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Abstract
In view of the future high power nuclear fusion experiments, the early identification of
disruptions is a mandatory requirement, and presently the main goal is moving from the
disruption mitigation to disruption avoidance and control. In this work, a deep-convolutional
neural network (CNN) is proposed to provide early detection of disruptive events at JET. The
CNN ability to learn relevant features, avoiding hand-engineered feature extraction, has been
exploited to extract the spatiotemporal information from 1D plasma profiles. The model is
trained with regularly terminated discharges and automatically selected disruptive phase of
disruptions, coming from the recent ITER-like-wall experiments. The prediction performance
is evaluated using a set of discharges representative of different operating scenarios, and an
in-depth analysis is made to evaluate the performance evolution with respect to the considered
experimental conditions. Finally, as real-time triggers and termination schemes are being
developed at JET, the proposed model has been tested on a set of recent experiments dedicated
to plasma termination for disruption avoidance and mitigation. The CNN model demonstrates
very high performance, and the exploitation of 1D plasma profiles as model input allows us to
understand the underlying physical phenomena behind the predictor decision.
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extraction, automatic pre-disruptive phase identification
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(Some figures may appear in colour only in the online journal)

1. Introduction

Mitigating or, even better, avoiding plasma disruptions has
become mandatory in view of future nuclear fusion devices,
like ITER. The sudden loss of plasma confinement, followed
by the quench of the plasma current, could result in the release
of large amounts of energy and large thermal and electro-
magnetic loads, possibly causing severe damage to the plasma
facing components and stressing the device with high mechan-
ical forces [1]. In over two decades of investigations, artificial
intelligence-based approaches demonstrated the great poten-
tial to predict disruptions in tokamak devices. Several machine
learning methods such as multi-layer perceptron neural net-
works, support vector machines, self organizing maps and
generative topographic mapping (GTM), classification and
regression trees and random forests have been used to develop
disruption prediction models for JET [2–8], ASDEX Upgrade
[9–11], EAST [12], J-TEXT [13], DIIID [14] and Alcator
C-Mod [12]. All these contributions have highlighted the
importance of studying in depth the physical phenomena
involved in disruptive processes in order to synthesize suit-
able disruption precursor signals to be used as inputs in
the data-driven prediction models for avoidance or mitiga-
tion actions [7, 15–18]. In particular, invaluable informa-
tion can be obtained from temperature, density and radiation
plasma profiles due to their close connection with plasma
stability and destabilization of MHD modes that may cause
disruptions. Just as an example, in most cases, a disrup-
tion is the consequence of the development of tearing modes
inside the plasma, which leads to the growing of the mag-
netic islands. Usually, well before the onset of the tearing
modes, an increase of the radiation emission in the core,
which leads to a hollow temperature profile, can be observed,
whereas an increase in the radiation emission at the edge of
the plasma leads to a cooling at the edge. In case of tem-
perature hollowing, there is a broadening of the current den-
sity profile from inside, whereas a shrinking of the same
profile from outside corresponds to the edge cooling. In both
cases an unstable MHD scenario may arise due to a contin-
uous increase of the current density gradient near the mode
resonant surface [19]. On the other hand, the spatiotemporal
information contained in the plasma profiles is crucial in
describing destabilizing localized phenomena, such as the
radiation emission in the core rather than at the edge, which
cannot be enough described by zero-dimensional (0D) param-
eters, as the radiated fraction of the total input power.

To this end, 0D peaking factor signals have been
introduced to encode the spatial information contained in the
1D profiles, through the ratio between the mean values of mea-
surements over different regions of the plasma cross section.
The peaking factor signals, constructed starting from tem-
perature, density and plasma radiation profiles, and therefore
well anchored to the plasma physics, demonstrated to increase

the performance of the machine learning models predicting
disruptions with enough warning time to more efficiently
enable avoidance strategies [7, 8, 15, 17]. As an example, in
[7, 15], the peaking factors of the radial profiles of temperature
and density are defined as the ratio between the mean value
around the magnetic axis and the mean value of the measure-
ments over the entire radius. The radial interval to define the
‘core’ with respect to the magnetic axis was empirically set
to a prefixed percentage of the radial coordinate. Regarding
the radiated power, two distinct peaking factors were intro-
duced to decouple the contribution of the plasma radiation
from the core and from the divertor. In this case, the ‘core’
is defined as a certain percentage of the vertical semi-axis of
the poloidal cross section. It is to be noted that, the definitions
of such peaking factors are based on heuristics that arbitrar-
ily assume the ‘core’ chords and the ‘divertor’ chords and can
lose precious spatial information contained in the plasma pro-
files. Moreover, the peaking factor definitions must be changed
depending on the different diagnostic systems available in
the different devices. Additionally, in [20] peaking factor sig-
nals were defined for considering profile information, together
with data from other diagnostics, with the aim of identifying
the cause of the disruption, allowing the implementation of
different responses.

In recent years, deep convolutional neural networks
(CNNs) have proved capable of overcoming the most estab-
lished machine learning techniques, especially in the field of
image processing and computer vision, for their ability to learn
relevant features from images at different scales, avoiding
hand-engineered feature extraction [21].

The potential of CNNs has made them attractive also in
the field of nuclear fusion in general [22–25], and for disrup-
tion prediction in particular [16, 26, 27]. In [16], the authors
propose a disruption prediction model that combines recur-
rent and CNNs to extract spatiotemporal information coming
from high-dimensional diagnostic data, such as the electron
temperature and electron density profiles, in addition to 0D
diagnostic signals. The proposed algorithm has been assessed
using data from DIII-D and JET showing promising cross-
machine generalization capability. In [26], an approach to dis-
ruption prediction using deep CNN is proposed, where raw
data from only the electron cyclotron emission imaging diag-
nostic from the DIII-D tokamak is used. The initial results
seem promising corroborating the idea of using CNNs to learn
long-range, multi-scale plasma dynamics related with disrup-
tions. In [27], a CNN is used to perform the bolometer tomo-
graphic reconstruction that provides a 2D image of the plasma
radiation profile at JET. The bolometer data is then processed
through a series of 1D convolutional layers whose output
is the input of a recurrent neural network, which performs
the disruption prediction. This approach led to the imple-
mentation of real-time tomography at JET [28]. Even if the
disruption prediction performance is not comparable with
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literature, the paper shows an interesting perspective of how
deep learning architectures can manage multi-dimensional
diagnostics.

