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Abstract
Purpose  This research aims to develop a meta-machine learning model to optimize soil 
and nitrogen management for durum wheat in Italy. It addresses the challenges of increased 
food production on limited land amidst rising input costs, geopolitical changes, and climate 
change. The goal is to aid decision-makers in achieving maximum crop yield and income 
margins through effective agronomic strategies.
Methods  The study developed a meta-machine learning model, integrating classification 
and regression models, and tested it at four sites in Marche and Basilicata, Italy, over sev-
eral years. The model incorporated data from remote sensing, crop phenology, soil chemi-
cal properties, weather data, soil management, and nitrogen levels. A Random Forest 
model was used to classify crop phenology, while a Neural Network model predicted yield. 
Eleven nitrogen levels were compared across these sites.
Results  The Random Forest model achieved an accuracy of 0.98, kappa of 0.96, and recall 
of 0.98 for predicting crop phenology. The Neural Network model for yield prediction had 
an R squared of 0.90 and a Root Mean Square Error of 0.59 t ha-1. Key factors identified 
for model accuracy were temperature, precipitation, NDVI, and nitrogen input. Simulations 
of 30 soil management and fertilization combinations revealed that no-tillage management 
increased grain yield. The Marginal Fertilizer Yield Index determined optimal nitrogen 
application.
Conclusions  The meta-machine learning model accurately predicted durum wheat yield 
and identified effective agronomic strategies, demonstrating the potential for broader appli-
cation in field conditions. The model offers a promising approach to sustainable agriculture 
and climate change mitigation by utilising publicly available spatial datasets.
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Introduction

Global population growth, soil sealing, rising raw material costs and increase of climate 
extremes are putting a strain on the world’s agricultural sector. The world population is pro-
jected to reach 8.5 billion by 2030, with further increases to 9.7 billion by 2050 and 10.4 bil-
lion by 2100. However, a recent paper suggests that the world population may reach its peak 
soon (Le Page, 2023). The rapid population growth is expected to lead to heightened urbaniza-
tion, bringing a surge in demand for food, raising concerns about food safety. The agricultural 
sector confronted with the crucial task of increasing food production while having access to 
limited agricultural land. Additionally, rising production input costs, influenced by geopoliti-
cal and climate changes, add to the list of challenges. These factors collectively put stress on 
the agricultural sector, promoting the agricultural scientific community to actively seek solu-
tions to address these pressing issues. The scientific community is focusing on the develop-
ment of innovative cropping systems (De Menna et al., 2016), on the spread of conservative 
agriculture (Capmourteres et al., 2018), on the application of the principles of organic farming 
(Deligios et al., 2021) and precision agriculture (Argento et al., 2021; Orsini et al., 2023). In 
the Mediterranean area, winter cereals hold a crucial position among the arable crops (Tsialtas 
et al., 2018). Achieving maximum yield in durum wheat is highly dependent on effective N 
fertilization, particularly when water availability is not a limiting factor (Orsini et al., 2019a). 
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Weather conditions, soil physical–chemical properties and soil management practices are also 
agronomic factors that play a pivotal role in enhancing durum wheat yields (Scott et al., 2024). 
Given the multitude of factors that must be considered when making agronomic decisions, 
the development of decision support systems (DSS) is grown in significance. These DSS have 
the capability to run simulations that assess various combinations of agronomic management 
practices and their relative impacts on yields, it also help (Terribile et al., 2024) in identify-
ing and establishing the most effective agronomic management strategies (Hoogenboom et al., 
2004; Kamilaris & Prenafeta-Boldú, 2018). Over the past 40 years, both process based and 
stochastic models have been developed to support agronomic decision-making. Some of the 
well-known models include DSSAT (Jones et  al., 2003), APSIM (Holzworth et  al., 2014), 
Century (Lugato et al., 2014), SALUS (Basso et al., 2006), ARMOSA (Valkama et al., 2020), 
and more recently, there have been successful attempts to combine process based models with 
machine learning (ML). This integration can be used for predicting yield and evapotranspira-
tion (Attia et al., 2022; Zhang et al., 2023). Process based models are the most used mod-
els in agriculture. They involve simulating each component of the system, including plants, 
soil, climate, and the exchanges between these components. However, process based mod-
els rely on a predefined set of covariates that must be measured to use the model effectively. 
The selection of covariates is determined by the creators of the model, and some covariates 
can be challenging to measure at each field. Also, process based models require site-specific 
calibration, making them less suitable for use at larger scales (Pasquel et al., 2022). Stochastic 
methods, particularly ML approaches (Chlingaryan et al., 2018; Schillaci et al., 2022), have 
gained recognition in agriculture due to their ability to establish relationships between biotic 
and environmental predictors (Adamchuk et al., 2004; Kayad et al., 2019). These approaches, 
often built on top of remote sensing data, offer the advantage of scalability and can be applied 
to large agricultural areas. ML models, when appropriately designed and trained with spatially 
explicit covariates from each field, can provide economic and environmental benefits (Fioren-
tini et al., 2023). Several studies reported the potential of ML models in agriculture, spanning 
various applications such as yield prediction (van Klompenburg et al., 2020), nitrogen provi-
sion recommendation (Shi et al., 2020), weed (Talaviya et al., 2020) and pest detection (Wang 
et al., 2021), and soil digital mapping (Schillaci et al., 2021). While many of these studies 
have emphasized the accuracy and validation of the models, it is crucial that these models are 
designed to support agronomic decision-making. The primary focus should be on utilizing the 
high accuracy of ML models to provide actionable insights that assist agronomists and farm-
ers in making informed decisions about agricultural management practices. In essence, the 
goal is to translate the predictive power of these models into practical and valuable guidance 
for optimizing fertilization, resource management, and sustainability in agriculture.

