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Preface

Heat transport has been an essential topic in the foundations of thermodynamics since
the beginnings of XIXth century. Fourier’s mathematical description of heat transport
was a stimulus for mathematics (Fourier transforms arose because of the need to solve the
classical heat equation following from the Fourier law), for physics (it provided a model
and source of inspiration for the mathematical description of other transport phenomena,
as Fick’s diffusion law and Ohm’s electric-transport law), and for natural philosophy (it
provided a mathematical framework for an irreversible phenomenon, in contrast to New-
ton’s mathematical framework for reversible mechanics). One century and half before
Fourier, Newton had formulated his heat-transfer law for the cooling of bodies, or for heat
exchange, but without providing a wide enough mathematical framework. Half a century
after Fourier, Stefan-Boltzmann law provided a mathematical basis for radiative heat ex-
change. Since then, heat-transport analysis in its different forms (conduction, convection
and radiation) has been a classical topic in physics, engineering, and natural sciences of
life and Earth.

Since the last decades of the XXth century, heat transport has been experiencing a
true revolution, enlarging its domain of applicability, and finding new regimes and phe-
nomenologies where Fourier’s theory is no longer applicable. This new epoch in heat
transfer has been stimulated by miniaturization, but it was preceded, in some way, by an
earlier technological frontier at the half of the XXth century: aerospace engineering, with
the need to study heat transfer and cooling of bodies in rarefied gases.

In both cases, the new aspects arise in connection to the relation between the heat
carriers’ mean free path `, and a relevant characteristic size of the system L, expressed by
the Knudsen number Kn = `/L. The Fourier’s law (as well as classical hydrodynamics and
continuous theory in general) are valid in the limit of very small Knudsen number, i.e.,
when `/L � 1. Indeed, Kn may increase both because of an increase of ` (as in rarefied
gases and in aerospace engineering), and because of a reduction of L (as in miniaturization
technologies).

Nowadays, the progress in nanotechnology and its huge economic impact, has brought
Kn for heat and electric transport to values in which neither Fourier’s law, nor classical
continuum thermodynamics are strictly applicable. Ways to extend their domain of appli-
cation to nanosystems are being sought for from the perspective of heat transport, as well
as Carnot researches on thermodynamics have been stimulated by the industrial revolu-
tion brought up by heat engines. Currently, the research is stimulated by three industrial
revolutions: miniaturization (the need to refrigerate supercomputers, where much heat is
dissipated in a tiny space), energy management (the need to develop sustainable energy
sources as photovoltaic and thermoelectric ones, which may be more efficient at nanoscale
than in bulk systems), and material sciences (where nanostructures as, for instance, su-
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perlattices, carbon nanotube, graphene, silicon nanowires, and porous materials may be
decisive to control heat transport for insulation or for refrigeration, or for delicate phonon
control in heat rectification and thermal transistors).

Thus, heat transfer and thermodynamics are living exciting and challenging times.
Much of this impetus comes from microscopic approaches, either from several versions of
kinetic theory or fluctuation-dissipation theorems, or from detailed computer simulations.
These approaches allow for a detailed understanding and description. However, this should
not make us forget the practical usefulness, and the conceptual challenge of mesoscopic
approaches starting from the macroscopic perspective and deepening into more detailed
and accurate descriptions of physical systems.

This is the principal aim of the present book: how to formulate, from a mesoscopic
perspective, generalized transport laws able to keep with the pace of current microscopic
search, and to cope efficiently with new applications. The equations presented here are
compatible with generalized formulations of nonequilibrium thermodynamics beyond local-
equilibrium. However, we try to emphasize the transport equations by themselves. When
the mean-free path and relaxation times are negligible with respect the size of the system
and the rates of phenomena, these equations reduce to Fourier’s law, but in other situations
they describe other physical features beyond it: heat waves, ballistic transport, and phonon
hydrodynamics, for instance. We have tried to connect as much as possible our results
with the results of microscopic theories. This is the reason, for instance, that we use the
concept of phonon hydrodynamics as a denomination for a given regime of heat flow where
the equations for the heat flux have a form analogous to the hydrodynamic equations for
the velocity field. In fact, this form is derived here from the mesoscopic equations in some
regimes, but without making explicit reference to the physical nature of heat carriers (they
could be phonons, or electrons, or holes), but since the phenomenology known up to now
has been explored microscopically, we have kept the name of phonon hydrodynamics to
enhance the connection between mesoscopic and microscopic approach.

The plan of the book is the following.
In Chap. 1 we give a sketch of Extended Irreversible Thermodynamics (EIT) which

represents the general framework in which the generalized heat-transport equations are
built up.

In EIT one starts with an entropy and an entropy flux which depend on the fluxes,
besides on the classical variables. Not too far from equilibrium the entropy is the local
equilibrium entropy minus some expressions quadratic in the fluxes, and the entropy flux
is the classical entropy flux plus a correction proportional to the product of the flux of the
flux times the flux itself. From here one is led for the entropy production to a quadratic
form which is a sum of products of fluxes times generalized thermodynamic forces, and
it is required that the constitutive equations are submitted to the restriction that the
entropy production is positive definite. The main differences with respect to the Classical
Irreversible Thermodynamics (CIT) are: i) The thermodynamic forces are more general
than their local equilibrium counterparts, and in them appear the time derivatives and
the gradients of the fluxes, as a consequence of using an entropy and entropy flux which
depend on the fluxes. ii) Since the fluxes are considered as independent variables, the
constitutive equations do not aim to express the fluxes in terms of thermodynamic forces,
but to express the evolution equations for the fluxes., i.e., to give the time derivative of
the fluxes in terms of classical thermodynamic forces, the fluxes, and the gradients of the
fluxes.

After the evolution equations for the fluxes have been formulated, one is able to give a
physical interpretation to the several coefficients appearing in such equations (and related
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to the coefficients of the non-equilibrium contributions to the entropy and the entropy flux)
in terms of the classical transport coefficients, the relaxation times of the fluxes, the cor-
relation lengths of the fluxes, and so on. As a simple illustration we mention the situation
related to the so-called Guyer-Krumhansl equation for heat transfer in rigid conductors,
which takes into account relaxation effects and non-local effects. The corresponding en-
tropy depends on the internal energy as well as on the heat flux, and the corresponding
entropy flux depends on the gradient of the heat flux, too. When the the mean free path
is negligible, the Guyer-Krumhansl equation reduces to Cattaneo’s equation.

Finally, the absolute temperature is given by the reciprocal of the derivative of the
entropy with respect to the internal energy (at constant values of the other extensive
variables). When the extended entropy is used instead of the local-equilibrium entropy,
the resulting absolute temperature differs from the local-equilibrium temperature, and
depends on the fluxes.

In Chap. 2 we provide an overview of the different generalized heat-transport equations
which are able to take into account nonlinear, nonlocal and memory effects. All these mod-
els stem from a precise point of view on the problem of heat conduction. On this subject,
the celebrated paper by Cattaneo where it is observed that the classical heat equation leads
to the ”paradox” of infinite speeds of propagation of the thermal disturbances, stimulated
several researches in different directions. Hence, new theories have been formulated and
new schools of thermodynamics have been founded in the last decades. Although Catta-
neo was not a thermodynamicist, he contributed a lot to the development of the modern
thermodynamics, because his paper stimulated the formulation of new theories.

All the presented models are able to reproduce some of the main properties of heat
conduction at low temperature, but none of them leads to an exhaustive description which
is free of technical problems. In particular, the extended thermodynamic theories, in which
the fluxes are included in the state space, the higher order fluxes are necessary in modeling
high frequency processes and the memory effects are modeled by the hierarchical system
of equations following by the kinetic theory, the main problems are due to the rapidly
increasing number of unknown quantities. The most important of them is the determi-
nation of the appropriate number of equations, i.e., of the step at which the hierarchical
system should be truncated. A further problem is related to the Guyer-Krumhansl equa-
tion, which plays a fundamental role in describing nonlocal and relaxation effects. Such
an equation is parabolic, so that finite speeds of propagation, in a strict mathematical
sense, cannot be expected. However finite speeds of propagation can be obtained in the
generalized sense clarified G. Fichera and W. A. Day. These authors observed that a
correct estimation of the speed of propagation of the disturbances requires that the order
of magnitude of the solution of the system of balance equations is compared with that of
the error affecting the available experimental data which the theory aims to reproduce.
In particular, if after a finite interval of time from the beginning of a physical process
the solution of the corresponding system of balance laws is greater than the experimental
error only in a compact domain, then we can say that such a solution is experimentally
zero outside this domain. As a consequence, it has propagated with finite speed because
not all the points of the space have been reached in a finite time.

In Chap. 3 we develop a mesoscopic description of boundary effects and effective ther-
mal conductivity in nanosystems by using phonon hydrodynamics. Nanometer-sized de-
vices are of considerable current interest in micro/nanoelectronics, since currently minia-
turization is successfully applied in several technologies, as for example, optics, catalysis,
and ceramics.

Indeed, the raise and the development of nanotechnology requires increasing efforts to
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better understand the thermal-transport properties of nanodevices, as their performance
and reliability are much influenced by memory, nonlocal and nonlinear effects. To achieve
that task, the macroscopic derivation of generalized transport equations represents a very
important step. This problem may be tackled by different approaches, the most pursued
of which is the microscopic one, based upon the Boltzmann equation. An alternative ap-
proach is that based on the so-called phonon hydrodynamics, which regards the whole set
of heat carriers as a fluid whose hydrodynamic-like equations describe the heat transport.
This mesoscopic approach allows for a fast quantitative approximate estimation of the
thermal properties, and may be a useful complement to microscopic theories, in order to
select the most promising features of the nanosystems. In the linear regime the phonon
hydrodynamics lays on Guyer-Krumhansl transport equation. However, it is worth ob-
serving that in the original proposal of Guyer and Krumhansl a boundary relaxation-time
has been added to the usual relaxation time due to resistive mechanisms by the use of
Matthiessen rule. Once the combined resistive-boundary collision time has been obtained,
the thermal conductivity (depending on the size of the system through the boundary re-
laxation time) can be calculated and used in the Guyer-Krumhansl transport equation.
Here, instead, we use a different method, which consists in including the boundary colli-
sion time not in the differential equation, but in suitable boundary constitutive equations.
Particular attention is paid to the modeling of the constitutive equations for a slip heat
flux along the walls.

In Chap. 4 we describe with some detail the application of the model of phonon hy-
drodynamics to nanoporous materials.

In fact, beside to refer to small systems whose characteristic length is of the order of
nanometers, the name nanosystem can also be referred to those systems characterized by
an internal nanostructure giving to them some special mechanical, thermal, electrical and
optical properties. Such structures may be nanopores, or nanoparticles, or several parallel
and very thin layers (graded materials). By regulating the main features of such internal
structure, one may control the transport properties of those systems.

When the characteristic size of the system is large as compared with the mean-free
path of the heat carriers, its thermal properties can be derived in the framework of the
classical Fourier theory. More difficult is is to analyze such properties in the case when the
aforementioned features are comparable to (or smaller than) the mean-free path of heat
carriers, in which case several new problems emerge.

We also briefly furnish with less details some results from other theories for the thermal
conductivity both of nanocomposites and superlattices, and of nanofluids, which are the
basis of many outstanding applications.

In Chap. 5 we illustrate some peculiar phenomena which can be pointed out when
weakly nonlocal and nonlinear heat transport equations are used. As said above, the ther-
mal behavior of systems whose characteristic length is of the order of few nanometers, is
strongly influenced by memory, nonlocal, and nonlinear effects. In one-dimensional steady-
state situations, and modeling the heat transport along nanowires or thin layers, some of
these effects may be incorporated into a size-dependent effective thermal-conductivity and
a Fourier-type equation may still be used with an effective value of the thermal conduc-
tivity. However, in fast perturbations, or under strong heat gradients, an effective thermal
conductivity is not enough to overcome the different problems related to the Fourier law
and therefore, in modeling heat conduction, it is necessary to go beyond such equation.

Beside to point out some results that are important from the theoretical point of view,
as the existence of the flux limiters, we also illustrate several applications, such as the
thermal rectification in tronco-conical nanowires and the axial heat propagation in thin
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layers and graphene sheets.
Also, it is developed a mathematical procedure, based on the methods of classical

hydrodynamics, which is proved to be useful to study the stability of the heat flow in
nanowires.

In Chap. 6 we study how to obtain enhanced versions of classical thermoelectric equa-
tions, which have meaningful consequences on some well-known classical theoretical re-
sults, and in practical applications, for instance, on the efficiency of thermoelectric energy
generators. In fact, thermoelectric devices offer an attractive source of energy, since they
do not have moving parts, do not create pollution, do not make noise. Nanomaterials pro-
vide an interesting avenue to obtain more performing thermoelectric devices, for example,
making nanocomposites, adding nanoparticles to a bulk material, or using one-dimensional
nanostructures. For the sake of illustration, we consider a cylindrical thermoelectric nan-
odevice whose longitudinal length L is much larger than the characteristic size of the
transversal section. In this case we may represent it as a one-dimensional system and
consider only one Cartesian component, namely, the longitudinal one. In steady states we
assume that the hot side of this system is kept at the temperature T h, and the cold side
at the temperature T c. Moreover, we suppose that an electric current and a quantity of
heat per unit time enter uniformly into the hot side of the device and flow through it.

In this Chapter we further point out nonlocal and/or nonlinear breaking of Onsager
symmetry, which implies modifications of the expression for the maximum efficiency in
terms of the transport coefficients and the temperature.

All the results derived therein lie on the basic assumption that in thermoelectric ma-
terials the local heat flux has two different contributions, namely, the phonon partial
heat flux, and the electron partial heat flux. In the simplest situation, the heat carriers
(phonons and electrons) may be supposed to have the same temperature. However, in
more complex situations, such as in the presence of ”hot electrons”, or when a laser heat
pulse hits a material surface, the phonon and electron temperature may be different. Thus,
in this chapter, the classical results of thermoelectricity are revisited under the hypothesis
that phonons and electrons have different temperatures.

Along with Lennon and McCartney, we can say that this book has been written ”With
a Little Help from Our Friends”. In fact, for a deeper understanding of the topics de-
veloped in the present book, we had a great advantage by discussing them with several
of our Colleagues and Friends in the world. In particular, we acknowledge our fruitful
discussions with J. Casas-Vázquez, F. X. Álvarez, J. Camacho and V. Méndez (Barcelona,
Spain), Z-Y. Guo, M. Wang, Y. Dong and Y. Guo (Beijing, China), W. Muschik (Berlin,
Germany), T. Ruggeri (Bologna, Italy), P. Ván (Budapest, Hunghery), R. Luzzi (Camp-
inas, Brazil), J. Fort (Girona, Spain), G. Lebon (Liège, Belgium), F. Oliveri, L. Restuccia
and P. Rogolino (Messina, Italy), M. Grmela (Montréal, Canada), F. Vázquez (Morelos,
Mexico), M. S. Mongiov́ı, M. Sciacca and L. Saluto (Palermo, Italy), V. Triani and I.
Carlomagno (Potenza, Italy), K. Frischmuth (Rostock, Germany), W. Kosiński (Warsaw,
Poland, passed away in 2014).
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Chapter 1
Nonequilibrium thermodynamics
and heat transport at nanoscale

Current frontiers in nanotechnology and materials science ???????????? require gen-
eralized transport equations beyond the local-equilibrium theory ????. In particular,
heat-transport equations for miniaturized systems whose size is comparable to (or smaller
than) the mean-free path of the heat carriers nowadays have become an important topic
in science and technology ?????. Analogously, the behavior of systems submitted to high-
frequency perturbations which are comparable to the reciprocal of internal relaxation
times is studied to optimize the operation of high-frequency devices ???????. Equations
for heat, mass, charge, and momentum transport have been actively explored in several
situations: in miniaturized electronic devices, in nanotubes and nanowires, in theoretical
models of energy transport in one-dimensional chains, in rarefied gases, etc. ??. As a
consequence, new thermodynamic formalisms are necessary in this endeavor because the
mentioned situations clearly exceed the limits of validity of the classical local-equilibrium
thermodynamics. This constitutes a formidable challenge for nonequilibrium thermody-
namics to better understand its basic concepts, its limits of application, and its frontiers.

There are several thermodynamic theories going beyond the local-equilibrium ap-
proach: Extended Irreversible Thermodynamics (EIT) ???, Rational Extended Thermo-
dynamics (RET) ??, Thermomass (TM) theory ?????, Double-Lag heat transport ???????,
GENERIC theory ??, molecular thermodynamics, and others ????????. All of them may
provide generalized transport equations incorporating memory and nonlocal effects, and
reducing to the classical transport equations for low frequency and short mean-free paths
of heat carriers. Moreover, those equations are able to incorporate the high-frequency be-
havior of dissipative signals as, for instance, a finite speed of propagation of heat pulses ??.
Thus, beside to provide small corrections to the usual transport equations, they turn out
to be useful even under extreme nonequilibrium situations.

In the following we will use the formalism of EIT, because of the simplicity with
which it relates transport equations to nonequilibrium entropy and entropy flux. We
introduce the basic concepts of EIT, namely, the idea of the fluxes as independent variables
and of a generalized entropy depending on these fluxes. Moreover, we point out the
general procedure to obtain their evolution equations, which provide generalized transport
equations which are compatible with second law of thermodynamics and, in so doing, they
yield a grasp on new aspects of thermodynamic quantities beyond local equilibrium.
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1.1 Memory effects and generalized specific entropy

1.1 Memory effects and generalized specific entropy

The finite speed of propagation for dissipative signals was one of the starting points
for the development of extended-thermodynamic theories, although it was thought that
the measurement of the relaxation times for the fluxes would be in general rather difficult.
However, the development of light-scattering and neutron-scattering techniques showed
not only that such relaxation times could be measured with accurateness, but that they
were dependent on the wave vector in such a way that nonlocal effects should be taken
into consideration.

Accordingly, the new equations incorporate memory and second-order nonlocal effects,
and describe a rich phenomenology in heat transport, including thermal waves and phonon
hydrodynamics ???????????????. Though such transport equations have been proposed
earlier on different bases, it was generally not realized that they were violating the classical
formulation of the second law of thermodynamics, as they led in some cases to a negative
entropy production. In EIT this problem has been circumvented by introducing gener-
alized constitutive equations for the entropy and for the entropy flux, which depend not
only on the classical variables, but also on the fluxes and on their higher-order gradients.
However, the inclusion of memory and second-order nonlocal effects, interesting as it is,
cannot cope with the ballistic regime, where most of the heat carriers cross all the system
without experiencing practically any collision, except with the walls. To deal with this
situation, it is necessary to include an infinite number of higher-order fluxes ???.

The behavior of very small systems is also influenced by nonlinear effects, because even
small differences over a small distance generate very high gradients. As a consequence,
the transport equations must explicitly incorporate nonlinear effects ?????. The nonlinear
transport equations presented here are characterized by saturation in the fluxes for high
enough values of the temperature gradient. Hence, the heat flux will always have a finite
value, which will be of the order of the internal energy density times the maximum speed
of signal propagation.

The generalized nonequilibrium entropy introduced by EIT, dependent on the fluxes,
yields some insights into how to formulate a thermodynamic theory beyond local equi-
librium. This implies a generalization of the state equations containing nonequilibrium
contributions, which are also useful to understand some open problems concerning the
appropriate definition and right meaning of temperature.

The central relations in transport theories are the transport laws, describing the rate
of transport of the basic variables in terms of the inhomogeneities of the system. In the
classical transport theory ??, the thermodynamic fluxes J and their conjugated thermo-
dynamic forces X are related by linear transport laws of the form

J (t) = L ∗X (t) (1.1)

with L being a suitable matrix of phenomenological coefficients, and the symbol ∗ indi-
cates the usual raw-line product between a matrix and a vector. The phenomenological
coefficients Lαβ are related to well-known thermo-physical properties. In general, the Lαβ
depend on the elements of the state space, as well as on the thermodynamic forces. In such
a case, we are dealing with a nonlinear nonequilibrium theory (NLNET) ?. If, instead,
these coefficients depend only on the elements of the state space, then we face with a semi-
linear nonequilibrium theory (SLNET) ?. Finally, if the Lαβ are constant, then we deal
with a linear nonequilibrium theory (LNET) ?. The coefficients Lαα relate the thermody-
namic current to its own conjugated thermodynamic force. The cross-coefficients Lαβ with
α 6= β, instead, are representative of the coupling between different physical effects ??.

Chapter 1. Nonequilibrium thermodynamics and heat transport at nanoscale – 11



1.1 Memory effects and generalized specific entropy

Any phenomenon in which two, or more, transport effects are coupled, such as thermal
and electrical conductivity, or thermal conductivity and diffusion, is called cross-effect ??.

All fluxes and forces have the property of vanishing at equilibrium. Although the
decomposition into thermodynamic fluxes and forces is arbitrary to a certain extent, it
seems important to underline that experimental evidences and theoretical considerations
in statistical mechanics confirm that a very wide class of phenomena can be described by
means of the linear flux-force relations as in Eq (1.1). For instance, one may identify J with
the local heat flux q, X with gradient of reciprocal of the absolute temperature T (i.e.,
X = ∇T−1) and L =

(
λT 2

)
I, where I denotes the identity tensor and λ is the thermal

conductivity, in such a way that for isotropic systems, Eq (1.1) leads to the well-known
Fourier law (FL)

q = −λ∇T (1.2)

Before going beyond, let us note at the very beginning that the temperature T in
Eq. (1.2) (as well as in all the equations we will see in the next) should be not confused
with the local-equilibrium temperature, namely, the temperature one can measure by usual
thermometers. The temperature T will be always a genuinely nonequilibrium quantity.
Recalling that the meaning of nonequilibrium temperature is a fundamental open problem
in nonequilibrium thermodynamics and statistical physics, which becomes especially acute
in nanosystems experiencing fast processes (because of the relatively small number of
particles involved and the influence of fast variations) we refer the readers to Sec. 1.4 of
the present Chapter for a deeper discussion about it.

Equation (1.2), which implies an instantaneous response of the system, breaks down
whenever the system at hand is submitted to very fast perturbations, as well as whenever
the response time of the system is very long. In these situations, the thermodynamic flux
J and its respective conjugate force X, at a given time t, are related by the equation

J (t) =

∫ t

−∞
F
(
t− t′

)
L ∗X

(
t′
)
dt′ (1.3)

being F (t− t′) a memory function. Whenever F (t− t′) = δ (t− t′) one recovers linear
equations of the form (1.1).

A different possibility is to assume that

J (t) =

∫ t

−∞
τ−1 exp−[(t−t′)/τ ] L ∗X

(
t′
)
dt′ (1.4)

with τ being a suitable relaxation time. In this case the memory decays exponentially, but
it could also decay in other fast ways, according with the principle of fading memory ?.

The relation (1.4) is tantamount to assume that the evolution of the thermodynamic
flux is ruled by the following generalized transport equation

τ J̇ + J = L ∗X (1.5)

which when τ is negligible, or whenever the time variation of the flux is slow, reduces to
the linear law in Eq. (1.1).

It is easy to observe that Eq. (1.5), which is very appealing in practical applications,
turns out the celebrated Maxwell-Cattaneo-Vernotte (MCV) equation ???

τRq̇ + q = −λ∇T (1.6)

if previous identifications for X and L hold, and the generic relaxation time τ is replaced
by the relaxation time τR due to resistive interactions between phonons.
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1.1 Memory effects and generalized specific entropy

Referring the readers to Chap. 2 for deeper considerations about the MCV equation, let
us here observe that Eq. (1.6) can be indeed physically acceptable only if it never violates
the second law of thermodynamics ?. In order to achieve a consistent thermodynamic
framework wherein Eq. (1.6) is in accordance with second law, it is possible to assume that
the specific entropy per unit volume s is q-dependent in such a way that its constitutive
equation reads ?

s (u,q) = seq (u) +
s1 (u)

2
q · q (1.7)

with seq (u) representing the entropy at the equilibrium (that is, in the absence of q),
and u being the specific internal energy per unit volume, which is ruled by the following
evolution equation

u̇+∇ · q = 0 (1.8)

in the absence of heat source. Although Eq. (1.7) is not the very general constitutive
equation one may introduce, we explicitly note that it is in accordance with the general
theorems of representation of isotropic scalar functions depending on scalars and vectors ?.

On the other hand the local balance of entropy reads

ṡ+∇ · Js = σs (1.9)

with Js as the entropy flux, and σs as the density of entropy production per unit volume.
Once the usual assumptions

∂s

∂u
=

1

T
(1.10a)

Js =
q

T
(1.10b)

are made, the coupling of Eqs. (1.6)-(1.9) yields

σs = q ·
[
∇T−1 + s1q̇

]
(1.11)

Second law of thermodynamics dictates that the left-hand side of Eq. (1.11) has to be
positive whatever the thermodynamic process is ?. Since that equation is in the form of
product between the thermodynamic flux q and the thermodynamic force ∇T−1 + s1q̇,
the constrain σs ≥ 0 can be fulfilled, for example, if ?

∇T−1 + s1q̇ = L1q (1.12)

where the phenomenological coefficient L1 may depend both on u, and on q in principle.
In particular, the identifications

L1 =
1

λT 2

s1 = − τR
λT 2

allow Eq. (1.12) to reduce to the MCV equation (1.6), proving so its physical consistency.
It is worth observing that the constitutive equation (1.7) in this case takes the form

s = s (u,q) = seq (u)− τR
2λT 2

q · q (1.13)

which also guarantees that the principle of maximum entropy at the equilibrium ? is
always satisfied.
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1.2 Second-order nonlocal effects

A similar procedure can be applied if J is a different flux, as for instance, the flux of
mass, or the flux of momentum in classical continuum mechanics, one of the partial fluxes
of mass or momentum in theory of mixtures ?, the flux of electric charge in thermoelec-
tricity ?. In all the mentioned cases, the main task is to assign constitutive equations for
the specific entropy and for the entropy flux which are physically sound and manageable
from the mathematical point of view.

1.2 Second-order nonlocal effects

When the ratio between the mean-free path ` of heat carriers and the characteristic
length L of the system (i.e., the so-called Knudsen number Kn = `/L) becomes comparable
to (or higher than 1), the heat transport is no longer diffusive, but ballistic. Moreover,
when the mean-free path between successive collisions becomes large, there will be a
direct connection among nonadjacent regions of the system with very different values of
the temperature. In this situation it may be asked whether laws like Eqs. (1.2) and (1.6)
remain applicable, or not ?.

Since nonlocal effects are especially important to describe the transition from diffusive
to ballistic regime, to describe it in the framework of EIT it is possible to introduce a new
extra variable, represented by a second-order tensor Q, and write the balance of the heat
flux in the following general form ?

τ1q̇ + q = −λ∇T +∇ ·Q (1.14)

where τ1 is still a relaxation time. The tensor Q, assumed to be symmetric, may be split
in the usual form Q = QI + Qs, the scalar Q being one-third of the trace of Q, and Qs

being the deviatoric part of Q. In the relaxation time approximation ?, the evolution
equations for Q and Qs may be written as

τ0Q̇+Q = γ0∇ · q (1.15a)

τ2Q̇s + Qs = 2γ2

[
(∇q)0

]
s

(1.15b)

where
[
(∇q)0

]
s

denotes the symmetric and traceless part of ∇q. Assuming that the

relaxation times τ0 and τ2 are negligibly small, and considering only regular solutions for
which the time derivatives appearing at the left hand side of Eqs. (1.15a) and (1.15b) do
not diverge, and substituting these equations into Eq. (1.14), one obtains for the evolution
of the heat flux

τ1q̇ + q = −λ∇T + γ2∇2q +

(
γ0 +

1

3
γ2

)
∇∇ · q (1.16)

Equation (1.16) is comparable with that obtained by Guyer and Krumhansl from
phonon kinetic theory ??, namely,

τRq̇ + q = −λ∇T + `2p
(
∇2q + 2∇∇ · q

)
(1.17)

wherein `p is the phonon mean-free path. It is easy to recognize, in fact, that the general
heat-transport equation (1.16) reduces to the Eq. (1.17) under the following identifications

τ1 = τR, γ0 =
5

3
`2p, γ2 = `2p (1.18)

It is worth observing that in Refs. ?? Guyer and Krumhansl deal with resistive and
normal collisions, and relate `p to both processes. Here we are mainly interested in the
mathematical aspects of Eq. (1.17) rather than in its microscopic derivation.
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1.3 Higher-order fluxes and nonlinear hierarchy of transport equations:
ballistic heat transport

The thermodynamics underlying the transport equation (1.16) is easily derived by
following the same procedure as in Sec. 1.1, i.e., by introducing extended constitutive
equations for the specific entropy and for the entropy flux of the form, respectively, ??

s = seq (u)− τ1

2λT 2
q · q− τ2

4λT 2γ2
Qs : Qs −

τ0

2λT 2γ0
Q2 (1.19a)

Js =
q

T

(
1 +

Q

λT

)
+

Qs ∗ q

λT 2
(1.19b)

where the symbol : denotes the complete contraction of the corresponding tensors giving
a scalar as result.

Note, incidentally, that Eq. (1.19a) generalizes Eq. (1.13) and is still in agreement both
with theorems of representation for scalar functions depending on scalars, vectors, and ten-
sors ?, and with the principle of maximum entropy at the equilibrium ?. Equation (1.19b),
instead, agrees with the general form of the entropy current derived by Verhas ?, according
to which the entropy flux is the sum of all fluxes each of them multiplied by the suitable
intensive quantities appearing in the entropy expression.

1.3 Higher-order fluxes and nonlinear hierarchy of trans-
port equations: ballistic heat transport

So far, only the heat flux q and the flux of the heat flux Q have been assumed as
nonequilibrium variables. Indeed, the kinetic theory points out that the relaxation times
of the higher-order fluxes are not always shorter than the collision time. The only use of
the first-order fluxes as independent variables is not satisfactory to describe high-frequency
processes, because when the frequency becomes comparable to the inverse of the relaxation
time of the first-order flux, all the higher-order fluxes will also behave like independent
variables and must be incorporated in the formalism ???.

In EIT it is possible to incorporate higher-order variables, each one being defined as
the flux of the preceding one, and denoted as J1,J2, . . . ,Jn, where Jk with k = 1 . . . n,
is a tensor of the order k and stands for the flux of the element of the hierarchy of order
Jk−1.

Up to the n-th order moment, a convenient constitutive equation for the specific en-
tropy takes the form

s = s (u,J1, . . . ,Jn) = seq (u) +
α1

2
J1 : J1 + . . .+

αn
2

Jn : Jn (1.20)

while the entropy flux can be written as

Js =
J1

T
+ β1J2 ∗ J1 + . . .+ βnJn � Jn−1 (1.21)

with α1 . . . αn and β1 . . . βn being suitable functions of material coefficients which are
supposed to depend on u, and the notation Jk � Jk−1 denotes the contraction over the
last k − 1 indices of Jk, giving a first-order tensor, i.e., a vector, as result. It is worth
observing that in the previous expressions of the entropy and of the entropy flux, cubic
coupled contributions have not been taken into account for the sake of a formal simplicity.

The corresponding evolution equations compatible with a positive entropy production
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1.3 Higher-order fluxes and nonlinear hierarchy of transport equations:
ballistic heat transport

are written in the following hierarchy ?

τ1J̇1 + J1 = −λ∇T +
β1τ1

α1
∇ · J2

...

τnJ̇n + Jn =
βnτn
αn
∇ · Jn+1 +

βn−1τn
αn

∇Jn−1

(1.22)

In the system of equations (1.22) the compatibility with the general balance law for
the fluxes

J̇k +∇ · Jk+1 = Pk (1.23)

where k = 2 . . . n, and Pk denotes the production of Jk, implies

βk = −αk, Pk = −Jk
τk

+
βk−1

βk
∇Jk−1 (1.24)

This hierarchy of equations may be used to describe the transition from diffusive to
ballistic regime ????. In fact, it leads to a continued fraction expansion ?? for the thermal
conductivity in terms of the Knudsen number as

λeff (T,Kn) =
λ (T )

1 + (K`1)2

1+
(K`2)

2

1+
(K`3)

2

1+...

(1.25)

wherein K = 2π/L, and `i (i = 1, . . . n) are the effective mean-free paths related to the
flux of order i. If in Eq. (1.25) all the coefficient `i are equal, namely, `i = `p/2, it follows
that the effective thermal conductivity is ??

λeff =
λ

2π2 Kn2

(√
1 + 4π2 Kn2 − 1

)
(1.26)

This expression describes a strong reduction of the effective thermal conductivity for
increasing values of Kn. When Kn = 0, Eq. (1.26) yields λeff ≡ λ, whereas for large Kn
values it turns out

λeff =
λ

πKn
≈ λL

2π2 Kn2

and leads to the following expression for the modulus of the local heat flux

q ≈ cvv

3
∆T

were cv is the specific heat per unit volume, and v is the average phonon speed. This
behavior, which is independent of the size of the system, is typical of ballistic regime. In
qualitative terms, Eq. (1.26) provides a reasonable description of experimental results ?.

Another possibility for Eq. (1.25) would be to assume that the mean-free path `n,
associated with the heat flux of order n, is given as

`2n = `2p
(n+ 1)2[

4 (n+ 1)2 − 1
]

as it is usual in phonon’s kinetic theory ?. In this case the asymptotic form of Eq. (1.25)
is ?

λeff =
3λ

4π2 Kn2

[
2πKn

arctan (2πKn)
− 1

]
(1.27)
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1.4 Nonequilibrium temperature and heat transport

which, however, behaves in a similar way as Eq. (1.26). The expressions in Eqs. (1.26)
and (1.27) for the effective thermal conductivity are more sophisticated and precise than
the usual assumption

λeff =
λ

1 + f (T ) Kn
(1.28)

where f (T ) is nondimensional function depending on temperature and on the form of the
cross section of the system. Referring the readers to Chap. 3 for more comments about
that equation, here we only observe that Eqs. (1.26), (1.27) and (1.28) essentially have
the same qualitative behavior both for low, and for very high Knudsen numbers.

Several mathematical aspects of Eqs. (1.22) and related ones have been dealt with
in Ref. ?. The idea of a linear hierarchy of evolution equations presented above may be
generalized by taking into account that, in the presence of a temperature gradient, the
fluxes of order m, m + 1, and m − 1 may be coupled not only by the wave-vector k, but
also by the temperature gradient itself. As a consequence the hierarchy of Eqs. (1.22) may
be generalized as follows ??

τmJ̇m + Jm = λm∇Jm−1 + δm∇ · Jm+1 + Λm∇T ⊗ Jm−1 + ∆mJm+1 �∇T (1.29)

where δm, Λm and ∆m are still material coefficients, and the symbol ⊗ indicates the
standard tensor product between ∇T and Jm−1 turning out a tensor of order m. Shifting
to the Fourier-Laplace transform, with the assumptions

Bm = ∆m∇T + iδmk, Cm = Λm∇T + iλmk (1.30)

Eq. (1.29) may be easily rearranged as

τmJ̇m + Jm = Jm+1 �Bm + Cm ⊗ Jm−1 (1.31)

This equation is important in the study of high-frequency processes in systems with
heat conductivity depending on the frequency of the thermal waves as well as on the
wave vector and on the temperature gradient. In particular, in steady states and for
∆m = Λm = `p/T , it describes a flux-limited behavior of the form

q = − λ∇T
1

2
+

√
1

4
+ `2p (∇ lnT )2

(1.32)

Equation (1.32) yields the classical FL when the term ∇ lnT is small, whereas when
∇ lnT gets large, it leads to q = λT/`p ≈ (1/3) cvvT which is the saturation value for the
modulus of the local heat flux.