In this paper, CNNs are proposed both to extract the spa-
tiotemporal features from the plasma profiles of tempera-
ture, density and plasma radiation, overcoming the previously
described limits of the 0D peaking factors, and to develop a
quite simple deep neural network disruption prediction model
that uses these features together with other diagnostic sig-
nals commonly used in the literature. The deep-CNN predictor
has been trained using data from experimental campaigns per-
formed at JET from 2011 to 2013. Its prediction performance
has been evaluated using disrupted and regularly terminated
discharges from a decade of JET experimental campaigns,
from 2011 to 2020, showing the robustness of the algorithm,
even though the operational spaces in the different campaigns
may change significantly. Moreover, the performance of the
proposed disruption predictor has been compared, on the same
test sets, with the performance of the GTM predictor [7, 8]
implemented in the Plasma Event TRiggering and Alarms
(PETRA) system at JET [29], with even better results. Fur-
thermore, monitoring the deep-CNN predictor output together
with the provided input images, it is possible to interpret the
physics mechanisms leading to the model response.

This paper is organized as follows: section 2 details the
data base used to assess and optimize the algorithm and to
validate it. Section 3 reports our implementation of the deep-
CNN prediction model, whereas section 4 reports the testing
results and the comparison with the GTM. In section 5, a
detailed analysis of the plasma termination experiments per-
formed at JET within the 2019 campaigns is reported. Finally,
some conclusions are provided in section 6.

2. Database

In this work, in order to develop and test a disruption predic-
tor based on a deep convolutional neural network model, a
database has been built selecting disruptive and regularly ter-
minated discharges from JET experimental campaigns from
2011 to 2020. The database for this work contains a total of
193 disrupted and 219 regularly terminated discharges having
a flat-top plasma current higher than 1.5 MA, and a flat-top
length greater than 200 ms (the minimum length necessary
to create the input images for the model). The analysis of the
pulses refers to the flat-top phase; the ramp-up and the ramp-
down have not been considered. In particular, for each selected
discharge, the flat-top starting time has been assumed as the
first time instant where the plasma is in X-point configura-
tion. For the disrupted pulses, the flat-top ending time (tend)
is assumed as the time of the valve activation for those termi-
nated by massive gas injection (MGI), and as the disruption
time (tD), corresponding to the drop of the core temperature
and the start of the plasma current spike, for the unmitigated
ones. Disruptions caused by vertical displacement events have
been excluded at all from the data set. These criteria are widely
employed in disruption prediction and avoidance studies to
select relevant experiments [7, 16]. The considered database
covers a wide set of experimental conditions, starting from the

Table 1. Database composition.

Dataset Campaigns
Composition

Disruptions Regular pulses

I 2011 ÷ 2013 127 115
II 2016 29 41
III 2019 ÷ 2020 37 63

earlier campaigns with the ILW until the recent experiments
where high power experiments were carried out. It has been
grouped in three datasets, as detailed in table 1, following the
different experimental campaigns.

The differences among the three datasets in terms of
explored regions in the operational space are shown in figure 1
where, from top-left to bottom-right, the distributions of the
plasma current (Ip), the toroidal field (BT), the normalized beta
(βN), the total input power, the line integrated density, and the
edge safety factor (q95) are reported for the regularly termi-
nated discharges. It can be noted that the datasets I and II share
the same parameter ranges even if, for some parameters (such
as Ip, BT or q95), their distributions slightly differ. Instead, the
dataset III, which is related to experiments aiming to study
the baseline scenario suitable for sustained high D–T fusion
power, is characterized by higher currents, density and input
power, also exceeding the range of the other two datasets. The
model has been trained and validated using a part of the dataset
I, by selecting the same 85 disrupted and 70 regularly termi-
nated discharges used in [8]. The remaining pulses of dataset
I and all the pulses of datasets II and III, resulting in 108 dis-
ruptive and 149 regularly terminated pulses, have been used
for testing the model performance and studying its behaviour
with unseen data.

The database has been featured by the 1D profiles of elec-
tron temperature, density, and radiated power. Together with
such information, also the 0D signals of the internal inductance
(li) and of the mode-lock signal normalized by the plasma cur-
rent (MLnorm) are provided to the model. 1D profiles ought
to be included because, as well known, their behaviour is
often connected with the development of destabilizing phys-
ical mechanism, such as MHD precursors. In [7, 8, 17] 0D
peaking factors were synthesized from these profiles to feed
the predicting models. On the contrary, the proposed CNN
approach allows us to provide the predicting model with the
whole spatiotemporal information contained in the electron
temperature and density, and radiated power profiles by con-
verting the same set of 1D diagnostics used in [7, 8] in 2D
images.

In order to generate the CNN input data, the following steps
have been implemented:

(a) Firstly, data from the high-resolution Thompson scatter-
ing (HRTS) for the electron temperature (Te) and density
(ne), the horizontal lines of sight of the bolometer for the
radiated power (Prad), together with li and MLnorm have
been causally resampled with a sampling time of 2 ms.
This means that the resampling is performed using only
current and past inputs, which is the only option for real-
time implementation. This operation allows the system to
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Figure 1. Distributions of the main parameters of the regularly terminated discharges in the dataset I (blue), dataset II (green) and dataset
III (red) for (from top left to bottom right): plasma current, toroidal field, normalized beta, total input power, line integrated density and edge
safety factor.

work with signals at the same time scale, as these diagnos-
tics have different sampling times, which vary from 10−4

to 10−2 s. Note that, the raw measures from these diag-
nostics are used and no inversion procedure is necessary
in the proposed approach.