The aim of this study was to develop a ML-based system that allow simulating different 
combinations of soil and nitrogen management for durum wheat in Italy. This system was 
intended to optimize decision-making in durum wheat farming by providing insights into the 
best practices. To achieve this, a multi-data source approach was employed, integrating data 
on nitrogen fertilization levels (0, 40, 90, 95, 118, 120, 133, 139, 150, 180 and 222 kg N ha−1), 
soil management practices (conventional and conservation agriculture), climate conditions 
(average monthly temperature and precipitation), soil properties (soil organic carbon, available 
nitrogen, C:N ratio), and remote sensing data ( average monthly NDVI) to train a meta-ML 
system.
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Materials and methods

Experimental sites’ overview

The framework was developed and tested at four sites distributed between the Marche and 
Basilicata Italian regions (Fig. 1). All sites had different experimental designs, and durum 
wheat (Triticum turgidum subsp. durum Desf.) was grown for several years (Table 1).

Table 2 displays all agronomic management activities performed at the four exper-
imental sites throughout the growing seasons, while weather data are reported in 
Table 3.

Fig. 1   Location of experimental sites and experimental designs

Table 1   Description of experimental sites, year, and nitrogen levels provided

LTE Long Term Experiment, CT Conventional tillage, NT No Tillage, MT Minimum tillage

Site Region Name Year of experiment Soil management Nitrogen levels (kg ha−1)

1 Marche LTE 2018, 2019, 2020, 2021, 2022 CT, NT, MT 0, 90, 180
2 Marche Recanati 2020 CT 90, 222
3 Basilicata Basilicata 1 2021 CT 0, 95, 120, 150
4 Basilicata Basilicata 2 2020 NT 40, 118, 133, 139, 150
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Table 3   Mean temperature (°C) and cumulative rainfall (mm) during the agronomic year compared to the 
long-term data

LTE Long Term Experiment

Months

November December January February March April May June July

LTE site
 Cumulative rainfall (mm)

  2017–2018 24 96 29 173 143 37 95 48 2
  2018–2019 0 61 70 22 36 59 165 1 0
  2019–2020 0 0 4 17 158 119 142 61 5
  2020–2021 44 102 79 20 25 33 23 8 40
  2021–2022 191 138 29 61 25 61 14 35 44
  Long-term data 

2000–2020
78 74 55 60 69 54 55 53 37

 Mean temperature (°C)
  2017–2018 10 7 9 5 9 16 19 23 26
  2018–2019 5 7 5 8 12 13 15 25 28
  2019–2020 13 6 7 11 10 14 19 22 25
  2020–2021 11 8 6 9 10 12 18 25 27
  2021–2022 11 7 6 9 9 13 20 26 27
  Long-term data 

2000–2020
12 6 7 6 10 12 19 23 26

Recanati
 Cumulative rainfall (mm)

  2019–2020 13 64 30 26 128 44 44 50
  Long-term data 

2000–2020
96 84 50 48 51 65 51 47

 Mean temperature (°C)
  2019–2020 12.6 9 6.5 10.1 10.1 13.5 18.5 21.8
  Long-term data 

2000–2020
12.3 9.2 7.9 7.7 10 12.8 17.4 21.7

Basilicata 1
 Cumulative rainfall (mm)

  2020–2021 44 24 31 31 1 1 1
  Long-term data 

2000–2020
64 54 61 50 38 33 33

 Mean temperature (°C)
  2020–2021 5.8 7.7 7.3 9.9 16 23.1 26
  Long-term data 

2000–2020
8.6 8.8 10.9 13.7 18 23.4 26

Basilicata 2
 Cumulative rainfall (mm)

  2019–2020 79 69 44 31 140 46
  Long-term data 

2000–2020
64 54 61 50 38 33

 Mean temperature (°C)
  2019–2020 8 8.5 11.5 16.1 20 23.3
  Long-term data 

2000–2020
8.6 8.8 10.9 13.7 18 23.4
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Long term experiment (LTE)

The long-term experimental (LTE) site was located at the “Pasquale Rosati” experimental 
farm of the Polytechnic University of Marche in Agugliano, Italy (43°32′N, 13°22′E, 100 
a.s.l.). This site registered a mean annual precipitation of approximately 749  mm and a 
mean annual temperature of 15.5 °C. Monthly temperatures averages range from 6 °C in 
February to 26 °C in July. During the 2017–2018 crop growing season, the highest cumula-
tive precipitation (647 mm) was recorded. However, in the subsequent growing seasons of 
2019–2020 and 2020–2021, there was a decrease in precipitation by 36% (414 mm) and 
42% (374  mm), respectively. Additionally, the 2018–2019 growing season had a mean 
annual temperature that was 1  °C lower than the other growing seasons (Table  3). The 
soil of the study area has a silt–clay texture and it is classified as Calcaric Gleyic Cam-
bisols. It contains 9.1 g  kg−1 of organic carbon, 13.8 mg  kg−1 of phosphorus (Olsen-P), 
323.2 mg kg−1 of potassium, 26.7 cmol kg−1 of cation exchange capacity, pH of 8.1, 29.6% 
of field water capacity, 17.6% of wilting point, and a slope of approximately 10%. The 
LTE, established in 1994, consists of a rainfed 2-year rotation of durum wheat cv. Tyrex 
and maize (Zea mays L.) cv. DK440 (hybrid, FAO Class 300, Dekalb). The crop rotation 
involved two adjacent fields to ensure the presence of all crops each year (Fig. 1). Within 
each field, three soil management (main plot, 1.500 m2 each) systems (conventional, mini-
mum tillage, and no-tillage) and three N fertilizer (sub-plot, 500 m2 each) levels were 
arranged according to a split-plot experimental design with two randomized blocks and 
were repeated in the same plots every year. Conventional tillage (CT), which is representa-
tive of the business-as-usual tillage practice in the study area, was plowed along the maxi-
mum slope every year by a mouldboard (with two plows) to a depth of 0.40 m. In minimum 
tillage (MT) plots, a chisel was used at a depth of 25 cm in autumn for wheat and in spring 
for maize. The seedbed was prepared by double harrowing prior to sowing. Durum wheat 
was sown at the beginning of autumn at a seeding rate of 220 kg ha−1, with a row distance 
of 0.17 m. Each year, N fertilization in the form of urea (46%) was split into two applica-
tions: 50% at the end of tillering and 50% before head emergence. Weeds, pests, and dis-
eases were controlled chemically. The no-tillage (NT) soil was left undisturbed, except for 
specific practices such as sod seeding, managing crop residuals, weed chopping, and total 
herbicide spraying before seeding. The three N fertilizer treatments were N0, N90, and 
N180, corresponding to 0, 90, and 180 kg N ha−1, respectively, distributed in two rates for 
wheat. The unfertilized N0 treatment was used as the control. The N90 treatment was com-
pliant with the agri-environmental measures adopted within rural development plans at the 
local scale (https://​www.​regio​ne.​marche.​it/​Regio​ne-​Utile/​Agric​oltura-​Svilu​ppo-​Rurale-​e-​
Pesca/​Produ​zione-​Integ​rata#​Tecni​che-​Agron​omiche). The N180 treatment represented the 
conventional management approach. The sequences of the agronomic practices applied at 
LTE are reported in Table 2.

