms
∂s

∂ε ,i
ε̇ ,i,

∂s
∂qi,k

q̇i,k, and
∂s

∂c,k
ċ,k would not couple with any other term. This would imply the following

thermodynamic restrictions:

∂s
∂ε ,i

= 0, (40a)

∂s
∂qi,k

= 0, (40b)

∂s
∂c,k

c,k = 0, (40c)

i.e, s = s(ε, c, qi, Eij). The coupling of Equations (37) and (40) yields Equations (39b)–(39g).
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Corollary 2. In order to satisfy system of restrictions (39), it is sufficient that the following set of
relations is true:

s = s(ε, c, qi, Eij), (41a)

∂s
∂qi

τEqj

τq Aq
− ∂s

∂ε
Tij + $

∂s
∂Eij

= 0, (41b)

Ji = Ji(ε, c, qi), (41c)

h(Σ) ≥ 0, (41d)

where h is a new function which can be obtained by g once quantities
∂Ji
∂ε ,k

,
∂Ji

∂qj,k
,

∂Ji
∂Ehk

, and
∂Ji
∂c,k

are put equal to zero.

Proof. It is evident that if Equation (41b) is true, then restriction (39b) is satisfied. More-

over, if
∂Ji
∂ε ,k

= 0,
∂Ji

∂qj,k
= 0,

∂Ji
∂Ehk

= 0, and
∂Ji
∂c,k

= 0, i.e., if Equation (41c) is true, then

restrictions (39c)–(39f) hold, while function g in Equation (39g) reduces to function h in
Equation (41d).

Corollary 3. Thermodynamic restrictions (41a)–(41c) are satisfied by the following constitutive
equations for the specific entropy, the Cauchy stress and the entropy flux:

s = s0(ε, c̄) +
s1 c̄
2ε

q2
i +

c̄
ρε

[
λ

2
E2

ii + µE2
ij − (3λ + 2µ)

α

c̄
εEijδij

]
, (42a)

Tij =
s1τEqiqj

τq Aq
+ λEhhδij + 2µEij − (3λ + 2µ)

α

c̄
εδij, (42b)

Ji =
c̄
ε

qi, (42c)

wherein s0 and s1 are material functions depending on ε and c, λ and µ are the Lamé coefficients,
and α is the coefficient of thermal expansion.

Proof. It is evident that constitutive Equation (42a) satisfies restriction (41a), and consti-
tutive Equation (42c) satisfies restriction (41c). Moreover, by Equation (42a), we obtain

∂s
∂qi

=
s1 c̄
ε

qi, (43a)

∂s
∂Eij

=
c̄
ρε

[
λEhhδij + 2µEij − (3λ + 2µ)

α

c̄
εδij

]
. (43b)

By Equations (43a) and (43b), it follows immediately that restriction (41b) is satisfied once

the thermodynamic relation
∂s
∂ε

=
1
ϑ
=

c̄
ε

is taken into account.

Remark 4. Equation (42) yields the classical expression of the entropy flux postulated by Coleman
and Noll in their celebrated paper on the thermodynamics of viscoelastic heat conducting solids [17],
while Equations (42a) and (42b) generalize the constitutive equations for s and Tij obtained in
classical linear thermoelasticity [43]. Both constitutive Equations (42a) and (42b) are local, as
expected, and represent a very particular case of the more general constitutive equations compatible
with the set of thermodynamic restrictions in Equation (37).

Remark 5. It is important to observe that the material coefficients λ, µ, and α, entering
Equations (42a) and (42b), depend, in general, on ε and c.
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Remark 6. Due to the presence in s of the term
s1 c̄
2ε

q2
i , in nonequilibrium situations the temperature

ϑ =

(
∂s
∂ε

)−1
depends on the heat flux, too.