(b) Once the resampling has been carried out, the 1D pro-
file data is processed to provide the CNN with a set of
input images, as detailed in the following and sketched in
figures 2(a)–(c):

1. A pre-processing is applied to each diagnostic
to remove outliers. In particular, for the HRTS
diagnostic, the pre-processing consists in the
comparison of the measurement with the diagnos-
tic estimated error [30]. As some shots, both for
HRTS and bolometer profiles, presented corrupted
measures, a pre-processing procedure has been
developed, based on the correlation between the
measure of each line of sight and those of their
neighbours. The corrupted measures are replaced
by the interpolated values between the closest ones.
From an inspection of the training dataset, the outer
9 lines of sight (from major radius greater than
3.78 m) of the HRTS are discarded as, at least on
the selected dataset, they usually provide unreliable
data. For the bolometer data, no estimation of
the measurement error was available, so negative
power values have been substituted with null values,

whereas unreliable positive ones are saturated to a
fixed threshold empirically fixed to 1 MW m−2;

2. For the HRTS diagnostics, the lines of sight are
ordered from the inner (R = 2.96 m) to the outer
one (R = 3.78), where R is the major radius. For the
bolometer diagnostic, the lines of sight are ordered
as labelled in figure 3. Then a spatiotemporal matrix
is built, whose elements assume the value of the
measure in the corresponding line of sight and the
corresponding time sample. The obtained images are
shown in figure 2(b);

3. The three images are vertically stacked, and their
ranges are normalized with respect to the signal
ranges in the training set. After retrieving the max-
imum and the minimum values from each diagnostic
in the training set, the value x is normalized between
[−1, 1] by

xnorm =
(2x − xmax − xmin)

xmax − xmin

obtaining the final image in figure 2(c);
4. The final image is segmented using an overlapping

sliding window of 200 ms, as sketched by the dashed
black line in figure 2(c). In this way, each segment
corresponds to an image of 132 × 101 pixels.

(c) The 0D signals (li and MLnorm) are also sampled at the
same time samples as the 1D data and at the same sam-
pling frequency. The two arrays of 101 samples are fed to
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Figure 2. Sketch of the pre-processing steps applied to pulse #96385 to generate the input images for the CNN: (a) original data from the
HRTS and bolometer diagnostics; (b) pre-processed data are converted into images; (c) input data for the CNN model, obtained by
normalizing the data at point (b) with the training set ranges and by vertically stacking the lines of sight. An overlapping window of 200 ms
produces the segmented images that feed the prediction model.

the prediction model together with the previous images.
The internal inductance, which is intrinsically indicative
of the peaking of the plasma current, comes from the EFIT
equilibrium code, whereas the mode-lock signal is mea-
sured by a set of saddle flux loops, located at radial posi-
tions, above and below the middle plane, and mounted on

the outside of the vacuum vessel at the low-field side of
the plasma [31].

As the CNN is a supervised algorithm, during the
training, a label has to be explicitly assigned to the time win-
dows (or time slices) in the dataset. All the segments belong-
ing to the regularly terminated discharges have been labelled
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Figure 3. View of the JET bolometer camera system: horizontal camera (left side) and vertical camera (right side).

as ‘stable’. For each disruptive discharge, the labelling of the
‘unstable’ has been carried out by automatically identifying
the pre-disruptive phase by means the algorithm proposed
in [8]. The algorithm is based on a statistical analysis of the
following six dimensionless plasma parameters computed for a
selection of disrupted and regularly terminated discharges per-
formed at JET during the experimental campaigns from 2011
to 2013: peaking factor of temperature, peaking factor of elec-
tron density, peaking factor of the radiation (excluding the con-
tribution of the X-point/divertor region), peaking factor of the
radiation (excluding the contribution of the core region), inter-
nal inductance, fraction of the radiated power. These param-
eters are the same used in [7, 15], and have been defined in
section 1. In the algorithm, it is assumed that, before the onset
of the chain of events leading to disruption, the distributions of
the selected parameters in the disruptive discharges are close
to those of the regularly terminated ones, whereas they become
more and more dissimilar while approaching the disruption
time. In particular, a similarity measure between distributions
is used, and the contribution of each input feature is weighted
in order to construct a unique warning time indicator (WTI).
The study of the WTI distribution in the regular discharges
allowed us to optimize a coherent threshold value for the iden-
tification of the pre-disruption times Tpre-disr. The identification
of a pre-disruption time instants Tpre-disr, different for the dif-
ferent disruptions, is indeed very beneficial, as demonstrated
in literature [7, 8, 15]. Note that, for the disrupted pulses, only
the segments belonging to the pre-disruptive phases are used
during the training of the model.

In order to reduce the unbalance between the stable and
unstable classes, caused by the different duration of the two
phases, the overlap times of the sliding window for the regu-
larly terminated and disrupted discharges have been differently
chosen. Due to the low time resolution of the HRTS, only one
segment every 24 ms has been extracted from the pre-disrupted
phase of the disrupted discharges, whereas one segment every
150 ms has been retained from the regularly terminated dis-
charges. Note that, during testing, a sliding window of 200 ms

Table 2. Number of pulses and time slices in the training,
validation and test sets.

Set Disruptions Regular pulses

Pulses Time slices Pulses Time slices
Training 63 3698 54 4239
Validation 22 1191 16 1381
Test 108 313 392 149 588 143

with a stride of 2 ms, for all discharges (regularly terminated
and disrupted), has been used.

Table 2 reports the total number of pulses and time slices
sampled for the train, validation and test sets. The vali-
dation set was used to monitor the training performance
during the training and to perform an early stop if the per-
formance on the validation data would not improve. The val-
idation set discharges were randomly sampled among the
85 disrupted discharges and the 70 regularly terminated ones
from dataset I.

3. Disruption predictor architecture

In recent years, the use of deep learning in research has
increased significantly, due to the improved capability of com-
puters in processing huge amounts of data and to the ability
of deep neural networks in producing high accuracy perfor-
mances even without a feature extraction procedure. Among
the architectures in deep learning able to process images,
CNNs are the most used [32, 33]. The deep architecture of
a CNN normally consists of a cascade of blocks of different
layers which performs a filtering of an input image to extract
significant features from it [21]. The features are produced by
a cascade of filtering blocks, interconnected through nonlin-
ear activation functions (typically a rectified linear unit), and
a multi-layer perceptron combines them to produce the out-
put of the network. A dropout layer is usually inserted before
the multi-layer perceptron in order to reduce overfitting on the
training set and improve generalization.