Recanati Site

The Recanati experiment was conducted during the 2019–2020 growing season at the 
“Guzzini” private farm in Recanati (43°23′N, 13°31′E, 115 a.s.l.), Central Italy. This site 
experiences a mean annual precipitation of 719  mm, and a mean annual temperature of 
16.8 °C. Monthly means temperatures vary from 7.7 °C in February to 24.7 °C in August. 
During the 2019–2020 crop growing season, the farm site was characterized by a seasonal 

https://www.regione.marche.it/Regione-Utile/Agricoltura-Sviluppo-Rurale-e-Pesca/Produzione-Integrata#Tecniche-Agronomiche
https://www.regione.marche.it/Regione-Utile/Agricoltura-Sviluppo-Rurale-e-Pesca/Produzione-Integrata#Tecniche-Agronomiche


Precision Agriculture	

1 3

rainfall of approximately 400 mm, which was around 100 mm lower than the precipita-
tion recorded at the Agugliano weather station during the same growing season. The mean 
temperatures at the farm site were 1.5 °C lower than those recorded at Agugliano (Table 3). 
The soil of the farm site has a silt–clay texture and is classified as Calcaric Gleyic Cambi-
sols. It contains 8.4 g kg−1 of organic carbon, 10.3 mg kg−1 of phosphorus, 283.2 mg kg−1 
of potassium, 28.0  meq 100  g−1 of cation exchange capacity, pH of 8.1, 28.5% of field 
water capacity, and 16.2% of wilting point and a slope of about 6%. The agricultural prac-
tices at the Recanati site were similar to those at the LTE site. This included a rainfed 
2-year crop rotation with durum wheat cv. Tyrex and maize cv. DK440 (Hybrid, FAO class 
300). The soil was managed using conventional tillage (CT), and two different N levels 
were applied in two adjacent areas (Fig. 1). Seedbed preparation was performed as reported 
at the LTE site, where plowing was performed along the maximum slope by a mouldboard 
plow (with two plows) at a depth of 0.40  m in autumn. Before seeding, harrowing was 
performed, and the wheat was sown at a rate of 240 kg ha−1 with a row spacing of 0.13 m. 
The two N levels corresponded to 90 and 180 kg N ha−1, and they were distributed at two 
rates. Each rate consisted of half of the total N and it was provided to the crop in the form 
of urea (46%). The first rate was provided at the end of tillering and the second rate before 
head emergence. Weeds, pests, and diseases were controlled chemically. The sequences of 
the agronomic practices applied at the farm site are shown in Table 2.

Basilicata 1 Site

The Basilicata 1 experiment was conducted during the 2020–2021 growing season at the 
“Az. Agricola Pugliese” private farm located near Laterza (40°42′N, 16°42′E, 362 a.s.l.), 
Southern Italy. The mean annual precipitation is 669 mm, and the mean annual tempera-
ture is 18 °C. Monthly means temperatures range from 8.6 °C in January to 26.4 °C in July. 
During the 2020–2021 crop growing season, the farm site was characterized by a seasonal 
rainfall of 133 mm and a mean temperature of 13.7 °C (Table 3). The soil of the Basilicata 
site 1 has a silt–clay texture and is classified as Haplic Calcisol. It contains 9.1 g kg−1 of 
organic carbon, 20.5 mg kg−1 of phosphorus (Olsen-P), 75.2 mg kg−1 of potassium, 17.9 
cmol kg−1 of cation exchange capacity, pH of 8.3, 33.4% of field water capacity, 20.6% 
of wilting point, and a slope of approximately 2%. The experiment was conducted using 
durum wheat (var. Kanakis, RAGT Semences, France). Seedbed preparation process was 
consistent with the LTE and Recanati sites. Plowing was performed along the maximum 
slope using a mouldboard plow (with two plows) at a depth of 0.40 m in autumn. Prior to 
seeding in January, a harrowing operation was performed in December. The seeding was 
done with a seed rate of 240 kg ha−1 and a row spacing of 0.13 m. Weed control was per-
formed in March using gliphosate and metsulfuron-methyl, while pyraclostrobin was used 
for pest control. The experiment was set up as a precision agriculture experiment. Variable-
rate nitrogen fertilization was applied based on a prescription map, as depicted in Fig. 1. 
The map identified two homogenous areas based on the spatial variability of soil physical 
and chemical characteristics (Denora et al., 2022b). The amount of N applied (urea 46%) 
was calculated based on the estimated nitrogen uptake by the crop and the soil character-
istics. The N levels provided to the crop were 120 kg N ha−1 and 95 kg N ha−1, split into 
two rates throughout the crop cycle. Additionally, within the two identified areas, specific 
plots measuring 25 m2 received N levels of 150 kg N ha−1and 0 kg N ha−1 (Fig. 1). The 
sequences of the agronomic practices used at the farm site are shown in Table 2.
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Basilicata 2 Site