1.4 Nonequilibrium temperature and heat transport

Temperature represents a basic concept in thermodynamics, and it is the topic of
several discussions, since its definition in nonequilibrium situations is not yet fully under-
stood ??????. In fact, the local-equilibrium temperature loses its validity in situations
where the deviation from equilibrium ensemble is not negligible, as for example the heat
propagation in nanosystems. Therefore, for a better understanding of temperature in
nonequilibrium states, the exploration of the consequences of the introduction of different
definitions of temperature in heat transport may be very useful.
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1.4 Nonequilibrium temperature and heat transport

In linear regime different definitions of temperature are equivalent, and lead to the
same conclusions both from the experimental, and from the theoretical point of view.

In nonlinear regime, instead, different temperatures may yield different predictions.
This is logical, indeed, because out of equilibrium there is no energy equipartition, and ev-
ery degree of freedom may be assigned its own temperature. The contribution of the several
degrees of freedom to the heat flow may also be different (for instance, its corresponding
thermal conductivity may be different). Thus, temperature beyond local equilibrium is
more complex than the usual identification of temperature as average kinetic energy of
the particles.

In particular, it can be shown that the dispersion relation of heat waves along nanowires
(or thin layers) which are not isolated from the environment allows to compare different
definitions of nonequilibrium temperature, since thermal waves are predicted to propagate
with different phase speed depending on the definition of nonequilibrium temperature
being used ??. From the other hand, in highly nonequilibrium situations, as heat transport
in nanosystems experiencing fast processes, the set of independent variables has to be
enlarged by including the fluxes of extensive quantities (i.e., internal energy, matter and
momentum). They can no longer be neglected and a constitutive description of them in
terms of the traditional field variables is insufficient to cope with the complexity of the
observed phenomenology. It is worth noticing that also in the kinetic theory of gases, it is
usual to select the higher moments of the velocity distribution as independent variables ??.

In the following we give two different definitions of nonequilibrium temperature, each
of which may be well placed within the general framework of EIT. Comparison between
them is made by analyzing their role in the description of thermal-pulse propagation in
nonequilibrium situations.

1.4.1 Dynamical temperature

Consider a moving gas not in thermodynamic equilibrium and denote by G a certain
physical quantity carried by each molecule of the gas, and by Ĝ the average of G in a small
volume around a point P of the gas. For the sake of simplicity, assume Ĝ constant with
respect to its spatial variables on each of the planes which are orthogonal to a given direc-
tion x, namely, assume Ĝ = Ĝ (x, t). Finally, explicitly suppose that the thermodynamic
state of the gas is not far from the equilibrium ??????.

Moreover, let dNc mean the number of molecules per unit of volume passing in the
time interval dt across the unit area ω of the plane x = x0, whose velocity is in the
interval Ic = [c̃, c̃+ dc̃], and denote by dncϑ the fraction of dNc of molecules moving along
a given direction r forming with x a solid angle ϑ. It is easily seen that these molecules
are contained in an oblique cylinder having base ω, inclination ϑ and length cdt, so that

dncϑ =
sinϑ cosϑ

2
dϑdtdNc (1.33)

Focus then the attention on a single molecule running along the positive direction of
x a free path of length ` under an angle ϑ with respect to x, and crossing ω at the instant
t′ ∈ [t, t+ dt] with a velocity whose modulus is in the range Ic. Indicate with Ĝ+ (x, t) the
quantity Ĝ (x, t) referred to this molecule, and with Ĝ− (x, t) the same quantity referred
to a molecule running along the negative direction of x.

The net amount of Ĝ carried by all the molecules of the type considered is given by
the difference ∑

′Ĝ+ (x, t)−
∑

′Ĝ− (x, t)
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1.4 Nonequilibrium temperature and heat transport

where the prime indicates that the sum is extended to the molecules of the type considered
above, only. To calculate such a sum we use the classical results∑

′` ≈ λcdncϑ∑
′`2 ≈ `2cdncϑ

where λc and `2c are the mean-free path and the squared mean-free path of the molecules,
respectively ?.

By using the relations above, some lengthy calculations allow to prove that ??∑
′Ĝ+ (x, t)−

∑
′Ĝ− (x, t) =2 (λc cosϑ)

∂Ĝ

∂x

∣∣∣∣∣
(x0,t′)

+

(
`2 cosϑ

c̃

)
∂2Ĝ

∂x∂t

∣∣∣∣∣
(x0,t′)

+ 2

(
vc`

2 cosϑ

c̃

)
∂2Ĝ

∂x2

∣∣∣∣∣
(x0,t′)

+2

(
vc`

2

c̃2

)
∂2Ĝ

∂x∂t

∣∣∣∣∣
(x0,t′)

+ 2

(
`2

c̃2

)(
∂vc
∂t

)
∂Ĝ

∂x

∣∣∣∣∣
(x0,t′)

+ 2

(
v2
c `

2

c̃2

)
∂2Ĝ

∂x2

∣∣∣∣∣
(x0,t′)

 dncϑ
(1.34)

where vc denotes the mean speed of the molecules having velocity in the interval Ic.
In order to derive from Eq. (1.34) the flux dqc of Ĝ across ω, we have to divide Eq. (1.34)

by dt and then integrate the obtained expression on the interval [0, π/2]. It is immediately
seen that the last three terms in Eq. (1.34) do not contribute to dqc, due to the form of
dncϑ in Eq. (1.33). The first three terms, instead, may be easily integrated and yield

dqc =

[
−
(
c̃
λc
3

)
∂Ĝ

∂x
+

(
`2c
3

)
∂2Ĝ

∂x∂t
+

(
vc
`2c
3

)
∂2Ĝ

∂x2

]
dNc (1.35)

Let us observe that, being the couple (x0, t
′) completely arbitrary, we have omitted

such a dependency in deriving Eq. (1.35). By means of the relation Ĝ = 3kBT/2, with kB
being the Boltzmann constant, the integration of that relation in the interval [c̃ = 0, c̃ =∞[
yields the the following total flux of G across ω

q = −λ∂T
∂x

+ σ
∂2T

∂x∂t
+ vσ

∂2T

∂x2
(1.36)

wherein

λ =

∫ ∞
0

λcckB
2

dNc

σ =

∫ ∞
0

l2ckB
2

dNc

and c is the mean speed of all the molecules passing across the plane x at the time t, which
may be identified with the velocity of the fluid in the point (x, t).

Equation (1.36) can be also written in the form

q = −λ ∂

∂x

(
T − σ

λ
Ṫ
)

(1.37)

where

Ṫ =
∂T

∂t
+ v

∂T

∂x
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1.4 Nonequilibrium temperature and heat transport

denotes the convective time derivative. Thus, if we define a dynamical temperature β ??
as

β = T − σ

λ
Ṫ (1.38)

then Eq. (1.37) takes the usual Fourier form

q = −λ∂β
∂x

(1.39)

The second term in the right-hand side of Eq. (1.38) is an inertial term due to the
Van der Waals forces between the molecules, allowing the temperature disturbances to
propagate with a finite speed. In fact, the coupling of Eq. (1.38) with its time derivative
yields

τ β̇ + β = T − τ2T̈ (1.40)

where the quantity τ = σ/λ may be interpreted as a relaxation time.
In order to evaluate the last term in the right-hand side of Eq. (1.40), we recall that

both the gas is in quasi-equilibrium, and in usual applications τ is very small. From the
mathematical point of view, these circumstances may be expressed by admitting that if f
is a physical quantity related to the heat conduction, then the ratio |τ ḟ/f | is a first-order
quantity, and second-order quantities are negligible. In this case we may compare the
order of magnitude of τ2T̈ with respect to that of T , getting so∣∣∣∣∣τ2 T̈

T

∣∣∣∣∣ =

∣∣∣∣∣τ T̈Ṫ
∣∣∣∣∣
∣∣∣∣∣τ ṪT

∣∣∣∣∣
which proves that the term τ2T̈ in Eq. (1.40) is a second-order quantity. Neglecting it, we
conclude that the evolution of β is governed by the linear differential equation

τ β̇ + β = T (1.41)

which reveals that for vanishing τ the dynamical temperature β reduces to the absolute
one T .

Taking the spatial derivative of Eq. (1.41), and multiplying it by −λ, one obtains the
following evolution equation for the heat flux

τ q̇ + q

(
1 + τ

∂v

∂x

)
= −λ∂T

∂x
(1.42)

For fluids at rest, as well as for a rigid body, it reduces to the one dimensional version
of the MCV equation (1.6) whenever in Eq. (1.41) τ ≡ τR.

Finally, in the three-dimensional case, Eq. (1.39) may be easily generalized as ??

q = −λ∇β (1.43)

which represents a generalized Fourier-type heat-conduction equation with a dynamical
temperature.

1.4.2 Flux-dependent absolute temperature

In EIT the relation between the thermodynamic absolute temperature T , obtained
from Eqs. (1.10) and (1.13), and the local equilibrium one Teq, defined in terms of the
internal energy density, without reference to entropy, is given by ??

T = Teq + τ
T 2

eq

2λ

[
∂

∂u

(
1

T 2
eq

)]
q · q (1.44)
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1.4 Nonequilibrium temperature and heat transport

if the relaxation time τ and the thermal conductivity λ are constant. In microscopic terms,
it was argued that T corresponds to the kinetic temperature in the plane perpendicular to
the heat flux, and T ≤ Teq, whereas Teq corresponds to the total kinetic energy. In other
terms, the presence of a heat flux breaks the energy equipartition in the several spatial
dimensions, and makes that the kinetic temperature is different along the direction of the
heat flux than in the perpendicular directions.

The coupling of Eqs. (1.41) and (1.44) yields

τ β̇ + β = Teq + τ
T 2

eq

2λ

[
∂

∂u

(
1

T 2
eq

)]
q · q (1.45)

which further enlightens the dynamical character of β. In this case β and T coincide when
β is stationary. It is worth observing that for stationary β a heat flux is still present in the
system, as it can be inferred by Eq. (1.45). Thus, β̇ = 0 does not imply that the system
is in a stationary state. In the absence of memory effects, i.e., if τ = 0, then β = Teq.

More complex situations, corresponding to different evolution equations for β are also
possible. For instance, in rigid solids the evolution of β can be ruled by the partial
differential equation ??

τ β̇ + β = T +
λ

2

[
∂ ln (sβ)

∂u

]
∇β · ∇β (1.46)

with
sβ =

τR
λT 2

(1.47)

In this case, the dynamical temperature β and the absolute temperature T do not
coincide, even for β̇ = 0.

At the very end, let us observe that the simultaneous presence of u and β in Eqs. (1.45)
and (1.46) should be not surprising. Previous considerations suggest that in an equilibrium
system, where the specific internal energy u is only a function of the local-equilibrium
temperature, then the use of both u and β would be redundant. Out of equilibrium,
instead, since u shows a different distribution, β is a truly independent quantity, and not
redundant with u. For instance, the difference between β and T could be related to the
difference in the average global kinetic energy and the average kinetic energy in the plane
orthogonal to q.

1.4.3 Comparison of nonequilibrium temperatures through heat pulse
experiments

A recent theory of heat conduction in isotropic rigid bodies ?, still in the framework
of EIT, replaces the classical state-space variables of EIT with two other new variables.
Such theory partially departs from the classical assumptions of EIT, since it assumes that
the state space is spanned by the dynamical temperature β (which replaces the absolute
temperature T ) together with a new flux variable c (which replaces the classical heat flux
q).

In this new theory, the former state-space variable is ruled by Eq. (1.41), and the latter
state-space variable is ruled by the following evolution equation ?:

ċ = −∇β +
2λU2

0

β

[
∇T c +∇c + (∇ · c) I

]
· c− c

τR
(1.48)

with

U0 =

√
λ

τRcv
(1.49)
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being the speed of propagation of thermal pulses traveling through an equilibrium state.
The vector c is a renormalized flux variable which is related to q through a suitable consti-
tutive equation, and only depends on the dynamical quantity τR and on the temperature
gradient, but not on other material quantities. Thus, though being very similar to q, it
presents qualitative differences with q, and the formalism based on it deserves a compar-
ative analysis with that based on the heat flux, allowing so a deeper understanding of the
nonequilibrium subspace of the basic independent variables of the theory.

In order to go deeper into the theory, let us postulate the following constitutive equa-
tions for the specific internal energy and for the heat flux in terms of β and c

u = u
(
β, c2

)
(1.50a)

q =

(
λ

τR

)
c (1.50b)

It is worth observing that Eq. (1.50b) is very similar to the well-known relationship
p = q/v2 appearing in Grad’s theory ?, being p the first moment of the distribution
function, and v the modulus of the average phonon speed (that is, the first sound).

Then, let us consider the propagation of a smooth surface described by the following
equation:

φ (x, t) = 0 (1.51)

across which the state variables are continuous, but their first-order spatial derivatives
suffer jump discontinuities defined by

δ =

(
∂

∂φ

)
φ=0+

−
(
∂

∂φ

)
φ=0−

(1.52)

For the sake of simplicity, let us put ourselves in the hypothesis of constant material
functions and consider only one-dimensional waves, namely, β ≡ β (x, t) and c ≡ c (x, t),
being x the direction of propagation. Making use of the standard transformations ?

ḟ → −Uδf, f,x → δf (1.53)

being U the speed of propagation of the wave, from the local balance of specific internal
energy per unit volume (1.8) we get

δ

[
uββ̇ + 2u?cċ+

λ

τR
c,x

]
= 0⇒ Uuβδβ +

(
2Ucu? − λ

τR

)
δc = 0 (1.54)

once the dependence of u on the state-space variables has been explicitly expressed, ac-
cordingly with Eq. (1.50a). Note that in the equation above u? = ∂u/∂c2 and uβ = ∂u/∂β,
just for the sake of a compact notation.

From the other hand, the evolution equation (1.48) of c gives

δ

[
ċ+

(
1 + 3

λc2

β2
U2

0

)
β,x − 6

cλ

β
U2

0 c,x +
c

τR

]
= 0

⇒
(

1 + 3
λc2

β2
U2

0

)
δβ −

(
U + 6

cλ

β
U2

0

)
δc = 0 (1.55)

The linear system of Eqs. (1.54) and (1.55) has nontrivial solutions provided the fol-
lowing characteristic equation is satisfied

U2uβ + 2c

[
3uβ

λ

β
U2

0 + u?
(

1 + 3
λc2

β2
U2

0

)]
U − λ

τR

(
1 + 3

λc2

β2
U2

0

)
= 0 (1.56)
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in virtue of which one may conclude that Eqs. (1.8) and (1.48) constitute a hyperbolic
system if, and only if,

∆ ≡ c2

[
3uβ

λ

β
U2

0 + u?
(

1 + 3
λc2

β2
U2

0

)]2

+ uβ
λ

τR

(
1 + 3

λc2

β2
U2

0

)
> 0 (1.57)

The characteristic velocities arising from Eq. (1.56) are given by ?

U±
(
β, c2

)
=

c

[
3uβ

λ

β
U2

0 − u?
(

1− 3
λc2

β2
U2

0

)]
±
√

∆

uβ
, (1.58)

wherein the upper sign + denotes the wave traveling in the same direction of c (or,
equivalently, of the heat flux), and the upper sign − denotes the wave which travels in the
opposite direction.

For systems in which the internal energy is independent of the heat flux, the relation
above reduces to

U±
(
β, c2

)
=

3cuβ
λ

β
U2

0 ±
√

∆

uβ
(1.59)

From Eq. (1.59) it follows that U+ is higher than U−, since U+ − U− = 2
√

∆/uβ.
Finally, for waves traveling through an equilibrium state, which is characterized by c = 0,
Eq. (1.58) simply gives U±eq = ±U0. It is worth observing that, under the hypothesis

u? = 0, and close to the equilibrium of β, i.e., under the approximation uβ ' cv = ∂u/∂T
and β ' T , we get

∆ ≡ c2

(
3cv

λ

T
U2

0

)2

+ cv
λ

τR

(
1− 3

λc2

T 2
U2

0

)
(1.60)

For dielectric crystals at low temperature, in which the hypothesis u? = 0 seems to
be well-suited, there is a critical temperature Tc at which second-sound propagation takes
place. For instance, Tc ' 16.5 K for Sodium Fluoride ?, and Tc ' 4.1 K for Bismuth ?.
On the other hand, for these crystals the material functions λ, cv and τR, as well as the
equilibrium wave speed U0, are well-known functions of temperature, so that the constant
value of λ, cv and τR, and the value of U0 can be taken equal to λ (Tc), cv (Tc), τR (Tc)
and U0 (Tc), respectively. Hence, from Eq. (1.60), it follows that the value of ∆ and,
as a consequence, the quantity U+ − U− = 2

√
∆/cv at the critical temperature, can be

obtained by measurements of the heat flux only.
On the other hand, a similar (but not equal) expression of ∆ has been obtained by

Lebon et al. ? under the assumption that T , instead of β, enters the state space. These
authors obtained U+−U− =

√
∆/cv. Then, a direct measurement of U+−U− could allow

to infer whether, out of equilibrium, T or β drives the heat flow in dielectric crystals at
low temperature. Although such an experiment is not easy to realize, since it requires very
pure specimens at temperatures close to the absolute zero, it is worth to do it, since it is
related to an important concept, namely, the definition of temperature in nonequilibrium
situations.

1.4.4 Propagation of temperature waves along cylindrical nanowires

An alternative way to compare the two temperatures T and β is to study the propaga-
tion of heat waves along cylindrical nanowires which are not laterally isolated ?. Assuming
as it usual that the absolute temperature is related with the specific internal energy per
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unit volume by means of the relation du = cvdT , then the evolution equation for T in a
cylinder of radius r is

cvṪ = −∇ · q− 2σexc

r
(T − Tenv) (1.61)

with the second term in the right-hand side accounting for the heat flux exchanged with
the surrounding environment across the lateral walls of the system. It is in accordance
with the Newton cooling law, being σexc a suitable heat exchange coefficient, and Tenv the
temperature of the environment, which will be assumed to be constant and homogeneous.
Furthermore, in Eq. (1.61) q stands for the longitudinal heat flux along the length of the
cylinder.

The combination of Eqs. (1.6) and (1.61) turns out

T̈ +

(
1

τR
+

1

τr

)
Ṫ = U2

0∇2T −
(
T − Tenv

τRτr

)
(1.62)

with
τr =

rcv
2σexc

as the relaxation time due to the lateral dispersion of heat, which expresses the time-
lag due to the heat exchange of the lateral mantle only. It is not related to phonons
collisions processes, which are all incorporated in the relaxation time τR. It is possible to
see from Eq. (1.62) that, due to the small thickness of the conductor, the lateral dispersion
introduces a competitive time scale, which influences the evolution of T . In the limits of
large radius (i.e., when r → ∞), or for isolated wires (i.e., if σexc = 0), τr → ∞ and
Eq. (1.62) reduces to the classical telegraph equation arising in MCV theory.

In Fig. 1.1 we plot at different scales the ratio τR/τr in a silicon nanowire, as a function
of the temperature, for three different values of the radius. From that figure it is possible
to see that in the range of temperatures from 100 K to 300 K, τR is of the order of 10−5τr:
hence in this temperature range, in Eq. (1.62) the term Ṫ /τR is predominant with respect
to Ṫ /τr. In the range from 30 K to 100 K, instead, τR is of the order of 10−3τr, so that
the influence Ṫ /τr on the solution of Eq. (1.62) may be relevant.

In computing the relaxation time τr, the specific heat per unit volume cv has been
obtained by the Debye expression

cv =
12π4

5

(
T

TB

)3(Rρ
M

)
with TB as the Debye temperature (for silicon it holds TB = 645 K), R = 8.31 JK-1mol-1

as the gas constant, M the molar mass (for silicon M = 28· 10−3 Kg mol-1), and ρ the mass
density (for silicon ρ = 2.33 · 103 Kg m-3). For the heat exchange coefficient σexc we have
taken σexc = 4σSBθ

3, being σSB = 5.67 · 10−8 Wm-2K-4 the Stefan-Boltzmann constant
(i.e., we have assumed a radiative heat exchange as dominant mechanism). Moreover the
resistive relaxation time has been estimated as τR = `p/v.

For silicon and for germanium, at the different temperatures, the values of the bulk
thermal conductivity and of the phonon mean-free path are summarized in Tab. 1.1. Note
that the latter values have been obtained from the relation λ = (1/3) cvv`p. In fact,
the phonon mean-free path depends both on the phonon frequency, and on the kind of
collisions, in such a way several different relevant averages may be used for it. Along this
book, we will often use that definition for `p.

Consider now the propagation of the following plane temperature-wave from a station-
ary reference level T (x)

T (x; t) = T (x) + T 0e
[i(ωt−κx)] (1.63)
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Table 1.1: Bulk thermal conductivity λ
(
Wm-1K-1

)
, specific heat cv

(
Jm-3K-1

)
, average phonon

mean-free path `p (m) and average phonon speed v
(
ms-1

)
obtained from experimental data, for

silicon at different temperatures T (K). The average mean-free path has been determined from
the relation λ = (1/3) cvv`p.

T λ cv `p v

30 3097.5 53068.65 4.93 · 10−5 3554.38

35 3046.8 85975.47 3.03 · 10−5 3499.07

40 2866.49 124456.63 1.98 · 10−5 3482.16

45 2616.42 166249.35 1.35 · 10−5 3483.05

50 2342.46 209605.33 9.60 · 10−6 3491.54

55 2074.82 253383.03 7.01 · 10−6 3502.26

60 1829.81 296952.43 5.26 · 10−6 3512.11

65 1613.52 340045.31 4.04 · 10−6 3519.22

70 1425.97 382614.17 3.17 · 10−6 3522.52

75 1264.37 424722.65 2.54 · 10−6 3521.48

80 1125.15 466470.79 2.06 · 10−6 3516.00

85 1004.98 507950.15 1.69 · 10−6 3506.30

90 901.02 549221.13 1.41 · 10−6 3492.81

95 810.97 590305.46 1.19 · 10−6 3476.10

100 732.88 631187.79 1.01 · 10−6 3456.78

150 336.27 1013219.58 3.08 · 10−7 3226.05

200 213.12 1307155.56 1.60 · 10−7 3057.28

250 158.75 1510418.47 1.07 · 10−7 2956.42

300 128.03 1648423.99 8.05 · 10−8 2894.96

350 107.95 1743630.51 6.50 · 10−8 2855.57

400 93.63 1811033.32 5.48 · 10−8 2829.05

450 82.82 1860059.38 4.76 · 10−8 2810.44

500 74.34 1896630.49 4.20 · 10−8 2796.91

550 67.50 1924535.97 3.77 · 10−8 2786.78

600 61.84 1946260.34 3.43 · 10−8 2779.01
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Table 1.2: Bulk thermal conductivity λ
(
Wm-1K-1

)
, specific heat cv

(
Jm-3K-1

)
, average phonon

mean-free path `p (m) and average phonon speed v
(
ms-1

)
obtained from experimental data, for

germanium at different temperatures T (K). The average mean-free path has been determined
from the relation λ = (1/3) cvv`p.

T λ cv `p v

30 1039.15 212101.62 7.04 · 10−6 2088.38

35 944.83 279811.52 4.83 · 10−6 2096.44

40 832.10 345681.31 3.43 · 10−6 2102.05

45 718.14 409892.56 2.50 · 10−6 2102.64

50 613.61 473008.68 1.85 · 10−6 2097.48

55 523.27 535405.25 1.41 · 10−6 2087.10

60 447.92 597139.60 1.08 · 10−6 2072.69

65 386.30 658013.64 8.57 · 10−7 2055.57

70 336.37 717687.48 6.90 · 10−7 2036.98

75 296.02 775780.08 5.67 · 10−7 2017.89

80 263.33 831937.50 4.75 · 10−7 1998.99

85 236.72 885870.26 4.05 · 10−7 1980.76

90 214.89 937367.58 3.50 · 10−7 1963.47

95 196.84 986296.92 3.07 · 10−7 1947.28

100 181.77 1032595.58 2.73 · 10−7 1932.24

150 108.84 1364731.4 1.30 · 10−7 1834.68

200 82.26 1536601.36 8.96 · 10−8 1791.58

250 67.48 1630686.57 7.01 · 10−8 1769.93

300 57.65 1686389.91 5.83 · 10−8 1757.70

350 50.50 1721692.39 5.03 · 10−8 1750.18

400 45.02 1745334.45 4.43 · 10−8 1745.22

450 40.67 1761886.98 3.98 · 10−8 1741.80

500 37.12 1773902.52 3.61 · 10−8 1739.34

550 34.17 1782888.55 3.31 · 10−8 1737.51

600 31.66 1789778.46 3.06 · 10−8 1736.11
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Figure 1.1: Behavior of the ratio τR/τr as a function of temperature in a silicon nanowire,
for three different values of the radius, r = 10 nm, r = 20 nm, and r = 50 nm. The y axis
in figure is in a logarithmic scale.

where x means the longitudinal spatial coordinate, ω is the frequency of perturbation, and
κ is the wave number. From the experimental point of view, a similar signal may be realized
by imposing at one end of the system a sinusoidally time-dependent temperature, and
detecting the consequent temperature perturbation at different points along the system.

When Eq. (1.63) is inserted into Eq. (1.62), the following dispersion relation is derived

κ2 =
1

d2

(
ω2τ2

R −
τR
τr

)
− iωτR

d2

(
1 +

τR
τr

)
(1.64)

with d ≡ U0τR as a suitable length. The corresponding phase velocity Up ≡ |ω/Re (κ)|
and the attenuation distance α ≡ |1/ Im (κ)| are, respectively,

Up/T =
ω

ΓT

√
2

1 + φT
(1.65a)

α/T =
1

ΓT

√
2

1− φT
(1.65b)

where 
ΓT =

1

U0

4

√(
ω2 − 1

τRτr

)2

+
ω2

τ2
R

(
1 +

τR
τr

)2

φT =
ω2τRτr − 1√(

1 + ω2τ2
R

)
(1 + ω2τ2

r )

(1.66)

and the subscript (T ) means that in the Newton cooling law we considered the contribution
of the absolute temperature T .
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At low frequencies (lf), i.e., when τRω � 1, it is found that

U
(lf)
p/T =2U0

[
1− ω2

4

(
τ2
R + τ2

r

)] √τRτr
τR + τr

(1.67a)

α
(lf)
/T =d

[
1− ω2

8
(τr − τR)2

]√
τr
τR

(1.67b)

which are the results predicted by Fourier law for an isolated wire, plus contributions in
τR and τr, which vanish in the previous case.

In the high-frequency (hf) limit (that is, when τRω →∞), instead, the phase velocity
and the attenuation distance become

U
(hf)
p/T = U0 (1.68a)

α
(hf)
/T = 2d

(
τr

τr − τR

)
(1.68b)

The result (1.68a) for the phase speed is the same as in the bulk, and it does not
depend on the radius. In contrast, the radius influences the attenuation length (1.68b),
and in the limit of high radius, or of isolated nanowires, one recovers the usual result for
thermal waves in hyperbolic heat propagation.

Up to here, it has been assumed that the heat transport is related to the gradient
of the absolute nonequilibrium temperature T . Indeed, according with Eq. (1.43), the
heat transport may be also related to the dynamical temperature β, as well as the term
accounting for the thermal exchange with the environment may be related to the difference
(β − βenv). In this case Eq. (1.61) has to be replaced by

cvṪ = −∇ · q− 2σexc

r
(β − βenv) (1.69)

Thus, we have assumed that the thermodynamic quantity leading the heat flux is
β, rather than T . This hypothesis is consistent with Eq. (1.43) in the same way than
Eq. (1.61) is compatible with Eq. (1.6). Note that we have not substituted T with β
into the whole set of constitutive equations, since we still consider u as depending on T .
However, since we are assuming that the quantity driving the heat flow is β rather than
T , we have substituted T with β into the Newton cooling law.

The comparison of results from Eqs. (1.61) and (1.69) could thus allow to search
whether (T − Tenv), or (β − βenv) provide the best description of heat transfer in fast
processes.

Assuming that in the environment the relaxation effects are absent (i.e., τ β̇ = 0) by
Eq. (1.41) it follows that Tenv ≡ βenv, which is assumed to be constant, as well as in
Eq. (1.61). Combining Eqs. (1.43) and (1.69) one obtains now

T̈ +
Ṫ

τR
= U2

0∇2T −
(
T − Tenv

τRτr

)
(1.70)

instead of Eq. (1.62). It is important to note the difference between Eqs. (1.62) and (1.70),
since the term in Ṫ /τr in the round bracket of the left-hand side of Eq. (1.62) is absent in
Eq. (1.70).

Assuming again Eq. (1.63) for the heat waves, Eq. (1.70) leads to the following new
dispersion relation

κ2 =
1

d2

(
ω2τ2

R −
τR
τr

)
− iωτR

d2
(1.71)

Chapter 1. Nonequilibrium thermodynamics and heat transport at nanoscale – 28



1.4 Nonequilibrium temperature and heat transport

yielding for the phase velocity and the attenuation distance, respectively,

Up/β =
ω

Γβ

√
2

1 + φβ
, (1.72a)

α/β =
1

Γβ

√
2

1− φβ
(1.72b)

with 
Γβ =

1

U0

4

√(
ω2 − 1

τRτr

)2

+
ω2

τ2
R

φβ =
ω2τRτr − 1√

(ω2τRτr − 1)2 + ω2τ2
r

(1.73)

and the subscript (β) indicating that now, in the Newton cooling law, we considered the
contribution of the dynamical temperature β, in contrast with previous analysis, where T
was used.

At low frequency the phase velocity and the attenuation distance are given by

U
(lf)
p/β =2U0

[
1− ω2

2

(
τ2
r − 2τRτr

)]√τR
τr

(1.74a)

α
(lf)
/β =d

[
1− ω2

8

(
τ2
r − τRτr

)]√ τr
τR

(1.74b)

In the high-frequency limit one has, instead,

U
(hf)
p/β = U0 (1.75a)

α
(hf)
/β = 2d (1.75b)

which coincide with the results of heat waves in the bulk or in isolated systems. Note that
Eq. (1.75b) does not depend on τr, in contrast, with Eq. (1.72b).

The relative difference of the phase velocities Eqs. (1.68a) and (1.74a) for very small
frequency is

U
(lf)
p/β − U

(lf)
p/T

U
(lf)
p/β

=

τR
τr

1 +
τR
τr

(1.76)

Thus, the essential parameter reflecting this difference is the nondimensional ratio
τR/τr, which for low temperature is τR/τr ≈ 2.92 · 10−9 Kn. At room temperature, the
Knudsen number gets a very small value, but at low temperature, it increases since the
mean-free path `p becomes very large (see Tab. 1.1). That way the ratio τR/τr gets the
order of 10−5 at temperatures of the order of 30 K. Since the phase speed, in general,
is of the order of 103 m s-1, the difference

(
Up/β − Up/T

)
may be of the order of some

cm s-1. This difference could be measured, in principle. Furthermore, in the presence of
air, adding the convective effects to the purely radiative effects in the heat exchange with
the environment, may give a more important contribution ?.

Figure 1.2 shows, for three different radii, the difference between the two phase veloc-
ities Up/β and Up/T in a nanowire as a function of ωτR. The nanowire is made of silicon
and is at 30 K. In all cases, the difference gets its maximum value for ωτR ≈ 0.3, and may
be of the order of 1.5 m s-1 for r = 10 nm.
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Figure 1.2: Behavior of the difference between Up/β and Up/T in a silicon nanowire at 30 K
as a function of ωτ , for three different radii (i.e., r = 10 nm, r = 20 nm and r = 50 nm).
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Chapter 2
Linear and nonlinear
heat-transport equations

Nanotechnology, like biotechnology and information technology, nowadays is a growing
industry with the potential to greatly change the world. Engineering of nanosystems
rapidly developed in recent years, and it actually allows to design and develop mechanical,
optical and electronic devices, the characteristic sizes of which may be of the order of tens
of nanometers. Nowadays, nanotechnology is also fighting its way in medicine, offering
some exciting possibilities which few years ago were only imagined. Devices operating on
nanometer length scale always provide new challenges, especially regarding their thermo-
mechanical properties, and researchers face great challenges in thermal management and
analysis under the extreme conditions.

The heat-conduction theory, established by Fourier in 1822, prescribes that the local
heat flux q is linearly proportional to the temperature gradient ∇T , and it can only flow
from the warmer regions to colder ones ?. For isotropic materials, such a statement is
summarized by Eq. (1.2), i.e., q = −λ∇T . In literature it is possible to find several
theoretical derivations of Eq. (1.2). Based on the kinetic theory of gases, the Boltzmann’s
proof of the Fourier law (FL) is worth of mention for its clarity and expressivity ?.

Despite its empirical standing in ordinary circumstances, both theoretical and experi-
mental evidences show that Eq. (1.2) no longer holds in several nonequilibrium situations
as, for example, heat conduction at nanoscale ?????????. The consequent inapplicability
of the classical FL in practical situations to well-describe heat transport at nanoscale has
led to several generalizations of it ???????.

The main features beyond FL are heat waves, ballistic transport, and the so-called
phonon hydrodynamics ????????. Furthermore, as a particular consequence of some of
these phenomena, the effective thermal conductivity is no longer only a function material,
but also of the size and shape of the system.

The above features have been much discussed from microscopic bases. Heat waves have
also been discussed from macroscopic perspectives, by suitable relaxational extensions
of FL, or introducing internal variables, or memory kernels. However, the diffusive-to-
ballistic transition, as well as the phonon-hydrodynamic regime have been much studied
from a mesoscopic perspective. The formalism we use in this Chapter allows to deal with
these subjects. Of course, their deep physical interpretation requires to go to microscopic
grounds, but it is interesting to have purely mesoscopic generalizations able to make a
bridge with the microscopic progress. Since the experimental measurements are usually
mesoscopic or macroscopic - as they use the temperature concept, for instance - such a
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2.1 The Maxwell-Cattaneo-Vernotte equation and heat waves

bridge between microscopic and mesoscopic approaches cannot be skipped on practical
grounds.

2.1 The Maxwell-Cattaneo-Vernotte equation and heat waves

In the analysis of heat conduction in a non-deformable body at rest, the combination
of Eq. (1.2) with the energy-balance equation in absence of source terms (1.8) leads to

cvṪ = ∇ · (λ∇T ) (2.1)

From the mathematical point of view, Eq. (2.1) is a classical example of parabolic
partial differential equation. It implies that any thermal disturbance, paradoxically, prop-
agates with infinite speed. In other words, Eq. (2.1) states that the application of a
temperature difference gives instantaneously rise to a heat flux everywhere in the body.
Physically, it is expected that a change in the temperature gradient should be felt after
some build-up or relaxation time, and that disturbances travel at finite velocity.