The architecture of the proposed CNN is shown in figure 4.
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Figure 4. CNN architecture, where: I is the image input; CUk is the kth convolutional unit, composed by the cascade of a convolutional
layer (Ck), a batch-normalization layer (Nk) and a nonlinear activation layer with ReLU functions (Ak); Pmax and Pavg are the max-pooling
and average-pooling layers, respectively; D is a dropout layer; FC is a fully-connected layer; S and CO are the SoftMax and classification
output layers, respectively.

Figure 5. Modified CNN architecture, where the internal inductance (li) and the normalized locked mode (MLnorm) are added as input to the
second convolutional unit and concatenated with the output image produced by the max pooling layer.

Table 3. Training parameters of the CNN model.

Parameters 1st training (images only) 2nd training (images + signals)

Optimizer Stochastic gradient descent Stochastic gradient descent with
with momentum momentum

Initial learning rate 2.5 × 10−4 1 × 10−4

Learning rate drop factor 0.1 0.15
Learning rate drop period (epochs) 20 10
Momentum 0.9 0.9
MiniBatch size 16 16
Validation frequency (iterations) 50 50
Validation stop (consecutive evaluations) 100 100
Weight decay (L2 regularization) 1 × 10−4 1 × 10−4

Figure 6. CNN likelihood curves for a disrupted pulse, where the
green line is the regularly terminated likelihood and the red line is
the disruptive likelihood. The dashed black line indicates the CNN
alarm time, whereas the dashed magenta line indicates Tpre-disr.

A first convolutional unit (CU1) followed by a max pooling
layer (Pmax), with pool size and stride 8 × 1, filters out
vertically (along the ‘spatial’ dimension) the input image by
reducing the size from 132 × 101 to 16 × 101. A second
convolutional unit (CU2) followed by an average pooling layer
(Pavg), with pool size and stride 1 × 12, filters out horizontally
(along the ‘time’ dimension) the resulting image by reduc-
ing the image size to 16 × 20. The two convolutional units
(CU1 and CU2) are made out of three layers: a convolutional
layer (Ck), a batch normalization layer (Nk) and a rectified lin-
ear unit (ReLU) activation layer (Ak). The two convolutional
layers have one single filter (one-channel kernel) of size 5 × 1
and 1 × 11, respectively. The output of the 2nd convolutional

Table 4. CNN predictor performance.

Dataset SP MA FA

Train 98% 0% 4.28%
Test 93% 3.7% 9.40%

layer is then a 16 × 20 image, which is flattened and provided
as input to a fully connected layer (FC). Finally, the FC layer
processes the 320 features and feeds a SoftMax layer (S) for
classification (CO). A dropout layer with dropout probabil-
ity of 20% has been included before the fully connected layer
in order to reduce overfitting on the training set and improve
generalization.

In order to include also the information given by the two 0D
signals, i.e., li and MLnorm, two segments of size 1 × 101 have
been added as input to the second convolutional unit and con-
catenated with the output image produced by the max pooling
layer (see figure 5). As a result, the output of the average pool-
ing layer has size 18 × 20 and 40 additional features coming
from the two signals are processed by the fully connected layer,
combined with the remaining 320 features and used for the
classification.

The soft max (S) layer produces the likelihood of the input
segment to belong to a regularly terminated or a disrupted dis-
charge. As an example, figure 6 shows the soft max output for

7
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Figure 7. JET disrupted discharge #92226. (a) CNN likelihood curves, where the green line is the regularly terminated likelihood and the
red line is the disruptive likelihood. The dashed black line indicates the CNN alarm time, while the dashed magenta line indicates the
Tpre-disr; (b) internal inductance, in green, and plasma current in blue; (c) mode lock normalized by the plasma current, in blue; (d) radiated
power from the bolometer; (e) electron temperature from the HRTS; ( f ) electron density from the HRTS.

a JET disrupted pulse, where the green line refers to the like-
lihood of a segment to belong to a regularly terminated pulse
and the red line refers to a disrupted one. The two curves add
up to one, and it can be noticed that the red line starts to rise in
correspondence of the Tpre-disr (dashed magenta line) and then
it straightforwardly reaches the value 1. The last classification
layer (CO) implements a threshold on the disrupted likelihood
to perform the final classification. Such alarm threshold has
been optimized by means of a heuristic procedure, maximizing
the number of correct predictions on the training and valida-
tion discharges. The optimal threshold is found to be 0.89 and
the alarm time is triggered when the disrupted likelihood over-
comes such threshold. In figure 6 the alarm time is identified
by the black vertical dashed line.

In order to limit the complexity of the training procedure a
first training step has been performed using only the 1D diag-
nostics. Then, the CU1 and the Pmax blocks were frozen. In
a second training procedure, only the second convolutional
block and the fully connected layer were trained, using both
the 1D and 0D diagnostics. This approach greatly reduces the
computation time of the training procedure because it reduces
the number of parameter updates being made without having
a major impact on the network’s accuracy [34]. Table 3 shows
the hyperparameters of the two training procedures.

Note that, the network architecture allows us to uncorre-
late the two dimensions, spatial and temporal: in fact, the
first two blocks (CU1 and Pmax) filter only across the spa-
tial direction, while the second two (CU2 and Pavg) filter only
across time. This allows to easily concatenate the signals

(li and MLnorm) to the image features processed by the first
convolutional and pooling blocks, so that the temporal syn-
chronization is preserved.

The vertical kernel size for the convolutional and pool-
ing blocks was designed considering a few constraints: a ker-
nel size equal or larger than 24 would have been larger than
the bolometer number of lines of sight, and a small size ker-
nel would reduce the effect of the discontinuity between the
stacked diagnostic images. The small kernel size (5× 1) allows
the network to still identify changes in the spatial dimension
of the HRTS scattering profile. Regarding the time filtering,
a similar operation was performed: due to the different time
resolution of the diagnostics employed, the filter size has been
chosen to mainly process the higher frequency signals, such as
the bolometer data.