The Basilicata 2 experiment was carried out during the 2019–2020 growing season in the 
“Az. Agricola F. lli Lillo” private farm located in Matera (40°42′N, 16°39′E, 401 a.s.l.), 
Southern Italy. The mean annual precipitation is 670 mm, and the mean annual tempera-
ture is 18 °C, with monthly means ranging from 8.6 °C in January to 23.4 °C in June. Dur-
ing the 2019–2020 crop growing season, the farm site was characterized by a seasonal rain-
fall of 409 mm and a mean temperature of 14.5 °C (Table 3). The soil of the Basilicata site 
2 has a silt–clay texture (Haplic Vertisol) with 11.6 g kg−1 of organic carbon, 11.3 mg kg−1 
of phosphorus (Olsen-P), 185.2 mg kg−1 of potassium, 21.2 cmol kg−1 of cation exchange 
capacity, pH of 8.2, 32.2% of field water capacity, 18.9% of wilting point, and a slope of 
approximately 3%. The experiment was conducted using durum wheat (var. PR22D89, 
Pioneer Hi-Bred, Italia) and a no-tillage soil management approach similar to the one 
used at the LTE site. Before seeding, a harrowing operation was performed in December, 
while sowing was done in January with a seed rate of 240 kg ha−1 and a row spacing of 
0.13 m. Weed control was performed in March using gliphosate and metsulfuron-methyl. 
Pest control was managed using pyraclostrobin. The experiment was configured as a preci-
sion agriculture trial. Variable-rate nitrogen fertilization was performed with a prescription 
map (Fig.  1), where two distinct homogenous areas were identified based on the spatial 
variability of soil properties (Denora et al., 2022a). The amount of N applied (ammonium 
nitrate, 26%) was calculated based on the estimates of the crop’s nitrogen uptake and the 
specific soil characteristics within each area. Different N levels were provided to the crop, 
including 150 kg N ha−1, 139 kg N ha−1, 133 kg N ha−1, and 118 kg N ha−1. Within the 
two designated areas, we identified plots of 4 m2 that received a distinct N level of 40 kg N 
ha−1 (Fig. 1). The sequences of the agronomic practices used at the farm site are shown in 
Table 2.

Covariates and measurements

The selected covariates should comprehensively represent all components of the agricul-
tural system, including crop-related factors, soil characteristics, climate parameters, and 
agronomic management practices (Table 4).

In this study, multispectral images were captured during different growth stages of 
durum wheat using two different UAV platforms equipped with multispectral cameras. 

Table 4   List of the covariates group, type, and measurement

Covariates group Covariate type Covariate measurement

Crop Remote sensing NDVI
Crop phenology Zadoks scale
Grain yield Grain yield (t ha−1)

Soil Chemical components Soil organic carbon, C/N ratio, nitrogen
Climate Weather data Mean temperature (°C), cumulative precipitation (mm)
Agronomic management Soil management No tillage, minimum tillage, conventional tillage

Continuous or intermittent
Nitrogen level kg N ha−1

Sowing day Date of sowing
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To determine the optimal timing for image acquisition, the Zadoks scale was employed. 
Images were obtained at three key growth stages: Z22 (tillering), Z35 (stem elongation), 
and Z60 (anthesis). These images were used to calculate the normalized difference vegeta-
tion index (NDVI) (Rouse et al., 1974). Additionally, at the maturity stage, grain yield (t 
ha−1) was determined within randomly selected and georeferenced test areas, each con-
sisting of a 1-m-long row, using a laboratory thresher (Fiorentini et  al., 2019). For geo-
referencing purposes, the Leica Zeno 20 (Leica Geosystem, Heerbrugg, Canton St. Gal-
len, Switzerland) was employed at each experimental site. Multispectral images were 
acquired around 12:00 am using two different UAV platforms and multispectral cameras. 
In the Marche region sites, the MAIA S-2 Multispectral Camera (SAL engineering, Russi, 
Italy) was used to capture multispectral images for NDVI computation, using the following 
formula:

where Red (665 nm) is the red band, and NIR is the near-infrared spectral band (865 nm).
For the Basilicata region sites, multispectral images were obtained using the Parrot 

Sequoia multispectral sensor (Parrot Drone SAS, Paris, France) for NDVI computation. 
Both UAVs were equipped with an incident light sensor to mitigate the effects of sunlight 
variations during flight, ensuring optimal imagery acquisition by recording changes in light 
levels, and subsequently correcting the spectral bands. To enhance the spatial accuracy of 
the acquired images, ground control points (GCPs) were strategically positioned within the 
study area and georeferenced before each UAV flight operation. Each image acquired dur-
ing an UAV flight underwent a series of image processing steps, including geometric cor-
rection, coregistration, radiometric correction, file format conversion, and preparation of 
image datasets for the orthomosaic map generation process. The image processing work-
flow comprised three main steps: (1) orthomosaic reflectance map generation, (2) computa-
tion of the vegetation indices (VI) map, and (3) data extraction. After the UAV flights, raw 
images from the multispectral cameras were transferred to a computer. Agisoft Metashape 
(Agisoft LLC), a software based on the structure-from-motion (SfM) algorithm (Verho-
even, 2011), was used to generate the orthomosaic reflectance map. Subsequently, the 
orthomosaic reflectance map was imported into R statistical software (Core Team, 2014). 
The “stack” function of the raster R package (Hijmans et al., 2011) was used in the sec-
ond and third steps of imaging processing. Based on previous studies (Orsini et al., 2019a, 
2019b; Pro et al., 2021), NDVI was identified as a vegetation index highly correlated with 
key durum wheat crop parameters. To extract the NDVI values from specific sampling 
points, we imported a.xlsx file containing the georeferenced coordinates of the samples. 
This was achieved using the “read_excel” function of the readxl R package (Wickham, 
2016). Subsequently, the “extract” function of the raster R package (Hijmans et al., 2011) 
was used to extract these values, organizing them into a data frame format. The resulting 
data-frame object was then exported in CSV file format using the “write.csv” function of 
the utilis R package (Wickham et al., 2019). Soil organic matter was determined according 
to the modified Walkley–Black method (Walkley & Black, 1934). The Van Bemmelen fac-
tor (= 1.724) has been used to derive soil organic carbon, while the soil texture was deter-
mined using the pipette method (Gee & Bauder, 1986). The C/N ratio, nitrogen (N) content 
and pH were measured at each experimental site. Specifically, thirty-six soil samples were 
collected at the LTE site; and six soil samples were obtained at the Recanati site; Basilicata 
1, and Basilicata 2. All soil samples were collected prior to sowing at each respective site. 