One could wonder if, for the system at hand, the application of the generalized ex-
ploitation procedure is necessary or not. To answer that question, we observe preliminarily
that, since function H depends on Eij, the gradient of c is not constant in time, as in the case
of rigid heat conductors, but can change as a consequence of the deformation, as it can be
easily seen by taking the gradient of Equation (1d). This variable gradient contributes to the
variation of the heat flux, too, according to Equation (1c), and this produces further thermal
dissipation. Thus, both s and Ji are expected to contain terms which depend on Eij and c,i.
Moreover, by Equation (1c), it follows that the temperature varies along the medium even
in the absence of the heat flux, so that a dependency of s and Ji on ε ,i is expected as well.
The propositions below clarify the conditions under which such dependencies are possible.
To this end, we generalize Equation (42c) as follows:

Ji =
c̄
ε

qi + J0(ε, c, Eij)ε ,i + J1(ε, c, Eij)c,i, (44)

and investigate its compatibility with the second law of thermodynamics.

Corollary 4. The constitutive equation of Ji may depend on Eij if, and only if, s depends on c,i and
H depends on Eij.

Proof. To prove this proposition, we observe that if either s is independent of c,i or H is
independent of Eij, thermodynamic restriction (37d) implies〈

∂Ji
∂Ehk

〉
(hk)

= 0. On the other hand, since strain tensor Ehk is symmetric, this relation is

equivalent to
∂Ji

∂Ehk
= 0, i.e., Ji is independent of Ehk.

Corollary 5. The constitutive equation of Ji may be linear in ε ,k (as in Equation (44)) if, and only
if, either s depends on c,i and H depends on ε ,i or s depends on qi,k.

Proof. To prove this proposition, it is enough to observe that if s is independent of c,i, H
is independent of ε ,i, and s in independent of qi,k, then thermodynamic restriction (37b)

implies
〈

∂Ji
∂ε ,k

〉
= 0 or, equivalently,

1
2

(
∂Ji
∂ε ,k

+
∂Jk
∂ε ,i

)
= 0. It yields J0δik = 0 once Equa-

tion (44) is taken into account.

Corollary 6. The constitutive equation of Ji may be linear in c,k (as in Equation (44)) if, and only
if, either s depends on c,k and H depends on c,i or s depends on qi,k.

Proof. To prove this proposition, it is enough to observe that if s is independent of c,k or H is
independent of ε ,i, and s in independent of qi,k, then thermodynamic restriction (37f) implies〈

∂Ji
∂c,k

〉
= 0 or, equivalently,

1
2

(
∂Ji
∂c,k

+
∂Jk
∂c,i

)
= 0. It yields J1δik = 0 once Equation (44) is

taken into account.

The nonlocal terms entering Equation (44) may be important at a nanometric scale,
where nonlocal effects are evident. One should note that the additional terms J0(ϑ, c, Eij)ε ,i +
J1(ϑ, c, Eij)c,i in Equation (44) may be regarded as the entropy extraflux proposed in [44].
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4. Thermoelastic-Wave Propagation

In this section, we study the propagation of thermoelastic waves along a graded
material. Our analysis is pursued under the following hypotheses:

• constitutive Equation (42b) for the Cauchy stress holds;
• constitutive Equation (30) for the flux of heat flux, leading to the balance Equation (1c)

for the heat flux, holds;
• all the material coefficients are constant;
• function H is linear in the gradients, i.e., the constitutive equation for H is

H = H0(ε, Ehk, c) + hkε ,k + mkc,k + Nkjqk,j, (45)

wherein hk, mk and Nkj depend on set (ε, Ehk, c);

•
∂
(
s1τE/τq Aq

)
∂xj

is negligible.

Under the hypotheses above, the system of Equation (1) writes as

$üi −
s1τEqi,jqj

τq Aq
−

s1τEqiqj,j

τq Aq
− λEhh,i − 2µEij,j + b̄ε ,i = 0, (46a)

$ε̇−
s1τEqiqj

τq Aq
Ėij − λEhhĖii − 2µEijĖij + b̄εĖii + qi,i = 0, (46b)

τq Aq q̇i + qi + κ̄AKε ,i −
2τQ

$ε
qj,iqj − τEĖijqj − acc,i = 0, (46c)

ċ = H0(ε, Ehk, c) + hkε ,k + mkc,k + Nkjqk,j, (46d)

with b̄ = (3λ + 2µ)α/c̄, and κ̄ = κ/c̄.