That theoretical paradox has been one of the principal incentives for the develop-
ment of modern thermodynamic theories, because a macroscopic theory with finite speed
of propagation also comes from the experimental observations of the second-sound and
ballistic phonon propagation in some dielectric at low temperature ??????.

Several authors have dealt with the problem of infinite speed of propagation of thermal
signals. The first were Cattaneo ?? and Vernotte ? which, basing their analyses on the
kinetic theory, proposed a damped version of Eq. (1.2) to eliminate the paradox of infinite
speed of propagation of thermal signals, and to comply with the experimental observations.
They generalized Eq. (1.2) as in Eq. (1.6), namely, as

τRq̇ + q = −λ∇T

In fact, for the sake of a formal simplicity, if one assumes that the material functions are
constant, then the use of Eqs. (1.6) and (1.8) allows to obtain the following telegrapher’s
equation

τRT̈ + Ṫ =
λ

cv
∇2T (2.2)

instead of Eq. (2.1). From the mathematical point of view, it is a hyperbolic partial
differential equation and allows the thermal pulses, or every high-frequency waves, to
propagate through a rigid body in thermodynamic equilibrium with a speed given by
Eq. (1.49), that is, U0 =

√
λ/ (τRcv).

It is worth noticing that the MCV equation also received several criticisms. For exam-
ple, a supposed violation of second law by Eq. (1.6) is known in the literature as Taitel
Paradox ???. However, as proved by Sharma ?, this is due to unrealistic initial time
conditions. The paradox is removed if more realistic initial conditions are given, that is,
one has to impose on the initial condition not only a positive profile for the temperature,
but also a restriction on the heat flux q.

Indeed, without introducing a relaxational term one should observe that finite-speed
thermal-disturbance propagations can be also obtained by assuming that the thermal
conductivity λ in the FL depends on the temperature ??. However, the experiments show
that at intermediate or high temperatures both in fluids, and in metals this dependence
is not the one required to avoid the paradox of infinite speed of propagation.

In EIT, instead, finite speeds of propagation can be obtained in generalized sense, by
observing that a correct estimation of the order of magnitude of the speed of propagation
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of the perturbations requires to compare the order of magnitude of the solution of the
field equations with that of the error affecting the experimental data on which the theory
is based ?. Then, if in a finite interval of time the solution of the system of balance laws
is bigger than the experimental error only in a compact domain, then such a solution is
experimentally zero outside this domain. As a consequence, it has propagated with finite
speed, because not all the points of the space have been reached in a finite time. This
point of view complies with a classical result proved by Fichera in his celebrated defense of
Fourier theory ?, whose meaning is that the measurements of temperature and heat flux
are valid only within the limits of observation, which, in turn, depend on the sensitivities
of the measuring instruments ?.

2.2 The Guyer-Krumhansl equation and phonon hydrody-
namics

The thermal properties of an insulating crystal at low temperatures can be described by
means of the phonons in it ?. Phonons, which are quasi-particles obeying the Bose-Einstein
statistics ?, may interact among themselves and with lattice imperfections through two
different types of processes:

i. Normal (N) processes, for which phonon momentum is conserved. These interactions
are characterized by the relaxation time τN = 1/νN , with νN being the frequency of
normal interactions.

ii. Resistive (R) processes, for which phonon momentum is not conserved. These in-
teractions are characterized by the relaxation time τR = 1/νR, with νR being the
frequency of resistive interactions.

The second sound takes over whenever νN � νR. In this case, the MCV equation (1.6)
accurately describes the second-sound phenomena. However, as shown by Guyer and
Krumhansl in 1966, Eq. (1.6) is inadequate when νN � νR since, in this case, it is not
able to introduce nonlocal effects, which are important in the phonon flow ??. Therefore,
starting from a linearized Boltzmann equation in the Callaway approximation, in three
dimensions they established Eq. (1.17), namely,

τRq̇ + q = −λ∇T + `2p
(
∇2q + 2∇∇ · q

)
as the evolution equation for the heat flux. In that equation, the square of the phonon
mean-free path `2p = v2τNτR/5 determines the nonlocal term. Moreover, in Eq. (1.17) λ
means the usual Ziman limit ? for the bulk thermal conductivity, i.e., λ = cvv`

′
p/3, with

`′p = vτR. The collective hydrodynamic aspects of normal collisions have been recently
stressed out in a microscopic kinetic-collective model of heat transport in Refs. ??

Macroscopic derivations of Eq. (1.17) can be also obtained in weakly nonlocal nonequi-
librium thermodynamics ?????. For example, if in Eq. (1.41) nonlocal terms depending
on the spatial derivatives of β are introduced as

β̇ = − 1

τR
(β − T ) + 3

`2p
τR
∇2β (2.3)

straightforward calculations allow to recover Eq. (1.17) in the case of constant material
functions.

The Guyer-Krumhansl (GK) equation (1.17) can accurately describe heat transport in
several physical situations. In particular, at low-temperature regime, and when τN � τR,
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Eq. (1.17) still predicts that the speed of thermal pulses is Eq. (1.49) ?. At high frequencies,
and when the relaxation times above have same order of magnitude, a ballistic phonon
propagation is observed, that is, in such a situation phonons travel through the whole
crystal without suffering any collisions. In this case, the speed (1.49) becomes ?

U0 =

√
λ

cvτR
+

3`2p
τRτN

(2.4)

Furthermore, it is also able to describe the regime known as phonon hydrodynamics,
where the term in `2p∇2q plays a specially relevant role (analogous to the role of viscous
terms in classical hydrodynamics). This describes several aspects of the size dependence of
heat conductivity in nanosystems, as it will be shown in Chap. 3. This kind of heat-transfer
equations are also found in heat propagation in turbulent superfluid helium ?????.

Phonon hydrodynamics has been also deeply studied from the microscopic perspective
in the framework of maximum-entropy formalism ???, dealing also with nonlinear contri-
butions and dispersive effects in the dispersion relation for phonon velocities ????. Other
microscopic modelizations of phonon hydrodynamics may be found in Refs. ??.

2.3 The nonlinear MCV and GK equations

From the theoretical point of view, the search for a generalization of the FL which al-
lows to avoid the paradox of infinite speed of propagation of thermal disturbances is related
to the problem of finding a suitable equation leading to a hyperbolic partial differential
equation governing the evolution of the temperature.

As previously observed, the introduction of relaxational effects as in Eq. (1.6) allows
to reach this goal. A great part of the works dealing with heat-waves propagation is
focused on the analysis of the consequences of the dynamical behavior of the general-
ized heat-transport equation. This is a natural consequence of the important role played
by relaxational terms in high-frequency nonequilibrium situations ?. However, the same
attention should be put on nonlinear terms which are also important in strong nonequi-
librium situations, as heat conduction at nanoscale.

From the thermodynamic point of view, in Sec. 1.1 we already observed that the use
of Eq. (1.6), for a rigid heat conductor, requires that the form of the specific entropy
per unit volume s is no longer the local-equilibrium one seq (u), but it should take the
form (1.13) ?.

Indeed, if one admits that in nonequilibrium situations the specific entropy is given by
Eq. (1.13), then the use of the dynamical nonequilibrium temperature β allows to obtain
a nonlinear generalization of the classical MCV equation.

In fact, if one assumes that the state space is spanned both by u and β, and by their
first-order spatial derivatives ∇u and ∇β in view of a weakly nonlocal description, then it
is possible to generalize Eq. (1.41) as

β̇ = f (u;β;∇u;∇β) (2.5)

with f being a regular function of the indicated arguments, the form of which follows from
thermodynamic restrictions. In particular, as a consequence of second law of thermody-
namics ???, it follows that in Eq. (2.5)

f = feq (u;β) +

(
λ

2sβ

)(
∂sβ
∂u

)
∇β · ∇β (2.6)
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with feq (u;β) being a regular function of the indicated arguments, and sβ being the
nonequilibrium part of a generalized specific entropy reading ?

s = seq (u;β)−
(sβ

2

)
∇β · ∇β (2.7)

Without losing the generality, it is possible to assume ?

feq (u;β) = − 1

τR
(β − T ) (2.8)

whereas the comparison between Eqs. (1.13) and (2.7) turns out Eq. (2.8) for sβ ?. There-
fore, along with these results, in a more general framework the dynamical nonequilibrium
temperature β is ruled by Eq. (1.46), which in an explicit form is

β̇ = − 1

τR
(β − T )−

(
λ

Tcv

)
∇β · ∇β (2.9)

and generalizes that the MCV equation (1.6) as ??

τRq̇ + q = −λ∇T +

(
2τR
Tcv

)
∇q · q (2.10)

In contrast with Eq. (1.6), Eq. (2.10) explicitly introduces nonlinear terms, whose
consequences may be pointed out by studying heat-propagation again. In fact, still as-
suming that all the material functions are constant, in the case of heat transport in a
one-dimensional rigid body (x means the only one cartesian component), the coupling of
Eqs. (1.8) and (2.10) allows to obtain the following hyperbolic partial differential equa-
tion ?

τRT̈ + Ṫ − 2τRq0

cvT
∇xṪ =

λ

cv
∇2
xT (2.11)

with q0 being the average value of the heat flux flowing through the system. That equation
is more general than Eq. (2.2) and leads to

U+ = U0

(√
φ2 + 1− φ

)
(2.12)

for the speed of propagation of the pulses in the positive direction, namely, in the same
direction of the heat flux, and to

U− = U0

(√
φ2 + 1 + φ

)
(2.13)

in the opposite direction. In Eqs. (2.12) and (2.13) U0 is given by Eq. (1.49), and φ =
q0/ (U0Tcv).

In other words, Eq. (2.12) points out that a small heat pulse, moving in the same
direction of the heat flow, will travel with a velocity which differs from the speed of prop-
agation of pulses in opposite direction, given by Eq. (2.13). In particular, the theoretical
model in Eq. (2.10) prescribes that the former speed is smaller than the latter one ??. A
similar result has been obtained in Ref. ? and in Ref. ? by applying different approaches.

It is important to underline that Eqs. (2.12) and (2.13) must be understood as ther-
modynamic predictions of a relation between the speeds of thermal pulses in equilibrium,
which give information on τR, and the speeds of thermal pulses under a heat flux.

In Sec. 2.2 we observed that the MCV equation is inadequate to describe heat transfer
whenever the relaxation time of normal interactions between phonons is not negligible with
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respect to the resistive relaxation time. Therefore, in order to have a general model able
to account for the different phonon contributions to the heat conduction in rigid solids,
Guyer and Krumhansl derived Eq. (1.17).

Although being very refined, Eq. (1.17) is not able to account for nonlinear effects. In-
deed, a macroscopic generalization of the GK equation incorporating nonlinear quadratic
terms, analogous to the extra terms appearing in Eq. (2.10), may be obtained by consid-
ering the following evolution equation for β

β̇ = − 1

τR
(β − T )− λ

Tcv
∇β · ∇β + 3

`2p
τR
∇2β (2.14)

Direct calculations, in fact, point out that Eq. (2.14) extends Eq. (1.17) to the nonlinear
case as ??

τRq̇ + q = −λ∇T +

(
2τR
Tcv

)
∇q · q + `2p

(
∇2q + 2∇∇ · q

)
(2.15)

which can be further generalized in

τRq̇ + q +
(
µ∇q + µ′∇tq

)
= −λ (1 + ξq · q)∇T + `2p

(
∇2q + 2∇∇ · q

)
(2.16)

This represents a generalized nonlinear evolution equation for the heat flux which
allows to consider, in a simple way, some aspects of memory, nonlocal, and nonlinear
effects, besides deriving equations for the propagation of heat waves, which is a well-known
topic in current nonequilibrium thermodynamics ?????. An equation like Eq. (2.16) has
been proposed in the thermomass theory ?????, as we will see in Sec. 2.4. In practical
applications, some consequences of Eq. (2.14) will be pointed out in Chap. 5.

2.3.1 Characteristic dimensionless numbers for heat transport: approx-
imated heat-transport equation

Every problem in thermodynamics (as well as, in general, in continuum mechanics)
is always characterized by two types of unknown quantities: the intensive variables and
the extensive ones. These variables are, indeed, unknown functions since, in a given
thermodynamic system, they may vary both in time, and in space. For each of those
unknown functions, suitable equations can be introduced, which are always of the balance-
type in the case of basic extensive variables, of the evolution-type in the case of basic
intensive variables, and in the form of constitutive equations for all non-basic unknown
functions.

Although from the theoretical point of view the set-up of a thermodynamic problem is
often quite easy, its solution may be, instead, very hard in practical applications. There-
fore, to reduce the problem to a simpler level, in many cases in the model equations one
may neglect one, or more terms. Indeed, each term, entering in a given equation which
models a physical problem, can be interpreted as the cause which will produce variations
in the unknown functions. Far from instability conditions, it is always possible to estab-
lish a strict relation between causes and effects, and therefore, when a term in the model
equation (that is, the cause) is neglected, then the consequent effect will be neglected, too.

However, it is evident that the results one obtains in this way can not always be applied,
since they hold only for the special case characterized by the simplifying assumptions that
have been made, and once those assumptions break down, the derived conclusions are no
longer valid. It is important, therefore, the establishment of suitable criteria to control a
priori the validity of each assumption.
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A logical criterion implies to recognize the measure of the relative importance of an
effect with respect to the others. To this end and since one may compare only effects which
are homogeneous in dimensions, it is useful to introduce some dimensionless numbers,
which are often called characteristic numbers, too.

In the next we denote by a superscript ∗ the dimensionless unitary quantities, and by
a superscript r the reference quantities, i.e., the standard values of the physical quantities
at which the system at hand is running. We stress the fact that the reference quantities
depend on the class of phenomena which the physical system undergoes and they can be
determined only within a well-established experimental framework.

Looking at the local balance of energy (1.6), we may observe that the relative im-
portance of the left-hand side term with respect to the right-hand side one, turns out a
suitable measure of the unsteady state of u. To understand the conditions under which
we may neglect the temporal rate of the internal energy (namely, in what situations we
are allowed to consider the problem as a quasi steady-state process), taking into account
the relation du = cvdT , let us rewrite Eq. (1.6) as(

crvT
r

tr

)
c∗vṪ

∗ +

(
qr

Lr

)
∇ · q∗ = 0 =⇒

(
1

Mq

)
u̇∗ +∇ · q∗ = 0 (2.17)

with

tr =
crvL

r2

λr
(2.18a)

Mq =
qrLr

λrT r
(2.18b)

In practical applications, one may try to interpret T r as the average temperature of the
system, λr and crv as the experimental values, respectively, of the thermal conductivity and
of the specific heat at constant volume of the system at T r, Lr as the longitudinal length
of the system, and qr as the longitudinal heat flow due to the difference in temperature
through the ends of the system.

From Eqs. (2.17) and (2.18) one may conclude that for regular solutions of the field
equations, i.e., for finite values of u̇, it is possible to neglect the term in u̇ whenever
Mq � 1. Forcing the usual fluid-dynamic nomenclature, we refer to the dimensionless
number (2.18b) as the Mach number for the heat flow. Indeed, it is possible to observe
that, since in fluid dynamics the Mach number (M) is given by the ratio between the
body speed and the speed of sound (assumed as the reference speed), analogously, in our
model Mq is given by the ratio between the actual heat flux in the system (i.e., qr) and
a reference heat flux (i.e., λrT r/Lr). Moreover, since in fluid dynamics M represents the
percent rate, per unit time, of the mass density along a given particle stream-line (and
therefore it is a measure of the compressibility of the fluid), in Eq. (1.6) Mq will indicate
the temporal rate of u.

From the practical point of view one may try to check a critical value of Mq representing
the threshold between the steady-state problem and the unsteady one. Experimental
situations could complement and test the validity of this theoretical proposal. However,
let us underline that the possibility of interpreting a characteristic number as a measure
of the relative importance of an effect with respect to another one (and all the arising
consequences) is always conditioned by the appropriate determination of the reference
quantities.

Let us concentrate now our attention on the nonlinear equation (2.15), describing the
evolution of the heat flux. According with the conclusions above, when Mq � 1 the
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heat-flux vector becomes solenoidal, and Eq. (2.15) can be rewritten as(
qr

tr

)
q̇∗ +

(
qr

τ rR

)
q∗

τ∗R
−
(

2qr2

crvT
rLr

)
∇q∗ · q∗

c∗vT
∗

−

(
qr`r2p
τ rRL

r2

)
`∗2p
τ∗R
∇2q∗ +

(
λrT r

τ rRL
r

)
λ∗

τ∗R
∇T ∗ = 0 =⇒

q̇∗

Stq
+

(
Req

Kn2
q

)
q∗

τ∗R
− ∇q∗ · q∗

c∗vT
∗ −

(
1

Req

)
`∗2p
τ∗R
∇2q∗ +

(
1

Frq

)
λ∗

τ∗R
∇T ∗ = 0 (2.19)

wherein we have introduced the following characteristic numbers

Stq = 2
qrtr

crvT
rLr

(2.20a)

Req = 2
qrτ rRL

r

`r2p c
r
vT

r
(2.20b)

Knq =
`rp
Lr

(2.20c)

Frq = Mq Req Kn2
q = 2

qr2τ rR
λrcrvT

r2 (2.20d)

which, along with the same observations as above, we call, respectively, thermal Strouhal
number, thermal Reynolds number, thermal Knudsen number, and thermal Froude num-
ber. Under the same identifications as before for the reference quantities, it is also possible
to identify `rp and τ rR, respectively, as the mean-free path of phonons and the resistive re-
laxation time at the average temperature T r. The reference time tr used in Eq. (2.19),
in principle, would be different from that used in Eq. (2.17). However, if one uses for
it the same reference time defined in Eq. (2.18a), then from Eq. (2.20a) it follows that
Stq = 2 Mq: if the temporal rate of the internal energy can be neglected in its evolu-
tion equation, then in the evolution equation for the heat flux the temporal rate can be
neglected, too.

Equation (2.19) points out that, whenever Req /Kn2
q � 1, it is possible to neglect the

heat flux with respect to its temporal and spatial variations in Eq. (2.15). In this condition,
which is frequently recovered at nanometric scale since the characteristic dimension of the
system is smaller than the phonon mean-free path (that is, Knq � 1 in usual practical
applications) ?, Eq. (2.15) becomes

τRq̇−
(

2τR
Tcv

)
∇q · q = −λ∇T + `2p∇2q (2.21)

which is very similar to the Navier-Stokes equation describing the motion of an incom-
pressible viscous fluid in the absence of external force, and gives a better understanding of
the strict relation between the hydrodynamic quantities and the thermal ones. Moreover,
Eq. (2.21) allows to relate the term in τR/ (Tcv)∇q · q with the convective phenomena
occurring during the evolution of the heat flux, the term in `2p∇2q with the non-Fourier
diffusive phenomena, and the term in λ∇T with the Fourier heat conduction generated
by the inhomogeneities in the thermal field. Note that the possibility of having both
a convective contribution and a diffusive one, should not be surprising. In fact, in the
framework of EIT ? the heat flux has its own evolution equation, which, under suitable
hypotheses on the constitutive equations for the flux and the production of heat flux, can
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be put in the form

q̇ +
q

τR
+∇ · (Qc + Qd) +∇ ·

(
λT

τR
I

)
= 0 (2.22)

wherein Qc and Qd are second-order tensors representing the convective part of the heat
flux and its diffusive non-Fourier part, respectively, (λT/τR) I represents the Fourier con-
tribution to the flux of heat flux, and the term −q/τR is the production of heat flux.

The comparison of Eqs. (2.19) and (2.22) allows us to claim that in the latter equation
the thermal Strouhal number (2.20a) gives information about the relative importance of
the non-stationary term with respect to the convective one, whereas the thermal Froude
number (2.20d) accounts for the relative importance of the Fourier diffusive term with
respect to the convective one, in analogy with the physical meanings of hydrodynamic
Strouhal (St) and Froude (Fr) numbers. However, in contrast with the formal analogy
between the definitions of the thermal Mach number (2.18b) and the hydrodynamic Mach
number, in classical hydrodynamics St and Fr have definitions which are not formally the
same of those in Eqs. (2.20a) and (2.20d), although they play an analogous role. Indeed,
in hydrodynamics one has St = trvr/Lr, and Fr = vr2/ (Lrgr), being vr the reference fluid
speed and gr a reference acceleration, which is usually taken as the gravity acceleration,
but qr/crvT

r has dimensions of a speed, i.e., units of m/s.
Finally, we observe that in Eq. (2.19), the thermal Reynolds number (2.20b) points

out, instead, the relative importance of the diffusive non-Fourier term with respect to the
convective one. Its definition is similar to the definition of hydrodynamic Reynolds number
(Re), i.e., Re = vrLr/υr, being υr the reference kinematic viscosity. Thus, in our hydro-
dynamic analogy, the ratio 2τR/

(
`2pTcv

)
plays the same role of the kinematic viscosity υ

in classical hydrodynamics. Further information about the relative importance between
other effects may be enlightened by obtaining suitable ratio between these characteristic
numbers.

2.4 Other generalized heat-transport equations

2.4.1 The Dual-Phase-Lag model

The advancement of ultrashort pulsed lasers inspired ultra-fast heat transport occur-
ring in times comparable to the mean-free times of energy carriers ???. The individual
behaviors of those carriers become pronounced owing to their scant number of collisions
in such short times. As a consequence, the traditional concepts in heat transport based on
the averaged behaviors over many collisions can no longer be applied. Evolving from the
Fourier law (FL) describing the quasi-stationary and reversible transition of thermody-
namic states, in the dual-phase-lag model ??? the following constitutive equation (which
provides a convenient approach in describing the ultra-fast physical response) is introduced

q (r, t+ τq) = −λ∇T (r, t+ τT )⇒

q (r, t) + τqq̇ (r, t) +
τ2
q

2
q̈ (r, t) ≈ −λ∇T (r, t)− τT∇Ṫ (r, t) +

τ2
T

2
∇T̈ (r, t) (2.23)

where τT and τq are two phase lags due to the delayed response during the ultra-fast
transient. In particular, the phase of the heat flux τq captures the small-scale response in
time, and the phase lag of the temperature gradient τT captures the small-scale response
in space.

As it can be seen from Eq. (2.23), the lagging response significantly deviates from FL
due to involvement of the high-order derivatives with respect to time. Moreover, only
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when τT = 0, and the terms proportional to τ2
q can be neglected, Eq. (2.23) reduces to the

thermal-wave equation (1.6) proposed by Cattaneo ?? and Vernotte ?. In correlation to
the existing microscopic models, in addition, the lagging behavior described by Eq. (2.23)
absorbs electron-phonon coupling in metals, umklapp (temporary momentum loss) and
normal relaxations in phonon scattering, and additional relaxation of internal energy in
the same framework of thermal lagging ?.

The combination of the divergence of Eq. (2.23) with the energy-balance equation in
absence of source terms (1.8) leads to

∇2T + τT∇2Ṫ +
τ2
T

2
∇2T̈ =

(cv
λ

)
Ṫ +

(cvτq
λ

)
T̈ +

(
cvτ

2
q

2λ

)
...
T (2.24)

which completely alters the fundamental characteristics of Fourier diffusion due to the
presence of the mixed-derivative terms and the high-order derivatives of temperature with
respect to time. When the effects related to τ2

T in Eq. (2.23) are neglected, Eq. (2.24) is
able to describe the so-called T waves, whose speed UT reads

UT =

√
2cvτT
λτ2

q

(2.25)

Whether a T wave is slower than the Maxwell-Cattaneo-Vernotte (MCV) wave (1.49),
or not, depends on the ratio τT /τq since ?

UT
U0

=

√
2

(
τT
τq

)
(2.26)

For example, for heat propagation in superfluid helium at very low temperatures one
has UT < U0 since τT < τq. For femtosecond-laser heating on metal films, instead, τT > τq
and the T waves move faster that the MCV waves ?.

The effects of τ2
T are recently used to describe transport phenomena in biological sys-

tems with multiple energy carriers ?.

2.4.2 The Thermomass Theory

The Thermomass (TM) theory ???? provides another example of heat-transport equa-
tion showing the nonlocal behavior with thermal lagging in transporting heat. In TM
theory the heat transport is due to the motion of a gas-like collection of heat carriers,
characterized by an effective mass density and flowing through the medium due to a
thermomass-pressure gradient. This collection is made by quasi-particles of heat carriers,
called thermons, which are representative of the vibrations of the molecules generated by
heating the conductor and whose mass may be calculated from the Einstein’s mass-energy
duality. For crystals, the thermomass gas is just the phonon gas, for pure metals it will
be attached on the electron gas, and for semi-metals it will be constituted by both these
different gases ????.

In TM theory the evolution equation for the heat flux reads ?

τtmq̇− cvṪL +∇q · L + λ
(
1−M2

tm

)
∇T + q = 0 (2.27)

wherein

τtm =
λρ

2γc2vT
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is the relaxation time in the TM theory ??? with γ being the Grüneisen constant, and

L =
qλρ

2γcv (cvT )2

denotes a characteristic-length vector ?? which characterizes the strength of the non-
Fourier effects introduced by Eq. (2.27) ?? and it should not be confused with the mean-
free path of the thermons. In practical applications and for conceivable values of q, L
attains values which are always much smaller than those of the thermons mean-free path.
Moreover, in Eq. (2.27)

Mtm =
q
√
ρ

cvT
√

2γcvT
(2.28)

stands for a dimensionless number which is called thermal Mach number of the drift
velocity relative to the thermal-wave speed in the heat-carrier collection, and should be
not confused with the thermal Mach number introduced in Eq. (2.18b). By means of it,
Eq. (2.27) introduces an effective nonlinear thermal conductivity, namely,

λeff,nl = λ
(
1−M2

tm

)
(2.29)

which plays a relevant role when the thermons mean-free path is smaller than the charac-
teristic size of the system, i.e., at nanoscale. In such a case, in fact, the spatial derivatives
of the heat flux may be neglected with respect to the flux itself so that, in steady states,
Eq. (2.27) reduces to

q = −λeff,nl∇T

Since second law of thermodynamics requires λeff,nl ≥ 0, from Eqs. (2.28) and (2.29)
it follows that the modulus of the local heat flux has to fulfill the following relation

q ≤ cvT

√
2γcvT

ρ
(2.30)

which implies an upper bound for the heat flux for increasing temperature gradient ?.
The experimental results in silicon nanowires, for a difference of temperature ∆T =

100 K confirm the existence of this upper bound ?. Such a phenomenology, well-known
in nonlinear heat conduction, is referred to as the presence of ”flux limiters” ??. Flux
limiters are a direct consequence of the finite speed of the thermal perturbations. In fact,
for a given energy density, the heat flux can not reach arbitrarily high values, but it has to
be bounded by a maximum saturation value, of the order of the energy density times the
maximum speed. Typical situations of flux limiters arise, for instance, in radiative heat
transfer, or in plasma physics ??.

Beside to describe relaxational effects, Eq. (2.27) incorporates information on the char-
acteristic length of the system (i.e., nonlocal effects) and accounts for nonlinear phenom-
ena. In the linear case (i.e., when the terms containing the quantities ṪL and ∇q · L are
negligible, as well as when M2

tm � 1), Eq. (2.27) takes the same form of the MCV equa-
tion, even though, from the theoretical point of view, the relaxation time of TM theory
is two orders of magnitude higher than that of the MCV’s theory and, in silicon films, it
predicts a slower response to the thermal perturbations ?.

2.4.3 Anisotropic heat transport

The dynamical temperature β does not constitute the sole tool to obtain nonlinear
extensions of the GK equation. For instance, Lebon et al. ? developed a continuum
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model of weakly nonlocal and nonlinear heat transport, resulting, in the linear case, in
Eq. (1.17). In order to keep down the calculations to a reasonable level, these authors
considered the isotropic case only. Notwithstanding, the crystals in which nonlocal heat
conduction takes place, such as Sodium Fluoride, Bismuth or Silicon, are highly anisotropic
so that a generalization of the model considered in Ref. ?, which encompasses anisotropic
systems, seems to be necessary. By extending their approach to anisotropic situations,
in Ref. ? Triani and Cimmelli obtained an evolution equation for the heat flux which in
components reads

τIJ q̇J +qI = −τIJ
(
λ

τR
+

1

2cvT 2
q2

)
T,J +

2

cvT
τIJ qKq<K,J> +

9

5

λτN
cv

τIJ qL,LJ

+
1

cvT
τIJ qJ q<K,K> −

1

cvT 2
T,KτIJ qJ qK + 2τIJ

∂LJKMH

∂T
T,K < qM,H >

+ 2τIJ
∂LJKNH

∂qM
qM,K < qN,H > +τIJLJKNHqN,HK + τIJLJKNHqH,NK (2.31)

In this equation, which represents an extension to anisotropic systems of Eq. (2.15),
the symbol F,J represents the partial derivative of F with respect to the Cartesian coor-
dinate XK , F<N,H> denotes the symmetric part of the function FN,H , and the Einstein’s
convention of summation over repeated indices has been adopted. In Eq. (2.31), a fun-
damental role is played by the matrix of the relaxation times τIJ , which represents the
relaxational properties of the crystal along different directions, and by the tensor of the
mean-free paths, which traduces the mobility properties of the phonons along different
directions. The principles of material frame indifference ? imposes severe restrictions on
the form of these tensorial material functions ?. If

LIKJH =
9

5

λτN
cvτR

δHI δKJ

and

τ−1
IJ

=
1

τR
δIJ

it is possible to recover the following generalized GK equation for isotropic systems

q̇I +
qI
τR

= −
(
λ+

1

cvT 2
q2

)
T,I +

2

cvT
qKqK,I +

9

5

λτN
cvτR

(
qI,KK + 2qK,KI

)
(2.32)

Finally, for vanishing τN the equation above reduces to the further nonlinear MC
equation

q̇I +
qI
τR

= −
(
λ+

1

cvT 2
q2

)
T,I +

2

cvT
qKqK,I (2.33)

As the TM equation (2.28), the last two equations show the presence of a genuinely
nonlinear heat conductivity

λnl =

(
λ+

1

cvT 2
q2

)
(2.34)

but, in contrast with it, the nonlinear term depending on the heat flux is positive. However,
analogously to the case of TM theory, λnl cannot assume arbitrarily high values due to
the presence of flux limiters ?.
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2.4.4 Two-population ballistic-diffusive model

Up to now, we have considered phonons as a single population, but experiencing differ-
ent kinds of collisions. Another extreme possibility, close to microscopic theories, would be
to consider the phonons of each given frequency ωp as a population on their own. An in-
termediate position ?????? rests on the assumption that two types of phonon populations
may coexist: diffusive and ballistic phonons. In more details, diffusive phonons undergo
multiple collisions within the core of the system, and ballistic phonons, originating at the
boundaries of the system, experience mainly collisions with the walls. This model is called
ballistic-diffusion (BD) model ?, and allows for a more flexible description of the heat
transfer at nanoscale than the single-population models considered above.

On a purely macroscopic approach, in the BD model both the specific internal energy
per unit volume u, and the local heat flux q are split into a ballistic part (bal) and a
diffusive (dif) one in such a way

u = ubal + udif q = qbal + qdif (2.35)

Owing to that decomposition, and according with EIT ? the state variables are selected
as follows:

• the couple (ubal,qbal) accounts for the ballistic behavior of the heat carriers;

• the couple (udif,qdif) accounts for the diffusive behavior of the heat carriers.

The behaviors of ubal and udif are provided by the following classical balance laws ?:

u̇bal = −∇ · qbal + rbal (2.36a)

u̇dif = −∇ · q(e)
dif + rdif (2.36b)

wherein rbal and rdif denote, respectively, the source terms of the ballistic population
and of the diffusive one. These quantities describe the energy exchange (per unit volume
and time) between both phonon populations. It is easy to see that the summation of
Eqs. (2.36a) and (2.36b) turns out the well-known balance law for u, which reduces to
Eq. (1.8) whenever rbal = −rdif in Eqs. (2.36).

The behaviors of qbal and qdif, instead, are given by ?:

τbalq̇bal + qbal = −λbal∇T + `2bal

(
∇2qbal + 2∇∇ · qbal

)
(2.37a)

τdifq̇dif + qdif = −λdif∇T (2.37b)

wherein τbal and τdif are the relaxation times of two phonon populations, λbal and λdif are
their thermal conductivity, respectively, and `bal is the mean-free path of ballistic phonons.
The relaxation times, the thermal conductivities and the phonon mean-free paths of two
populations are not independent, but they are such that

λbal =
1

3
cvv

2
balτbal λdif =

1

3
cvv

2
difτdif (2.38)

wherein vbal = `bal/τbal and vdif = `dif/τdif are the mean velocity of the ballistic and
diffusive phonons, respectively, with `dif being the mean-free path of diffusive phonons ?.
From a microscopic perspective, one possibility is to consider the diffusive relaxation time
τdif as that of resistive phonon collisions (i.e., the relaxation time τR), and the ballistic
relaxation time τbal as that corresponding to the momentum-conserving collisions (i.e., the
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relaxation time τN ) which lead to collective hydrodynamic effects. In this interpretation,
the coupling of Eqs. (2.37) leads to the GK equation (1.17).

At the very end, let us also observe that in the BD model, ballistic and diffusive
phonons are allowed to have also different temperatures, namely, it is possible to define
the following quasi-temperatures

Tbal =
ubal

cv,bal
(2.39a)

Tdif =
udif

cv,dif
(2.39b)

wherein cv,bal and cv,dif denote the (positive) heat capacities per unit volume of the two
populations. Admitting that cv,bal = cv,dif = cv, and defining the quasi-temperature
T = u/cv, it is verified that T = Tbal + Tdif.

2.4.5 Effective medium approach

One could also mention, for the sake of a more exhaustive view, the so-called effective
medium approach, which is sometimes used in the context of superlattices, nanofluids and
nanoporous system, and which will be illustrated in Chap. 4. This approach studies the
thermal conductivity of systems composed of a heat conducting matrix (the thermal con-
ductivity of which is λm), with embedded particles of thermal conductivity λp. It assumes
that the classical expressions, derived by using the classical FL, are still formally valid,
but with λm and λp suitably modified to take into account that the phonon mean-free
path in the matrix may be comparable to the interparticle separation, or to the radius
of the embedded particles. When these connections, as well as the thermal resistance
between the matrix and the particles, are taken into account, the results describe qualita-
tively the main observed trends. Such connections, for instance, could be those mentioned
in Eqs. (1.26), (1.27) and (1.28). Indeed, this approach is not so basic as the ones pre-
viously mentioned in this Section, because it borrows some of their results, combining
them to classical expression, but it is helpful for dealing in a first approximation with the
complexity in superlattices, nanocomposites, nanofluids and other analogous systems.
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Chapter 3
Mesoscopic description of
boundary effects and effective
thermal conductivity in
nanosystems: phonon
hydrodynamics

Nanometer-sized devices are of considerable current interest in micro/nanoelectronics
wherein the adjective ”smaller” has meant greater performance ever since the invention
of integrated circuits: more components per chips, faster operations, lower costs, and less
power consumption. Miniaturization is also the trend in a range of other technologies, as
for example, optics, catalysis, and ceramics. Many active efforts are currently observing
in information storage, too, in order to develop magnetic and optical storage components
with critical dimensions as small as tens of nanometers.