(1)NDVI =
(NIR − Red)

(NIR + Red)
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For climate data, the NASA POWER API (Sparks, 2018) was used to retrieve precipitation 
and temperature data. In this study, mean temperature (°C) and cumulative precipitation 
(mm) were calculated between the sowing date and the date of the multispectral image. 
In terms of agronomic management features, soil management and nitrogen management 
were used. Soil management was characterized by two categorical variables (tillage type 
and intensity). First, the type of soil management was categorized as no-tillage, minimum 
tillage, and conventional tillage. Second, the temporal aspect of soil management was con-
sidered, distinguishing between continuous soil management (repeated consistently over 
time) and intermittent soil management (applied every two years). It’s worth noting that 
only the LTE site employed continuous soil management, while the farm sites used an 
intermittent soil management system. Nitrogen management was considered as continuous 
variable, denoting the amount of nitrogen (kg N ha−1) applied to the crop.

Modelling procedure

The entire modelling procedure was performed using the R statistical programming lan-
guages. Table 5 lists the R packages that were utilized, along with their respective purposes.

The ML-based system combines two ML models, each with a different aim and scope. 
The first ML model is designed to classify crop phenology according to the Zadoks scale 
(classification task), while the second ML model is focused on predicting crop yield (t 
ha−1) (Fig. 2) regression task.

The first ML model was trained using climate and remote sensing features, while the 
regression ML model was trained with all the covariates listed in Table 4, along with the 
crop phenology predictions from the first ML model. Four ML algorithms were compared 
for both classification, and regression tasks: (1) Random Forest (Svetnik et al., 2003) was 
used as the benchmark algorithm; (2) eXtreme Gradient Boosting, aka XGBoost (Chen & 

Table 5   R packages used in the modeling phase and their objective

Aim R Package

Handling raster data Raster
Timestamp data management Lubridate
Import and export excel files Readxl
Spatial data management Sf
Handling tabular data Tidyverse
Connect R, PostgreSQL and Postgis Rpostgis
Framework of R packages for modeling and machine learning Tidymodels
Variable Importance Plots Vip
An end-to-end open-source deep learning platform Tensorflow
Keras is a high-level API to build and train deep learning models Keras
A suite of tools for tracking, visualizing, and managing TensorFlow training runs and experi-

ments from R
Tfruns

R Packages to provide summary statistics about variables in data frames, tibbles, data tables 
and vectors

Skimr

Ensembling Learners builder for R Stacks
Error metrics computation Mlmetrics
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Guestrin, 2016); (3) Neural Network (McCulloch & Pitts, 1943); and (5) Ensemble Learner 
(Zhang & Ma, 2012). These ML algorithms were selected due to their ease of compari-
son in the scientific literature (Chlingaryan et  al., 2018). In statistics and ML, ensemble 
methods use multiple learning algorithms to obtain enhanced predictive performance com-
pared to what any individual learning algorithm could deliver in isolation (Zhou, 2009). 
All hyperparameters for the ML model were adjusted through a 50-grid search and fivefold 
cross-validation (Table  6). When assessing the algorithms for classification, the perfor-
mance metrics included accuracy, kappa, precision, and recall. For the regression task, the 
evaluation was conducted based on multiple metrics, including the coefficient of determi-
nation (R2), root mean square error (RMSE), mean absolute error (MAE), and mean abso-
lute percentage error (MAPE). Moreover, the ‘vip’ function of the vip R package was used 
to visualize the variable importance, to describe which covariate had the most significant 
impact on improving model accuracy.

The ML algorithms were trained using data from the LTE and Basilicata 1 experimen-
tal sites, which consisted of 873 data points. Subsequently, the accuracy of the models was 

Fig. 2   Machine learning based system

Table 6   Machine learning algorithms, abbreviation, R packages and hyperparameter tuned

Model Abbreviation R package Tuning hyperparameter

Random forest RF randomForest mtry, N. trees, minimum number of data points in 
a node that are required for the node to be split 
further

XGBoost XG xgboost Tree depth, N. trees, learning rate, mtry, minimum 
number of data points in a node that are required 
for the node to be split further, loss reduction

Neural network NN tensorflow N. of neurons for each hidden layer, penalty, epochs
Ensemble learners EL stacks Penalty
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assessed using the Recanati and Basilicata 2 experimental sites, which served as test datasets 
and contained 108 data points.

Simulations and Marginal Fertilizer Yield Index (MFYI) calculations

Following the training and validation of the ML models, the best model for both the classifica-
tion and regression tasks was selected based on the error metrics. These chosen models were 
then combined to create a meta-model, which allowed the regression model to use the predic-
tions of the classification model. The meta-model was subsequently used to run simulations, 
considering all possible combinations of soil management practices (no-tillage, minimum till-
age, and conventional tillage) and ten levels of nitrogen fertilization. The range of N levels 
varied from 40 kg N ha−1 to 220 kg N ha−1, with increments of 20 kg N ha−1 between levels. 
In total, 30 simulations were conducted for each experimental site (Fig. 3).