Remark 7. It is evident that by the results in Section 3, it follows that constitutive
Equations (42b), (30) and (45) are compatible with the second law of thermodynamics.

The nonlinear system of equations above allows the existence of nonregular solutions.

Definition 1. An acceleration wave is a traveling surface S across which solution {ui, ε, qi, c} of
Equations (46) is continuous, but its first- and higher-order derivatives suffer jump discontinu-
ities [26,45].

Remark 8. It is worth observing that Equations (46) hold in the points of the two regions behind
and ahead S , while on S those equations must be written in terms of the jumps of the discontinuous
fields across the wavefront. Such jumps are given by differences

∆üi = ü−i − ü+
i , ∆ui,j = u−i,j − u+

i,j, ∆ui,jk = u−i,jk − u+
i,jk,

∆ε ,j = ε−,j − ε+,j , ∆qi,j = q−i,j − q+i,j, ∆c,j = c−,j − c+,j ,
(47)

where upscript + denotes the value of the corresponding fields in the region which S is about to
enter, and upscript − denotes the same value in the region which S is about to leave.
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For the sake of simplicity, herein we consider a one-dimensional system. Then, Equa-
tions (46) write as

$ü− (λ + 2µ)u,xx + b̄ε ,x − 2
s1τE
τq Aq

qq,x = 0, (48a)

− s1τEq2

τq Aq
u̇,x − (λ + 2µ)u,xu̇,x + b̄εu̇,x + $ε̇ + q,x = 0, (48b)

− τEqu̇,x + κ̄AKε ,x + τq Aq q̇ + q−
2τQ

$ε
qq,x − acc,x = 0, (48c)

H0 + hε ,x + Nq,x − ċ + mc,x = 0. (48d)

In order to determine the jumps of the discontinuous fields across S , we first observe that
in the one-dimensional case, the sole component of the strain tensor is E = u,x. Here and
in the following, we suppose that fields u,x, ε, q, c are continuous across S but their space
and time derivatives suffer jump discontinuities. In the meantime, we suppose that across
S , the time derivatives of displacement u are discontinuous, too. Hence, we introduce the
following notation:

δ
∂2u
∂x2 = δ

∂(∂u/∂x)
∂x

= δ
∂E
∂x
≡ δE, δ

∂ε

∂x
≡ δε, δ

∂q
∂x
≡ δq, δ

∂c
∂x
≡ δc, (49)

with δ as the jump of the indicated quantities in the onedimensional case. Moreover,
u,x being continuous across S , by the classical Hadamard identities (see Ref. [45] and
Equations (54) and (55) therein), we can write

δ
∂2u
∂t2 = U2δ

∂2u
∂x2 = U2δE, (50)

wherein U is the speed of propagation of thermomechanical disturbances. Then, system (48)
yields

[$U2 − (λ + 2µ)] δE + b̄ δε− 2
s1τE
τq Aq

q δq = 0, (51a)

U[
s1τEq2

τq Aq
+ (λ + 2µ)E− b̄ε] δE− $U δε + δq = 0, (51b)

UτEq δE + κ̄AK δε− [Uτq Aq +
2τQ

$ε
q] δq− ac δc = 0, (51c)

h δε + N δq + (U + m)δc = 0, (51d)

wherein it must be understood that the coefficients of the unknown jumps are evaluated in
the region which S is about to enter. Equations (50) represent a linear and homogeneous
algebraic system in the unknown quantities δE, δε, δq and δc, which provides, in principle,
the values of the jumps we are looking for. The following statement is straightforward.