The raise of nanotechnology, indeed, requires increasing efforts to better understand
the thermal-transport properties of nanodevices, as their performance and reliability are
much influenced by memory, nonlocal and nonlinear effects ???????. Since the agreement
between experiments and theory is still poor, the great challenge is to improve it. To
reach that goal, the macroscopic derivation of generalized transport equations including
memory, nonlocal and nonlinear effects represents a very important step. This problem
may be tackled by different approaches, the most pursued of which is the microscopic one,
based upon the Boltzmann equation.

Indeed, a very interesting approach is also that based on the so-called phonon hydrody-
namics ???, which regards the whole set of heat carriers as a fluid whose hydrodynamic-like
equations describe the heat transport ?. This mesoscopic approach allows for a fast quanti-
tative approximate estimation of the thermal properties, and may be a useful complement
to microscopic theories, in order to select the most promising features of the nanosystems.
In the linear regime the phonon hydrodynamics, wherein the phonons represent the main
heat carriers, lays on GK transport equation (1.17) for the local heat flux q ???????.

It is worth observing that although we often refer to Eq. (1.17) as the GK equation,
it has in fact important differences with respect to the original proposal of Guyer and
Krumhansl ???, especially regarding the way as the boundary conditions are included in
the model. In fact, those authors considered a boundary relaxation-time τb that they
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combined with the usual relaxation time due to bulk resistive mechanisms by means of
Matthiessen rule as

τ−1
R = τ−1

u + τ−1
i + τ−1

d + τ−1
b ≡ τ−1

R0 + τ−1
b

being τu the relaxation time of umklapp phonon-phonon collisions, τi the relaxation time
of phonon-impurity collisions, and τd the relaxation time of phonon-defect collisions. Once
the combined resistive-boundary (phonon-wall) collision time has been obtained, the ther-
mal conductivity λ (depending on the size of the system through τb) was calculated, and
used in the first term of the right-hand side of Eq. (1.17). When this is done, one obtains
for the effective thermal conductivity λeff the expression (1.28), i.e.,

λeff =
1

3
cvv

2

(
τR0τb

τR0 + τb

)
= λ

(
1 +

τR0

τb

)−1

= λ

[
1 + f (T )

`p
R

]−1

(3.1)

wherein it has been considered `p = τR0v, and R = τbv/a (T ), with f (T ) being a suitable
temperature nondimensional function depending on the form of the cross section of the
system, and whose order of magnitude is generally 1. This contribution adds, in some
occasions, to the hydrodynamic contribution due to the normal (momentum-conserving)
phonon-phonon collisions, which is described by the nonlocal term in the right-hand side
of Eq. (1.17).

In our model, instead, we assume that thermal conductivity in Eq. (1.17) means the
usual bulk thermal conductivity, and not the effective one as defined in Eq. (3.1). In
doing this, we use an alternative approach which consists in including the boundary colli-
sion time τb not in the differential equation (1.17), but in suitable boundary constitutive
equations ?????. To this end, it is important to note that in the phonon-hydrodynamic
framework one has to pay more attention to boundary conditions ?, since the correspond-
ing heat-transfer equation contains a nonlocal term of higher order than in the usual
theories. Thus, in this new strategy we assume

τ−1
R ≡ τ−1

R0 = τ−1
u + τ−1

i + τ−1
d

and focus our attention on the modelization of the constitutive equations for a slip heat
flux ? along the walls, necessary to complement Eq. (1.17). In such term, specular
and diffusive phonon-wall collisions appear and, in rough walls, also some backscattering
phonon-wall collisions.

From the practical point of view, the effective thermal conductivity in nanosystems (of
different forms and shapes) is defined as

λeff ≡
(
Qtot

A

)
L

∆T
(3.2)

where L is the longitudinal length of the nanosystems, A is the area of its cross section,
∆T the temperature difference through the ends, and Qtot the total heat per unit of time
flowing in the system. Combining this effective thermal conductivity with the Fourier
law, many practical problems of heat transport in nanosystems may be analyzed and,
therefore, the analysis of such quantity play a central role in nanotechnology. However, in
the present book we will also see situations which are not truly describable by means of a
Fourier-like expression with an effective thermal conductivity.
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3.1 Phonon slip flow

In steady-state situations, complementing Eq. (1.17) with the local balance of the
specific internal energy per unit volume (1.8) (from which it follows u̇ = 0 ⇒ ∇ · q = 0),
one obtains

q = −λ∇T + `2p∇2q (3.3)

as nonlocal constitutive equation for the heat flux. On the other hand, when the char-
acteristic size of nanosystems is smaller than `p, the heat flux q can be neglected with
respect to `2p∇2q in Eq. (3.3), in such a way it reduces to ????

∇2q =
λ

`2p
∇T (3.4)

Equation (3.4) is analogous to the Navier-Stokes equation for steady states, and for
those situations in which the nonlinear convective term is negligible, i.e.,

∇2v =
1

η
∇p (3.5)

η being the shear viscosity of the fluid, v the velocity of the fluid, and p the pressure. The
formal similarity between Eqs. (3.4) and (3.5) motivates the definition of ”hydrodynamic
regime” for those situations in which the heat flux obeys Eq. (3.4), and allows to identify
the ”viscosity” of phonons in terms of the thermal conductivity and of their mean-free path.
Keeping in mind the very close forms of Eqs. (3.4) and (3.5), and since on microscopic
ground the phonons may be viewed as a free-particle gas in a box ???, one may conclude
that in the phonon-hydrodynamic framework q, T and `2p/λ play a role analogous to that
played by v, p, and η, respectively, in the fluid-dynamic framework ???. Owing to this,
in particular, it is also possible to refer to the ratio `2p/λ as the ”thermal viscosity”. Note,
however, that the concept of phonon hydrodynamics may also be given a more restrictive
microscopic interpretation by relating it to collective, hydrodynamic-like, phonon behavior.

Since Eq. (3.4) - as well as Eq. (1.17) - is a second-order (in space) partial-differential
equations, suitable boundary conditions are needed for its solution. We will assume for
simplicity that the heat loss across the lateral walls of the systems is negligible. Nonethe-
less, due to the several phonon-wall collisions, a slip-flow contribution along the wall qw,
additional to the bulk heat flux qb, should be expected ??. Both partial contributions to
the overall local heat flux q are such that

q = qb + qw (3.6)

In principle, the wall contribution qw is restricted to a thin region near the walls, the
so-called Knudsen layer, the thickness of which is of the order of mean-free path of the
heat carriers. However, in nanosystems whose characteristic dimension is comparable to
(or smaller than) `p, the Knudsen layer pervades the whole system, and qw may be assumed
as a homogeneous contribution to the overall heat flux. The problem of heat slip flow along
solid walls has been also investigated within the framework of modern thermodynamics in
Refs. ?? with the underlying idea of elevating the heat flux at the boundary to the status
of independent variable, and in the phonon kinetic theory in Refs. ???.

To estimate the wall heat-flow contribution qw, helpful suggestions can be achieved
from microfluidics ?. This interdisciplinary field of research is concerned with the handling
and transport of small amounts (nano/picoliters) of liquid. Microfluidic chips are already
used in many laboratories for the considerable advantages derived from low-volume fluid
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Table 3.1: Analogies between integrated circuits and microfluidic chips.

Integrated circuit Microfluidic chip

Transported quantity Energy Mass

Material Semiconductors (inorganic) Polymers (organic)

Channel size nm µm

Transport regime Phonon hydrodynamics Laminar fluid-dynamics

treated ?. In Tab. 3.1 the main analogies between integrated circuits and microfluidic
chips are pointed out ?.

In microfluidics, the behavior of the fluid in the center of a flux-tube is ruled by the
usual Navier-Stokes equations, whereas a slip flow is assumed along the surface. The two
mostly-used types of boundary conditions for the slip flow read

vw = c′l
∂vb

∂ξ
First-order slip-flow condition (3.7a)

vw = c′l
∂vb

∂ξ
− a′l2∂

2vb

∂ξ2
Second-order slip-flow condition (3.7b)

In the equations above vb represents the fluid speed in the bulk of the microchannel,
vw is the velocity of the fluid on the walls, l is the mean-free path of the fluid particles,
and ξ means the outward normal direction to the boundary. Moreover, c′ and a′ are
positive constants, accounting for the properties of the walls ???. The first-order slip
condition (3.7a) is the well-known Maxwell boundary condition ??. The second-order
condition (3.7b), instead, was proposed in the decade of 1960 by several authors ??,
following the logics of the Knudsen gradient expansion to boundary conditions. It has
recently received much attention in the domain of microfluidics of rarefied gases (see, for
instance, Refs. ??????). In particular, Eq. (3.7b) sets a = 1/2 in the so-called second-order
slip model ?, and a = 2/9 in the so-called 1.5-model ?.

Due to the analogies phonon hydrodynamics/fluid dynamics, in Refs. ???????? the
following first- and second-order constitutive equations have been proposed for nanosys-
tems

qw = C`p

∣∣∣∣∂qb

∂ξ

∣∣∣∣ (3.8a)

qw = C`p

∣∣∣∣∂qb

∂ξ

∣∣∣∣− α`2p ∣∣∣∣∂2qb

∂ξ2

∣∣∣∣ (3.8b)

wherein C and α are positive constants, related to the properties of the walls. In more
details, the coefficient C describes the specular and diffusive collisions of the phonons with
the walls, whereas α accounts for phonon backscattering. Both coefficients are temperature
dependent and account for the properties of the walls ??, which may be smooth or rough ?.

These conditions may be used in a non-standard way, namely, assuming that the
overall heat flux is given by Eq. (3.6) ???????. In other words, in our approach we
calculate the overall local heat flux q as follows: at first we obtain qb by solving either
Eq. (3.3), or Eq. (3.4) with vanishing heat flux on the boundary (i.e., we assume that
the bulk contribution to the local heat flux is the solution of generalized heat-transport
equations). Then, we estimate the wall contribution qw to the local heat flux by means of
Eqs. (3.8). We explicitly note that in Eqs. (3.8) we introduce the absolute values for the
spatial derivatives of qb, in contrast with the usual expressions in classical fluid dynamics
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for the boundary conditions, in order to emphasize that the first term (related to specular
and diffusive reflections of heat carriers) therein has to turn out a contribution which goes
in the same direction as qb, whereas the second term (related to backscattering, namely,
to the backward reflections of heat carriers) have to turn a contribution which goes in the
opposite direction as qb.

Note that an alternative way to model the effective thermal conductivity would be to
assume that the overall local heat flux, given by Eq. (3.6), is the solution of the generalized
heat transport equation, and assuming that at the boundary of the system its value is such
that

q|w = C`p

∣∣∣∣∂q

∂ξ

∣∣∣∣
w

q|w = C`p

∣∣∣∣∂q

∂ξ

∣∣∣∣
w

− α`2p
∣∣∣∣∂2q

∂ξ2

∣∣∣∣
w

Although this interpretation is not always equivalent to Eqs. (3.8), in most of the
situations analyzed in the next leads to equivalent results.

More general situations can also be treated following the way previously drawn to
use Eqs. (3.8). For instance, in nanowires undergoing high-frequency perturbations, it
is necessary to assume a relaxation of the heat flux on the boundary, too, through a
dynamical constitutive equation which may be of the type ?

τwq̇w + qw = C`p

∣∣∣∣∂qb

∂ξ

∣∣∣∣− α`2p ∣∣∣∣∂2qb

∂ξ2

∣∣∣∣ (3.9)

where τw represents the relaxation time accounting for the frequency of phonon-wall col-
lisions, which here explicitly appears in contrast with Eqs. (3.8). Since these interactions
may produce specular, diffusive and backward reflections of the phonons, the Matthiessen’s
rule would yields

τ−1
w = τ−1

spec + τ−1
diff + τ−1

back

where τspec, τdiff and τback refer to the characteristic time of specular collisions, diffuse
collisions and backscattering, respectively.

A qualitative estimation of τw may be obtained by evaluating the total frequency of
collisions between phonons and walls. Indeed, since a wall, in principle, may show both
smooth regions of width D, and rough regions of peaks ∆ (see Fig. 3.1 for an illustrative
sketch), in a first approximation it is possible to assume

1

τw
=

v

d

(
D

D + ∆

)
+

v

d−∆

(
∆

D + ∆

)
(3.10)

wherein d is the characteristic size of the system, the ratio D/ (D + ∆) indicates the
probability of finding a smooth region, and ∆/ (D + ∆) the probability of finding a peak 1.
In the case of smooth walls (i.e., when ∆/D → 0), one has τw = d/v. Conversely, in the
limit of very rough walls (i.e., when ∆ → d), τw = 0: in such a case phonons cannot
advance in the nanowire because there is not enough free space to go ahead.

In the next sections we show the main results which can be obtained, in different
situations, by applying to nanowires, nanotubes or thin layers, one of the non-standard
constitutive equations for qw illustrated above.

1We are assuming, for the sake of simplicity, that the width of the peaks is proportional to their height
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D

 

(a) Specular and diffusive reflections

 

D

(b) Backward reflections

local heat flux q

local heat flux q

Figure 3.1: Different degree of roughness of a wall, described by the parameters ∆ (height
of the roughness peaks) and D (separation of neighboring roughness peaks). The red circle
in figure sketches the phonon, and the red arrow indicates the direction of the local overall
heat flux q. When the ratio ∆/D → 0 (or in the limit case when ∆ = 0 nm), only specular
and diffusive scattering is expected (Fig. 3.1a). Otherwise, backscattering is also expected
(Fig. 3.1b). Furthermore, when D = ∆ the surface has no flat regions, but it is completely
rough.

3.2 Size dependence of the effective thermal conductivity

In this section, by means of our phonon-hydrodynamic approach, we will provide some
theoretical expressions to model the effective thermal conductivity (3.2) in nanosystems
of different geometries (i.e., circular cross section, core-shell and tubular nanowires, ellip-
tical cross section, rectangular cross section and thin layers). For the sake of a didactic
presentation, we start our analysis from the simplest cases which then will be generalized.

3.2.1 Nanowires with circular cross sections

In order to show the way phonon hydrodynamics may allow to describe the size depen-
dency of the effective thermal conductivity, we start by considering circular smooth-walled
nanowires, with R as the radius of the (constant) transversal section and L as the longitu-
dinal length (see Fig. 3.2 for a qualitative sketch, as well as for the system of coordinates).
These structures, which may be made of either metallic (e.g., Ni, Pt, Au), or semiconduct-
ing (e.g., Si, InP, GaN, etc.), or insulating (e.g., SiO2, TiO2) materials, in general have a
thickness (or diameter) constrained to tens of nanometers, and are much used in current
nanotechnology.

In steady-state situations and when q� `2∇2q, we previously observed that the GK
equation (1.17) reduces to Eq. (3.4) which prescribes that the bulk heat-flow contribution
has the following profile in each transversal section

qb (r) =
λ

4`2p

(
R2 − r2

) ∆T

L
(3.11)

Chapter 3. Mesoscopic description of boundary effects and effective thermal conductivity
in nanosystems: phonon hydrodynamics – 50



3.2 Size dependence of the effective thermal conductivity
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Figure 3.2: Cylindrical nanowire with a R-circular cross section. For the sake of illustra-
tion, in figure, R is emphasized with respect to L. The heat (red arrow in figure) is flowing
along the longitudinal axis. In figure it is also shown the Knudsen layer near the walls. In
this layer, the characteristic width of which is of the order of the phonon mean-free path,
the wall contribution to the local heat flux is more relevant than outside.

with r being the radial distance to the longitudinal axis of the nanowires, and the tem-
perature gradient ∇T = −∆T/L. In the case of smooth walls (i.e., in the absence of
backscattering), the use of Eq. (3.8a) allows to obtain the following wall heat-flow contri-
bution

qw = C

(
λR

2`p

)
∆T

L
(3.12)

which, according to our approach summarized in Eq. (3.6), has to be added to Eq. (3.11).
Note that Eq. (3.12) predicts a constant value for qw in the whole transversal section.
This is an approximation of our procedure, but which seems rather logical, since whenever
Eq. (3.4) holds, the Knudsen layer pervades the whole transversal section ???.

Since the total heat per unit of time flowing in the system is

Qtot =

∫ R

0
2πrq (r) dr =

∫ R

0
2πr (qb + qw) dr (3.13)

according to Eq. (3.6), then the use of Eq. (3.11) and (3.12) allows to obtain, from the
definition (3.2), the following effective thermal conductivity ?

λeff (Kn) =
λ

8 Kn2 (1 + 4C Kn) (3.14)

wherein the Knudsen number Kn = `p/R.
For high Kn values, the predicted theoretical effective thermal conductivity in Eq. (3.14)

decreases linearly in terms of Kn−1, according with experimental evidences ?. It is easy to
see that without the inclusion of the boundary heat flux in Eq. (3.8a) (i.e., when C = 0 in
Eq. (3.14)), the effective thermal conductivity would decrease quadratically with respect
to the reciprocal of the Knudsen number, against the experimental evidence.
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Note, incidentally, that if one assumes, as in the original proposal of Guyer and
Krumhansl ???, that in Eq. (1.17) λ is not the bulk thermal conductivity, but it is given
as in Eq. (3.1), and no wall contribution to the local heat flux is taken into account (that
is, C = 0), then Eq. (3.14) would lead to

λeff (Kn) =
λ

8 (1 + aKn) Kn2

which isn’t able to describe experimental observations. Thus, that proposal must be
interpreted in terms of the two-population models we drew in Sec. 2.4.4, which, in suitable
conditions, would lead to

λeff (Kn) = λ

[
b (T )

1 + aKn
+

1− b (T )

8 Kn2

]
with b (T ) being the relative population of resistive phonons, and 1 − b (T ) the relative
population of hydrodynamic ones. Furthermore, if one compares the high-Kn value of this
expression with Eq. (3.14), then it will be possible to relate C with the ratio b (T ) /a (T ).
This shows how both alternative models may be compatible with each other. The advan-
tage of our presentation is that the role of geometry is emphasized, whereas in the GK
model (1.17) it is implicitly accounted in the coefficient a (T ).

The theoretical model (3.14) for λeff does no longer hold whenever the characteristic
size of the nanowire (i.e., R) gets the same order of magnitude (or larger) of `p (i.e., if
Kn ≤ 1). In fact, in this case, one has to use Eq. (3.3) in steady states, instead of Eq. (3.4).

Indeed, for vanishing values of the heat flux at the walls (i.e., qb (R) = 0), the solution
of Eq. (3.3) yields the following bulk heat flow profile ??

qb (r) = λ

[
1− J0 (ir/`p)

J0 (iR/`p)

]
∆T

L
(3.15)

with J0 (z) being the zero-order cylindrical Bessel function of the indicated argument,
whereas the nth-order cylindrical Bessel function is defined as

Jn (z) =
(z

2

)n ∞∑
t=0

(−1)t
(
z
2

)2t
t! (t+ n)!

By imposing the first-order constitutive equation (3.8a), the wall contribution is

qw (r) = −λ
{
C

[
iJ1 (iR/`p)

J2
0 (iR/`p)

]
J0 (ir/`p)

}
∆T

L
(3.16)

wherein J1 (z) is the first-order cylindrical Bessel function. In deriving Eq. (3.16), we used
the relation J ′0 (cz) = −cJ1 (cz), being c a generic constant. Note also that both J0 (ir/`p),
and iJ1 (iR/`p) are functions defined on a pure imaginary field, but turning out only real
values. Moreover, the minus in the right-hand side of Eq. (3.16) is due for accounting
of the positive value of qw on the boundary. It is also worth noticing that Eq. (3.16)
qw depends on the radial distance from the wall, since we are assuming now that R is
comparable to `p.

Integrating the sum of Eqs. (3.15) and (3.16) across the transversal section, one finally
gets the following effective thermal conductivity ?

λeff (Kn) =

∫ R
0 2πr [qb (r) + qw (r)] dr

πR2 (∆T/L)
= λ

{
1− 2 Kn

[
J1 (i/Kn)

J0 (i/Kn)

]2 [ J0 (i/Kn)

iJ1 (i/Kn)
+ C

]}
(3.17)

Straightforward calculations allow to see that whenever Kn gets high values, Eq. (3.17)
reduces to Eq. (3.14).
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Figure 3.3: Nanowire with an elliptical cross section. For the sake of illustration, in figure
both sizes of the transversal section are emphasized with respect to the longitudinal length
L. In figure the system of coordinates is also shown, as well as the Knudsen layer pervading
the whole transversal section.

3.2.2 Nanowires with elliptical cross sections

Many studies have shown that the thermal conductivity of nanowires depends not only
on the materials, but also on the cross-sectional size and shape ????. As a consequence
of the fabrication processes, the cross sections of nanowires are generally elliptical, rather
than circular ?.

Therefore, in the next we assume that the cross section of the nanowire is elliptical,
and by means of phonon hydrodynamics we derive again the effective thermal conductivity
in steady states. In particular, we assume 2b as the minor axis, and 2a as the major one
(see Fig. 3.3). Moreover, the length L is supposed to be significantly larger than a, and
the heat is flowing along the z-axis.

We assume that the nondimensional ratio between the characteristic size of the system
and the mean-free path (i.e., the Knudsen number Kn) is bigger than unit. According
with early observations we may conclude that the heat carriers undergo the hydrodynamic
regime whenever Kn � 1. In practical applications, finding the characteristic size of a
system is not so simple as it may appear. A wrong choice of this quantity may lead to a
wrong model. Here we assume Kn = `p/b because the predominant phonon-wall collisions
will be those corresponding to the thinner dimension. In this case, the solution of the
hydrodynamic equation (3.4) for the bulk heat flux (i.e., for vanishing heat flux at the
walls) is ??

qb (x; y) =
λ

2 Kn2

(
1

1 + Φ2

)(
1− x2

a2
− y2

b2

)
∆T

L
(3.18)

where Φ = b/a. Once Eq. (3.18) is introduced into Eq. (3.8a), it is simple to obtain that
the wall contribution is

qw (x) =
λ

Kn

(
C

1 + Φ2

)[√
x2

a2
(Φ2 − 1) + 1

]
∆T

L
(3.19)

Note that, although we analyze situations wherein `� b, here qw cannot be considered
as a homogeneous value across the transversal area: in the case of the elliptical cross
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section, in fact, the normal derivative does not have always the same value along the
transversal wall.

The results in Eqs. (3.18) and (3.19) allow to derive, by direct calculations, the following
expression for the effective thermal conductivity ?:

λeff (Kn) =

∫ b

−b

∫ √1−y2/b2

−
√

1−y2/b2
[qb (x; y) + qw (x)] dxdy

πab (∆T/L)

=
λ

2 Kn

[
1

2 Kn

(
1

1 + Φ2

)
+ CS (φ)

]
(3.20)

being S (Φ) the numerical function ??

S (Φ) = 1− 0.6976

(
Φ2 − 1

1.951Φ2 + 1

)
(3.21)

Note that if Φ ≡ 1 (that is, if the cross section is circular), Eq. (3.20) reduces to
Eq. (3.20).

In Fig. 3.4 the theoretical behavior of the effective thermal conductivity in elliptical
silicon nanowires at 150 K, arising from Eqs. (3.20)-(3.21), is plotted as a function of the
ratio Φ = b/a. The results in Fig. 3.4 show that the effective thermal conductivity is
related to the shape of the cross section of the nanowires. In particular, the theoretical
model in Eq. (3.20) prescribes that the smaller Φ, the greater λeff.

3.2.3 Core-shell and tubular smooth-walled nanowires

In this section we discuss the thermal conductivity of cylindrical concentric nanowires,
such as core-shell nanowires or tubular nanowires (see Fig. 3.5), which are also used in
several technological approaches ?.

In the limit of high Knudsen numbers, the heat flow profile for the inner core as a
function of the radius, following from Eqs. (3.4) and (3.8a), is

qic (r) =
λic
4`2ic

∆T

L

(
R2
ic − r2 + 2Cic`icRic

)
(3.22)

where the subscript ic indicates that all the mentioned values are referred to the inner
core. Since total heat flow along the inner nanowire is defined as

Q
(tot)
ic =

∫ Ric

0
2πrqic (r) dr

then direct calculations allow to obtain ?

λic,eff =
λic

8 Kn2
ic

(1 + 4Cic Knic) (3.23)

for the inner-core effective thermal conductivity, being Knic = `ic/Ric the corresponding
Knudsen number, which corresponds to Eq. (3.14).

The local heat flow profile for the outer shell (os), instead, has the form ?

qos (r) = − λos
4`2os

(
∆T

L

)
r2 +A ln r +B (3.24)
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Figure 3.4: Effective thermal conductivity in nanowires with an elliptical cross section as a
function of Φ following from Eqs. (3.20)-(3.21). The nanowire is made of silicon at 150 K.
Different values of the Knudsen number have been considered (that is, Kn = 2, Kn = 3,
Kn = 5 and Kn = 10). Since in the theoretical proposal (3.20) we defined Kn = `p/b,
changes in Φ are only due to changes in a.
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Figure 3.5: Cylindrical concentric nanowire with a longitudinal heat flow. The inner
core may be made either by different material with respect to the outer-shell (core-shell
nanowire), or it may be vacuum (tubular nanowire).
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The parameters A and B may be found by using the boundary conditions as in
Eq. (3.8a), i.e.,

qos (Ric) = Cos`os

(
∂qos
∂r

)
r=Ric

(3.25a)

qos (Ros) = −Cos`os
(
∂qos
∂r

)
r=Ros

(3.25b)

The difference of signs in the equations above is due to the fact that at r = Ric, qos (r)
is an increasing function of r, whereas at r = Ros it is a decreasing function of r. For
this reason we prefer to write explicitly both conditions in a separate way. Observe that
the coefficients Cic and Cos in principle could be different. This means that the surfaces
at the two walls in contact with the outer shell are assumed to have the same material
features (namely, the same coefficient Cos), and the inner surfaces of the separation wall
are assumed to have the coefficient Cic.

The solution of Eqs. (3.24)-(3.25) leads to ?

A =− λos

16 Kn2
os

(
∆T

L

)
Γ′ (3.26a)

B =
λos

32 Kn2
os

(
∆T

L

)[
1 + Φ2

cs

(1− Φcs)
2 + 4Cos Knos

]
− A

2
(lnRos + lnRic)

+
A

Φ2
cs

[
CosΦcs (1− Φcs)

2 Knos

]
(3.26b)

Γ′ =
Φ2
cs (1 + Φcs) (1 + 4Cos Knos)

(1− Φcs)
[
Φcs (1− Φ2

cs) 2Cos Knos + (1− Φcs)
2 Kn2

os−Φ2
cs ln Φcs

] (3.26c)

where Φcs = Ric/Ros, and Knos = `os/ [2 (Ros −Ric)] is the Knudsen number for the outer
shell.

Since total heat flow along the outer nanowire is defined as

Q(tot)
os =

∫ Ros

Ric

2πrqos (r) dr

from Eqs. (3.24) and (3.26) the following effective thermal conductivity for the outer shell
arises ?:

λos,eff =
λos

16 Kn2
os

{
−Γ′

2

[
1 +

(
1 + Φ2

cs

1− Φ2
cs

)
ln Φcs

]
+ 2Cos Knos

[
1 +

Γ′

2

(1− Φcs)
2

Φcs

]}
(3.27)

which also represents the effective thermal conductivity (λt,eff) of a tubular nanowire
with Ric as the inner radius, and Ros as the outer radius, whereas the effective thermal
conductivity of the core-shell nanowire may be obtained by Eqs. (3.23) and (3.27) as

λnw,eff = λic,effΦ2
cs + λos,eff

(
1− Φ2

cs

)
(3.28)

3.2.4 Thin layers and nanowires with rectangular cross sections

The phonon-hydrodynamic approach also allows to derive a theoretical model for the
effective thermal conductivity in thin layers, or in nanosystems the cross section of which
shows a rectangular shape (see Fig. 3.6).
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Figure 3.6: Thin layer with a rectangular cross section. The system of coordinates in each
transversal section is such that x ∈ [−w/2;w/2], and y ∈ [−h/2;h/2]. The length L of
the layer is much larger than h and w. The heat is flowing along the longitudinal axis z.

For small values of Kn (defined in this case as Kn = `p/h), if the width w of the
cross section is much larger than its thickness h, than Eq. (3.3) yields the following bulk
heat-flow profile (i.e., when the heat flux at the walls vanishes) ?

qb (y) = λ

1−
cosh

(
y
`p

)
cosh

(
1

2 Kn

)
 ∆T

L
(3.29)

where y is the axis perpendicular to the parallel plates, and spans the range from −h/2
to h/2. The use of the boundary condition (3.8a) turns out that the wall contribution in
this case is

qw (y) = λ

C tanh

(
1

2 Kn

) cosh
(
y
`p

)
cosh

(
1

2 Kn

)
 ∆T

L
(3.30)

and, consequently, the effective thermal conductivity reads ?

λeff (Kn) = λ

{
1− 2 Kn tanh

(
1

2 Kn

)[
1− C tanh

(
1

2 Kn

)]}
(3.31)

For increasing values of Kn, Eq. (3.31) tends to the limit value ?

λeff (Kn) =
λ

12 Kn2 (1 + 6C Kn) (3.32)

which predicts a linear decrease of the effective thermal conductivity in terms of Kn−1

whenever Kn→∞, still complying with experimental measurements ?????.
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If one relaxes the hypothesis w � h, the following expression for the effective heat
conductivity can be achieved ?

λeff (Kn) =
λ

2 Kn

 1

6 Kn

1− 192

π5
γ
∞∑
t,odd

1

t5
tanh

(
tπ

2γ

)+ C

1− 8

π3
γ
∞∑
t,odd

1

t3
tanh

(
tπ

2γ

)
(3.33)

γ being the nondimensional ratio h/w. Up to the first-order approximation in γ, Eq. (3.33)
reduces to

λeff (Kn) =
λ

12 Kn2 [1− 0.630γ + 6C Kn (1− 0.271γ)] (3.34)

Note the very close behavior of the theoretical prediction of λeff in Eq. (3.32) and in
Eq. (3.34), the sole difference between these behaviors resting on the presence of the shape
factor γ. Increasing values of γ yield a reduction in the effective thermal conductivity,
for a given value of h (or of Kn), because this means a reduction of w and, therefore, an
increase of the phonon-wall collisions with the lateral walls.

Whenever γ ≡ 1, Eq. (3.34) turns out the effective thermal conductivity in the case of
square cross section, i.e.,

λeff (Kn) =
λ

32.4 Kn2 (1 + 12C Kn) (3.35)

At the very end, let us observe that in thin layers the effective thermal conductivity
along the layer (i.e., that for an in-plane heat transfer) is not the same as that perpendic-
ular to the layer (i.e., that for a cross-plane heat transfer) which also includes the thermal
resistance of the walls ?.

3.2.5 Thin channels filled with superfluid helium

As well as thermal waves, phonon hydrodynamics was first discovered in superfluid
liquid helium ????. Here we will only give a brief introduction to the problem of heat
transport along thin tubes, which is in fact one of the richest and most challenging topics
in heat transfer ???.

In steady states, the heat transfer in turbulent liquid helium ????? may be described
by an equation analogous to Eq. (3.3), namely, by

αLkq = −A∇T +B∇2q (3.36)

where A = ρnρTS
2 with ρn as the mass density of the normal component of the fluid and

ρ the total mass density, and B = ηn as the viscosity of the normal component. In the
framework of EIT, superfluid helium is considered as a single fluid with the heat flux as
an internal variable ?. In the more usual two-fluid model by Landau and Tisza ???? it
is considered to be composed of a normal viscous component and a superfluid one. Their
densities, respectively, are ρn and ρs in such a way that ρ = ρn + ρs. The velocities of
two components, instead, are vn and vs, and are related to the barycentric velocity v as
v = ρnvn + ρsvs.

In the coefficient A in Eq. (3.36) S means the entropy density per unit mass which
is carried out by the normal component, and the heat flux is identified as q = ρnTSvn.
Thus, the two terms in the right-hand side of Eq. (3.36), in steady states, come from the
hydrodynamic equation ∇p = ηn∇2vn for the viscous component, complemented by the
thermodynamic relation SdT = vdp, from which it follows ∇p = ρS∇T .
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The term of the left-hand side of Eq. (3.36), instead, accounts for the internal friction
between normal fluid and the quantized vortices arising in the turbulent. Therein, L is the
vortex length density, k is the quantum of vorticity (given by k = h/mHe with h being the
Planck constant, and mHe the atomic mass of helium), and α is a friction coefficient. The
value of L is zero for small velocities, namely, when vnd/k < Req1 with d as the diameter
of the channel and Req1 a critical value of the quantum Reynolds number.

Usually, one takes for vn (and therefore, for q) the non-slip boundary conditions.
Nevertheless, at sufficiently low temperatures and sufficiently narrow channels, when the
phonon mean-free path becomes comparable to the diameter of the channel, a slip flow
arises ?. However, the problem is more complicated than in solid, because L itself is
proportional to the square of the heat-flux modulus for sufficiently large values of q, the
situation in which the turbulence is fully developed. For a detailed treatment on this topic
we refer the readers to Refs. ??.

3.3 Phonon backscattering and roughness dependence of
the effective thermal conductivity

In previous section we observed that boundary conditions may be interpreted in micro-
scopic terms on the basis of phonon-wall interactions, which is an active topic of research
in heat transport in nanosystems ???. The relevance of such boundary conditions has been
fostered by observations of a drastic reduction in the thermal conductivity in rough-walled
nanowires as compared with that of smooth-walled ones ???. In this way, the analysis
of boundary conditions becomes a crucial aspect of heat transport in nanosystems, and a
challenge for thermodynamic descriptions ???. The role of boundary conditions is also an
interesting problem in extended thermodynamics ???????, which has higher-order mo-
ments of the distribution function as independent variables of the description, in addition
to the classical thermodynamic variables.

To extend to rough-walled nanosystems (wherein the phenomenon of backscattering
may occur), the theoretical proposal in Eq. (3.8b) can be used to evaluate the wall con-
tribution to the local heat flux. From the physical point of view, the negative sign in
the second term (derived from kinetic theory) allows the possibility to describe phonon
backscattering at the walls, because it gives a contribution which has an opposite sign to
that of the first term, which goes in the same direction as the bulk heat flux. For some
specific geometries of the rugosity of the wall, the heat carriers (or phonons, in this case)
could bounce backwards, and go in a direction opposite to that of the bulk heat flux (see
Fig. 3.1).

In the case of a nanowire with a circular cross section, in steady states and whenever
the radius is much smaller than the phonon mean-free path (i.e., Kn > 1), the combination
of the wall condition (3.8b) and the parabolic heat profile (3.11) gets

qw =
λ

2`p
(CR− α`p)

∆T

L
(3.37)

which becomes negative for values of the mean-free path such that `p > `c, being `c =
CR/α a critical mean-free path (or, alternatively, for radius R smaller than α`p/C).

Consequently, the local overall heat-flow profile q (r) is given by

q (r) =
λ

4`2p

(
R2 − r2 + 2C`pR− 2α`2p

) ∆T

L
(3.38)
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which predicts the possibility of finding a negative value of the local heat flux in some
regions of the system.