Simulations served to quantify the yield (t ha−1) for each combination of soil and nitro-
gen management. Subsequently, the Marginal Fertilizer Yield Index (MFYI) (Kyveryga et al., 
2007) was calculated. The MFYI is a metric used to assess the economic efficiency of ferti-
lizer use in agriculture. It helps identify the point at which further increases in fertilizer appli-
cation do not result in proportionate increases in crop yield, indicating a diminishing return 
on fertilizer investment. The calculation of the MFYI involved the following steps: (1) Data 
collection, gather data on crop yield (e.g., in kg ha−1) achieved at different levels of fertilizer 
application (e.g., nitrogen input in kg ha−1); (2) Data sorting, arrange the data in ascending 
order based on the levels of fertilizer application; (3) Calculate the Marginal Yield: calculated 
as the difference in crop yield between two consecutive fertilizer application levels (Eq. 2); 
(4) Calculate the MFYI, divide the Marginal Yield by the corresponding increase in fertilizer 
input (Eq. 3).

(2)
Marginal Yield = (Crop yield at fertilization level x) − (Crop yield at fertilization level x − 1)

(3)MFYI =
Marginal Yield

Increase in fertilizer input

Fig. 3   Outline of simulations and data flow for determination of best agronomic practice
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Results

Descriptive statistics and data exploration

Descriptive statistics were performed to analyze grain yield (t ha−1) in the entire dataset 
and separately for each experimental sites (Table 7). A total of 981 observations were ana-
lyzed and the dataset exhibited a mean grain yield of 3.48 t ha−1, with a minimum value of 
0.29 t ha−1 and a maximum value of 8.35 t ha−1 (Table 7). Notably, the Recanati site had 
the highest average grain yield (6.14 t ha−1), while the LTE site showed the highest stand-
ard deviation (+ 1.87). Conversely, the LTE site had the lowest grain yield, with a value of 
0.29 t ha−1, while the Recanati site reported the highest grain yield of 8.35 t ha−1.

Classification and regression machine learning models

Table 8 provides the results of the five-fold cross-validation and hyperparameters tuning 
procedure, which involved a 50 grid-search. For the classification task, during the calibra-
tion phase, all models achieved high performance with an accuracy, kappa, precision, and 
recall of 1, except for the Neural Network. In the evaluation phase, the Random Forest 
and the Ensemble Learners models performed the best, with a mean error metric of 0.98. 
The other models, in descending order of accuracy, were XGBoost and Neural Network, 
with mean error metrics of 0.97 and 0.96, respectively. For the regression task, during the 
calibration phase, the Random Forest and Ensemble Learners were the best performing 
models reaching an R2, RMSE, MAE and MAPE of 0.97, 0.35, 0.25 and 0.09, respectively 
(Fig. 4). In comparison, the XGBoost and Neural Network models reached an R2 of 0.96 
and 0.91, respectively. In the evaluation phase, using a dataset that was not part of the 
training procedure, each model showed a slight worsening of the error metrics. Among 
the models, the Neural Network performed the best, with a MAPE of 0.17; it was followed 
by the XGBoost, Ensemble Learners, and Random Forest with MAPE values around 0.18 
for each (Table 8). The Neural Network demonstrated a smaller difference in error metrics 
between training and evaluation.

Variable importance

Figure 5 displays the variable importance of the different machine learning models for the 
classification task.

Random Forest and XGBoost considered precipitation as the most important variable 
(~ 100), followed by temperature (28) and NDVI (18). The Neural Network, on the other 

Table 7   Descriptive statistics of yield (t ha−1) measured at the four experimental sites

Experimental sites N. Observations Years of experiment Mean St. Dev Min Max

All sites 981 2018, 2019, 2020, 2021, 2022 3.48 1.91 0.29 8.35
LTE 810 2018, 2019, 2020, 2021, 2022 3.44 1.87 0.29 7.50
Recanati 108 2020, 2021 6.14 1.12 4.02 8.35
Basilicata 1 63 2021 1.66 1.11 1.50 3.75
Basilicata 2 54 2020 3.62 1.27 1.44 4.87
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Fig. 4   Scatterplot of the difference between predicted and measured gain yield (t ha−1) in the regressive 
testing phase

Fig. 5   Variable importance of the machine learning models for the classification task
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hand, found temperature to be the most important variable (~ 100), with NDVI (7) also 
contributing, and with negative importance for precipitation (− 7). For the regression task, 
the variable importance of the models is shown in Fig. 6.

The variable importance results suggest that different ML models emphasize vari-
ous features when predicting crop yield in the regression task. For Random Forest and 
XGBoost, nitrogen management was the most important feature (~ 100), followed by 
precipitation (27.5), NDVI (23.5), and temperature (15). Soil chemical components, soil 
management, and crop phenology had a relatively lower importance (less than 10). On the 
other hand, the Neural Network placed importance on multiple features, with precipitation, 
pH, phenological stage, nitrogen management, being some of the top-ranking features.

Simulations and Marginal Fertilizer Yield Index calculations

Figure 7 presents the results of the simulations for different soil management practices at 
the three farm sites. The data showed that no-tillage consistently achieved the highest grain 
yield, with an average yield of 4,05 t ha−1 at each of the farm sites. Minimum tillage was 
the next best performing practice, with an average yield of 3,97 t ha−1, while conventional 
tillage had the lowest average yield of 3,88 t ha−1 across the sites.