The pooling type was optimized: a network with only aver-
age pooling was trained, as well as one with only the max-
pooling. Analysing the performances on the training and the
validation set, the average pooling had lower performance than
the max-pooling, but the max-pooling response was too sen-
sitive to transient changes in the data time traces. Hence, the
max-pooling layer was left in the spatial processing block (ver-
tical pooling), while the average pooling was selected for the
temporal pooling.

It has to be highlighted that, as the input image in figure 2(c)
concatenates the 1D signals coming from three diagnostics.
Following Baltrusaitis et al [35], the proposed approach can
be classified as a joint multimodal representation (also named
early fusion as opposed to late fusion). Joint representations
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Figure 8. CNN output of the JET regularly terminated discharge #90259. (a) CNN likelihood curves, where the green line is the regularly
terminated likelihood and the red line is the disruptive likelihood; (b) internal inductance, in green and plasma current in blue; (c) mode lock
normalized by the plasma current, in blue; (d) radiated power from the bolometer; (e) electron temperature from the HRTS; ( f ) electron
density from the HRTS.

Figure 9. Cumulative fraction of detected disruptions by the CNN model versus the warning time in the training and in the test set. The
vertical red dashed line allows us to identify tardy detections.

combine the unimodal signals into the same representation
space. Mathematically, it is expressed as: xm = f (x1, . . . , xn),
where the multimodal representation xm is computed using the
CNN that relies on unimodal representations x1, . . . , xn.

Conversely, the late fusion representation processes uni-
modal signals separately and then the results are merged. Early
fusion has the advantage of merging data sources in the begin-
ning of the processing (sometimes after a first convolution). If
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Table 5. Performance of the CNN on the test discharges across the three datasets.

Dataset I Dataset II Dataset III

SP MA FA SP MA FA SP MA FA

96.55% 2.38% 4.44% 91.42% 10.34% 7.31% 91% 0% 14.28%

Figure 10. (a)–(c) Comparison of the probability density functions of the electron density computed as the mean value across the lines of
sight of the HRTS diagnostic for the regularly terminated (green) and the disrupted discharges (red) in the three datasets: (a) dataset I,
(b) dataset II, and (c) dataset III. For the dataset III, the distribution of false alarm values is identified by a magenta dashed line.

the data is properly aligned, cross-correlations between data
items may be exploited, thereby providing an opportunity to
increase the performance of the system. In [36], the authors
argue that those fused low-level features might be irrelevant
for the task, thus decreasing the fusion power.

When signals from different modalities do not complement
each other, i.e., input modalities separately inform the final
prediction and do not have any inherent interdependency, then
trying an another fusion approach is preferred [37]. Moreover,
late fusion retains the ability to make predictions in case of
missing or incomplete data, because it employs separate mod-
els for separate modalities, and aggregation functions can be
applied even when predictions from a modality is missing. The
major drawback is the limited potential for the exploitation of
cross correlations between the different unimodal data.

The optimum fusion strategies for many applications have
yet to be determined [38]. In a recent review on fusion tech-
niques for deep learning applications in medicine [37], the
authors report that in most applications early fusion is used
as the first attempt, a straightforward approach that does not
necessarily require training multiple models.

Note that, in our case, convolutions involving the bound-
aries are not really senseful and the network discards the cor-
responding features. On the contrary, the model can learn the
associations across the informative regions of the multiple
images. Moreover, the idea to train only one CNN, instead of
several, allows a simpler implementation of the model.

4. Predictor performance

In this section, the potentialities of the CNN model to detect a
disruptive behavior early enough to enable avoidance actions
are presented. In the disruption prediction literature, the per-
formance of a predictive model is evaluated in terms of:

• Successful predictions (SP): pulses correctly predicted
by the system (alarm for disruptions and no alarm for
regularly terminated discharges);

• Missed alarms (MAs): disruptions for which the system
does not provide any alarm;

• False alarms (FAs): regularly terminated discharges for
which the system provides an alarm

The performance in terms of SPs, MAs, and FAs rate of
the proposed predictor is reported in table 4, for a training set
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composed by 63 disruptive and 54 regularly terminated pulses
and a test set of 108 disruptive and 149 regularly terminated
pulses.

Table 4 highlights that the CNN has very good predictive
performance with a successful prediction rate of 93% and a
FA rate below 10% on the test set.

An example of the CNN capability in predicting disruptions
can be seen in figure 7 which refers to the test pulse #92226
(outside the training range). The CNN output in figure 7(a)
identifies a rising of the disruptive likelihood at about 11.20 s,
accordingly with the visible change of the plasma behav-
ior across the input profiles shown in figures 7(d)–( f ). It
can be noted that, at the plasma core, the electron tempera-
ture collapses (figure 7(e)) while the electron density peaks
(figure 7( f )). This phenomenon is accompanied by strong
radiation (figure 7(d)). This pattern is well-known as the impu-
rity accumulation disruptive mechanism [15, 19], and it is typi-
cal of the JET ILW disruptions due to the penetration of high-Z
impurities (such as the tungsten of the JET divertor) into the
plasma core [18].

A typical regularly terminated discharge, as the one shown
in figure 8, is usually characterized by very regular radiated
power profiles with low radiation from the central chords of the
bolometer horizontal camera (lines of sight 13–16, figure 3, as
visible in figure 8(d). At the plasma core, the electron tem-
perature profile peaks (figure 8(e)), while the electron den-
sity, distributed across the profile, presents slightly higher
values (figure 8( f )). In addition, li and MLnorm do not reveal
any approaching disruption. In agreement, the regularly termi-
nated likelihood of the CNN, green curve in figure 8(a), stays
high for the whole pulse and the disrupted likelihood never
reaches 0.5.