Theorem 7. System (51) admits nontrivial solution if, and only if, the following condition is ful-
filled:

det



[$U2 − (λ + 2µ)] b̄ −2
s1τE
τq Aq

q 0

U[
s1τEq2

τq Aq
+ (λ + 2µ)E− b̄ε] −$U 1 0

UτEq κ̄AK −(Uτq Aq +
2τQ

$ε
q) −ac

0 h N (U + m)


= 0. (52)
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Proof. The proof immediately follows by the observation that system (51) admits non-
trivial solutions if, and only if, the matrix of the coefficients is singular, i.e., if, and only if,
Equation (52) holds.

We suppose now that the following additional conditions hold:

τE = τQ = N = b̄ = 0. (53)

Remark 9. Conditions (53) mean that the Cauchy stress coincides with that of classical linear
elasticity in the absence of thermal effects. Moreover, nonlocal effects for the heat flux do not influence
the evolution equations for the heat flux (Equation (1c)) and for c (Equation (1d)).

Under hypotheses (53), system (51) becomes

[$U2 − (λ + 2µ)] δE = 0, (54a)

U(λ + 2µ)E δE− $U δε + δq = 0, (54b)

κ̄AK δε−Uτq Aq δq− ac δc = 0, (54c)

h δε + (U + m)δc = 0. (54d)

Theorem 8. System (54) admits nontrivial solution if, and only if, the following equation is fulfilled:[
$U2 − (λ + 2µ)

][
$U2(Uτq Aq + mτq Aq)− ((U + m)κ̄AK + hac)

]
= 0. (55)

Proof. To prove the theorem, we observe that system (54) admits non-trivial solutions if,
and only if,

det


[$U2 − (λ + 2µ)] 0 0 0

U(λ + 2µ)E −$U 1 0
0 κ̄AK −Uτq Aq −ac
0 h 0 (U + m)

 = 0, (56)

i.e, if, and only if, Equation (55) holds.

Remark 10. Compatibility condition (55) is satisfied if either two elastic waves propagate with speeds

U = ±
√

λ + 2µ

$
(57)

or two thermoelastic waves propagate with speeds

U = −m, U = −m− hac

κ̄AK
. (58)

Remark 11. If all the relaxation times in Equation (1c) vanish, then the generalized Fourier law

qi = −κ̄AKε ,i − acc,i (59)

holds. Thus, as qi = qi(ε ,i, c,i, Ehk), we are in the realm of Rational Thermodynamics, i.e., the
thermodynamic theory in which heat flux and stress tensor are assigned through suitable constitutive
Equations [16,31].

Corollary 7. Under the validity of the generalized Fourier law (59), if

N = b̄ = 0, (60)
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then the following speeds of propagation are possible:

U = ±
√

λ + 2µ

$
, U = −m− hac

κ̄AK
. (61)

Proof. The proof follows by the observation that, if τq = 0, Equation (55) reduces to[
$U2 − (λ + 2µ)

]
[(U + m)κ̄AK + hac] = 0. (62)

Remark 12. The first speed in Equation (61) is of elastic type, while the second one, due to the
combined presence of κ̄ and AK, corresponds to a thermo-mechanical wave. If ac = 0, then the
evolution equation of the heat flux does not appear in the wave speeds, and the constant speed
U = −m corresponds to a stoichiometric wave, i.e., to a transport of energy due to the variable
composition.

Corollary 8. Under hypotheses (53), if

ac = m = 0, Aq ' 1, AK ' 1, (63)

the propagation of elastic or thermal perturbations with speeds

U = ±
√

λ + 2µ

$
, U = ±

√
κ̄

$τq
(64)

is possible.

Proof. We first observe that hypotheses (53) imply Equation (55). On the other hand, if
conditions (63) hold, then Equation (55) reduces to[

$U2 − (λ + 2µ)
][

U2$τq − κ̄
]
= 0, (65)

which proves the assertion.

Remark 13. Under the hypotheses of Corollary 8, the system behaves as a purely elastic body
(no thermoelastic coupling), with a Cattaneo-type evolution equation for the heat flux. Thus, the
presence of purely elastic and purely thermal waves (second sound) is expected.