Referring the readers to Sec. 3.3.3 for a deeper analysis of this situation, let us now
focus our attention on effective thermal conductivity, which from Eq. (3.38), turns out to
be ?

λeff =
λ

8 Kn2

(
1 + 4C Kn−4αKn2

)
(3.39)

wherein backscattering is related to the coefficient α, whereas specular and diffusive scat-
tering are to the coefficient C (see Fig. 3.1).

3.3.1 Roughness dependence of the wall coefficients

Since C and α play a very important role, it is natural to go deeper in their physical
insight. To do this, we start to assume that the roughness of the wall is described by
two parameters: ∆ which is the root-mean square value (rms) of the roughness fluctua-
tions, and D which is the average distance between roughness peaks ?. In terms of these
parameters the coefficients C and α can be modeled as ?

C = C ′
(

1− ∆

D

)
α = α′

∆

D

(3.40)

where C ′ and α′ are numerical dimensionless functions, dependent on temperature, but
independent on ∆ and D. Indeed, when ∆/D → 0 (or in the limit case when ∆ = 0 nm),
no backscattering is expected, but only specular and diffusive scattering. Therefore α→ 0
when ∆/D → 0. On the other side, when D = ∆, the surface has no flat regions,
but it is completely rough, in which case C = 0 is expected. In Eqs. (3.40) we have
assumed the simplest dependence for C and α on ∆/D. Another interesting proposal
for that coefficient may be found in Ref. ?. Moreover, in Eqs. (3.40) the coefficients
C ′ and α′ depend, instead, on temperature, because a surface is considered smooth (or
rough) when the characteristic height ∆ of the roughness is smaller (or higher) than the
dominant phonon wavelength, which depends on temperature ?. This dependence, as well
as the dependence on temperature of λ and `p, is necessary to describe the temperature
dependence of the effective thermal conductivity.

When the assumptions (3.40) are made, the theoretical prediction in Eq. (3.39) be-
comes

λeff =
λ

8 Kn2

(
1 + 4C ′Kn

)
− λ

2 Kn

(
∆

D

)(
C ′ + α′Kn

)
(3.41)

In order to face the theoretical proposal in Eq. (3.41) with experimental observations,
we use the effective thermal conductivity for smooth and rough Si nanowires of different
(circular) cross section ???. Some values of λeff at different temperatures, both in the
absence of backscattering and in its presence, arising from experimental data in silicon
nanowires are quoted in Tabs. 3.2 and 3.3, respectively. In particular, in Tab. 3.2 three
different radii are considered (i.e., R = 115 nm, R = 56 nm, and R = 37 nm), whereas in
Tab. 3.3 two other different radii are considered (i.e., R = 115 nm, and R = 97 nm). We
refer to Tab. 1.1 for the experimental values of the bulk thermal conductivity and of phonon
mean-free path of silicon at several temperatures. In that table, `p has been obtained
from λ by using the relation λ = cvv`p/3. The obtained value of `p will be a characteristic
mean-free path incorporating the several bulk collisions, but not the boundary collisions.
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Table 3.2: Experimental values of the effective thermal conductivity (W/mK) in silicon
nanowires with different radii R (nm) and at several values of temperature (K) in the
absence of backscattering (∆ = 0 nm). The experimental data have been inferred from
Ref. ?.

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

R λeff λeff λeff λeff λeff λeff λeff

115 46 45 40 27 19 13 5
56 28 23 21 16 11 7 3
37 17 14 11 8 6 4 1.7

Table 3.3: Experimental values of the effective thermal conductivity (W/mK) in silicon
nanowires with different radii R (nm) and at several values of temperature (K) in the
presence of backscattering (∆ = 3 nm, and D = 6 nm). The experimental data have been
inferred from Refs. ??.

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

R λeff λeff λeff λeff λeff λeff λeff

115 7.8 5.7 4.9 3.3 2.5 1.8 1.3
97 5.3 3.8 3.2 2.1 1.7 1.2 0.9

Remember that, from a microscopic point of view, the phonon mean-free path depends on
the phonon frequency and on the kind of collisions one is considering. The characteristic
value used here is the simplest estimation from macroscopic experimental data.

As a tentative model of the variations of C ′ and α′ with temperature in the interval
between 30 K and 150 K we take the following functions

C ′ (T ) = C3T
3 + C2T

2 + C1T + C0 (3.42a)

α′ (T ) = α3T
3 + α2T

2 + α1T + α0 (3.42b)

wherein an empirical fit with experimental observation suggests{
C3 = 4.0 · 10−6 K−3, C2 = −1.1 · 10−3 K−2, C1 = 9.4 · 10−2 K−1, C0 − 1.5
α3 = 1.1 · 10−7 K−3, α2 = −6.4 · 10−6 K−2, α1 = 4.6 · 10−4 K−1, α0 = −1.0 · 10−2

(3.43)
The use of Eq. (3.41), joined with the values of C ′ and α′ obtained by Eqs. (3.42)

and (3.43), allows to predict the results of Tab. 3.4 in the absence of backscattering,
and those of Tab. 3.5 in the presence of backscattering. The results reasonably fit with
experimental data.

The value of the effective thermal conductivity, arising from the model above, in the
case of a nanowire with R = 115 nm at 150 K is very different from the experimental one,
both in the absence of backscattering, and in the presence of it. This is a logical conse-
quence of the simplifying assumptions we made to derive Eq. (3.41). That discrepancy, in
fact, is due to the relative small value of the corresponding Knudsen number, which in this
case is Kn = 1.57. Remember that Eq. (3.41) is only valid for Kn� 1, and when Kn ≤ 1
Eq. (3.17) should be used instead of Eq. (3.14). Since the mean-free path becomes longer
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Table 3.4: Theoretical predictions for the value of the effective thermal conductivity
(W/mK) in silicon nanowires with different radii R (nm) and at several values of tem-
perature (K) in the absence of backscattering (∆ = 0 nm). These values are obtained by
using Eq. (3.41).

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

R λeff λeff λeff λeff λeff λeff λeff

115 68.3 45.5 40.3 27.6 19.0 11.7 6.4
56 28.1 20.9 19.4 13.4 9.2 5.7 3.1
37 17.5 13.6 12.7 8.8 6.1 3.8 2.1

Table 3.5: Theoretical predictions for the value of the effective thermal conductivity
(W/mK) in silicon nanowires with different radii R (nm) and at several values of temper-
ature (K) in the presence of backscattering (∆ = 3 nm, and D = 6 nm). These values are
obtained by using Eq. (3.41).

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

R λeff λeff λeff λeff λeff λeff λeff

115 15.1 6.9 6.5 4.2 2.3 1.3 2.0
97 5.4 2.4 3.1 2.0 0.8 0.4 1.5

at lower temperatures, instead, the Knudsen number becomes sufficiently high for lower
temperatures even for the nanowire of radius 115 nm and, of course, for all the thinner
nanowires. This justifies the good agreement between experimental data and theoretical
one in all the other cases.

3.3.2 Effective phonon mean-free path in nonlocal effects

Note that in Eq. (3.3) one could have alternatively written

q = −λ∇T + ã2`2p∇2q (3.44)

with ã (T ) being a dimensionless function of temperature, and `p still indicating the char-
acteristic phonon mean-free path following from the relation λ = (1/3) cvv`p. In this case,
instead of Eq. (3.8a) for example, one would have

qw = ãC`p

∣∣∣∣∂qb

∂ξ

∣∣∣∣ (3.45)

and two adjustable functions to fit experimental data (that is, ã (T ) and C (T )) may be
used. In previous section we have chosen to use the simplest proposal, namely, ã (T ) ≡ 1
with C (T ) (and also α (T ) in the case of rough walls with backscattering) with the sole
adjustable parameter. This is sufficient for a plausible description of experimental results,
as we previously underlined. Indeed, for an higher precision, one may also use the other
adjustable parameter ã (T ). In this case, one can take for the parameter C in Eq. (3.8)
the microscopic expression ??????)

C = 2

(
1 + P

1− P

)
(3.46)
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with P (which may vary between 0 and 1) the relative contribution of specular phonon-
wall collisions as compared with the total number of specular and diffusive phonon-wall
collisions. The dependence of P with temperature is relatively small. Since P is not known
a priori, but depends on the manufacturing technique, C should also be determined from
experimental data, but, if the interpretation (3.46) is used for C, it should be higher than
2, and the dimensionless function ã (T ) should be different than 1. If this is done, one
finds values of ã (T ) between 5 and 15 in the case of silicon, thus indicating that the choice
in Eq. (3.44) - alternative to Eq. (3.3) - could be closer to some proposals in which the
characteristic length related to nonlocal effects is one order of magnitude higher than the
effective mean-free path derived from the bulk thermal conductivity.

Note further that the consequent re-scaled value of the phonon mean-free path ã (T ) `p (T )
would be a consequence of the fact that phonons of different frequencies contribute in a dif-
ferent form to the first and second term of Eq. (3.3). In other words, in a more microscopic
setting one could consider Eq. (3.3) in term of a phonon frequency ωp as

q (ωp) =− λ (ωp)∇T + `2p (ωp)∇2q (ωp)

=− cv (ωp) v (ωp) `p (ωp)

3
∇T + `2p (ωp)∇2q (ωp) (3.47)

with q (ωp) being the contribution of phonons of frequency ωp to the local heat flux, in
such a way that q =

∫
q (ωp)n (ωp) dωp, and λ =

∫
λ (ωp)n (ωp) dωp, where n (ωp) is the

number of phonons of frequency between ωp and ωp + dωp per unit volume of the system.
When integrating Eq. (3.47) over the frequency, one would obtain Eq. (3.45) with ã 6= 1.

Here we will not deal longer with this aspect, which should deserve more attention in
future analyses.

3.3.3 Phonon backscattering and conductor-insulator transition

The use of the boundary condition (3.8b) pointed out that the theoretical heat flow
profile may be not everywhere positive, as one would naively imagine. In fact, from
Eq. (3.38) one recovers that there may be some points wherein the local overall heat flow
results to be negative. In particular, for mean-free path values larger than the critical
value `c, the local heat flux will be negative in the annular region defined by

R

√
1− 2α (`c + ∆`) ∆`

R2
< r < R (3.48)

with ∆` = `p − `c. From the physical point of view, in this annular region the heat flux
goes from lower temperature to the higher one.

In Figs. 3.7 the overall local heat flow profile in nanowires is qualitatively plotted as
a function of the radius r. The parabolic profile of Fig. 3.7a is still obtained by assuming
a zero tangential heat flux on the walls. In Fig. 3.7b, instead, the effects of the boundary
condition (3.8b) have been taken into account, and the overall local heat flow does not
longer assume positive values everywhere, i.e., there is an annular region wherein it goes
backwards.

It seems useful to note that a negative value of q (r) in the annular region (3.48) does
not imply that the total heat flow Qtot along the system is negative. In the present case,
from Eq. (3.38), it results in

Qtot =

∫ R

0
2q (r) dr =

πR4λ

8`2p

[
1 + 2C

`p
R
− 2α

(
`p
R

)2
]

∆T

L
(3.49)
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Figure 3.7: Local heat-flow profile in nanowires. In Fig. 3.7a the longitudinal heat flow
vanishes on the walls. The vertical dash-dotted line X in both figures represents the
transversal section wherein the local heat flux is evaluated. In the presence of a non-
vanishing heat flow qw on the lateral walls, the heat-flow profile does not start from q = 0
on the walls (Fig. 3.7b), but from qw. Since in this case the local heat-flow profile may
start from a negative value (due to phonon backscattering), there is a region near the walls
where it results to be negative, namely, from the hottest region to the coldest one.

the corresponding effective thermal conductivity being given by Eq. (3.39). For Kn lower
than the critical value

Knc =
C

2α

(√
1 +

α

C
+ 1

)
(3.50)

the effective thermal conductivity (3.39) is positive, and vanishes for Kn ≥ Knc.
It is interesting to compare now the results of the first-order slip model (α = 0) with

that of the higher-order slip model (α 6= 0). Indeed, if the ratio R/`p becomes smaller
than 1/Knc the effective thermal conductivity (3.39) vanishes, as a negative value is not
physically consistent with the global formalism of the second law. This implies that if the
radius R of the nanowire is such that the relation

R < Rc =
2α`p
C

(√
1 +

α

C
+ 1

)−1

(3.51)

holds, then the system at hand is no longer a heat conductor, but becomes an insulator.
This recalls the idea of the metal-insulator Anderson transition ??. This transition is
found in amorphous systems, where the atomic disorder is so high that extended electron
states become suppressed and only localized electron states remain, which do not allow a
long-range electron current. In our case, and on microscopic grounds, this feature would
be found when the backwards reflections of the phonons on the walls (which are related to
the coefficient α as observed above) are so important that heat cannot progress along the
nanowire, i.e., only localized phonon states are possible. A deeper consideration of this
analogy, at the microscopic level, could be interesting.

Another physical possibility of reducing the heat flux is the localization due to quantum
effects. Indeed, when the radius of the nanowire becomes very small, in view of the
Heisenberg principle it follows that the transversal speed of the particles must become
high, thus reducing the energy going along the nanowire, as a fraction of the total energy
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Figure 3.8: Comparison of the behavior of the effective thermal conductivity (3.39) in a
silicon nanowire in terms of the Knudsen number, for three different slip boundary condi-
tions. The figure plots the results predicted by the Maxwell slip model (i.e., Eq. (3.8a))
and those predicted by higher-order slip models (i.e., second-order slip model (3.8b) with
α = 1/2, and α = 2/9).

will be removed from the longitudinal dimension to feed the energy of the transversal
direction. Thus, even in smooth walls, for sufficiently thin nanowires, quantum localization
effects could strongly reduce the total heat flux beyond the reduction implied by classical
collisions of phonons with the walls.

In Fig. 3.8 we compare the effective thermal conductivity following from the first-order
condition (3.8a) with that from second-order conditions (3.8b). For the sake of illustration,
in that figure we have supposed C = 1, while α = 0, α = 1/2 and α = 2/9. Moreover, we
supposed that the nanowire is made of silicon at 300 K. In Fig. 3.8 the conductor/insulator
transition can be clearly seen whenever Eq. (3.8b) is used.

It is also interesting to note that for Knudsen numbers such that

C

2α
≤ Kn ≤ Knc (3.52)

there will be a local zone wherein the classical thermodynamic restriction for the entropy
production

σ
(s)
le = q · ∇T−1 ≥ 0 (3.53)

is not fulfilled, even if λeff is positive. In other words, the second law is fulfilled in the
bulk, but it is apparently violated in the external annular region (3.48). That way, the
arising question is whether this situation is admissible, or not. Indeed, this problem is
circumvented if one looks at the theories beyond local-equilibrium, incorporating nonlocal
terms, which show a non-trivial contribution to the entropy production. In particular, in
EIT ?? the entropy production is

σ
(s)
eit = q · ∇T−1 +

`2p
λT 2

q · ∇2q +
`2p
λT 2
∇q : ∇q (3.54)
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namely, it is locally allowed that the Eq. (3.53) be not fulfilled, without violation of
second law of thermodynamics. In particular, introducing the parabolic heat profile (3.38)
in Eq. (3.54) we have

σ
(s)
eit =

λ

4`2p

(
∆T

T

)2 ( r
L

)2
(3.55)

that is, the entropy production is everywhere positive in the system at hand. Thus, the
boundary condition (3.8b) is admissible in the framework of EIT.

3.3.4 A qualitative microscopic interpretation of C ′ and α′

The forms (3.42) for the coefficients C ′ and α′ are useful from a practical point of view,
but they are not illustrative about the microscopic processes leading to a modification of
such parameters with the temperature T . Thus, in this section, we will try to understand
the most relevant aspects of this dependence. To do so, first of all, it is convenient to
plot the behavior of both coefficients in terms of temperature, as described by Eqs. (3.42)
and (3.43). In Fig. 3.9 the behaviors of C ′ (T ) and α′ (T ) are shown. The most salient
features in Fig. 3.9 are the presence of a maximum for C ′ (T ) around 60 K, and the increase
of α′ (T ) beyond a temperature of the order of 30 K. Note that the two sketches in Fig. 3.9
have a different vertical scale, the one for C ′ (T ) going from 0.1 to 0.9, and the one for α′ (T )
going from 0 to 0.35. Now, we will try to qualitatively understand these two outstanding
features.

A relevant quantity in the phonon-roughness interaction is the phonon wavelength.
The most probable phonon wavelength λphonon is given, from the Planckian form of the
distribution function, by a value of the order of λphonon ≈ 8.5 · 10−8 mK /T (K). This
expression comes from the form of the Planck distribution function for phonons, and is
the analogous of Wien law for the most probable photon wavelength λphoton, namely,
λphoton ≈ 2.9 · 10−3 mK /T (K), but with the sound velocity in the material (which for
silicon is of the order of 8.5 · 103 m/s), instead of the speed of light in vacuo.

The effects of phonon backscattering are expected to be especially relevant when the
most probable phonon wavelength λphonon is lower than the root-mean square of the rough-
ness fluctuations ∆. Since λphonon decreases for increasing temperature, it is expected that
the backscattering term should increase for increasing temperature. For low temperatures,
such that λphonon > ∆, the wall should appear smooth to phonons, and α′ should vanish,
practically. Since in the experimental values we are referring to ∆ = 3 nm, the temper-
ature T0 below which the roughness should become irrelevant will be of the order of the
ratio 8.5 · 10−8 mK /3 · 10−9 m, namely, T0 ≈ 27 K. This value is of the order of the
temperature value below which Fig. 3.9b yields very small values for α′. It is expected
that after a deep increase of this parameter for rising temperatures, the value of α′ will
reach an asymptotic value when λphonon is sufficiently smaller than ∆ (let us say, an order
of magnitude smaller, implying a temperature of the order of 270 K). The temperature
dependence of α′ (T ) could alternatively be assumed to be α′ (T ) = α′0 for T < T0, with
T0 = 8.5 · 10−8 mK /∆ (m), and α′ (T ) = α′0 + α′1 (T − T0)2, up to a saturation value for
temperatures higher than 10T0. Note that we take this indicative value because it cor-
responds to a characteristic phonon wavelength of the order λphonon ≈ ∆/10, an order
of magnitude less than the peak rugosity. We comment about this simple guess only to
illustrate how the form of α′ (T ) could depend on ∆.

The maximum in the coefficient C ′ (T ) could be tentatively interpreted as a resonance
between the typical phonon wavelength and the typical separation length D between ru-
gosity peaks of the wall. The peak in Fig. 3.9a is found approximatively at T = 60 K,
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Figure 3.9: Behavior of the coefficients C ′ and α′ in Eqs. (3.40) as functions of temperature.
These results, arising from Eqs. (3.42) and (3.43), refer to nanowires made by silicon.

whereas the vanishing of α′ (T ) in Fig. 3.9b is approximatively found at T = 30 K. Remem-
bering that the experimental values for λeff in Tab. 3.3 correspond to D = 6 nm, we have
that the mentioned resonance would be expected for λphonon ≈ 2L ≈ 12 nm. However,
using the above expression for λphonon, one obtains a temperature of the order of 7 K, i.e.,
one order of magnitude smaller than the observed peak at 60 K. This discrepancy could
be partially mitigated if one takes into account that D is an average separation distance
between peaks, whose actual separation distance may be considerably smaller than this
value. If the resonance is related not to the average value between higher peaks, but to the
actual separation between peaks, the resonance would appear at higher temperature and
would be relatively wide. Thus, whereas the temperature at which the coefficient α′ (T )
begins to increase is connected to the height of the roughness peaks, the maximum in
the coefficient C ′ (T ) would be related to the minimum separation between peaks. In this
sense, the coefficients C ′ (T ) and α′ (T ) are not expected to be universal, but dependent
on the features of the roughness and the phonon wavelength.

According to the previous interpretation, it could seem that C ′ should not depend
on temperature for smooth walls, because the resonance effects mentioned above would
be lost. However, there is another source of temperature variation of the coefficient C ′.
This is that the diffuse scattering should depend on temperature, as it is the result of the
re-emission of the particle from the wall with a probability distribution function for the
velocity which corresponds to the equilibrium distribution function with the temperature
of the wall. In contrast, the specular collisions are not expected to depend on temperature.
This makes that the relative role of specular and diffusive collisions changes with tempera-
ture. This dependence could be studied by analyzing the variation of the coefficient C ′ (T )
with temperature for smooth walls. After having this information, one should superpose
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Table 3.6: Effective thermal conductivity (W/mK) in silicon nanowires at several values
of temperature and for three different radii (nm) for smooth-walled nanowires (i.e., when
∆ = 0 nm, or when D → ∞). The values are obtained by using Eqs. (3.41) and (3.56),
namely, the coefficient C ′ is not influenced by the rugosity.

T = 150 T = 100 T = 80 T = 60 T = 50 T = 40 T = 30

R λeff λeff λeff λeff λeff λeff λeff

115 68.0 47.4 38.6 27.4 19.4 12.1 6.1
56 27.9 21.9 18.5 13.3 9.4 6.0 3.0
37 17.4 14.2 12.1 8.7 6.2 3.9 1.9

to it the possibility of a a resonance due to the effects discussed above.
The behavior of C ′ (T ) in Fig. 3.9a arises from Eq. (3.42a) with the identification in

Eqs. (3.43), i.e., by taking into account the data of smooth- as well as of rough-walled
nanowires. The result is satisfactory from the point of view of the conductivity results.
However, one could ask what would be the difference for C ′ (T ) if it is computed separately
for smooth-walled (i.e., when ∆ = 0 nm, or when D →∞) and for rough-walled nanowires
(i.e., when ∆ 6= 0 nm), because, according to our interpretation, the geometry of the
roughness has a relevant role in the temperature dependence of C ′ (T ). Thus, we have
obtained again C ′ (T ) separately for smooth- and rough-walled nanowires. In the former
case, instead of Eq. (3.42a), we have supposed

C ′ (T ) = C4T
4 + C3T

3 + C2T
2 + C1T + C0 (3.56)

where the comparison with the experimental data in Tab. 3.2 allows us to obtain that
C4 = − 2.9 · 10−8 K−4, C3 = 1.4 · 10−5 K−3, C2 = −2.2 · 10−3 K−2, C1 = 1.4 ·10−1 K−1,
and C0 = −2.3. With this type of parametrization, it is possible to obtain the values of the
effective thermal conductivity of Tab. 3.6. These values still well fit with the experimental
data in Tab. 3.2. However, these results are only slightly different from those shown in
Tab. 3.4, and probably indistinguishable from them once the experimental error bars are
taken into account. Thus, the parametrization in Eq. (3.56) has mainly a theoretical
interest, in showing that the qualitative behavior of C ′ (T ) for smooth-walled nanowires
agrees with the expected features following from our simple qualitative interpretation of
the resonance between phonons and roughness-peak separations. On the practical side,
the parametrization in Eq. (3.42a) shown in Fig. 3.9 and interpreted in this section, may
be satisfactorily used.

In Fig. 3.10 we plot the behavior of C ′ (T ) arising from Eq. (3.56). The behavior of
C ′ (T ) plotted in Fig. 3.10 is consistent with our interpretation of a resonance related
to the minimum separation between roughness peaks. In smooth-walled nanowires this
separations tends to infinite, and therefore this resonance will take place for extremely
low temperatures, tending to zero. Thus, it is logical to have a maximum at very low
temperature and decreasing values for higher temperature. Furthermore, this behavior
is also consistent with the Ziman formula for the specularity parameter p for a surface

with random roughness of height ∆, namely, p = exp
[
−16π3 (∆/λphonon)2

]
, assuming

that ∆ is not strictly zero but simply very small, and which predicts a fast decay of
C ′ (T ) for increasing temperature ??. Indeed, it is logical to expect that C ′ (T ) should
be approximately proportional to the specularity parameter, which is zero for totally
diffuse scattering. In the latter case, the number of forwards and backwards phonons
emitted by the wall is equal, implying a vanishing heat flux along the wall. Since at
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Figure 3.10: Behavior of the coefficient C ′ as function of temperature in the case of smooth
walls (i.e., when ∆ = 0 nm, or when D → ∞). This behavior follows from Eq. (3.56).
Since in this case the separation length between roughness peaks tends to infinite, the
resonance manifests its effects only at very low temperatures.

high temperatures diffuse scattering predominates over the specular one, the decrease of
C ′ (T ) is to be expected. However, in the Ziman model there is no backscattering, and
this implies vanishing wall heat flux. When one considers backscattering effects described
by the coefficient α given by Eq. (3.40), instead, one may have a phonon back-flow on the
walls. Of course, the maximum value of this back-flow cannot be higher than the forwards
phonon flow driven by the longitudinal temperature gradient.

3.4 Phonon-wall interactions and frequency-dependent ther-
mal conductivity in nanowires

Memory effects may drastically influence the behavior of nanodevices at high frequen-
cies ???. In the simplest description of relaxational effects in the bulk for phonon heat
transport, the heat flux q is given by the MCV equation (1.6), the Fourier transform of
which leads an effective frequency-dependent thermal conductivity of the form

λeff (ω) =
λ

1 + (ωτR)2 (3.57)

Equation (3.57) points out that the frequency-dependent thermal conductivity is re-
duced with respect to that of steady states. In fact, since the steady-state thermal con-
ductivity is of the order of λ = (1/3) cvv

2τR, an increase in τR yields both an increase of
it (which is linear in the relaxation time τR and independent of frequency ω), but it also
increases the denominator of Eq. (3.57) (in a quadratic way for high enough frequency)
and therefore it reduces the thermal conductivity. In nanowires, the situation is still more
complex and interesting. We already observed that the steady-state thermal conductivity
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is much reduced with respect to the bulk thermal conductivity. In the high-frequency
regime, there is a further reduction analogous to that appearing in Eq. (3.57), but more
complicated, because it will also depend on the collisions with the lateral walls, which are
not included in Eq. (3.57). Thus, to have a detailed estimation of high-frequency thermal
conductivity in nanosystems it is needed to go beyond the usual steady-state analyses and
incorporate both the inertia of heat and the dynamical aspects of the phonon collisions
with the walls.

The frequency-dependent effective thermal conductivity was calculated in Ref. ? for
cylindrical nanowires by using a continued-fraction expansion for the frequency and wavevector-
dependent thermal conductivity. However, in Ref. ? the role of the lateral surfaces was
not considered.

Phonon hydrodynamics also allows a more intuitive description both of phonon trans-
port, and of the role of phonon-wall collisions in frequency-dependent situations. To show
this, let us consider the following sinusoidal varying perturbations for the difference in
temperatures (applied at the ends of a nanowire) and for the bulk heat flow:

∆T (ω; t) = ∆T̃ eiωt (3.58a)

qb (r;ω; t) = q̃b,0

(
R2 − r2

4`2p

)
eiωt (3.58b)

The form in Eq. (3.58a) considers that the temperature only depends on the longitu-
dinal position, but is homogeneous across every transversal area. The form in Eq. (3.58b)
for the perturbation of the flux, instead, assumes that the bulk heat-flow profile keeps
essentially the parabolic form corresponding to the Poiseuille phonon flow, but with an
amplitude changing periodically, instead of being directly given by the steady value −λ∇T ,
as in the steady-state solution. Note that the parabolic form for the heat flux profile in
nonequilibrium state is not necessary, but it is a simplifying assumption. In fact, the
detailed form of the profile is not practically very relevant, because in realistic situations
only the total heat flux Qtot across the whole transversal section may be measurable, but
not its radial dependence. Indeed, one could also assume that the bulk heat flow depends
on space and expand this variation in spatial Fourier series across the cylinder. This would
contribute with higher harmonics to the decay, which could be studied in the future, but
which presumably will have less relevance than the lowest-order term we are studying here.

When Eqs. (3.58) are used in the combination of the local balance of specific internal
energy per unit volume (1.8) with the GK equation (1.17), then the following unsteady
bulk heat-flow profile arises ?:

qb (r;ω; t) =
(
λ+ 2iωcv`

2
p

) [ R2 − r2

4`2p + iωτR (R2 − r2)

]
∆T̃

L
eiωt (3.59)

In view of the dynamical form of the bulk heat-flow contribution (3.59), in the same
way let us suppose that the wall contribution is given by

qw (ω; t) = q̃w,0e
iωt (3.60)

wherein q̃w,0 can be obtained from the boundary condition in Eq. (3.9), with the relaxation
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time τw therein given by Eq. (3.10) ?. In this way, from Eq. (3.2) one has

λeff (ω; Kn) = Re

{
Qtot

πR2

L

∆T

}
=

2 Kn2

ω2τ2
R

[
λ ln

(
1 +

ω2τ2
R

16 Kn4

)
− 4ωcv`

2
p arctan

(
ωτR

4 Kn2

)]
+

2cv`
2
p

τR

C

2 Kn

(
λ+ 2ω2τwcv`

2
p

1 + ω2τ2
w

)
− α

2 (1 + ω2τ2
w)

[
λ

(
1 +

ω2τRτw

Kn2

)
+ 2ω2cv`

2
p

(
τw −

τR

Kn2

)]
(3.61)

It is easy to observe that in the low-frequency limit (i.e., when ωτR → 0), the frequency-
dependent effective thermal conductivity above reduces to the value of the effective thermal
conductivity in steady states (3.39), whereas in the high-frequency limit (i.e., when ωτR →
∞) one has

λeff (Kn) =
2cv`

2
p

τR

{
1 +

1

2

τR
τw

[
C

Kn
− α

(
1− τR

τw

1

Kn2

)]}
− α

2

λ

Kn2

τR
τw

(3.62)

In any way, as the role of τw is usually not considered in the frequency-dependent
thermal conductivity, one should be cautious with these preliminary results, until the
dynamical aspects of phonon collisions with the walls are better understood. Indeed, from
Eq. (3.61) it is possible to observe that the effect of τw is stronger than that of τR itself.
This is logical, because in the situation we are studying the collisions of the phonons
against the walls are much more frequent than those with other phonons or of impurities
in the bulk.
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Chapter 4
Mesoscopic description of effective
thermal conductivity in porous
systems, nanocomposites and
nanofluids

Nanosystems do not only refer to truly small systems, but also to systems characterized
by some internal microstructures giving to them some special mechanical, thermal, electri-
cal and optical properties which are very useful in practical applications. Such structures
may be nanopores, or nanoparticles, or several parallel very thin layers. By regulating the
main features of such internal structure, as for instance their characteristic size, or their
average separation distance and their spatial distribution (in the case of nanopores and
nanoparticles), as well as their thickness and the materials of nanolayers, one may control
the transport properties of those systems.

When the main geometrical features mentioned above are large as compared with the
mean-free path of the heat carriers, the thermo-mechanical properties of the corresponding
systems are well known in the framework of the classical Fourier theory. The open frontier
is to analyze such properties in the case when the aforementioned features are comparable
to (or smaller than) the mean-free path of heat carriers, in which case new frontiers emerge.

In this Chapter we describe with some detail the application of the model of phonon
hydrodynamics to nanopores materials. We also briefly furnish (that is, with less details)
some results from other theories for the thermal conductivity both of nanocomposites and
superlattices, and of nanofluids, which are the basis of many outstanding applications.

4.1 Pore-size dependence of the effective thermal conduc-
tivity

We begin our analysis by considering nanoporous materials, and in particular, porous
silicon (pSi).

The thermal conductivity of pSi has been found to decrease greatly for increasing
porosity ?????? (defined as the volume fraction corresponding to the pores), getting two
or three orders of magnitude lower than for monocrystalline silicon. These low thermal
conductivity values allow us to use this material as thermal insulator in microsensors and
microsystems ??. Furthermore, optimization of its use in optoelectronic applications, due
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to its outstanding photoluminescence properties, requires a good knowledge of its ther-
mal properties. Because of these applications, this topic has become of much interest in
nanoscale heat transport ???. The experimental results on pSi show that its thermal con-
ductivity is strongly related to the pore size at a given total porosity ?. Since an increasing
porosity may deteriorate the electron transport properties ??, it would be advantageous
if its effective thermal conductivity could be controlled by the volume fractions as well as
the characteristic size of the pores. Often this study of thermal conductivity in a porous
medium is treated from kinetic theory for phonons, or from molecular simulations.

The simplest theoretical model prescribes that the thermal conductivity of a porous
medium depends only on the porosity φ ? defined as the ratio between the volume of
pores and the volume of the hosting medium, according to the equation

λeff = λf (φ) (4.1)

wherein f (φ) means a positive-defined regular function of the porosity, whose value is
smaller than 1. Different models differ from each other in the form of this function ??????.
For example, in the so-called percolation model, a possible way of modeling that function
is

f (φ) = (1− φ)3

However, for a given porosity, the value of the radius r of the pores does also influence
the thermal conductivity, especially for very small values of r. This is logical, because
small values of r mean a high number of pores (for a given φ) and, therefore, a higher
area of the boundary between the pores and the material, thus leading to higher phonon
scattering. Of course, not all phonons are dispersed in the same way, but those with
phonon wavelength comparable to (or smaller than) the pore radius will scatter more
intensely than those with long phonon wavelengths.

A simple way to introduce this effect is to replace λ in Eq. (4.1) by λ (1 + `bulk/d)−1,
with `bulk being the phonon mean-free path in the bulk material of the hosting matrix,
and d the average separation of pores. If N is the number of the inner pores and V the
volume of the medium, d is of the order of

d ≈ 3

√
V

N
=

(
3

√
4

3

)
1
3
√
φ
r

This leads to

λeff = λ

[
1 +

(
3

√
3φ

4

)
`bulk

r

]−1

(1− φ)3

which is similar to the proposal by Sumirat et al. ?. Another proposal is that by Lysenko
et al. ?, namely,

λeff = λ

(
1 +

4

3

`bulk

r

)−1

(1− φ)3

In the present section we study the thermal conductivity of pSi from a more thermody-
namic perspective, by applying the phonon hydrodynamics to the analysis of the thermal
conductivity of porous silicon, considered as a solid matrix with the inclusion of small
insulating spheres (see Fig. 4.1 for a qualitative sketch).

Our aim is to explore the influence of the pores size on the effective thermal conductiv-
ity λeff. To achieve that task, it is possible to take advantage from classical fluid-dynamic
results ??. In fact, we previously observed that on a mesoscopic level the heat carriers be-
have as moving fluid particles, and in some occasions there is a very close relation between
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2r 

Figure 4.1: Sketch of a pSi sample. The pores are considered as insulating spheres dis-
persed in a silicon solid matrix. The pores may be randomly distributed in the matrix
(as in the picture), or have a periodic distribution (simple-cubic distribution, or a body-
centered cubic distribution). For the sake of simplicity, we suppose that all pores have the
same radius equal to r. In figure, the dimensions of the pores have been emphasized, in
order to see easily their presence. The arrow in the figure stands for the heat flux.

the equations of phonon hydrodynamics and those of classical hydrodynamics. This al-
lowed us to establish in Sec. 3.1 a sort of parallelism between the fluid-dynamic quantities
and the thermal ones.