Nowadays, disruption prediction systems are being devel-
oped especially for avoidance purposes; for a disruption, the
goal of an avoidance system is to associate the alarm to the
presence of a destabilizing mechanism in the plasma, regard-
less of the distance of such event to the ending time tend. Hence,
metrics such as premature alarms, defined as the alarms trig-
gered at a prefixed time before the disruption, have become less
significant in the definition of the system performance. Instead,
the prediction capability within the scope of avoidance and/or
disruption control can be evaluated in terms of warning time,
which represents the distance of the model alarm from tend. A
well-timed warning time allows the control system to react to
the presence of an instability, while with a short warning time
the disruption is generally mitigated by MGI. Thus, the pre-
mature alarm rate is replaced by the cumulative warning time
distribution (see figure 9). The blue and black lines in figure 9
show the CNN warning times in the training set and test set
respectively. Moreover, to evaluate the suitability of the alarm
triggered by the CNN predictor, the predicted warning time is
compared with respect to the one defined by Tpre-disr. In this
regard, in the same figure 9, the dark red and yellow dashed
lines report the Tpre-disr warning time distribution for the train-
ing and test pulses, respectively. The vertical red dashed line
indicates the minimum warning time (10 ms) necessary at JET
to adopt mitigation actions. Detections made after this line can
be considered as tardy alarms.

From figure 9, it is possible to see that the CNN warning
times and Tpre-disr ones are quite close, both for the training
and the test set. This means that, in most of the cases, the
CNN detections are coherent with the instability mechanisms
automatically detected with the Tpre-disr.

As described in section 2, the database employed in this
work includes discharges from several experimental cam-
paigns and different experimental conditions. This motivated
an in-depth analysis of the results, to investigate a possible
degradation of the CNN performances with the changing of
the operating conditions. Table 5 reports the SPs, MAs and
FAs rate for the test discharges, among the three datasets. As
expected, the best performances are reached on the dataset I,
which covers the same pulse range of the training data. Note
that, the CNN predictor tested on dataset II still performs quite
well, with a FA rate lower than 7%, whereas an increase in
the MA is observed. The degradation of the MA rate is due to
the presence of some discharges which disrupt very abruptly
because of a sudden locking mode, as already observed in [8]
for the same data set. Conversely, in the dataset III the errors on
the disrupted pulses are extremely low, whereas the false alarm
rate is the highest. An explanation for this difference should be
sought in the new region of the operational space covered by
the regularly terminated pulses belonging to this dataset, which
are characterized by higher input power and electron density
(as highlighted in figure 1). Indeed, by comparing the distribu-
tions of the features provided to the model in the three datasets,
the regularly terminated pulses in the dataset III are character-
ized by higher ne and radiated power values and lower li values.
In figures 10(a)–(c)–12(a)–(c), the probability density func-
tions of the average density across the plasma radius, li and
the average radiated power are reported for the three consid-
ered datasets, for regularly terminated (green) and disruptive
(red) pulses, respectively. In addition, for the dataset III, the
related distributions of the false alarms are added to the regu-
larly terminated and disruptive ones (see figures 10(c)–12(c)),
and identified by a magenta dashed line. It can be noted that
the distribution values of the three features for the regularly
terminated pulses in dataset III are shifted with respect to the
ones of the previous datasets. Considering that the full train-
ing set of the model is contained in dataset I, the distribution
of the values in the dataset III is then covering ranges poorly
represented by the non-disruptive behavior of the training set.
This trend is confirmed or accentuated by the distribution of
the feature values related to FAs. Moreover, during high power
experiments the presence of localized radiation in the outer
half of the plasma, not necessarily correlated to the onset of
a disruptive mechanism, has been observed [39]. This phe-
nomenon can play a crucial role in the erroneously detection of
a disruptive behavior in a regularly terminated pulse, as in the
pulse #94785 reported in figure 13. Indeed, at around 11.5 s,
despite a non-disruptive behavior shown by the HRTS pro-
files and the 0D signals, a high radiation seen from the central
lines of sight of the bolometer horizontal camera triggers a FA
(see figure 13(d)). From the radiation profile recorded by the
bolometer vertical camera (not provided as input to the CNN)
it is possible to localize the radiation blob in the outer half of
the plasma, thus not related to any impurity accumulation.
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Figure 11. (a)–(c) Comparison of the probability density functions of the internal inductance for the regularly terminated (green) and the
disrupted discharges (red) in the three datasets: (a) dataset I, (b) dataset II, and (c) dataset III. For the dataset III, the distribution of false
alarms values is identified by a magenta dashed line.

Figure 12. Comparison of the probability density functions of the radiated power computed as the mean value across the lines of sight of the
HRTS diagnostic for the regularly terminated (green) and the disrupted discharges (red) in the three datasets (from (a) to (c)). For dataset III,
the distribution of false alarms values is identified by a magenta dashed line.
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Figure 13. CNN output on the regularly terminated discharge #94785. (a) CNN likelihood curves, where the green line is the regularly
terminated likelihood and the red line is the disruptive likelihood; (b) internal inductance in green and mode lock normalized by the plasma
current in blue; (c) radiated power from the bolometer vertical camera; (d) radiated power from the bolometer horizontal camera;
(e) electron temperature from the HRTS; ( f ) electron density from the HRTS. The dashed black line indicates the CNN alarm time.

Figure 14. CNN output on the regularly terminated discharge #95293. (a) CNN likelihood curves, where the green line is the regularly
terminated likelihood and the red line is the disruptive likelihood; (b) internal inductance in green and plasma current in blue; (c) mode lock
normalized by the plasma current, in blue. (d) Radiated power from the bolometer horizontal camera; (e) electron temperature from the
HRTS; ( f ) electron density from the HRTS. The dashed black line indicates the CNN alarm time.

Figure 14 reports the response of the CNN to the regularly
terminated pulse #95293 from dataset III. As it can be seen,
the CNN triggers a FA nearby a high radiation from the central
lines of sight of the bolometer horizontal camera, together with

the decrease of both the electron temperature and the peaking
of the electron density at the core. On the other hand, this pat-
tern causes a high number of the false alarms observed in this
dataset; in fact, it is very similar to the disruptive mechanism
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Figure 15. JET disrupted discharge #94775. (a) CNN likelihood curves, where the green line is the regularly terminated likelihood and the
red line is the disruptive likelihood. The dashed black line indicates the CNN alarm time, while the dashed magenta line indicates the
Tpre-disr; (b) internal inductance, in green, and mode lock normalized by the plasma current in blue; (c) radiated power from the bolometer
vertical camera; (d) radiated power from the bolometer horizontal camera (e) electron temperature from the HRTS; ( f ) electron density
from the HRTS.