Definition 2. An acceleration wave is said to propagate in a state of thermal equilibrium if in the
region in which the wave is about to enter

ε̇ = ε ,x = q = 0. (66)

In such a case, system (51) becomes

[$U2 − (λ + 2µ)] δE + b̄ δε = 0, (67a)

U[(λ + 2µ)E− b̄ε] δE− $U δε + δq = 0, (67b)

κ̄AK δε−Uτq Aq δq− ac δc = 0, (67c)

h δε + N δq + (U + m)δc = 0. (67d)
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Theorem 9. System (67) admits nontrivial solution if, and only if, the following condition is
fulfilled:

det


[$U2 − (λ + 2µ)] b̄ 0 0

U[(λ + 2µ)E− b̄ε] −$U 1 0
0 κ̄AK −Uτq Aq, −ac
0 h N (U + m)

 = 0. (68)

Proof. The proof immediately follows by the observation that system (67) admits non-
trivial solutions if, and only if, the matrix of the coefficients is singular, i.e., if, and only if,
Equation (68) holds.

Corollary 9. If m = 0, system (65) admits a non-trivial solution if, and only if, the following
condition is fulfilled:[

$U2 − (λ + 2µ)
][

$U3τq Aq −U($Nac + κ̄AK) + hac

]
− b̄U

[
(λ + 2µ)E− b̄ε

][
−U2τq Aq + Nac

]
= 0. (69)

Proof. To prove this statement, we observe that Equation (69) follows by Equation (68)
once condition m = 0 is taken into account.

Remark 14. Equation (69) is satisfied if two elastics of speed

U = ±
√

λ + 2µ

$
(70)

propagate together with two thermoelastic waves with speed

U = ±
√

Nac

τq Aq
. (71)

Moreover, if the third-grade equation

$U3τq Aq −U($Nac + κ̄AK) + hac = 0 (72)

admits real solutions, then Equation (69) is also satisfied if thermoelastic waves with speed given by
such solutions propagate together with two thermoelastic waves with speed given by Equation (71).

5. Conclusions

In the last decades, substantial effort was dedicated to fabricating functionally graded
materials, with the scope of controlling their physical properties such as heat conduction,
electric conductivity and resistance to enhanced stresses. Such investigations ranged over
a characteristic length scale from nanometers to millimeters [13]. A functionally graded
material is a material with graded functions inside them. In fact, an ordinary composite
material contains a sudden change in properties at some interfaces, while a functionally
graded material presents a gradual change inside it. This leads to graded patterns of
material composition and/or microstructures. Modeling graded patterns are complex and
need incorporating the material property gradient at a very small scale, thus reducing the
discontinuity of the material distribution. Such systems exhibit many advantages compared
to conventional alloys and composite materials since they provide means for controlling
material response to deformation and dynamic loading. In addition, biocompatibility of
many of them increases their suitability for medical applications.

Another important aspect regards the fabrication of ultra-high-temperature resistant
materials for aircrafts, space vehicles and other engineering applications. Such heat-
resistant materials contain reinforcing particles (ceramics) in a metallic matrix, with the
metallic matrix subjected to plastic deformation and generation of cracks. In such a
case, an accurate analysis of the evolution of thermal stresses is important. However,
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this goal cannot be achieved without considering the law of variation of the internal
microstructure, too.

Thus, the study of elastic and thermal properties of composition graded systems
is a promising field of research, since applied mechanical and thermal stresses may
influence their thermal conductivity, thus providing a wider degree of control of their
behavior [8,14,15].

In Equation (1), we proposed a mathematical model describing the nonlinear thermoe-
lastic behavior of composition graded materials. The compatibility of the aforementioned
model with the second law of thermodynamics was investigated by applying a generalized
Coleman–Noll procedure.

We showed that for the material at hand, the specific entropy and the stress tensor
may depend on the gradient of the unknown fields, resulting in a very general theory. The
speeds of propagation of coupled first- and second-sound pulses, propagating either in non-
equilibrium or in equilibrium states, were calculated under different physical conditions.
We found that several different types of thermomechanical perturbations may propagate,
depending on the value of the material coefficients characterizing the system.