4.1.1 Results from classical fluid-dynamics: the correction factors

Phonon-hydrodynamic approach allows us to take advantage from the classical fluid-
dynamics to analyze heat-transport problems in nanosystems. In the special case of pSi,
to account for the problem of the finite and non-vanishing thermal resistance of the non-
conducting pores in the silicon hosting matrix, here we start to model them as rigid spheres,
with radius r, moving with a given speed v in a viscous fluid with a shear viscosity η.
In fluid-dynamics, whenever the Reynolds number Re = vr/ν (ν being the kinematic
viscosity) is smaller enough, the consequent drag-force Dη, acting on the external surface
of the sphere can be estimated by the Stokes formula, i.e.,

Dη = 6πηrv (4.2)

We note that the dependence of Dη on v becomes quadratic when v gets sufficiently
high values. However, for the sake of simplicity, in the next only the linear dependence
will be considered.

When the flow becomes rarefied, the effects of a slip flow on the external surface of the
sphere must be also taken into account. This means that the aforementioned drag force is
reduced. In particular, when the sphere size is less than (or comparable to) the molecular
mean-free path, Eq. (4.2) has to be modified as follows

Dη = 6πηrv/Γ1 (4.3)
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wherein

Γ1 = 1 + 2
l

r

(
1.257 + 0.4e−1.1r/l

)
(4.4)

is the so-called Cunningham correction-factor ?. The presence of the molecular mean-free
path l in Eq. (4.4) accounts for the rarefaction effects: the higher l, the smaller Dη. In
the literature, other different proposals for this factor can be found ??.

In the case of several rigid spheres adsorbed in the gas flow, the drag on each sphere
is given by ??????

Dη = 6πηrv/ (Γ1Γ2) (4.5)

where Γ2 is a further correction factor. Considering a finite volume completely made by gas
and spheres, Γ2 depends on the distribution of the spheres and changes for a simple-cubic
distribution (SCD), or a body-centered cubic distribution (BCCD). Denoting by ϕ the
volume-fraction corresponding to the spheres, the correction factor Γ2 in those situations
is given by

Γ2 = 1− 1.76 3
√
ϕ+ ϕ (SCD) (4.6a)

Γ2 = 1− 1.79 3
√
ϕ+ ϕ (BCCD) (4.6b)

Furthermore, a random distribution of spheres (RD) is also possible, and in such a
case the correction factor Γ2 is given by the Brinkman expression ?

Γ2 =

(
1 +

3√
2

√
ϕ

)−1

(RD) (4.7)

4.1.2 Theoretical thermal conductivity of porous Silicon

For the heat-transport problem, previous results may be used as starting point to
estimate the thermal conductivity of pSi. In fact, suppose that a given amount of heat is
flowing through pSi, regarded as a silicon solid matrix with inclusion of small insulating
spheres of radius r ??. Then, the flow of phonons is hindered and reduced by the insulating
spheres. Therefore, a nonstandard thermal-drag force Tp, due to the porosity, is acting on
each single insulating sphere. In the phonon-hydrodynamic approach, for moderate values
of q, we may use the results above to estimate this force. Once the molecular mean-free
path l is replaced by the phonon mean-free path `p, as well as ϕ is replaced by φ, we get
for nonstandard thermal-drag force the following expression

Tp =
6πr`2p

Γ1Γ2λ0
q (4.8)

where Γ1 is given by Eq. (4.4) and Γ2 either by one of Eqs. (4.6), or by Eq. (4.7), depending
on the distribution of the inner pores. In the presence of a flow through a medium, the
standard thermal-drag force

Ts =
V

λf (φ)
q (4.9)

being V the volume of the system, has to be further taken into account as well. Thus, if
N is the number of the insulating spheres, the total thermal-drag force is

Tr = NTp + Ts

Since Tr balances the total driving thermal-force V∇T , due to the applied temperature
gradient, one has [

6πN`2pr

Γ1Γ2
+

V

f (φ)

]
q

λ
= V∇T (4.10)
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Note that we assumed that all pores have the same radius: in this way in Eq. (4.10)
we have expressed N in terms of the porosity φ, as N = V/ (φVs), where Vs = (4/3)πr3

is the volume of a single sphere. Then, straightforward calculations allow to obtain the
following effective thermal conductivity ?

λeff =
|Q|

A |∇T |
=

λ

1

f (φ)
+

9

2
φ

Kn2

Γ1Γ2

(4.11)

where we have considered that Q = Aq is the total heat flux, A being the transversal
area (perpendicular to the direction of propagation of the heat flux), and Kn = `p/r.
Looking at the denominator of Eq. (4.11), it is possible to distinguish clearly two different
contributions: the first one related to f (φ) which accounts for the porosity, and the second
one related to the Knudsen number Kn which is related, instead, to the characteristic size
of the pores. For low values of Kn Eq. (4.11) reduces to Eq. (4.1).

To compare the theoretical results following from Eq. (4.11) with experimental obser-
vations, in Tab. 4.1 we report experimental data for the thermal conductivity of pSi at
the room temperature, for different porosity and pores’ radii. In the same table, also the
theoretical results, following from the relation λeff = λ (1− φ)3, are quoted. This way the
importance of accounting for the role of the pores radius in the theoretical predictions
may be enlighten.

Table 4.1: Experimental data on the thermal conductivity (W/mK) of porous Si for
different porosities φ (%) and pores’ radius r (nm) at T = 300 K. The theoretical data
following from the relation λeff = λ (1− φ)3 are quoted, too.

Source φ r
λeff

Experimental
λeff

Theoretical

Ref. ? 60 10 2− 5 9.47

Ref. ? 64 2 0.20 6.91

Ref. ? 71 2 0.14 3.61

Ref. ? 79 3 0.06 1.37

Ref. ? 89 5 0.04 0.19

In Tab. 4.2, instead, we show the theoretical results predicted by Eq. (4.11) for different
internal distributions of the pores and for the same cases as in Tab. 4.1.

As it is possible to see, the theoretical proposal in Eq. (4.11) has a better agreement
with experimental observation with respect to Eq. (4.1).

In Fig. 4.2 we also plot the behavior of the ratio of λeff to λ at the room temperature
and for two given values of porosity (φ = 0.2 and φ = 0.6), as a function of Kn, in the
cases of SCD, BCCD and RD of the pores.

Figure 4.2 allows to conclude that for increasing Kn the effective thermal conductivity
of pSi decreases whatever the internal distribution of the pores is. In particular, the reduc-
tion in λeff seems to be rather strong, and only partly reduced by a random distribution
of the pores.

Both from Tab. 4.1 and Fig. 4.2 it follows that, for a given porosity, the BCCD of the
internal pores seems to be the best combination whenever pSi is used for device isolation in
integrated circuits, or for heat protection of artificial satellite during atmospheric reentry.
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Table 4.2: Theoretical results on the thermal conductivity (W/mK) of pSi obtained from
Eq. (4.11). Different internal distributions of the pores (SCD, BCCD and RD), different
porosities φ (%) and pores’ radius r (nm) have been analyzed. The sample is supposed at
300 K.

Source φ r
λeff

Eq. (4.11)− SCD
λeff

Eq. (4.11)− BCCD
λeff

Eq. (4.11)− RD

Ref. ? 60 10 3.41 2.89 6.13

Ref. ? 64 2 0.92 0.73 2.17

Ref. ? 71 2 0.83 0.71 1.56

Ref. ? 79 3 0.74 0.69 0.98

Ref. ? 89 5 0.18 0.18 0.18

As final remark let’s recall that Eq. (4.4) is valid in the case of a smooth sphere,
with diffusive particles-wall collisions. When the radius of the sphere is comparable to
the particles mean-free path, the wall roughness, as well as the wall heat flux, may be
especially relevant ? (see Fig. 4.3 for a sketch of the roughness of the pore wall).

If the assumptions (3.40) are made about the coefficients C and α, the correction factor
Γ1 corresponding to this new situation may be calculated ?. As result, when r ≈ `p it is
no longer given by Eq. (4.4), but by

Γ1 =
1 + 2C

`p
r

1 + 3C
`p
r

+
3α

π

`2p
r2

(4.12)

where C and α are now suitable coefficients which may depend both on the radius of the
pores, and on the roughness of the pores ?. From the practical point of view, Eq. (4.12)
cannot be used for the correction factor Γ1 in order to evaluate the corresponding effec-
tive thermal conductivity, due to the lacking of experimental data for rough-walled pSi.
However, the increasing interest in pSi is fostering experiments on its thermal properties.
Thus, the knowledge in this area is in progress, and Eq. (4.12) may constitute the starting
point of future research.

4.1.3 An EIT approach

Other interesting mesoscopic proposals for modeling the thermal conductivity in porous
media can be found in literature ?????. In Refs. ??, in particular, the effect of the presence
of nanopores in a hosting matrix on the thermal conductivity of silicon is investigated by
referring to the thermodynamic formulation of EIT, coupled to the so-called effective
medium approximation. In such approximation which we will comment in more detail
below, without taking into account the matrix-particle boundary resistance, the effective
thermal conductivity of a matrix of material m with dispersed nanoparticles of material
p is ??

λeff = λm

[
2λm + λp + 2φ (λp − λm)

2λm + λp − φ (λp − λm)

]
(4.13)

with λm being the thermal conductivity of the hosting matrix (which coincides with the
bulk value), and λp is the thermal conductivity of the nanoparticles. In Refs. ?? it has
been proposed to assume that the pores have air inside, in such a way that λp would
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Figure 4.2: Behavior of the ratio between λeff and λ as a function of Kn at T = 300 K
arising from Eq. (4.11). Two different values of the porosity have been chosen, namely,
φ = 0.2 and φ = 0.6. Moreover, for each value of φ, the SCD, BCCD and RD of the pores
have been considered. Different length-scales have been used for both situations.

be the thermal conductivity of air. To bring into Eq. (4.13) the influence of the pore
radius, it has been proposed to use for λp an effective thermal conductivity of the form of
that introduced in Sec. 1.3 and obtained from the continued-fraction expansion ?? of the
thermal conductivity in terms of the Knudsen number, as obtained by using higher-order
fluxes in EIT formalism. Thus, Machrafi and Lebon proposed that to replace in Eq. (4.13)
the thermal conductivity λp with

λeff,p =
3λp

4π2 Kn2

[
2πKn

arctan (2πKn)
− 1

]
(4.14)

By coupling Eqs. (4.13) and (4.14), it was achieved a satisfactory agreement with
experimental results. This shows how mesoscopic approach provide different alternative
ways to deal with the effective thermal conductivity of nanoporous materials.

4.1.4 Microporous films

An analogous analysis could be made for microporous films with cylindrical holes in
them ?. Such systems are especially interesting when the holes are distributed in an
ordered periodical way. In such a case one has the so-called phononic crystals, in which
one may achieve selective effects on some given phonon frequencies because of resonances
caused by destructive interference. Such special effects are not strictly describable if it is
assumed that the mean-free path does not depend on frequency.
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r 

Figure 4.3: Pore with rough wall. The roughness may be described by the roughness
height (∆), and the separation of neighboring roughness peaks (D). Whenever a particle
hits a peak, it may be reflected backward. Otherwise it is reflected in a diffusive or in a
specular way.

4.2 Nanocomposites, superlattices and nanofluids

Besides nanoporous materials, other two kinds of systems of much interest are nanocom-
posites and nanofluids, namely, systems which are composed of a heat conducting matrix
(solid in the former case, and liquid in the latter case) and a dispersion of heat conducting
nanoparticles. Depending on the radius, size, number density and spatial distribution of
the nanoparticles (in the case of nanocomposites), one may achieve a considerable degree of
control on the transport properties of the system, either of heat, electric or thermoelectric
transport coefficients.

Some of the most well-known nanocomposites are superlattices ?, in which the particles
are distributed in a spatially ordered pattern, and the nanoparticles may be so small as
to behave as quantum dots ?????. Yet another possibility is to organize the system as an
ensemble of parallel thin layers of alternating materials. In this case, there are two source
of reduction of thermal conductivity: that due to ballistic behavior of phonons inside each
layer (if they are thin enough to be comparable to the phonon-mean free path), and that
due to thermal resistance in the interfaces. Furthermore, in metals and semiconductors,
were electrons and holes also contribute to thermal conductivity, superlattices may be
designed in such a way to strongly reduce phonon transport without reducing electron
transport, because of the widely different values of phonon and electron wavelengths.
This is especially relevant in enhancing the efficiency of thermoelectric energy conversion,
which requires to reduce as much as possible the thermal conductivity. Since the latter
us directly related to electronic thermal conductivity, the reduction of phonon thermal
conductivity (but not of the electrical one) is a way to increase such efficiency. Superlattices
made of silicon and germanium ???, or of indium arsenide and gallium antimonide ?, or
nanocomposites made of silicon dioxide or aluminium nitride particles embedded in epoxy
matrix ?? are especially well-known.

Another interesting aspects of nanocomposites may be graded systems ?, in which
the composition of the system is not homogeneous, but changes along some directions.
These systems are increasingly used in technology ????. One of their applications is
in heat diodes, to achieve some degree of rectification. We will deal a little bit with
this topic in Sec. 5.2 of Chap. 5. Further relevant application of nanocomposites is in
thermoelectricity. For instance, the alloys Bi2−2x Te3−2x Pbx, or (Bi1−x Sbx)2 Te3, with
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the stoichiometric index x changing from 0 to 1, are of interest in thermoelectric energy
generators ?. Indeed, as it will be seen in Chap. 6, the efficiency of thermoelectric energy
conversion depends on the nondimensional product ZT , with Z being the figure-of-merit.
For Bi2 Te3 and Pb Te (two of the best thermoelectric materials), ZT is maximum around
370 K and 670 K, respectively. Thus, to maximize that product along a system between
670 K and 370 K is better to use Pb Te at the hot side, Bi2 Te3 at the cold side, and
Bi2−2x Te3−2x Pbx in the middle (with x changing from 1 in the hot side to 0 in the cold
side).

Here we briefly sketch some simple ways which have been proposed to deal with the
thermal conductivity of these systems.

4.2.1 Thermal conductivity of nanocomposites

A Nanocomposite is a multi-phase solid material wherein one of the phases has a
characteristic size of the order of tens nanometers, or structures having nanoscale repeat
distances between the different phases that make up the material. For the sake of simplic-
ity, in the next we assume that the inner particles have a spherical shape and are dispersed
in a homogeneous matrix.

If the dimensions of the spheres is larger than the phonon mean-free path, then the
heat conduction is well described by the usual Fourier law with the following effective
thermal conductivity ??

λeff = λm

{
2λm + (1 + 2Y )λp + 2φ [(1− Y )λp − λm]

2λm + (1 + 2Y )λp − φ [(1− Y )λp − λm]

}
(4.15)

wherein φ is the volume fraction of the dispersed particles, λm and λp are the thermal
conductivity of the hosting matrix and of the inner particles, respectively, and Y is a
dimensionless parameter which account for the particles-matrix interface. That parameter
may be expressed as Y = ap/ (CBλm), with ap being the radius of the spherical particles,
and CB the thermal boundary resistance coefficient between the matrix and the particles.
It is easy to see that whenever Y ≡ 0, Eq. (4.15) reduces to Eq. (4.13).

Whenever the characteristic dimension of the inner spheres is smaller than the phonon
mean-free path, Eq. (4.15) is no longer valid ?, and the heat transport in nanocomposites
has to be analyzed with the Boltzmann-Peierls theory wherein the heat is seen as a gas
of phonons ????. From the phenomenological point of view, in order to extend Eq. (4.15)
to nanocomposites, Minnich and Chen ? proposed to replace the parameters λm, λp and
Y therein with the following effective coefficients

λm,eff =
λm

1 +
`m,b
`m,coll

=
λm

1 +
3φ`m
4ap

(4.16a)

λp,eff =
λp

1 +
`p,b
`p,coll

=
λp

1 +
i`p
2ap

(4.16b)

Y = 4

(
cv,mvm + cv,pvp
cv,mvmcv,pvp

)
(4.16c)

wherein `m,b and `p,b are the phonon mean-free path in the bulk material of the matrix
and of the particles, respectively, `m,coll and `p,coll are the collision phonon mean-free path
in the matrix and in the particles, respectively, cv,m and cv,p are the volumetric specific
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heats of the bulk material of the matrix and of the particles, and vm and vp are the average
phonon speed in the matrix and in the particles.

In Ref. ? a third route, which is a hybrid of the two approaches above, is followed. In
that reference a new consideration of the matrix-particles interface is made, and Eq. (4.15)
is generalized as

λeff = ĝλseff + (1− ĝ)λdeff (4.17)

namely, the effective thermal conductivity of nanocomposites is a linear combination of
λseff (corresponding to the case when all phonon-interface interactions are specular) and
λdeff (corresponding to the case when all phonon-interface interactions are diffuse). In
Eq. (4.17) ĝ is a phenomenological parameter (such that 0 ≤ ĝ ≤ 1) having the physical
interpretation of the probability of the specular scattering of phonons on the particle-
matrix interface ?. The explicit expression for λeff in Eq. (4.17) is very long, owing to the
very complex forms of λseff and λdeff (see Eq. (8) in Ref. ?) which involve several parameters.
Therefore, for the sake of simplicity, we do not report here that formula.

4.2.2 Thermal conductivity of superlattices

Several expressions for the thermal conductivity of layered superlattices have been
proposed, either for the cross-plane (CP) direction, or the in-plane (IP) direction (see
Fig. 4.4 for a sketch of a superlattice), depending on whether heat flows orthogonally or
parallel to the layers.

d
1 

d
1 

d
1 

d
2 

d
2 

IP heat flow
 

CP heat flow
 

Figure 4.4: Sketch of a superlattice with representation of cross plane (CP) and in plane
(IP) heat flows.

As a particular example, in Ref. ? the following expressions for the thermal conduc-
tivity of a superlattice have been derived:

λCP =
λ1,effL1 + λ2,effL2

L1 + L2
(4.18a)

λIP =
L1 + L2

L1

λ1,eff
+

L2

λ2,eff

(4.18b)

wherein Li = nidi (i = 1, 2) with ni being the number of the layers of material i, and di
their thickness, whereas λi,eff (i = 1, 2) means the effective thermal conductivity of the
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thin layer which is given as in Eq. (1.26), that is,

λi,eff =
λid

2
i

2π2`2p,i

√1 +

(
2π`p,i
di

)2

− 1

 (4.19)

with `p,i being the phonon mean-free path in the layer of material i.
The effect of the thermal boundary resistance (R) between neighboring layers in the

CP can be taken into account by considering the following thermal conductivity:

λCP+R =
λCP

1 +
2λCPRM
`p,1 + `p,2

(4.20)

wherein RM = (R12 +R21) /2, with Rhk = R′hk− `p,1/λ1− `p,2/λ2, and R′hk is a transmis-
sion coefficient of heat from h to k material (see Eq. (8) in Ref. ? for its expression). In
these expressions it is shown the influence of the thickness of the layers (as considered in
Eq. (4.19)), the number of layers (as related to L1 and L2 in Eq. (4.18)), and, in the case
of cross-plane transport, the role of the thermal resistance at interfaces. Such a thermal
resistance is by itself an interesting topic in nano heat transfer, which may be described
from acoustic mismatch models, or diffusive mismatch models, or a combination of both.
Here we only take it as a coefficient for the sake illustration.

4.2.3 Thermal conductivity of nanofluids

The thermal aspects of fluids are especially relevant in refrigeration and energy stor-
age. In these applications, the specific and latent heats, the boiling temperature and the
freezing on, the thermal conductivity, the chemical stability, and some other properties are
important in the selection and the use of the fluids. In particular, adding nanoparticles
to the fluids provides a way of modifying and controlling such properties, as for example
their thermal conductivity (which rests the main topic of this book).

The common base fluids usually include water, ethylene glycol and oil, whereas the
nanoparticles may be made of metals, oxides, carbides, or carbon nanotubes. Nanofluids
show relevant novel properties, the main of whose is the enhanced thermal conductivity.
This makes nanofluids very appealing for many applications in heat transfer, including
microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines, engine
cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, and
many others.

The thermal conductivity of nanofluids is related to the nature and properties both
of the base fluid, and of the suspended particles, as well as their volume fraction and the
nature of the particle-matrix interface ?.

When the nanoparticles are completely dispersed in the hosting fluid and have spherical
shapes, a possible way to model the thermal conductivity λnf of nanofluids is to use the
Maxwell model ? for the electrical conductivity of rigid particles in a fluid, namely,

λnf = λf
α+ 2− 2φ (1− α)

α+ 2 + φ (1− α)
(4.21)

wherein λf is the thermal conductivity of the fluid, and α = λn/λf with λn being the
thermal conductivity of the nanoparticles. We note that Eq. (4.21) is essentially Eq. (4.13)
(or Eq. (4.15) with Y ≡ 0). Whenever the suspended particles are not spherical, Eq. (4.21)
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should be replaced by ?

λnf = λf
α+ n− 1− (n− 1)φ (1− α)

α+ n− 1 + φ (1− α)
(4.22)

where n is a shape coefficient which is equal to 3 in the case of spherical nanoparticles1,
and equal to 6 in the case of cylindrical nanoparticles.

In the case of fibers of high aspect ratio, other authors proposed

λnf ≈ λf +
φλp

3
(4.23)

when the nanoparticles are made fibers of high aspect ratio ?, or when they are carbon
nanotubes completely straight (i.e., without any curvature or wrapping) ?. When the
nanoparticles are carbon nanotubes with many curves and wrap around themselves (i.e.,
they form a rope-ball shape), one has ?

λnf ≈ λf + 3φλp (4.24)

In Refs. ??, a model the thermal conductivity of nanofluids has been also proposed
to account for the different interactions between the nanoparticles (assumed to be rigid
spheres) and the matrix interface.

This, though the ideas used in the analysis of thermal conductivity of nanofluids are
similar to those of nanocomposites, a wider diversity of the geometry of the suspended
particles is considered. Indeed, fluids are less restrictive than solids in accommodating
internal particles. One further problem which appears in nanofluids is related to the
density of the particles, which should be similar to that of the hosting fluid, in order
to avoid the effects of a fast sedimentation, leading to a separation of the fluid and the
particles.

Let us finally comment that neither in nanocomposites, nor in nanofluids the thermal
conductivity is the only physical parameter to be taken into account. In solid nanocom-
posites, electric conductivity, Seebeck coefficient, and mechanical properties should be
considered. In fluids, the suspended particles increase the value of the viscosity and give
to it non-Newtonian features. Thus, a full consideration of the problem is required to
maximize some properties of the system, as for instance, the efficiency of thermoelectric
energy conversion, or the accumulation, transport and release of thermal energy in fluids.

1In this case Eqs. (4.21) and (4.22) coincide.
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Chapter 5
Weakly nonlocal and nonlinear
heat transport

The thermo-mechanical behavior of miniaturized systems, the characteristic lengths of
which may be of the order of few nanometers, is strongly influenced by memory, nonlocal,
and nonlinear effects ????. In one-dimensional steady-state situations, in modeling the
heat transport along nanowires or thin layers, some of these effects may be incorporated
into a size-dependent effective thermal-conductivity λeff ??, and a Fourier law (FL)-type
equation may still be used with an effective value λeff of the thermal conductivity, instead
of the bulk value λ. However, in fast perturbations, or under strong heat gradients, or in
axial geometries an effective thermal conductivity is not enough to overcome the different
problems related to the FL, as for instance, the infinite speed of propagation of thermal
disturbances, or some genuinely nonlinear effects in steady states ??????. Therefore, in
modeling heat conduction, it is necessary to go beyond FL by introducing more general
heat-transport equations, and analyze more general geometries than those considered in
Chap. 3 and Chap. 4. In particular, in Chap. 2 the nonlinear heat-transport equation (2.16)
has been introduced. Here we will analyze some consequences of it.

5.1 Flux limiters and effective thermal conductivity of short
carbon nanotubes

Limited values for the speed of propagation of thermal signals directly imply that, for
a given energy density, the heat flux cannot reach arbitrarily high values, but it will be
bounded by a maximum saturation value, of the order of the energy density times the
maximum speed ?. This can be found, for example, in radiative heat transfer, wherein
the maximum heat flux is proportional to the fourth power of the temperature times the
speed of light ???. Similarly, in plasma physics, the maximum attainable heat flux is of
the order of kBT

√
kBT/me, me being the electron mass ?.

The classical FL, predicting infinite speed of propagation for thermal perturbations, is
obviously not able to face with these saturation effects, which, instead, may be described
by the introduction of nonlinear terms in the evolution equation of the heat flux, as in
Eq. (2.16).

In order to check the ability of Eq. (2.16) in describing such saturation effects, let
us consider a one-dimensional system in steady-state situations. In this case, the local
heat flux q has only one component along the z axis which, in steady states, is constant
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everywhere along the system, and Eq. (2.16) reduces to

q = −λ
(
1 + ξq2

)
∇zT (5.1)

This nonlinear generalization of the FL is interesting since it allows to give a deeper
physical insight to the parameter ξ therein in terms of an effective nonlinear thermal
conductivity, defined as

λeff,nl = λ
(
1 + ξq2

)
(5.2)

From Eq. (5.2) one can firstly observe that ξ has to be negative, since positive values
for it do not have any physical meaning. In fact, if ξ > 0 then from Eq. (5.2) one may
conclude that such a nonlinear thermal conductivity increases for increasing heat flux
without bound. This is tantamount to assume that it should be possible to perform a
thermodynamic process yielding an infinite value for the heat flux, in contradiction with
what previously observed. Furthermore, if ξ > 0 then steady states would be unstable,
because a random increase of q at a constant temperature difference would lead to a higher
thermal conductivity and, therefore, to a still higher value of q.

We note that the same conclusion about the sign of ξ in the effective thermal conduc-
tivity (5.2) is derived in the TM theory ????? where it is set ξq2 = −M2

tm, with Mtm

given by Eq. (2.28).
Once the sign of the nondimensional parameter ξ has been established on pure physical

basis (i.e., ξ < 0), according with the second law of thermodynamics prescribing that
λeff,nl defined by Eq. (5.2) cannot become negative, then it is possible to see that Eq. (5.2)
describes a reduction in the effective thermal conductivity for increasing values of the heat
flux. In particular, for any thermodynamic process, it predicts that the upper bound

qmax = 1/
√
‖ξ‖

for the heat flux is asymptotically achieved when the temperature gradient tends to infinity.
In the literature, such a situation is well-known as ”flux limiters” ???. Flux limiters

are commonly used, for instance, in radiation hydrodynamics ?? wherein the maximum
conceivable radiation energy flow will be ea, e being the energy density of radiation per
unit volume, and a the modulus of the speed of light (or the phonon energy density and
the modulus of the average phonon speed, respectively, in phonon hydrodynamics). If this
interpretation is used, one would set in Eq. (5.2)

ξ = − (ea)−2 (5.3)

and from Eq. (5.1) the following constitutive equation for q ensues:

q =

(√
1 + Ψ2 − 1

Ψ

)
ea (5.4)

wherein

Ψ = 2

(
λ

ea

)
∆T

L
(5.5)

with ∆T being the temperature difference applied to the ends of the system, L its longi-
tudinal length, and in deriving Eq. (5.5) we have used the approximation ∇zT = ∆T/L

In Chap. 3, we have shown that useful information on the system behavior can be
obtained by focusing the attention on the effective thermal conductivity, defined as in
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Eq. (3.2). Equations (5.4) and (5.5) allow to obtain explicitly the effective thermal con-
ductivity in Eq. (5.2) as

λeff =
qL

∆T
= 2λ

(√
1 + Ψ2 − 1

Ψ2

)
(5.6)

which yields the following limiting values:

Ψ→ 0 =⇒ λeff → λ

Ψ→∞ =⇒ λeff →
eaL

∆T

In particular, in the latter situation the maximum heat flux obtained is qmax = ea.
The formalism of flux limiters, expressed in terms of a nonlinear effective thermal

conductivity as in Eq. (5.6), can be applied to short carbon nanotubes, the characteristic
size of which is smaller than phonon mean-free path (which is of the order of 700 nm at
the room temperature), because in this case the heat transport is practically ballistic, and
the heat flux would be expected to be of the order of the phonon energy density times the
phonon velocity ??.

To use concrete experimental data, we consider that when the temperature is very low,
the specific heat at constant volume and the thermal conductivity of the carbon nanotube
are, respectively ??

cv =
3.292

π

(
k2
BT

~Aa

)
(5.7a)

λ = cva`p (5.7b)

with ~ as the reduced Planck constant, and A as the cross-sectional area of the cylindrical
wall of carbon atoms forming the nanotube. Moreover, from Eq. (5.7a) the phonon energy
density per unit volume is

u =

∫
cv (T ) dT =

3.292

2π

(
k2
BT

2

~Aa

)
=
cvT

2
(5.8)

which yields that the nondimensional parameter Ψ in Eq. (5.5) is

Ψ = 4 Kn
∆T

T
(5.9)

wherein we set Kn = `p/L. In this way, the introduction of Eq. (5.9) in Eqs. (5.4) and (5.6)
allows to obtain the behaviors of the heat flux and of the effective thermal conductivity,
respectively, as a function of the longitudinal length L of the nanotube.

These behaviors are shown in Fig. 5.1 and Fig. 5.2, respectively, for a carbon nanotube
when the average temperature (taken as a reference level for the sake of computation) is
T = 30 K (`p ∼ 0.5− 1.5µm, and λ ∼ 60− 180 Wm-1K-1 ?), and when the diameter of the
wire is equal to 1.4 nm and its transversal section has an area equal to A = 2.5 nm2. In
each figure, three different values for the difference temperature through the ends of the
nanotube have been chosen, i.e., ∆T = 1 K, ∆T = 3 K, and ∆T = 5 K.

In more details, Fig. 5.1 plots the behavior of the local heat flux q referred to its
maximum attainable value (that is, qmax = ea) as a function of the Knudsen number Kn.
As it is possible to observe, the smaller L (that is, the bigger Kn), the higher q through the
nanotube at a given ∆T . This is logical because short values of L implies high values for
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Figure 5.1: Behavior of the ratio between the local heat flux q, predicted by Eq. (5.4),
and the maximum attainable local heat flux qmax = ea, as a function of Kn = `p/L in
carbon nanotube when the average temperature is approximatively equal to 30 K. For the
sake of computation, we assumed `p = 10−6 m ?. The results are shown for three different
values of the temperature difference ∆T through the ends of the system, i.e., ∆T = 1 K,
∆T = 3 K and ∆T = 5 K. In figure, both the x-axis and the y-axis are in a logarithmic
scale.

the temperature gradient ∆T/L. Note that, once the reference temperature of the system
has been chosen, then the mean-free path of heat carriers is fixed, and therefore changes
in the Knudsen number are only due to changes in L. Moreover, as it was expected,
the bigger ∆T , the bigger q, systematically. Note, however, that for high Kn, q becomes
independent of L and ∆T .

In Fig. 5.2, the ratio between the effective thermal conductivity λeff and the bulk
thermal conductivity λ, is plotted as a function of Kn = `p/L. It turns out that the
smaller L (that is, the bigger Kn), the smaller λeff of the nanotube. In particular, when
the longitudinal length L switches from the micrometer to the nanometer length scale (i.e.,
when Kn spans in the range

[
10−1; 102

]
), the effective thermal conductivity predicted by

Eq. (5.6) reduces of one order of magnitude. The asymptotic behavior of the effective
thermal conductivity is reached both whenever Kn gets small values, and when it reaches
high values. Moreover, the smaller ∆T , the bigger λeff. This is expected because, as it
was shown in Fig. 5.1, the heat flux increases for increasing temperature differences, and
therefore, according to Eq. (5.6), the effective thermal conductivity has to decrease.
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Figure 5.2: Behavior of the ratio between the effective thermal conductivity λeff, predicted
by Eq. (5.6), and the bulk thermal conductivity λ, as a function of Kn = `p/L in carbon
nanotube when the average temperature is approximatively equal to 30 K. For the sake
of computation, we assumed `p = 10−6 m ?. The results are shown for three different
values of the temperature difference ∆T through the ends of the system, i.e., ∆T = 1 K,
∆T = 3 K and ∆T = 5 K. In figure, the x-axis is in a logarithmic scale.
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5.2 Thermal rectification in tronco-conical nanowires

The possibility of controlling phonon heat transport by means of suitable nanoengineer-
ing of materials has opened the possibility to achieve thermal diodes, thermal transistors,
thermal logic gates and thermal memories. This is a fast developing area in heat transport,
dubbed as phononics, in analogy with electronics ?. From the conceptual point of view,
it is a very challenging topic which provides a stimulus for advanced research.

Rectifiers, that is, devices which are able to transport current efficiently in one di-
rection of the applied bias, while blocking it completely (or significantly) in the reverse
direction, have a wide interest in electron transfer. Electrical rectifiers may take several
different forms, including vacuum tube diodes, mercury-arc valves, copper and selenium
oxide rectifiers, semiconductor diodes, silicon-controlled rectifiers and other silicon-based
semiconductor switches. Their invention was the marker point of the emergence of modern
electronics.

It is apparent that counterpart devices for heat conduction, i.e., thermal rectifiers ??????,
would have deep implications because of the impact they could have on electronics cooling
research, as well as solid-state energy conversion with the ability to control transport.
In recent years, some theoretical proposals for thermal rectifiers have been put forward,
but these usually require complex coupling between individual atoms and substrates that
are difficult to achieve experimentally ?. In principle, if the thermal conductivity is only
a function of temperature, there will not be heat rectification. This possibility arises if
thermal conductivity depends on the radius of the component of the system, besides on
temperature, and these variables change along the system. For instance, it is clear that if
a system is composed of two parts in series, A and B, and if the thermal conductivity of
A increases with increasing T whereas that of B decreases for the same values of temper-
ature, the global thermal conductivity will be higher when A is on the hot side and B at
the cold side, than in the opposite case. Thus, the heat flux from A to B will be higher
than that from B to A.

In the presence of explicit nonlinear effects, rectification effects may be enhanced. In
the present Section we will consider such a case. However, as noted by Peierls ?, heat
transport in one-dimensional systems can be anomalous, and the breakdown of FL in
those systems may be coupled with extraordinary nonlinear thermal effects, including
rectification. Nanotubes are nearly one-dimensional systems, and thus they are ideal
structures for exploring thermal rectification effects.

In order to investigate the role of nonlinear terms in thermal rectification, consider a
tronco-conical nanowire, namely, a nanotube which does not have a constant transversal
area since the radius R of the cross section changes along the longitudinal z-axis (see
Fig. 5.3 for a qualitative sketch of the geometry). Of course, an analogous approach
could be made in two-dimensional systems, namely, in ribbons or plane thin layers with
inhomogeneous width.

Tronco-conical devices have been studied in Ref. ? as a possible heat rectifier, with
λ and cv varying on temperature and size1. Here, instead, we are mainly interested
in analyzing the consequences on thermal rectification arising from genuinely nonlinear
terms appearing in the evolution equation of the heat flux. In particular, for the sake of
illustration, we suppose that the tronco-conical device is characterized by a transversal
section whose area progressively changes along the longitudinal axis because its radius has
a linear profile given by ?