Figure 8 illustrates the results of the MFYI calculated for each simulation at the differ-
ent farm sites. For Recanati site, the MFYI values exceeded 1 at nitrogen fertilization levels 
of 100 kg N ha−1 and above. This indicates that for the Recanati site, applying 100 kg N 
ha−1 of nitrogen or more resulted in a diminishing return on fertilizer investment. There 

Fig. 6   Variable importance of the machine learning models for the regression task

Fig. 7   Results of the simulations at the three farm sites related to the soil management



Precision Agriculture	

1 3

was a noticeable increase in MFYI from 80 kg N ha−1 to 100 kg N ha−1 before decreasing. 
At the Basilicata 1 site, the MFYI values were above 1 for nitrogen fertilization levels of 
120 kg N ha−1 and above. Similar to Recanati, applying 120 kg N ha−1 of nitrogen or more 
led to diminishing returns. There was an increase in MFYI from 80 kg N ha−1 to 120 kg 
N ha−1 before decreasing. At the Basilicata 2 site, the MFYI values did not reach 1, at any 
nitrogen fertilization level, with the highest value obtained being 0.90 at 100 kg N ha−1. 
For this site, applying more nitrogen did not result in a significant increase in crop yield, as 
indicated by the MFYI values. There was a minor increase from 80 kg N ha−1 to 100 kg N 
ha−1 before decreasing.

Discussions

Classification and regression models, training and testing

In this study, a meta- ML model was developed, consisting of two linked ML models. The 
first model’s role was to classify and determine the phenological stage of the crop, while 
the second model was responsible for predicting crop yield. The crop phenological stage 
classification model reached an accuracy of 0.98, kappa of 0.96 and recall of 0.98, even 
though it was classifying into only three stages: crop tillering, stem elongation and anthe-
sis. This limited number of phenological stages is indeed a constraint of the study, as other 
research has considered a more extensive range of phenological stages (Tao et al., 2022). 
However, when comparing the error metrics with those from other studies, such as Arya 
et al., (2022), using ML in combination with climate and remote sensing data allows very 
high accuracy levels. This makes the approach suitable for large-scale applications with a 

Fig. 8   Results of the simulations at the three farm sites related to the MFYI and nitrogen input (kg N ha−1)
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high degree of confidence (Zheng et al., 2021). Several works have demonstrated the high 
accuracy of ML models and the multi-data source approach for precise yield predictions 
across various crops, including cotton (Filippi et al., 2019; Leo et al., 2021), durum wheat 
(Chergui, 2022; Dietrich et al., 2022; Fiorentini et al., 2022) and maize (Attia et al., 2022; 
Nyéki et al., 2021; Shahhosseini et al., 2020). Numerous studies have primarily focused on 
validating the framework, including the selection of covariates, data pre-processing, and 
model building. However, the scientific community nowadays is increasingly challenged to 
go beyond validation and to make these models accessible for determining the best agro-
nomic management (McNunn et al., 2019). Having access to these models allows farmers 
to be able to benefit directly from scientific studies and use their outputs to apply environ-
mentally and economically beneficial practices, as well as empowering the farmers with 
scientific evidences to make informed decisions. To ensure that these generated models 
are both usable and useful, one approach is to pose “if-else-questions” to the model. This 
approach helps in understanding how altering soil management and fertilization levels can 
affect crop yield and their economic and environmental impact. This information enables 
us to determine the most suitable agronomic practices for each specific site, taking into 
account the associated costs (Cammarano et al., 2023). It is important to note that while 
these are valuable for optimizing agronomic practices, they cannot predict or account for 
adverse climatic events that may occur during crop growing season. Therefore, it is rec-
ommended that in the event of adverse weather conditions, the “if-else-questions” should 
be rerun to redefine the most suitable agronomic management. In this study, the Neural 
Network model performed the best in the regression step, achieving an accuracy of 0.90, a 
result consistent with findings in another research (Filippi et al., 2019).

Variable importance

Variable importance analysis is a procedure used to determine which of the variables used 
in training a ML model contributed to improving the model’s performance (Carneiro et al., 
2023). In the classification models, only climate data and remote sensing were used, and 
it was found that the most important variables, in descending order, were precipitation, 
temperature and NDVI. This is because all climate variables were calculated from the date 
of sowing to the date on which the multispectral image was acquired. This consideration is 
important because using this calculated climate data, there is not much variation, allowing 
the model to achieve high accuracy (Zheng et al., 2021). A common approach for modeling 
phenological development is to calculate degree days, which is based on sowing date, tem-
perature data, and thresholds specific to different crops (Ram et al., 2016). In the regression 
models, all variables were used, including the phenological stage provided by the predic-
tion of the classification model. The most important features, in descending order, were 
nitrogen input, precipitation, temperature and NDVI (Orsini et al., 2023). Soil management 
(Simoniello et  al., 2022), crop phenology, pH, texture, nitrogen, and soil organic carbon 
have also contributed to the model, but to a lesser extent compared to the first set of covari-
ates. The importance of nitrogen input as the most significant variable in predicting durum 
wheat grain yield aligns with several studies that have revealed the key role of nitrogen in 
crop productivity (Abad et al., 2004; Grahmann et al., 2014). Research conducted in North-
west India, where ML was applied to predict durum wheat yields, also identified nitro-
gen as a key covariate for the Random Forest model (Nayak et al., 2022). Nitrogen levels 
influence various physiological process in plants, such as of chlorophyll content (Fiorentini 
et al., 2019) and metabolic pathways involved in aminoacids production. These processes 
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are fundamental for grain quality and quantity (Abad et al., 2004). Therefore, models that 
do not consider nitrogen fertilization in their covariates list may not be effective in fore-
casting grain yield accurately. Precipitation emerges as the second most critical variable 
because it plays a pivotal role in providing water for crop growth. This is especially sig-
nificant in rainfed agriculture where irrigation is not applied. Precipitation not only sup-
plies the necessary water for crop development but also serves to solubilize nutrients from 
fertilizers and aids in the mineralization of organic matter, making these nutrients available 
for plant uptake (Li et al., 2022). Temperature significant influences crop development, as 
it can be well-modeled using degree-days, which accurately represent various phenological 
development of the crop (Li et al., 2012). In China Han et al., (2020) showed that tempera-
ture, particularly minimum temperature, plays a crucial role in crop development. When 
assessing the importance of variables in a Random Forest model, the Enhanced Vegetation 
Index, minimum temperature, precipitation, NDVI, and soil moisture emerged as some of 
the most significant factor affecting crop growth yield. The NDVI is identified as the fourth 
most important variable. It is widely recognized vegetation index used in precision agri-
culture to assess the status of crops. It is worth noting that NDVI can exhibit saturation in 
cases where the leaf area index exceeds 2 (Aklilu Tesfaye & Gessesse Awoke, 2021). Addi-
tionally, NDVI based forecast has been proved highly accurate for inter-annual yield pre-
diction (Toscano et al., 2019). However, ML algorithms can help mitigate this saturation 
by transforming nonlinear variables into linear ones (Chollet & Allaire, 2018). The choice 
of soil management practices is another critical factor for crop yield, and this variable is 
consistently found among the top ten most important variables in the ML models used in 
this study. Several authors showed the benefits of no-tillage practices in improving soil 
organic matter (Page et al., 2020; Valkama et al., 2020). No-tillage practices help maintain 
soil structure and reduce disturbance, promoting the activity of beneficial microorganisms 
(Wacker et al., 2022). These improvements in soil health have been associated with higher 
grain yield (Li et al., 2022). Crop phenology is also a crucial variable for predicting crop 
yield. It provides valuable information about the developmental stage of the crop and can 
indicate whether the crop is experiencing any stress. By incorporating crop phenology and 
relative NDVI values, machine learning models can better understand the crop’s condition, 
stress levels, and growth stage (Richetti et al., 2018). In this study, the regression model 
used the predicted crop phenology from the classification model to enhance its accuracy 
and ability to estimate crop yield (Haghverdi et al., 2018).