Table 6. Performances of the GTM.

Set SP MA FA

Train 98.53% 0% 2.61%
Test 84.11% 1.83% 26.17%

represented in figure 7. It has to be highlighted how, at about
12.5 s, following the temperature and the density flattening
over the plasma profile, the CNN predictor reports a gradual
reduction of disruption likelihood.

Instead, figure 15 shows a disrupted pulse belonging to
the dataset III where a disruption due to an edge collapse is
detected (#94775). Differently from the impurity accumula-
tion, the edge collapse is characterized by the presence of a
blob of radiation in the outer part of the plasma. The radiation
causes a localized cooling of the plasma temperature which
in turns induces the peaking of the plasma current profiles
[19]. This mechanism, visible in figure 15, triggers the alarm
at around 9 s (black vertical dashed line). In figure 15(e) it
is possible to see the cooling of the plasma between the HRTS
lines of sight 12 and 30 (which corresponds to a radial position
from 3.13 m to 3.46 m), together with a high plasma radiation
at the central lines of sight of the bolometer horizontal camera
(figure 15(d)) and the rise of the plasma internal inductance
(figure 15(b)). The further analysis of the bolometer vertical
camera data allows to localize the radiation blob in the out-
board of the plasma (between chords 1–5, see figure 15(c)).

Despite it is not possible to distinguish between the core radi-
ation and the outer low field radiation only from the bolometer
horizontal camera lines of sight, by combining the spatiotem-
poral information of the HRTS and the bolometer horizon-
tal camera with the li signal, the network is able to detect
two different ‘off-normal’ patterns: one characterized by a
strong radiation due to an impurity accumulation process (see
figure 7) and another one where the radiation leads to a cooling
at the edge (see figure 15).

4.1. Comparison with GTM predictor

In literature, the GTM [40] approach has been successfully
proposed to solve disruption classification and prediction prob-
lems [7, 41]. For the sake of comparison, the CNN predic-
tion model presented in this work has been compared with
the GTM disruption predictor, developed by the same authors
and presented in [8]. Both predictors have been trained on
the same training set and using the automatically identified
Tpre-disr. Table 6 reports the GTM performance evaluated on
the same training and test set referred in tables 1 and 2. It can
be noted that, despite the very high number of correctly pre-
dicted disruptions, the GTM provides a quite higher number
of FAs with respect to the CNN.

Figure 16 reports the GTM output and inputs for the regu-
larly terminated pulse #90259 already shown in figure 8. The
GTM output, shown in figure 16(a), provides the class mem-
bership function as the likelihood of the sample to belong to
the regularly terminated (in green) or to the disruptive class
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Figure 16. GTM output on the same regularly terminated discharge #90259 of figure 8. (a) GTM membership functions, where the green
line is the regularly terminated membership and the red line is the disruptive membership; (b) plasma current, in blue, and internal
inductance in green; (c) fraction of radiated power, in green, and mode-lock signal normalized by the plasma current; (d) peaking factor of
the radiation at the central lines of sight of the bolometer horizontal camera, in blue and peaking factor of the radiation at the divertor, in
green; (e) peaking factor of the electron temperature; ( f ) peaking factor of the electron density. The vertical purple dashed line indicates
when the GTM output rises over the threshold. An assertion time of 60 ms prevents the GTM from triggering a false alarm.

Figure 17. JET discharge #94446. (a) CNN likelihood curves, where the green line is the regularly terminated likelihood and the red line is
the disruptive one. The dashed black line indicates the CNN alarm time, while the dashed red line indicates JTTtrigger; (b) internal
inductance, in green, and plasma current in blue; (c) mode lock normalized by the plasma current, in blue; (d) radiated power from the
bolometer; (e) electron temperature from the HRTS; ( f ) electron density from the HRTS.
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Figure 18. JET discharge #94900. (a) CNN likelihood curves, where the green line is the regularly terminated likelihood and the red line is
the disruptive likelihood. The dashed red line indicates the time of the JTTtrigger; (b) internal inductance, in green, and mode lock normalized
by plasma current in blue (c) radiated power from the bolometer vertical camera; (d) radiated power from the bolometer horizontal camera;
(e) electron temperature from the HRTS; ( f ) electron density from the HRTS.

(in red). From figure 16(a) it can be seen that the GTM output
oscillates, with the disruptive membership function eventually
reaching 100% several times. As consequence, in the GTM
alarm scheme presented in [7, 8], an assertion time was opti-
mized to avoid false or inappropriate alarms due to a temporary
change in the sample classification. In fact, GTM output rises
over the alarm threshold at around 9.10 s, as highlighted with
a vertical purple dashed line, and without an assertion time
of 60 ms [8] a false alarm would have been triggered. Con-
versely, the CNN output is smoother, and the disruptive like-
lihood never goes over the threshold; as visible in figures 7(a)
and 8(a), both for a disruption and a regularly terminated
pulse respectively, the likelihoods are smooth, and no asser-
tion time is needed for the CNN alarm criterion. Note that,
this different behavior of the two models has been observed
on the whole database, and it also includes the stable phase of
disruptions.

5. Comparison with discharge termination
from RTPP

In view of the next step fusion experiments, in the JET real
time plasma protection (RTPP) system new algorithms for
detecting off-normal events or pre-disruptive states have been
implemented. In particular, triggers related to the peaking of
the temperature, density and radiated power have been imple-
mented for the detection of impurity accumulation, cooling
edge or radiation peaking events [42]. These detectors have
been developed with the aim of triggering an early plasma
termination of the disruptive discharges.

In 2019, experiments dedicated to plasma termination for
disruption avoidance and mitigation tasks have been per-
formed in the same shot range of dataset III. In these experi-
ments, specific user-defined protection schemes were adopted
to identify anomalous plasma conditions and to try to recover
the pulse through a jump-to-termination (JTT) procedure. In
this paper, 31 pulses, fitting the requirements discussed in
section 2, have been considered to further test the CNN pre-
dictor model. Overall, the CNN triggers an alarm for 22 dis-
charges, for 80% of which the trigger is within 500 ms from
the one of the RTPP.