R (x) = R1 − ζz, (5.10)

1Of course, the latter is only true in nanodevices.
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Figure 5.3: Sketch of a tronco-conical nanowire. The radius of the left-hand section is R1,
and of the right-hand section is R2. For the sake of illustration, we suppose R1 > R2. The
dashed-dotted line in figure represents the longitudinal z-axis of the system, the length of
which is L. The red arrow stands for the local heat flux q. Moreover, we assumed that
the R1-section is the incoming section, and the R2-section is the outgoing one, that is, we
assumed Q0 > 0. This means that T1 (i.e., the temperature evaluated in the left-hand side
section) is higher than T2 (i.e., the temperature evaluated in the right-hand side section).
The opposite situation may also occur. In that case T2 > T1, and the heat flow from the
right-hand side to the left-hand side (i.e., Q0 < 0).

where ζ = (R1 −R2) /L, with R1 as the radius of the incoming section, R2 as the radius
of the outgoing section, and L as the longitudinal length of the nanowire. If one ignores,
for the sake of simplicity, the radial component of the heat flux, in steady states the local
heat flux is such that

qπR2 (z) = Q0 (5.11)

with Q0 being the total heat flux across any transversal section. Consequently, in this
case Eq. (2.16) reduces to[

1 +
(
µ+ µ′

)
∇zq

]
q = −λ

(
1 + ξq2

)
∇zT + `2p∇2

zq (5.12)

The role of the coefficients µ and µ′ in Eq. (5.12) can be analyzed by observing that
they have the dimensions of a reference length divided by a reference heat flux ?, and then
they are expected to be of the order of `p/ (ea). Recalling the meaning of the coefficients
ξ given in Sec. 5.1, in Eq. (5.12) the relative importance of the physical effects due to the
term λξq2∇zT with respect to those due to the term (µ+ µ′) (∇zq) q can be estimated by
the nondimensional ratio

λξq2∇zT
(µ+ µ′) (∇zq) q

∝
(

q2

‖∇zq‖

)(
1

ea`p

)
=

(
‖q‖
ea

)(
L

`p

)
≈ ‖q‖
‖qmax‖

Thus, whenever the local heat flux gets values much smaller than the maximum value
of the local heat flux, then Eq. (5.12) reduces to[

1 +
(
µ+ µ′

)
∇zq

]
q = −λ∇zT + `2p∇2

zq (5.13)

and the coupling of Eq. (5.13) with Eq. (5.11) turns out ?

λ
dT

dz
= − Q0

πR2

{
1 +

2ζ

R2

[(
µ+ µ′

) Q0

πR
− 3ζ`2p

]}
(5.14)
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which draws out interesting consequences leading to thermal rectification.
When the temperature difference T2 − T1 < 0 with respect to the positive direction of

z-axis in Fig. 5.3, then Q0 > 0, i.e., the heat flows from the left to the right. In this case,
from Eq. (5.14) one has

Q
(lr)
0 =

B1

2B2

[√
1 + 4λ

(
B2

B2
1

)(
∆T

L

)
− 1

]
(5.15)

where Q
(lr)
0 denotes the heat flowing from the left-hand section to the right-hand section

and

B1 =
1

πR2
m

(
1− 6ζ2

`2p
R2
m

)
(5.16a)

B2 =
2ζ

πR5
m

(
µ+ µ′

)
(5.16b)

where Rm = (R1 +R2) /2, and ∆T = |T2 − T1|.
In the opposite situation, namely, when the temperature difference T2 − T1 > 0, then

Q0 < 0 (with respect to the positive direction of z in Fig. 5.3) and the heat flows from
the right to the left. In this case by means of Eq. (5.14) the heat flowing from the right
to the left is

Q
(rl)
0 =

B1

2B2

[√
1− 4λ

(
B2

B2
1

)(
∆T

L

)
− 1

]
(5.17)

Up to the lowest order approximation in ∆T/L, from Eqs. (5.15) and (5.17) the fol-
lowing thermal-rectification ratio, defined as the ratio of the values of the heat flux in the
reverse (right-left) and the direct (left-right) direction, is recovered

∣∣∣∣∣Q(rl)
0

Q
(lr)
0

∣∣∣∣∣ =

1−

√
1− 4λ

(
B2

B2
1

)(
∆T

L

)
√

1 + 4λ

(
B2

B2
1

)(
∆T

L

)
− 1

≈
1 + 2λ

(
B2

B2
1

)(
∆T

L

)
1− 2λ

(
B2

B2
1

)(
∆T

L

) ≈ 1 + 4λ

(
B2

B2
1

)(
∆T

L

)

(5.18)
Note that if (µ+ µ′) = 0, then B2 = 0 and the ratio above tends to 1, namely, no

thermal rectification is obtained.
Although the thermal-rectification phenomenon may be also described if the temper-

ature and size dependence of λ and cv is taken into account ?, the results above show the
role played by genuinely nonlinear effects, which are strictly related to the coefficients µ
and µ′, in the evolution equation of q. In practical applications, it would be interesting
to relate those coefficients with well-known physical quantities. The rigorous way to do
this is by direct measurements, or from experimental simulations. Indeed, a first rough,
but simple, estimation of those coefficients could be obtained by comparison with other
theoretical models. In particular, a comparison with the model proposed in Refs. ?? turns
out that

µ = − 2τp
cvT

(5.19)

whereas the comparison with the model proposed in the Thermomass (TM) theory ???
yields

µ′ =
τtm

cvT
(5.20)
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Figure 5.4: Cylindrical nanodevice connected to a graphene layer. The internal device
(red in figure) is characterized by a radius r0. The surrounding thin layer (grey in figure)
has, instead, a radial characteristic size which is much larger than r0, and a thickness h.
The surrounding layer removes heat from the core device, which acts so as a steady heat
source. The heat per unit time produced by the inner hot component is Q0. Abroad the
hot spot, the local heat flux q propagates radially away from the source. This is shown in
the figure zoom, wherein a further circular zone of radius r is represented.

5.3 Axial heat transport in thin layers and graphene sheets

Systems with large values of the mean-free path for heat carriers are expected to show
some different features in heat transport than those obeying the classical FL ??. Up to
the first order, a long mean-free path implies a high thermal conductivity, consistent with
FL. However, in a more general setting, it also implies long collision times and, therefore,
memory effects, which are not included in the FL, but which will be relevant in high-
frequency perturbations and thermal-wave propagation, as well as effects of second or
higher-order in the mean-free path. Steady-state situations allow to focus the attention
only on nonlocal effects beyond the FL, since in this case memory effects are not relevant.
Nonlocal effects will manifest themselves if heat-flux (or temperature) inhomogeneities are
sufficiently steep. One-dimensional temperature perturbations have been much studied
in such systems, but two-dimensional perturbations may provide some new perspectives
on nonlocal effects, related to the influence of the mean-free path on the steady-states
temperature profile, which are not directly accessible in one-dimensional problems. These
effects could be exhibited by radial heat transport in silicon thin layers, or in graphene
sheets, which are systems with relatively long mean-free paths (for example, at the room
temperature, the phonon mean-free path is of the order of 10−7 m ?????). This kind of
situations are of interest for some thermodynamic technologies, or in the refrigeration of
nanodevices.

As an example, here we consider the radial heat transport from a point source in a flat
system, and explore the possible consequences of nonlocal and nonlinear effects. In more
detail, we suppose that a cylindrical nanodevice (the base-radius of which is R0) acts as
a steady heat source (the temperature of which is held at the constant value T0) and is
connected to a surrounding thin layer, which removes the heat from that nanodevice (see
Fig. 5.4 for a qualitative sketch).
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We assume the steady-state situation, in which the heat removed is equal to the heat
dissipated, thus allowing the temperature of the system to remain constant. In this situa-
tion the layer is supplied with a constant amount of heat Q0 per unit time which propagates
radially away from that source, and we look for the influence of nonlocal effects on the
radial temperature profile.

For the sake of simplicity, it is possible to assume that the layer is isotropic, namely,
that the heat propagates in the same way along all radial directions in the external layer,
and ξ = 0 in Eq. (2.16).

Due to the axial symmetry, in steady-state situations the heat flux in the surrounding
layer has only one component. To obtain the radial dependence of q, one may observe that
in the absence of transversal exchanges, the total heat flux flowing across each concentric
circular area is always the same. Thus, once two different concentric circular areas of
radial distance from the source equal to r and r + dr have been chosen, then the radial
profile of the local heat flux is such that

2πrq (r) = 2π [r + dr] q (r + dr) ≈ 2π [r + dr]

[
q (r) +

dq

dr
dr

]
⇒ r

dq

dr
+ q (r) = 0

when a first-order approximation in dr is used. The relation above may be easily integrated
in order to have

q (r) =
Γ

r
(5.21)

with Γ = Q0/ (2πh), h being the thickness of the layer (see Fig. 5.4). Under the previous
assumptions, the introduction of Eq. (5.21) in Eq. (5.13) leads to

λ
dT

dr
=

Γ

r

[
`2p + Γ (µ+ µ′)

r2
− 1

]
(5.22)

the integration of which allows to obtain the radial temperature profile. From Eq. (5.22),
in particular, one has ? 

r <
√
`2p + Γ (µ+ µ′)⇒ dT

dr
> 0

r >
√
`2p + Γ (µ+ µ′)⇒ dT

dr
< 0

(5.23)

which means that in the layer which surrounds the hot component there may be both
radial distances for which the temperature profile is increasing, and radial distances for
which the temperature profile is decreasing. From the physical point of view, previous
results point out that the temperature profile shows a hump reached at

r =
√
`2p + Γ (µ+ µ′)

If the identifications (5.19) and (5.20) for the coefficients µ and µ′ hold, then the
difference 2τp− τtm has the relevant role of shortening or enlarging the width of the region
wherein the temperature hump appears.

Note that recently the role of hydrodynamic phonon transport in graphene has been
the subject of increasing attention, as it is seen that it occurs in graphene at higher
temperatures than in the bulk materials, and it makes a relevant contribution to heat
transport ???.
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5.3.1 Nonlocal heat transport and steady-state temperature profile in
thin layers

In integrated circuits the number of transistors that can be placed on a single chip has
increased exponentially, since the developments in nanotechnology allow the transistor
to shrink in their sizes. With more transistors integrated on a chip, running at faster
clock rate, designers have been able to improve the system performance effectively over
the past few decades. Unfortunately, the design complexity, as well as the increase in
the computational rate, much enhances the rate of heat per unit volume which has to be
dissipated, thus being a limiting factor in current computer miniaturization. However, the
incorporation of silicon or graphene into chip design could yield devices that are faster,
less noisy, and run cooler.

Since the exact forms of the relaxation times is a matter of great discussions, and all the
different estimations of them one can find in literature are related to suitable adjustable
coefficients ???, in order to deal with the simplest situation, just for the sake of illustration
here we investigate the consequences of the radial heat propagation (5.21) in the absence
of the nonlinear terms in (µ+ µ′)∇zq. In this case Eq. (5.22) reduces to

λ
dT

dr
=

Γ

r

[(
`p
r

)2

− 1

]
(5.24)

Silicon thin layers

Silicon thin layers are widely applied in the nanoelectronics industry for the fabrica-
tion of transistors, solid-state lasers, sensors and actuators. Since the thermal-transport
properties affect the performance and reliability of these devices, a better understanding
of their thermal behavior is useful for practical applications. Indeed, in two-dimensional
situations, nonlocal terms affect the heat transport both in the radial r direction (i.e.,
along the plane of the layer), and in the transversal y direction (i.e., in the perpendicular
direction to the layer, as it is shown in Fig. 5.5).

The consequences of those terms along the latter direction may be accounted, for
example, by means of a phonon-hydrodynamic approach, as shown in Chap. (3). In
particular, whenever Knp > 1 (defined in this case as Knp = `p/h), in Eq. (5.24) one
should replace the thermal conductivity λ with its effective value which, in a first-order
approximation, can be approximated by the expression in Eq. (3.32).

Then, the integration of the modified version of Eq. (5.24) gets the following radial
behavior of the temperature profile ?:

T (r) = T0 ∀r ≤ r0

T (r) = T0 +
Γ

2λeff

[
`2p
r2

0

(
1− r2

0

r2

)
+ 2 ln

(r0

r

)]
∀r > r0

(5.25)

which points out that in a range of radial distances, the order of which is a few times the
mean-free path `p, the radial behavior of the temperature T (r) is strongly modified by
the nonlocal terms, since in their absence the predicted temperature profile would be T (r) = T0, ∀r ≤ r0

T (r) = T0 +
Γ

λeff
ln
(r0

r

)
, ∀r > r0

(5.26)

Note that the behavior predicted by Eqs. (5.25) is functionally different from that pre-
dicted by Eqs. (5.26), where the nonlocal term yields a further contribution, proportional
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Figure 5.5: Theoretical heat profile in a thin layer with thickness h: frontal view. In
figure the hot component is sketched as a red rectangle. To account for the finite value
of h, by means of phonon hydrodynamics we assume that the longitudinal heat flux has
a bulk contribution qb (with a parabolic profile) and a wall contribution qw ?. In figure,
the layer’s vertical size is emphasized with respect the longitudinal ones just for the sake
of illustration. In practical applications, in fact, the thickness of the layer is much smaller
than its width.

to r−2, which is lacking in Eq. (5.25) and which can not be described by means of an
effective thermal conductivity.

The different behaviors may be also clearly seen in Fig. 5.6, wherein the consequences
of nonlocal effects on the radial behavior of the temperature have been shown for a silicon
thin layer with h = 50 · 10−9 m. In the computation we have supposed that the layer
is heated with Q0 = 10−6 W, the hot-spot temperature is T0 = 150 K, and its radius is
r0 = 50·10−9 m. We have chosen such a value for r0 since we are interested in a small value
of the radius, smaller than the phonon mean-free path, and we have taken as an indicative
size that of the layer thickness. However, the effect of the radius will be further considered
below, in Fig. 5.7. The wall-accommodation parameter at 150 K is C = 0.36 and refer to
a smooth wall ?, so that the effective thermal conductivity is λeff = 23.2 Wm-1K-1.

As it is possible to observe, the temperature behavior arising from Eq. (5.25) (solid
lines in Fig. 5.6) shows a hump (with a maximum reached when the radial distance from
the hot spot is ∆r = 1.3 · 10−7 m), namely, when the radial distance from the hot spot is
smaller than the phonon mean-free path, then the temperature increases with the radius.
This does not appear in the temperature behavior given by Eq. (5.26) (dashed lines in
Fig. 5.6) which, instead, is always decreasing.

From Fig. 5.6 we infer that the deviation ∆T of the temperature predicted by Eq. (5.25)
from that predicted by Eq. (5.26), i.e.,

∆T (r) =
Γ

2λeff

(
1− r2

0

r2

)
`2p
r2

0

(5.27)

is small (around one degree at 150 K), but it could be measured in principle. However,
since ∆T is inversely proportional to λeff, it would still be higher in the case of rough-
walled thin layers ??, where the effective thermal conductivity is an order of magnitude
smaller than that in smooth-walled thin layers.
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Figure 5.6: Radial behavior of the temperature versus the radial distance from the hot
spot (i.e., ∆r = r−r0) in a silicon thin layer (λ = 336.27 Wm-1K-1, `p = 3.08 ·10−7 m, and
C = 0.36) with h = 50 · 10−9 m heated at the center. Comparison between the predictions
of Eqs. (5.25) and (5.26). The heat source is characterized by Q0 = 10−6 W, T0 = 150 K,
and r0 = 50 · 10−9 m.

It is also possible to note that a way to enhance that difference would be either to
increase the amount of heat per unit time Q0, or to reduce the heated-spot radius r0. In
Fig. 5.7, the variation of ∆T in terms of r0 is examined, at a distance r = `p from the
heated spot, for fixed values of h, Q0 and T0 (they are the same used to obtain the results
in Fig. 5.6). Figure 5.7 points out that the smaller r0, the greater ∆T .

Graphene sheets

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional
honeycomb lattice ???, which can be wrapped up into zero-dimensional fullerenes, rolled
into one-dimensional nanotubes, or stacked into three-dimensional graphite. This means
that in the case of graphene one could practically speak about a sheet, or a very thin layer,
the thickness of which is h ≈ 3 · 10−10 m, namely, of the order of the atomic diameter of
carbon. At room temperature, the measured thermal conductivity of graphene λeff is
found to span the range [3080; 5150] Wm-1K-1, and the phonon mean-free path is of the
order of `p = 7.75 · 10−7 m ????.

The thermal properties of graphene have been recently reviewed in detail by Ba-
landin ?, with further information about analogous properties in nanostructured carbon
materials. It is pointed out how graphene (or other materials able to conduct heat well)
could be essential for the refrigeration of small devices, as in the next generation of highly
miniaturized integrated circuits, or optoelectronic and photonic devices, by removing the
heat dissipated during their functioning at very high frequencies.

Figure 5.8 plots the radial temperature profile arising from the theoretical model in
Eq. (5.24) in the graphene sheet, as a function of the radial distance r from the hot spot
at T0 = 300 K. For the sake of computation, in obtaining the behaviors in that figure it
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Figure 5.7: Behavior of the temperature difference ∆T , arising from Eq. (5.27), as a
function of r0 when the temperature of the hot spot is T0 = 150 K and Q0 = 10−6 W,
in a silicon thin layer with h = 50 · 10−9 m. The temperature difference is evaluated
at a distance from the hot spot which is equal to the phonon mean-free path, namely,
∆r ≡ `p = 1.81 · 10−7 m.

has been supposed that the heat per unit time produced by the inner hot component is
Q0 = 10−8 W.

In order to show the influence of the characteristic size of the heat source, in Fig. 5.8
two different values for the radius r0 of the internal device have been considered, i.e.,
r0 = 15 · 10−9 m and r0 = 50 · 10−9 m. In particular, Fig. 5.8 points out that the smaller
r0, the bigger the reached temperature abroad the hot zone. Moreover, it can be seen
that the effects of nonlocal terms are felt at distances which are several times larger than
the mean-free path of heat carriers. The range of influence of nonlocal terms is evidenced
by supposing that the radial distance from the center of the hot spot extends till 10−4 m,
whereas in practical applications the largest size in nanosystems should not exceed 10−7 m.

5.3.2 Thermodynamic aspects: second law at the mean-free path scale

By means of Eq. (5.25) it has been observed that the radial dependence of temperature
profile has a surprising behavior in the annular region between r0 and `p, since in it the
temperature increases with the radius, instead of being decreasing, as it would have been
expected on classical grounds and predicted by the classical FL. The decrease is found,
instead, whenever r > `p. Indeed, the reality of that result should be experimentally
checked; here we discuss its compatibility with the classical statement of second law of
thermodynamics.

From the microscopic point of view, a possible interpretation of this phenomenon is
the following one. In the central region, heat is intense and the particles have a relatively
high energy in the radial direction. They ballistically follow such direction until they have
their first collisions. Then, their radial energy is redistributed among other particles, and
other directions. This makes that the temperature of such regions increases.
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Figure 5.8: Radial behavior of the temperature in a graphene sheet with hg = 3.35·10−10 m
heated at the center. The heat source is characterized by Q0 = 10−8 W, and T0 = 300 K
(λ = 3080 Wm-1K-1, and `p = 7.75 · 10−7 m ??). Two different values of the hot spot
radius have been considered, that is, r0 = 15 · 10−9 m and r0 = 50 · 10−9 m. In the figure
two different length scales for the temperature have been used, in order to show clearly
both results. The x-axis is in a logarithmic scale.

From the thermodynamic point of view, however, the situation is challenging. If the
classical local-equilibrium formulation of the second law of thermodynamics (3.53) holds,
then the use of Eq. (5.21) for q (r) and of Eq. (5.25) for dT/dr leads to the conclusion that
the entropy production in the local-equilibrium approximation would be

σsle =
1

λT 2

(
Γ

r

)2
[

1−
(
`p
r

)2
]
, (5.28)

which is negative for r < `p, i.e., in the region where the temperature increases with the
radius. Thus, the temperature hump should be forbidden.

A deeper insight, instead, can be obtained by analyzing the compatibility with second
law of thermodynamics in the framework of EIT ???. In this theory, the extended entropy
may be represented by a general constitutive equation of the type seit = seit (u,q,Q), which
becomes seit = seit (u,q,∇q) whenever the relaxation time of Q is sufficiently smaller than
that of q, in such a way that the flux of heat flux reduces to Q = `2p∇q ???, and the
influence of nonlocal terms is more explicit. In this case the entropy production is given
by Eq. (3.54), and its introduction in the coupling of Eqs. (5.21) and (5.25), instead, leads
to

σseit =
1

λT 2

(
Γ

r

)2
[

1 +

(
`p
r

)2
]

(5.29)

which is everywhere positive. Thus, if the second law is expressed as the requirement of
positive right hand side of Eq. (5.29), then the temperature hump is compatible with the
second law of thermodynamics.
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From this point of view, the hump in the temperature profile observed between r0 and
`p would have much interest from a basic thermodynamic perspective, because it would
explicitly show both the influence of nonlocal effects in heat transport, and the need of
generalizing the formulation of the second law. It seems worth observing that a similar
hump, in traveling front solution of reaction-diffusion equation with a nonlocal term has
been obtained, on theoretically grounds, as a consequence of nonlocalities in the equation
for the diffusion flux, but without a thermodynamic analysis ?.

Although Eq. (5.29) ensures the physical consistency of Eq. (5.24), it does not give
any information either about the hump, or about the amplitude of the region wherein the
heat flows from the colder points to the warmer ones. This means that the analysis of the
sign of the entropy production is not able to cut off unreal phenomena, as for example the
case of unbounded increasing temperature for increasing radial distance. More detailed
conclusions may be obtained, instead, if one focuses the attention on the entropy flux Js.
As we observed in Chap. 1, in EIT ?? it reads

Js =
q

T
+

`2p
λT 2
∇qT · q (5.30)

and reduces to

Js (r) =

(
1

T
−

`2p
λT 2

Γ

r2

)
q (r) (5.31)

in the case of radial heat propagation ?. Restricting the analysis to an annular region
between two generic radial distances r1 and r2, such that r1 < r2, then in steady states
the entropy balance (1.9) implies

2πr1J
s (r1) < 2πr2J

s (r2) (5.32)

wherein Js (r1) is the incoming entropy flux, and Js (r2) is the outgoing one. The coupling
of Eqs. (5.31) and (5.32) firstly gets

2πr1q (r1)

(
1

T1
− `2

λT 2
1

Γ

r2
1

)
< 2πr2q (r2)

(
1

T2
− `2

λT 2
2

Γ

r2
2

)
(5.33)

Then, owing to the conservation of the total heat flux across each circular zone, the
previous relation implies

1

T1

(
1− `2

λT1

Γ

r2
1

)
<

1

T2

(
1− `2

λT2

Γ

r2
2

)
(5.34)

It is easy to see from the relation above that whenever λT > `2pΓ/r
2 (or in the limit

case of Γ`2p/
(
λTr2

)
→ 0), then inequality (5.34) is not violated if T1 > T2. On the other

hand, the condition λT > `2pΓ/r
2 is fulfilled, for example, when `p < r1, r2. Therefore,

we may conclude that for radial distances from the center of the hot point larger than
the mean-free path, the larger the radial distance, the smaller the temperature and the
possible paradox of unbounded temperature is removed.

Conversely, if λT < `2pΓ/r
2 (this is the case, for example, when r1, r2 < `p), inequal-

ity (5.34) changes in

1

T1

(
`2p
λT1

Γ

r2
1

− 1

)
>

1

T2

(
`2p
λT2

Γ

r2
2

− 1

)
(5.35)

which is not violated for T1 < T2. Thus, for radial distances from the center of the
hot point smaller than the mean-free path, the larger the radial distance, the bigger the
temperature, so that the temperature hump arises.
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Of course, the general form (5.31) of the entropy flux, applicable to several different
situations more general than the concrete situation corresponding to Eq. (5.24), indicates
that in some situations (as those in Eq. (5.24)) it is possible to have a heat transfer from
lower to higher temperature, at the condition that the inhomogeneity in the heat flux is
high enough (namely, Γ reaches high values in Eq. (5.21)) and the system is of the order
of (or smaller than), the mean-free path of heat carriers.

5.4 Stability of the heat flow in nanowires

In Sec. 2.3 we dealt with approximated heat-transport equation by introducing some
characteristic numbers. Now, let us illustrate by a simple example the possibility of relating
the stability of heat flow with the value of those numbers. To this end, let us suppose
Mq � 1 and Req � Kn2

q /τ
r
R. From Eqs. (1.8) and (2.30) we have

∇ · q = 0 (5.36a)

q̇− µ∇q · q− ι∇2q +∇π = 0 (5.36b)

being µ = 2/ (Tcv), ι = `2p/τR, and π = λT/τR. Prescribe then the following boundary
values

q (x; t) = qb (x; t) , ∀x ∈ ∂Ω, ∀t ≥ 0, (5.37)

as the initial ones
q (x; 0) = q0 (x) , ∀x ∈ Ω, (5.38)

where∇·q0 (x) = 0, ∀x ∈ Ω, being Ω the spatial domain occupied by the nanowire, and ∂Ω
the boundary of the system, respectively. Note that both ∂Ω and Ω cannot change in time,
since we are referring to a rigid body. It is also worth observing that Eq. (5.36a) is not able
to furnish now the function u and hence, in principle, it is not possible to determine the
function T appearing in the right-hand side of Eq. (5.36b) from its constitutive equation.
As a consequence, T must be regarded now as an additional unknown quantity, as the
three components of the heat flux. The four unknowns u and q have to be calculated by
solving the system (5.36). The same situation holds in classical hydrodynamics where,
in the presence of the constraint of incompressibility, the pressure cannot be calculated
through a constitutive equation but becomes an additional unknown quantity.

From the formal point of view, in the next we denote the solutions of the initial
boundary value problem (IBVP) in Eqs. (5.36)–(5.38) as{

q
(
x, t,q0

)
;π
(
x, t,q0

)}
(5.39)

and we will study their stability when the initial values q0 (x) are perturbed. To this end,
let us consider the further solution

{qa;πa} =
{
q
(
x, t,q0 + δq0

)
;π
(
x, t,q0 + δq0

)}
(5.40)

which still satisfies Eqs. (5.36) and (5.37), but differs from the initial value (5.38) since

qa (x; 0) = q0 (x) + δq0 (x) (5.41)

If the solutions (5.39) and (5.40) behave in the same way for increasing time, we face
with stable solutions, otherwise we have instable solutions. To be more explicit, we are
interested in determining whether the form which the fields in Eqs. (5.39) take as t→∞
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is stable with respect to perturbations in the initial conditions, or not. This problem can
be analyzed by introducing the following IBVP

∇ · δq = 0 (5.42a)

δq̇− µ (∇δq · q +∇q · δq +∇δq · δq)− ι∇2δq +∇p̃ = 0 (5.42b)

δq (x; t) = 0, ∀x ∈ ∂Ω, ∀t ≥ 0, (5.42c)

δq (x; 0) = δq0 (x) , ∀x ∈ Ω, (5.42d)

which governs the evolution of the disturbance {δq; p̃} = {qa − q;πa − π}. That way, the
stability we are looking for coincides with the stability of the problem in Eqs. (5.42) ?. If
we define the average energy of a disturbance as

E (t) =
1

M (Ω)

∫
Ω
|δq|2 dΩ (5.43)

beingM (Ω) the measure of the volume of Ω, we may call the solution of Eqs. (5.42) stable
to the initial perturbations if ?

lim
t→∞

E (t)

E (0)
= 0 (5.44)

In order to apply to a very simple situation this stability criterion, let us suppose
that the disturbances are characterized by a small amplitude, so that we have δh/h� 1,
being h the generic unperturbed quantity. Without loss of generality, this allows us to
disregard nonlinear third-order terms in the perturbations, too. Finally, just for the sake
of simplicity, suppose also Stq � 1. Along with previous observations, in this case we have
δq = 0, and Eq. (5.42b) becomes

µ [δ (∇q · q) +∇δq · δq] = ∇p̃− ι∇2δq− µ∇qδq (5.45)

which, having present the hypothesis δh/h � 1, up to the second-order in the perturba-
tions, yields

|δq|2 =
1

µ2 |∇q|2
∣∣ι∇2δq−∇p̃

∣∣2 (5.46)

Therefore, if Mq � 1 and Req � Kn2
q /τ

r
R, the heat flow remains stable under initial

perturbations if

lim
t→∞

∫
Ω

(
Tcv
2τR

)2
(∣∣`2p∇2δq− λ∇δT

∣∣
|∇q|

)2

dΩ∫
Ω
δq0dΩ

= 0 (5.47)

once we have used previous identifications for µ, ι and π.
For finite values of E (0), from Eq. (5.47) we may conclude that, if the gradient of

the heat flux does not tend to zero as t → ∞, the stability of q will be recovered if the
perturbations in the initial values are such that `2p∇2δq → λ∇δT for increasing time.
More generally, it is sufficient that the perturbations in the initial values are such that the
integral in the numerator of the right-hand side of Eq. (5.47) is infinitesimal.

The physical interpretation of the result above is the following.
For constant internal energy, the gradient of q can be interpreted as the thermodynamic

force which drives the heat flow along a given direction. In Eq. (5.47) the strength of such
a force is represented by the term |∇q|2. On the other hand, the strength of the sole initial
perturbation appearing in Eq. (5.47) is represented by the quantity `2p∇2δq− λ∇δT . For
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large t, if the initial perturbation has order of magnitude which is smaller than that of
the driving force, then it will be not capable of changing appreciably the direction of q,
so that the heat flow remains stable.

On the other hand, if for large t the order of magnitude of the initial perturbation
gets values high enough to render finite the integral above, i.e., if it is higher than that
of the driving force, hence the perturbation can deviate the heat flux from the direction
previously determined by the initial conditions, inducing so disordered and unpredictable
evolutions of the flow, as, for instance, turbulence and vorticity.

Finally, let us observe that, since the form of the domain is known, the integral above
can be estimated ?, obtaining so a threshold for the initial perturbation at which the
turbulent regime arises. Such a threshold can be useful, for example, in calculating the
risk of thermal damage in MEMS/NEMS design.

Chapter 5. Weakly nonlocal and nonlinear heat transport – 102



Chapter 6
Heat transport with phonons and
electrons and efficiency of
thermoelectric generators

Alternative power sources based on energy harvesting are promising candidates to
substitute batteries due to their ability to extract power from the environment or sec-
ondary processes, as well as to attain fully autonomous systems without periodical human
intervention. Thermoelectric energy harvesters have received special attention in recent
years, due to the large amount of residual heat yielding from the current energy generation
technology based on fossil fuels and from solar heating. Thermoelectric devices offer an
attractive source of energy since they do not have moving parts, do not create pollution,
do not make noise.

In practical applications, the definition of a good thermoelectric device is usually re-
lated to the dimensionless product ZT , with T being the operating temperature, and Z
the so-called figure-of-merit, defined as

Z =
ε2σe
λ

(6.1)

wherein ε is the Seebeck coefficient, σe the electrical conductivity. Although the thermal
conductivity λ of thermoelectric materials is usually dominated by that of electrons, in
several cases the lattice heat conductivity, due to phonons, has to be added ?. For in-
stance, in small systems (nanowires and nanoribbons with characteristic sizes of the order
of 100 nm, or less) the electronic part of the thermal conductivity drops faster than the
phononic contribution ?. Other examples are some epitaxial superconducting films with
high critical temperature, where the phonons contribution is 50− 70% of thermal conduc-
tion near the critical temperature ??. Therefore, in the denominator of Eq. (6.1) the total
thermal conductivity is such that

λ = λp + λe (6.2)

with λp being the phonon contribution to the thermal conductivity, and λe the electron
contribution to it ???.

Since the higher ZT , the higher the efficiency of a thermoelectric device1, in order
to widen the applications of thermoelectric power generators, in the last decades there

1Refer to Eq. (6.31) in Sec. 6.1 for its explicit expression in the classical version in the case of a
thermoelectric energy generator.
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has been much research to improve the values of ZT beyond that of bulk materials,
which show a low efficiency. However, ZT has remained approximately equal to 1 for
the past several decades in the case of archetype materials at all temperature ranges.
These materials include antimony telluride (Sb2Te3) and bismuth telluride (Be2Te3) for
applications at room temperature, lead telluride (PbTe) at moderate temperatures, and
silicon-germanium (SiGe) alloys at high temperatures.

One of the primary challenges in developing advanced thermoelectric materials is in-
creasing the power factor ε2σe and reducing the thermal conductivity λ. To do so, it is
needed decoupling ε, σe and λ, which are typically strongly interdependent, in such a way
that an increase in ε usually results in a decrease in σe, and a decrease in σe produces a
decrease in the electronic contribution to λ, following from the Wiedemann-Franz law.

However, if the characteristic dimension of the material (or of the system) is reduced,
the new variable length scale becomes available for the control of its properties. In particu-
lar, as the system size decreases and approaches to the nanometer scale, new opportunities
are allowed to vary quasi-independently the aforementioned parameters. Nanomaterials,
therefore, provide an interesting avenue to obtain more performing thermoelectric devices,
for example, making nanocomposites, adding nanoparticles to a bulk material, or using
one-dimensional nanostructures ??. Carbon nanotubes and graphene sheets as thermo-
electric materials also exhibit improved thermoelectric properties. Nanosystems also offer
the possibility of an additional control of the different transport coefficients ????. For in-
stance, whenever the characteristic size of the system is comparable to the mean-free path
of the different heat carriers (phonons, electrons, holes, etc.) it is known that a thermal-
conductivity reduction can be realized over a wide temperature range, or the power factor
(i.e., ε2σe) can be increased at the same time by increasing ε more than σe is decreased ??.

Although from experimental evidences it is clear the importance of using nanotech-
nologies in thermoelectricity, the search of a very good thermoelectric device is still far
from its final solution. This principally because the physics at nanoscale in thermoelectric
materials still presents several dark points, as for instance the exact role played by nonlocal
and nonlinear effects ?????. Thus, the analysis of both effects may be useful to investi-
gate new strategies for the optimization of thermoelectric devices, beside contributing to
a deeper scientific understanding of thermoelectric effects.

In the classical form, thermoelectric effects are described by the following constitutive
equations

q = −λ∇T +

(
Π +

µe
ze

)
I (6.3a)

I = −σeε∇T + σe

[
E−∇

(
µe
ze

)]
(6.3b)

wherein Π is the Peltier coefficient, I the electric-current density, E the electric field,
µe the chemical potential of the electrons, and ze the electric charge per unit mass of the
electrons (which should be not confused with the electric charge of the carriers %e to which
it is related as %e = ceze, with ce being mass fraction of electrons).

From Eq. (6.3a) it is possible to see that, even in absence of a temperature gradient,
a heat flux may be generated due to an electrical current: this is the so-called the Peltier
effect. The coefficient Π = ± (|q| / |I|)∆T=0 measures the amount of heat absorbed (or
rejected) at the junction of two conductors of different materials kept at uniform tem-
perature and crossed by an electric current of unit density ?. Equation (6.3b) shows the
property that, even in absence of an electric current, an electrical field E can be created by
a temperature difference: this is known as Seebeck effect. The Seebeck coefficient ε (also
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known as thermoelectric power coefficient) measures the electrical potential produced by
a unit temperature difference, in absence of electric current ?.