Simulations and marginal fertilizer yield index calculations

In this study, the trained meta-model was used to run yield simulations exploring the yield 
impact of the combination of various combinations of fertilization and soil management. 
Other widely recognized models like SALUS (Liu & Basso, 2017) and DSSAT (Jones 
et  al., 2003; Wang et  al., 2022) also run simulations. However, these crop models need 
site-specific calibration and rely on predefined covariates set by the creators. In this study, 
the covariates were selected to ensure model scalability (Hansen & Jones, 2000) and facili-
tate the use of it even within production contexts. This means that each covariate can be 
obtained for any field using publicly available datasets, such as soil grids (Poggio et al., 
2021), the Land Use/Cover Area frame statistical Survey (LUCAS) database (Andrimont 
et al., 2020), Terraclimate (Abatzoglou et al., 2018), and Copernicus Sentinel 2 multispec-
tral images, providing all the data required for running the meta-model with zero cost. We 
conducted thirty simulations using the meta-model across three farm sites, considering 
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all possible combinations of three soil management practices (no-tillage, minimum till-
age, and conventional tillage) and ten levels of nitrogen fertilization. This allowed us to 
determine the optimal agronomic management for each site, considering various combina-
tions and their impact on yield, ultimately providing adaptable recommendations for yearly 
application. Other studies have used calibrated models to perform simulations, enabling 
projections based on climate change. These simulations aid in formulating on-season suit-
able agronomic practices to mitigate the impacts of rising temperatures (Basso et al., 2015; 
Cammarano et al., 2020). After running the simulations, we assessed the nitrogen levels 
that yield the maximum margin between nitrogen dosage and crop yield. This aspect is of 
utmost importance in the current context, given the influence of climate change, droughts, 
food security concerns, and the impact of geopolitical factors on agricultural input costs 
(Arndt et  al., 2023). Our findings consistently revealed that no-tillage practices resulted 
in higher yields when compared to other soil management approaches across all the sites. 
Furthermore, we determined the most effective nitrogen dosage by utilizing simulated yield 
data to calculate the MFYI. This index helps in identifying the threshold beyond which fur-
ther increases in fertilizer application fail to produce proportionate increases in crop yield, 
allowing the farmers to intuitively identify the level of nitrogen that effectively increases 
nitrogen use efficiency, as well as reduced environmental impact and increased economic 
returns. For the Recanati and Basilicata 2 sites, the optimal nitrogen level was found to be 
100 kg N ha−1, while for Basilicata 1, it was 120 kg N ha−1.

Conclusions

A meta-model was trained using a multi-data source approach, incorporating remote 
sensing, crop phenology, soil chemical components, weather data, soil management, and 
nitrogen levels to predict durum wheat yield. This meta-model comprises two intercon-
nected ML models, each with a distinct role: the first model classifies phenological stages 
using Random Forest with a remarkable accuracy of 0.98, while the second model predicts 
yield using a Neural Network, achieving a high accuracy of 0.90. Within each individual 
model comprising the meta-model, we conducted variable importance analysis to identify 
the most influential covariates that contribute to accuracy improvement. In the classifica-
tion model, the top three significant features were temperature, precipitation, and NDVI. In 
contrast, the regression model placed the greatest importance on nitrogen input, followed 
by precipitation, NDVI, and temperature. The meta-model was subsequently employed to 
run simulations involving different soil management and fertilization levels, aiding in the 
determination of the optimal agronomic practices. Notably, no tillage practices consistently 
yielded higher grain production. Additionally, the Marginal Fertilizer Yield Index was used 
to identify the optimal nitrogen application levels for the crop. It is worth emphasizing that 
the scalability of this model can be achieved through the utilization of publicly available 
datasets. In the realm of agriculture, the potential of ML models is promising, provided 
they are user-friendly, accessible to farmers, and perceived as valuable tools.
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