The basic assumption underlying the present work is that the deformation of the
body can produce changes in the stoichiometry, altering locally the material composition.
Although such assumption is only based on theoretical considerations (see Section 1), in
future research, it can be tested by comparing the results on the speeds of thermomechanical
disturbances shown in Section 4 with numerical simulation of wave propagation (see, for
instance, Ref. [30]). The usefulness of the present analysis becomes more evident if one
considers that the variation with respect to time of c can be established in the phase of
fabrication of the graded material in order to optimize its performance. The novelties of
the present research are represented by the fully nonlocal constitutive equations, by the
generalized exploitation procedure of the entropy inequality, which allows the specific
entropy and the stress tensor to depend on the gradient of the unknown fields, and by
the propagation of several different types of coupled first- and second-sound pulses,
depending on the value of the material coefficients. An interesting propagation is that of
pure stoichiometric waves, with speed U = −m where m measures the nonlocality of ċ with
respect to c itself (see Equation (46d)). To the best of our knowledge, this is the first time that
such a type of propagation has been obtained. The coupling of thermal and stoichiometric
effects was taken into account through the term −acc,i in the evolution equation of the heat
flux (see Equation (1d)). Such a coupling produces thermoelastic waves with speed

U = −m− hac

κ̄AK
, (73)

for propagation in nonequilibrium states and

U = ±
√

Nac

τq Aq
, (74)

for propagation in equilibrium states. Furthermore, it is capable to produce additional
thermoelastic waves with speed given by the real solutions of Equation (72). It should be
noted that if ac = 0, besides solution U = 0, Equation (72) yields

U = ±
√

κ̄AK
$τq Aq

, (75)

which corresponds to heat waves with strain-dependent thermal conductivity. Finally, the
model is capable to reproduce the propagation of pure elastic waves and pure thermal
waves in the absence of coupling (see Equation (64)). Such a rich behavior was obtained
under hypothesis τQ = τE = 0.
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As a concluding remark, let us compare the results obtained in the present paper with
those obtained in [4,5], wherein a constitutive theory of composition graded materials has
been developed as well. In [4], stoichiometric variable c enters the state space, but not
its gradient. An evolution equation of type Equation (1c) for the heat flux is postulated.
However, no governing equation for the evolution of c has been postulated. Hence, stoichio-
metric waves cannot propagate. Under the hypothesis of constant material coefficients, the
propagation of several types of coupled first- and second-sound pulses, both in equilibrium
and in non-equilibrium states, has been pointed out. Of particular interest are those waves
called by the authors predominantly thermal and predominantly elastic.

In [5], the material model is developed within the frame of Extended Irreversible
Thermodynamics [24]. The continuum system is rigid, the state space is local, as well as
the evolution equation for c. The governing equation for the heat flux is of the Cattaneo
type. It is proved that the speed of the heat pulses depends on c but does not depend on the
gradient of c. The wave amplitude instead depends on such gradient and on the direction
of propagation. For the sake of comparison, in Table 1, the results obtained in the present
paper are compared with those obtained in [4,5].

Table 1. Comparison of the results in [4,5] with the results obtained in the present paper (NI = Not
Investigated; NE = Not Expected).

Results Ref. [4] Ref. [5] Present Paper

Dependency of s and Tij on the gradient of the
basic variables No NE Yes

Dependency of the speed of propagation on c NE Yes Yes

Dependency of the wave amplitude on c, i NI Yes NI

Dependency on the direction of propagation of
the wave amplitude NI Yes NI

Propagation of pure stoichiometric waves NE No Yes

The evolution of the wave amplitude has not yet been investigated for the model
presented here, and it will be analyzed in a more general framework in a forthcoming
paper. In fact, in future research, we aim at considering, for the same model, a more general
set of restrictions with respect to Equations (42), in which we expect to offer a wider range
of possibilities of nonlinear thermoelastic coupling. In particular, the state space can be
enlarged by including the gradient of Eij so that the connection with the Mindlin strain
gradient theory [46] can be analyzed.
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