As an example, figure 17 reports the pulse #94446, for
which the CNN, as well as the RTPP system, triggers the
alarm (JTTtrigger, red dashed line). Here, the plasma termina-
tion is triggered at 10.944 s because of the increase of the
plasma radiation at the central lines of sight of the bolome-
ter horizontal camera with respect to the outer ones, measured
by the bolometer horizontal camera. The impurity accumula-
tion event [34] can be observed in figures 17(d)–( f ), by the
collapse of the core electron temperature (figure 17(e)) sup-
ported by an increase of the core electron density (figure 17( f ))
and a radiation peaking at the plasma central lines of sight of
the bolometer horizontal camera (figure 17(d)). This pattern is
well recognized by the CNN predictor. In fact, the disruptive
likelihood rises at around 10.35 s and the alarm is triggered
at 10.442 s, about 500 ms in advance with respect to JTTtrigger

time.
Instead, figure 18 reports an example (#94900) where the

RTPP system triggers an alarm at 10.96 s, whereas the CNN
does not trigger any alarm. The protection system alarm was
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triggered because of the increase of the radiated fraction, com-
puted as the total radiated power divided by the total auxil-
iary heating power. From figure 18(a), it is possible to see
as, at the JTTtrigger time, the CNN output is indicating a reg-
ular plasma condition. A weak change in the CNN likelihood
functions is detectable shortly after 11 s, where a high radi-
ation is measured by central lines of sight of the bolometer
horizontal camera, as visible in figure 18(d). However, the
temperature and the density profiles (figures 18(e) and ( f )
respectively) do not follow any disruptive pattern. Thus, no
alarm is triggered by the CNN predictor. This case shows how
the network takes advantage from combining the information
from the HRTS and the bolometer horizontal camera profiles
to distinguish between disruptive and not disruptive radiation
patterns even without having additional information from the
vertical bolometer camera. In fact, looking at the bolometer
vertical camera data, the radiation blob is not located in the
core, but on the outer poloidal region of the plasma (verti-
cal lines of sight 1–5, see figure 18(c)), and the high radia-
tion was not connected to a disruptive mechanism, as properly
identified by the CNN.

6. Conclusions

In this paper, a deep-CNN model for disruption prediction has
been trained and tested on a dataset representative of different
experimental plasma conditions, and an in-depth analysis of
the performance evolution over the different datasets has been
done. The peculiarity of the proposed method consists in the
processing of the spatiotemporal information coming from 1D
plasma profiles through a deep-CNN, and the automatic detec-
tion of the pre-disruptive phase of disruptions for the training
selection.

The synthesis of appropriated features allowed the predic-
tive model to correctly identify the localized destabilizations
of the temperature, density, and radiation 1D profiles, leading
to about, 93% of SPs, 9% of FAs and 4% of MAs, for a test
set consisting in 108 disruptive and 149 regularly terminated
discharges. The achieved performance is proved to be better
than the one obtained with GTM model trained with the 0D
peaking factors, reaching on the same test set to about 84%
of SPs, 26% FAs and 2% of MAs. Moreover, the use of the
1D plasma profiles as model input allows the straightforward
connection between the disruption chain of events and the
predictors decisions. The analysis of the model output in the
considered discharges highlighted that the combination of the
profiles from the HRTS and the bolometer horizontal cam-
era with the MLnorm and li signals allowed the identification
of two different disruptive mechanisms: the impurity accu-
mulation and the edge cooling. On the other hand, these two
mechanisms are characterized by a different localization of
the radiated power on the poloidal plane. Hence, in a future
work, either the information from the bolometer vertical cam-
era will be integrated as an input, or the tomography recon-
struction will be provided as input to the CNN. This could help
to improve the performance by avoiding FAs in high power

experiments. Note that, the CNNs are well suited to process
images such as the bolometry ones.

Despite the general very good results, the performance
analysis highlights as the operating range of the training data
significatively affects the model performances through the
later experimental campaigns. This fact is also confirmed by
the well-known ageing issue which affects data-driven mod-
els. The continuous retraining performed by adding experi-
mental data far from the target experimental conditions, can
be a solution for limiting the predictor ageing. In this view,
the automating data labelling steps adopted in this work can
help in developing a hand-free retraining procedure. There-
fore, the proposed approach offers a new prospective for the
synthesis of general features which can detect the general
physical mechanisms causing the disruptions and the devel-
opment of more complex models, trained with very large
datasets.

Another crucial aspect concerns the extrapolation of the
proposed predictor, as well as any other kind of data-based
predictors, to ITER, which is still an open issue. In literature,
the extrapolation power of the neural network approach for
disruption prediction has been investigated in [43] by a cross-
tokamak method. The disruptions prediction performance in
JET, based on neural networks trained on ASDEX Upgrade,
is shown. The study concludes that, the weakness of the
neural network approach to disruption prediction in a newly
constructed tokamak and the need for a large training set of dis-
ruptions might be overcome by using training data from a pre-
existing tokamak (or tokamaks), but refining some parameters
on a reduced dataset from the test one. In fact, the knowledge
of the scaling factor for the output threshold and of operat-
ing parameter ranges from the test data, are needed to have a
reasonable prediction performance.

Presently, the predictor proposed in this work is not directly
useable for disruption prediction in ITER plasmas because the
input parameters are not dimensionless. But, once proved the
suitability of the predictive algorithm, in view of overcom-
ing the need of a large training set of disruptions, which is
the main criticism of ITER disruption predictor, a pre-trained
CNN model on pre-existing tokamaks data can be proposed.
The model pre-trained to discriminate between safe and dis-
ruptive configurations, only with JET data or involving several
other existing tokamaks, can be subsequently fine-tuned for
the disruption prediction over a limited number of ITER dis-
ruptions. The reliability of this approach will be investigated
in future works considering JET and ASDEX Upgrade data, as
in [43].
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