In the present Chapter we study how to obtain enhanced versions of Eqs. (6.3), which
have meaningful consequences on some well-known classical theoretical results, and in
practical applications, i.e., on the efficiency η of thermoelectric energy generators. To
this aim, we assume a cylindrical thermoelectric nanodevice whose longitudinal length
L is much larger than the characteristic size of the transversal section. In this case we
may represent it as a one-dimensional system and consider only one Cartesian component,
namely, the longitudinal one y. In steady states we assume that the hot side of this system
(i.e., that at y = L) is kept at the temperature T h, and its cold side (i.e., that at y = 0)
at the temperature T c. Moreover, we suppose that an electric current I and a quantity of
heat per unit time Q̇tot enter uniformly into the hot side of the device and flow through
it. In such a case the thermoelectric efficiency reads

η =
Pel

Q̇tot

(6.4)

wherein Pel is the electric-power output, and Q̇tot is the total heat supplied per unit time
to the system.

All the results derived in the present Chapter lie on the basic assumption that in
thermoelectric materials the local heat flux q has two different contributions: the phonon
partial heat flux q(p) and the electron partial heat flux q(e). In the simplest situation,
those contributions are such that

q = q(p) + q(e) (6.5)

6.1 Two-temperature model for thermoelectric effects

In the present section we generalize Eqs. (6.3) whenever the different heat carriers
(i.e., the phonons and the electrons in our case) no longer have the same temperature.
Note that accounting for two different temperatures may be important, for instance, in
the following physical situations

i. Time-dependent situations: fast laser pulses. When a laser pulse hits the
surface of a system, initially the electrons capture the main amount of the incoming
energy with respect to the phonons. Subsequently, through electron-phonon colli-
sions, they give a part of it to the phonons. This may be of interest, for example,
in the Raman thermometry (which is often utilized to measure the temperature in
small electronic devices) or in information recording on optical discs (CD, DVD,
Blu-Ray).

ii. Steady-state situations: nonequilibrium temperatures. As the electron mean-
free path `e is usually shorter than the phonon mean-free path `p, in heat propagation
and when the longitudinal distance y is such that `e < y < `p, it is expected a very
high number of electron collisions, and only scant phonon collisions. This yields that
the electron temperature may reach its local-equilibrium value, whereas the phonon
temperature may be still far from its own local-equilibrium value.

iii. Hot electrons. When the electron mean-free path corresponding to electron-
phonon collisions is long, one may have the so-called ”hot electrons”, namely, a
population of electrons whose average kinetic energy (i.e., the kinetic temperature)
is considerably higher than that of the phonons ?.
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Since we assume that the heat carriers behave as a mixture of gases flowing through
the crystal lattice ?, it seems logical to suppose that the internal energy of phonons per
unit volume up, the internal energy of electrons per unit volume ue and the electrical
charge per unit volume of electrons %e belong to the state space. In particular, we assume
that those state-space variables are ruled by the following evolution equations:

u̇p = −∇ · q(p) (6.6a)

u̇e = −∇ · q(e) + E · I (6.6b)

%̇e = −∇ · I (6.6c)

If the total internal energy per unit volume of the system u is supposed to be given by
the constitutive relation

u = up + ue (6.7)

and Eq. (6.5) is taken into account, then the summation of Eqs. (6.6a) and (6.6b) turns
out the well-known energy-balance equation

u̇+∇ · q = E · I

obtained in Ref. ? in the absence of a magnetic field. According with the basic principles
of EIT ??, we may assume that the fluxes of the previous unknown variables (namely, q(p),
q(e) and I) are the other state-space variables. Whenever the relaxation times of those
fluxes are negligible, the specific entropy per unit volume s is such that s = s (up, ue, %e) ?,
and from the Gibbs relation we have

ds =

(
∂s

∂up

)
dup +

(
∂s

∂ue

)
due +

(
∂s

∂%e

)
d%e ⇒

ṡ =

(
1

Tp

)
u̇p +

(
1

Te

)
u̇e −

(
µe
zeTe

)
%̇e (6.8)

wherein Tp = (∂s/∂up)
−1 is the phonon temperature, Te = (∂s/∂ue)

−1 is the electron
temperature, and µe/ (zeTe) = −∂s/∂%e. From the theoretical point of view, we may
postulate the following further constitutive equations which relate the partial internal
energies appearing in Eqs. (6.6) to those temperatures:

up = c(p)
v Tp (6.9a)

ue = c(e)
v Te (6.9b)

wherein c
(p)
v and c

(e)
v are the phonon and the electron specific heats at constant volume ?,

respectively. Since the total internal energy u can be expressed through the average

temperature T as u = cvT , being cv = c
(p)
v + c

(e)
v the specific heat at constant volume of

the whole system ?, from the coupling of Eqs. (6.7) and (6.9) we obtain

T =
c

(p)
v Tp + c

(e)
v Te

cv
(6.10)

which states a link between Tp, Te and T , the latter being a measurable quantity in prac-

tical applications. Note that in the very general case c
(p)
v and c

(e)
v should be temperature-

dependent functions, but here we deal only with the simplest situation in which those
material functions are constant, in order to emphasize the essential physical ideas and
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their consequences. In other words, since we regard the phonons and electrons as a mix-
ture of gases flowing through the crystal lattice ??, each of which is endowed with its own
temperature, according with the theory of fluid mixtures with different temperatures ????,
we assume that each constituent obeys the same balance laws as a single fluid. The aver-
age temperature of the mixture has been introduced by the consideration that the internal
energy of the mixture is the same as in the case of a single-temperature mixture ??.

The substitution of Eqs. (6.6) into Eq. (6.8) leads to

ṡ =− ∇ · q
(p)

Tp
− ∇ · q

(e)

Te
+

(
µe
zeTe

)
∇ · I +

E · I
Te

=

−∇ ·

(
q(p)

Tp
+

q(e)

Te
− µe
zeTe

I

)

− q(p) · ∇Tp
T 2
p

− q(e) · ∇Te
T 2
e

− I

Te
∇
(
µe
ze

)
+

(
µe
zeT 2

e

)
I · ∇Te +

E · I
Te

(6.11)

Recalling that the time rate of the specific entropy has to obey the balance law (1.9),
its comparison with Eq. (6.11) leads to the following identifications:

Js =
q(p)

Tp
+

q(e)

Te
− µe
zeTe

I (6.12a)

σs = − 1

Tp

{
q(p) · ∇Tp

Tp

}
− 1

Te

{[
q(e) − µe

ze
I

]
· ∇Te
Te

}
+

1

Te

{
I ·
[
E−∇

(
µe
ze

)]}
=
∑

α
Jα ·Xα (6.12b)

wherein Jα is the thermodynamic flux, and Xα is its conjugated thermodynamic force ??.
As we observed in Chap. 1, experience indicates that for a large class of irreversible
processes, the thermodynamic fluxes can be regarded as linear functions of the forces, to
a good approximation ????. This choice, which is also the simplest way to ensure that σs

is a non-negative quantity whatever the thermodynamic process is, allows us to write the
following phenomenological relations for the fluxes appearing in our model:

−q(p) = L11
∇Tp
Tp

+ L12
∇Te
Te

+ L13

[
E−∇

(
µe
ze

)]
(6.13a)(

µe
ze

)
I− q(e) = L21

∇Tp
Tp

+ L22
∇Te
Te

+ L23

[
E−∇

(
µe
ze

)]
(6.13b)

I = L31
∇Tp
Tp

+ L32
∇Te
Te

+ L33

[
E−∇

(
µe
ze

)]
(6.13c)

As the thermoelectric effects arise from the physical interrelation between heat flow
and electric current, in the classical thermoelectric models the cross-coefficients Lαβ (with
α 6= β) are only related to the coupled transport of heat and electricity. In the present
model, instead, the thermoelectric effect is driven by three generalized thermodynamic
forces, namely, the phonon and electron temperature gradients, and the force due to the
electric field and to the chemical potential of the electric charge. As a consequence, the
cross-coefficients L12 and L21 account for the cross effects due to the different temperatures
of the heat carriers (which are lacking in the classical case), the coefficients L13 and L31

represent the coupling between the phonon temperature gradient ad the electric current,
and the coefficients L23 and L32 account for the coupling between the electron temperature
gradient ad the electric current. In the standard thermoelectric models, with Tp = Te, we
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have only two cross-coefficients and a 2 × 2 transport matrix. Here, instead, we have six
cross-coefficients and a 3× 3 transport matrix. To be compatible with the second law of
thermodynamics (expressed as the positive-definite character of the entropy production)
the matrix of the phenomenological coefficients Lαβ must be positive definite ??. On the
other hand, the Onsager reciprocal relations (OR) ?? ensure that the transport matrix
is symmetric, so that the Sylvester criterion concerning the positive definiteness of real-
symmetric n×n matrices is applicable. Such a criterion states that the positiveness of all
the leading principal minors of the matrix is necessary and sufficient to ensure that it is
positive definite ?.

By means of Eq. (6.5), in a somewhat different form the phenomenological equa-
tions (6.13) may be also written as

q = − (λp + λep)∇Tp − (λe + λpe)∇Te +

(
µe
ze

+ Π

)
I (6.14a)

I = −σeε∇Te + σe

[
E−∇

(
µe
ze

)]
(6.14b)

once the following identifications are made:
L11 = λpTp L12 = λpeTe L13 = 0
L21 = λepTp L22 = λeTe + σeεTeΠ L23 = −σeΠ
L31 = 0 L32 = −σeεTe L33 = σe

(6.15)

with λpe and λep expressing the contributions to the total thermal conductivity due to
the possible interactions between the different heat carriers ?. The use of these thermal
conductivities, arising from the phenomenological coefficients L12 and L21 in Eqs. (6.13a)
and (6.13b), respectively, are representative of the cross effects in the constitutive equa-
tions for the diffusive fluxes q(p) and q(e). However, as it will be seen in Sec. 6.1.2, these
cross effects do not play any relevant role on the efficiency of thermoelectric energy con-
version, being the difference in the two temperatures the principal responsible for possible
enhancements of it. Moreover, in Eqs. (6.15) we assumed L13 = L31 = 0 since the phonons
are not expected to be directly sensitive to the external electric field, at least in a first ap-
proximation. For polar lattices, this possibility would be open, and L13 could be different
from zero. However, here we take the simplest expression.

Owing to the OR ??, from Eqs. (6.15) we obtain

λpe = λep

(
Tp
Te

)
(6.16a)

Π = εTe (6.16b)

The relation (6.16b) is well known in thermoelectricity when Te is replaced by T . In
that case it is referred to as the second Kelvin relation. The different result predicted by
Eq. (6.16b) with respect to the usual statement of the second Kelvin relation (i.e., Π = εT )
should not be considered as a surprising and unexpected result. In fact, the classical
statement is correct in the case that phonons and electrons have the same temperature.
In the case they have different temperatures, instead, the relation (6.16b) seems more
appropriate. That result is also not against OR ?? but, on the contrary, it is an illustration
of them, more accurate and precise than the classical expression with a single temperature,
as it is obtained from the symmetry of coefficients Lαβ appearing in Eqs. (6.15).
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Finally, according to the Sylvester’s criterion, the additional constraints

λp > 0 (6.17a)

λp (λe + σeΠ) > λpeλep (6.17b)

λpλe > λpeλep (6.17c)

are necessary and sufficient to ensure that the entropy production is always non-negative.
In fact, due the positive definiteness of the matrix of the transport coefficients, the entropy
production is positive whenever at least one thermodynamic force is different from zero,
and vanishes when all the thermodynamic forces are zero. Such a situation characterizes
the quasi-static processes ?, which correspond to zero entropy production.

6.1.1 Possible estimations of the phonon and electron temperature

Since from the theoretical point of view it seems of interest to accounting for Te and
Tp, it would be useful in practical applications to find a way to estimate those tempera-
tures ??. Equation (6.16b) may be important for this aim. In fact, by means of a usual
thermometer, one is only able to check the average temperature T , defined by Eq. (6.10).
Equation (6.16b) turns out that Te should be given as the ratio between Π and ε. There-
fore, if one is able to measure Π and ε then, by the coupling of Eqs. (6.10) and (6.16b), in
principle, it is possible to determine Tp, too. In fact, setting

α =
c

(e)
v

cv
, 1− α =

c
(p)
v

cv

β1 =
Te
T
, β2 =

Tp
T

(6.18)

whereas from Eq. (6.10) we have

β2 =
1

1− α
−
(

α

1− α

)
β1 (6.19)

It is worth to note that at nanoscale the different material functions may deviate from
their corresponding bulk values, in such a way that several methods of measuring them
may be found in literature ??.

From the practical point of view, the way of having a truly different temperature for
electrons (and holes) and lattice (phonons) is by means of a pulse-laser excitation yielding
its energy to the charged particles (electrons), which later share their energy excess with
the lattice. Despite the lattice may be also charged, the much higher mass of the ions
makes that the electrons may absorb more energy from the pulse. However, this strategy
is not of interest for practical thermoelectric devices, because it would require spending
energy on the laser, from which only a part would be taken by the system. A different
strategy would be by using a system composed of two (or several) thin layers (as for
instance a superlattice) which are shorter than the phonon mean-free path, but larger
than the electron mean-free path. If the electron and phonon contributions to the heat
flux within the layers are, respectively, q(e) = −λe∇Te and q(p) = −λp∇Tp, and the
temperature discontinuities at an interface are ∆Te = Reqe and ∆Tp = Rpqp, Re and Rp
being the respective thermal resistance of the interface, one may obtain the profile for Te
and Tp along the system. Both temperatures must be equal to the heat baths at the two
ends of the whole system, but they may be different from each other along the system.
By using suitable materials to have Re, Rp, λe and λp (or a suitably reduced effective

Chapter 6. Heat transport with phonons and electrons and efficiency of thermoelectric
generators – 109



6.1 Two-temperature model for thermoelectric effects

phonon thermal conductivity), one could have regions with Te higher than Tp, and regions
with Te lower than Tp. A detailed analysis of both profiles should be carried out to study
the global effects of these differences on the efficiency of the thermoelectric conversion in
the whole device. Of course, electrons exchange energy with phonons everywhere. Thus,
it would be convenient that the electron heat flux is relatively large, in order that this
energy exchange does not bring to zero the temperature differences. These effects should
be studied in detail.

Indeed, in the present two-temperature model, the problem of measuring Te and Tp
may be also related to the phonon-drag phenomenon ??. The classical theory of ther-
moelectricity, in fact, is based on the assumption that the flow of charge carriers and
phonons can be treated independently. Under this assumption, the Seebeck coefficient
depends solely by the spontaneous electron diffusion. However, when the two flows are
linked, the effect of electron-phonon scattering should be taken into account. Hence, in
general, the Seebeck coefficient shows two independent contributions: the conventional
electron-diffusion contribution and the phonon-drag contribution ?. The diffusion part is
caused by the spatial variation of the electronic occupation in the presence of a thermal
gradient, whereas the drag part arises by the interaction between anisotropic lattice vi-
brations and mobile charge carriers. The overall phonon-drag effect leads to an increase
in the Seebeck coefficient. If we look at Eq. (6.14b), we may observe that it allows to
introduce the following effective Seebeck coefficient

β1 =
εeff

ε
(6.20)

which also allows to claim that the deviation of the effective Seebeck coefficient from
its bulk value represents a further possible measurement of the electron temperature.
Moreover, along with previous observations about the phonon-drag phenomenon, from
Eq. (6.20) we further claim that in general β1 should be higher than unit, namely, Te > Tp.

Finally, observing that α ∈ ]0; 1[, the physical constraint β2 > 0 implies that β1 ∈]
0;α−1

[
. From Eq. (6.19) it is easy to see that the condition β1 = 1 ⇒ β2 = 1, namely,

in this case Te ≡ Tp ≡ T : the two-temperature model described by Eqs. (6.14) reduces to
the usual single-temperature model ??, i.e., to Eqs. (6.3), once the thermal conductivity
λ of the material is supposed to be given as λ = λp + λe + 2λpe.

6.1.2 Efficiency of a thermoelectric energy generator in a two-temperature
model

Let us now investigate the consequences of accounting for two different temperatures
for phonon and electrons on the efficiency of a nano-thermoelectric energy generator, as
that introduced above. For the sake of simplicity, let us suppose that q(p), q(e) and I
are parallel to the nanowire, and that E takes a constant value on each of the planes
orthogonal to the nanowire.

In these conditions, for vanishing values of µe/ze, Eqs. (6.14) become

q = q(p) + q(e) = −Λp∇yTp − Λe∇yTe + ΠI (6.21a)

I = −σeε∇yTe + σeE (6.21b)

wherein Λp = λp + λep, and Λe = λe + λpe.
To proceed further, we explicitly observe that Q̇tot may be obtained by integrating

the heat flux on the section of the entry side of the nanowire. However, for very small
sections, if A is the area of the cross section, we have

lim
A→0

Q̇tot = |q| (6.22)

Chapter 6. Heat transport with phonons and electrons and efficiency of thermoelectric
generators – 110



6.1 Two-temperature model for thermoelectric effects

The situation described above reflects just what happens in the nanowire considered
here, so that we can substitute |q| to Q̇tot in Eq. (6.4). On the other hand, since we do
not have any ”a priori” information on the dependence of Tp and Te on y, we rewrite
Eq. (6.21a) under the approximation

∇yTp =
Tp (L)− Tp (0)

L
=
T hp − T cp

L
(6.23a)

∇yTe =
Te (L)− Te (0)

L
=
T he − T ce

L
(6.23b)

so that it reads

Q̇tot ≡ |q| = Λp
T hp − T cp

L
+ Λe

T he − T ce
L

+ ΠI (6.24)

If, for the sake of simplicity, ε and σe are supposed to be constant, the electric-power
output is equal to the work made by the Coulomb force per unit time for moving the
electric charges from y = L to y = 0, namely,

Pel = I

∫ 0

L
Edy = −I

∫ L

0
Edy = −I

∫ L

0

(
I

σe
+ ε∇yTe

)
dy

= −I
2

σe
L− ε [Te (L)− Te (0)] = −I

2

σe
L+ Iε

(
T he − T ce

)
(6.25)

Inserting Eqs. (6.24) and (6.25) into Eq. (6.4) we obtain

η =
Iε
(
T he − T ce

)
− I2Lσ−1

e

Λp
(
T hp − T cp

)
L−1 + Λe (T he − T ce )L−1 + ΠI

(6.26)

If we introduce in Eq. (6.26) the coefficients β1 and β2 defined in Eqs. (6.18), and take
into account Eq. (6.16b), by straightforward calculations we have

η =

(
1− T c

T h

) εx− λx2

σeβ1

γ + 1

T h
+ εx

 = ηcηr (6.27)

wherein λ = Λp + Λe, γ = (Λp/λ) (β2/β1 − 1), and x is the following ratio between the
electric current and the heat flux:

x =
IL

λ (T h − T c)
(6.28)

In Eq. (6.27) ηc = 1−T c/T h is the usual Carnot efficiency, and ηr is a reduced efficiency.
Although in Refs. ?? it is shown that, in principle, even the Carnot efficiency is attainable,
the actual devices have performances which are notoriously much more modest, that is,
ηr � 1. Therefore, in practical applications one should find the right way to enhance ηr
in order to have a good thermoelectric efficiency. Indeed, it is easy to see that whenever
the ratio x defined above gets the value

xopt =

(
γ + 1

εT

)(√
1 +

ZeffTβ1

γ + 1
− 1

)
(6.29)
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with Zeff = ε2σe/λ as an effective figure-of-merit, then the reduced efficiency gets its
maximum value, and the thermoelectric efficiency reads

ηmax = ηc


ZeffTβ1 + 2 (γ + 1)

(
1−

√
1 +

ZeffTβ1

γ + 1

)
ZeffTβ1

 (6.30)

which reduces to the classical form for the maximum thermoelectric efficiency ??

ηmax,classic = ηc

ZT + 2
(

1−
√

1 + ZT
)

ZT

 (6.31)

whenever Tp and Te coincide, i.e., when β1 = β2 = 1 and γ = 0. From Eq. (6.30) the
usual result that the larger the figure-of-merit, the higher the efficiency of a thermoelectric
device is also recovered.

However, Eq. (6.30) clearly points out that also the differences between Tp and Te
influence ηmax. The cross effects related to the phenomenological coefficients L12 and L21

in Eqs. (6.13), instead, do not play any role in the efficiency. This may be interesting in
practical applications, since most of the research is focusing only on the search of new
materials with high values of the figure-of-merit.

In Fig. 6.1 we plot the behavior of the ratio ηmax/ηc as a function of β1 for two different
values of the nondimensional parameter α, i.e., α = 0.05 and α = 0.75. For the sake
of illustration we assumed Λp = Λe, as the materials commonly used in thermoelectric
applications show a phonon thermal conductivity which is approximately equal to the
electron thermal conductivity. Moreover, we supposed that ZeffT = 1.

As it can be seen, the maximum efficiency increases for increasing values of β1. This
means that the higher Te with respect to Tp, the better the performances of thermoelectric

devices. Indeed, Fig. 6.1 also allows to analyze the role played by c
(e)
v and c

(p)
v , the latter

being usually higher than the former. In fact, it points out that the (positive) slope of the
curve ηmax = ηmax (β1) gradually decreases whenever α assumes small values, whereas it
basically takes a constant value when α reaches high enough values, in such a way that
whenever Te > Tp, the higher α, the higher ηmax.

At the very end, we observe that in Fig. 6.1 the value ηmax/ηc = 0.17, attained when-
ever β1 = 12 corresponds to the case of a single-temperature model. Thus, whenever the
electron temperature is higher than the phonon temperature, the two-temperature model
yields an efficiency which is higher than that of the usual single-temperature model.

6.1.3 Influence of the electric-charge density on the optimal efficiency
of a thermoelectric energy generator

In recent years ”functionally graded materials” (FGMs) ?, i.e., a new class of advanced
materials with varying properties over a changing dimension, are attracting the attention of
many research groups. In FGMs the properties change continuously, or quasi continuously,
along one direction, and this implies that the different material functions may be assumed
to be continuous, or quasi-continuous. Their versatility allows the use of these materials in
thermoelectric applications, too. In particular, the efficiency of thermoelectric devices can

2Along with previous observations in this case one also has β2 = 1, and moreover γ = 0
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Figure 6.1: Behavior of ηmax/ηc versus β1 for two different values of the nondimensional

parameter α = c
(e)
v /cv: theoretical results arising from Eq. (6.30). In figure, β1 < 1 ⇒

Tp > Te, β1 = 1⇒ Tp = Te, and β1 > 1⇒ Tp < Te. For the sake of computation, in figure
we assumed Zeff = 1.
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be improved by adjusting the carriers’ concentration along the material’s length. This can
be achieved by employing a functionally graded thermoelectric material (FGTM), with the
carriers’ concentration optimized for operating over a specific temperature range ????.

Therefore, it is important to go deeper in the analysis of the thermoelectric efficiency,
and account not only for the effects due to the different temperatures, but also for those
due to the term µece/%e, which we previously neglected.

Recalling that when the relaxation times of the diffusive fluxes are vanishingly small,
the specific entropy per unit volume s only depends on the unknown variables up, ue and
%e ?, from the definition of chemical potential, it follows

µece
%e

= f (up, ue, %e) (6.32)

which allows to rewrite Eq. (6.14b) as

I = −σeε̃∇Te −
(
σeε

∂f

∂Tp

)
∇Tp + σe

(
E− ∂f

∂%e
∇%e

)
(6.33)

wherein ε̃ = ε+ ∂f/∂Te.
For the sake of simplicity, in the next we approximate the material parameters ε̃, σe,

∂f/∂Tp and ∂f/∂%e by their mean values ε, σe, fp and f% in [0, L]. This mathematical
assumption, which allows our calculations to be reduced to a simpler level, is tantamount
to suppose that those constitutive quantities suffer only very small variations in [0, L].
Moreover, owing to the reduced length, we can approximate all the gradients in Eq. (6.33)
by their measured values ∆Tp/L, ∆Te/L and ∆%e/L, with ∆Te = T he −T ce , ∆Tp = T hp −T cp ,

and ∆%e = %he − %ce. In this case, Eqs. (6.24) and (6.25) modify in

|q| = Λp
∆Tp
L

+ Λe
∆Te
L

+
(
Π + f

)
I (6.34a)

Pel = −I
2L

σe
+ εI∆Te + Ifp∆Tp − I

∣∣f%∣∣∆%e (6.34b)

By observing that in a one-dimensional system, when a conductive material is subjected
to a thermal gradient, the charge carriers migrate from the hotter side to the colder one,
and, in the open-circuit condition, they accumulate in the cold region, generating so
an electric potential difference, we conclude that the electric-current density I and the
temperature gradients ∇Te and ∇Tp have to be opposite vectors for arbitrary values of
the material coefficients σeε̃ and (σeε) ∂f/∂Tp. As a consequence, by Eq. (6.33) we infer
that ∂f/∂Te > 0 and ∂f/∂Tp > 0. We note that in principle the Seebeck coefficient may
assume either a positive value (for example in the case of a p-type semiconductor wherein
the current is brought by holes), or a negative one (for example in the case of a n-type
semiconductor wherein the current is carried by electrons). For the sake of illustration,
here we analyze the case of a positive Seebeck coefficient. Moreover, since the electric
current is always parallel and concordant to the gradient of the electric charge, still by
Eq. (6.33) we conclude that ∂f/∂%e < 0. By substituting Eqs. (6.34) into Eq. (6.4) we
arrive to the following expression of the thermoelectric efficiency

η =
−I

2L

σe
+ εI∆Te + Ifp∆Tp − I

∣∣f%∣∣∆%e
Λp

∆Tp
L

+ Λe
∆Te
L

+
(
Π + f

)
I

(6.35)
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The use of the variable x defined in Eq. (6.28) and of the new variable

w =

√
∆%e
IL

(6.36)

allows to rewrite Eq. (6.35) as ?

η = ηc

−
(

λ

σeβ1

)
x2 +

Γ

β1
x−

(
λ2

β1

∣∣f%∣∣)x2w2

γ + 1

T h
+ ε

(
1 +

δ

β1

)
x

 (6.37)

wherein Γ = εβ1 + β2fp, γ = Λpλ
−1
(
β2β

−1
1 − 1

)
, and δ = f/

(
εT h

)
. If we introduce an

effective figure-of-merit defined as

Zeff =
(ε)2 σe
λ

then, in correspondence of the following values of the variables above,

xopt =
γ + 1

εT
(
1 + δβ−1

1

) [−1 +

√
1 +

(
Γ

ε

)(
ZeffT

γ + 1

)(
1 +

δ

β1

)]
(6.38a)

wopt = 0 (6.38b)

Eq. (6.37) gets its maximum ?, which reads

ηmax =
ηc (γ + 1)

β1

(
1 + δβ−1

1

)2
 2

ZeffT
+

Γ
(
1 + δβ−1

1

)
ε (γ + 1)

− 2

ZeffT

√
1 +

Γ
(
1 + δβ−1

1

)
ε (γ + 1)

ZeffT

 (6.39)

Equation (6.39), which generalizes the results of previous section under the hypothesis
that the terms proportional to µece/%e are negligible in Eqs. (6.14), points out that the
optimum efficiency strongly depends not only on the two temperatures Tp and Te, but also
on the gradient of the charge carriers.

In particular, from Eq. (6.39) it is easy to see that

ZeffT →∞⇒ η → ηc

(
Γ

εβ1

)(
1 +

δ

β1

)−1

so that the material functions ε̃, ∂f/∂Tp and ∂f/∂%e must fulfill the following physical
restriction (

Γ

εβ1

)(
1 +

δ

β1

)−1

≤ 1

This consideration, joined with the further observation that, whenever the terms in
f can be neglected in Eqs. (6.14), then η → ηc as ZeffT → ∞, allows to conclude that
the presence of a non-vanishing gradient of the electric charges worsen the thermoelectric
efficiency. This is logical, since the inhomogeneity in the charge density induces a current
circulation inside the conductor and, as a consequence, an enhancement of dissipation by
Joule effect.

For the sake of illustration, we evaluate f in correspondence of fixed values of Te and
Tp, so that f = f (%e), and plot the ratio ηmax/ηc in such a situation. Although in a
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Figure 6.2: Behavior of ηmax/ηc versus β1 for two different values of the non-dimensional

parameter α = c
(e)
v /cv and for a fixed value of δ: theoretical results arising from Eq. (6.39)

in the case of f = f (%e).

special case, this simplifying assumption allows us to show in the next figures both the
role played by the two temperatures, and by the gradient of electric charges.

In Fig. 6.2 we plot the behavior of the ratio ηopt/ηc as a function of β1, for two different
values of the nondimensional parameter α, i.e., α = 0.05 and α = 0.75, and when δ = 1.
For the sake of illustration, in our computation we assumed that Λp = Λe, as the materials
commonly used in thermoelectric applications show a phonon thermal conductivity which
is approximately equal to the electron thermal conductivity, and supposed ZeffT = 1.

As it can be seen, in this case the maximum efficiency increases for increasing values
of β1. This means that the bigger Te with respect to Tp, the better the performance of

the thermoelectric device. Indeed, Fig. 6.2 also allows to analyze the role played by c
(e)
v

and c
(p)
v , the latter being usually higher than the former. In fact, it points out that the

(positive) slope of the curve ηopt = ηopt (β1) gradually decreases whenever α assumes very
small values, whereas it takes an almost constant value when α reaches high enough values,
in such a way that whenever Te > Tp, the higher α, the higher ηopt. We also note that
in Fig. 6.2 the value ηopt/ηc = 0.13, attained when β1 = 1, corresponds to the case of a
single-temperature model, namely, Te = Tp ≡ T .

In Fig. 6.3, instead, we plot the behavior of the ratio ηopt/ηc as a function of δ, for
three different values of the non-dimensional parameter α, i.e., α = 0.05 and α = 0.75,
and when β1 = 0.5. In obtaining the results of Fig. 6.3 we still assumed that Λp = Λe,
and ZeffT = 1. Along with previous observations about the role of the gradient of the
electric charge, from Fig. 6.3 we infer that the smaller δ, the higher the thermoelectric
performances. Figure 6.3 still allows to analyze the role of the different specific heats. In
particular, we have that the smaller α, the higher ηopt. We note that these behaviors are
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Figure 6.3: Behavior of ηmax/ηc versus δ for two different values of the non-dimensional

parameter α = c
(e)
v /cv and for β1 = 0.5: theoretical results arising from Eq. (6.39) in the

case of f = f (%e).

in agreement with those of Fig. 6.2, since we are assuming that β1 < 1. We would have
the opposite behaviors if β1 > 1.

For practical applications, these results suggest that, in order to enhance the efficiency
of thermoelectric energy conversion, it would be useful to have:

• in a single-component material, the charge distribution as much homogeneous as
possible, in such a way that f → 0 in Eq. (6.35);

• in a graded thermoelectric material, where the inhomogeneity in the electric charge
arises naturally, the gradient of function f defined in Eq. (6.32) as small as possible;

• the physical parameter
β1

β2
=
Te
Tp

as high as possible;

• the electron specific heat c
(e)
v as high (respectively, small) as possible, and the phonon

specific heat c
(p)
v as small (respectively, high) as possible, whenever

β1

β2
> 1 (respec-

tively,
β1

β2
< 1).

6.2 One-temperature models: effects of non-local and non-
linear breakings of Onsager symmetry

On microscopic grounds both electrons and phonons may be viewed as a free-particle
gas in a box ??????. In nonequilibrium statistical mechanics, the statistical behavior of a
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thermodynamic system far from its thermodynamic equilibrium is described through the
Boltzmann transport equation (BTE), which in the relaxation-time approximation reads:

∂f

∂t
+ v · ∇rf +

F

m
· ∇vf = −f − f0

τ
(6.40)

wherein the subscripts r and v in the nabla operators represent the variables of the gradi-
ent, i.e., they are the position and the velocity, respectively. Moreover, in Eq. (6.40) F is
an external force instantly acting on each particle, m is the particle mass, f (r,v, t) is the
unknown distribution function, f0 represents the equilibrium distribution of the carrier,
and τ (r,k) is their relaxation time, k being the wave vector of the particle. In the BTE,
f0 is given by the Bose-Einstein distribution function (BEdf) in the case of phonons, i.e.,

f0 =

e ~ν
kBT − 1


−1

wherein ~ = h/ (2π) with h being the Planck constant, and ν is the angular frequency.
In the case of electrons, instead, f0 is expressed by the Fermi-Dirac distribution function
(FDdf), i.e.,

f0 =

eεi − µekBT + 1

−1

with εi being the energy of the single-particle state.
Indeed, it is possible to find several situations, as for example whenever the quantities

(εi − µe) and ~ν are much larger than kBT , in which one can ignore the ±1 in the denom-
inator of f0, and the BEdf and the FDdf reduce to the Boltzmann distribution function ?.
In these cases, on intuitive grounds, the solution of the BTE both for phonons, and for
electrons would lead to equations showing the same mathematical behavior.

Starting from these considerations and in accordance with the basic principles of
EIT ??, generalized transport equations to describe heat and electric transport with ther-
moelectric coupling can be introduced ??.

6.2.1 The nonlocal model

Incorporating explicitly the effects of the several mean-free paths is useful to study new
strategies for the optimization of thermoelectric effects. This problem has been addressed
from a microscopic point of view by solving the Boltzmann equation for phonons and
electrons, for nanowires made of InSb, InAs, GaAs and InP. Indeed, in the framework of
EIT, in Ref. ? it is proved that Eqs. (6.3), for vanishing values of µe/ze, can be generalized
as

τpq̇
(p) + q(p) = −λp∇T + `2p

(
∇2q(p) + 2∇∇ · q(p)

)
(6.41a)

τeq̇
(e) + q(e) = − (λe + εΠσe)∇T + `2e

(
∇2q(e) + 2∇∇ · q(e)

)
+ ΠσeE (6.41b)

τeİ + I = σe (E− ε∇T ) + `2e
(
∇2I + 2∇∇ · I

)
(6.41c)

where (τp; `p) and (τe; `e) are the relaxation time and the mean-free path of phonons and
electrons ???.

In the next we use a phonon-hydrodynamic approach and the thermodynamic model
in Eqs. (6.41) to phenomenologically explore the size dependency of the figure-of-merit.
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Our aim is to bridge the gap between the much detailed microscopic approaches (i.e.,
kinetic theory or numerical simulations) and the classical nonequilibrium-thermodynamic
approaches ???? lacking the explicit presence of the mean-free path.

For the sake of illustration, we will consider cylindrical nanowires, with a longitudinal
length L and with a radius R of the transversal section.

Cylindrical nanowires with `e < R < `p

We start to focus our attention on nanowire which has a transversal radius R such
that `e < R < `p. This is a realistic assumption in Si or Bi2Te3 nanowires, for example,
wherein the phonon mean-free path is one order of magnitude larger than the electron
one ??.

In this situation, for the electrons one has the usual resistive regime whereas the
phonons undergo the hydrodynamic regime. In the resistive regime the second-order spa-
tial derivatives of the flux can be neglected in the evolution equation of the heat flux,
and the main term is the flux itself. In the hydrodynamic regime, instead, the spatial
derivatives of the heat flux play the main role, as we observed in Chap. 3. Therefore,
Eqs. (6.41) become ?

∇2q(p) =
λp
`2p
∇T (6.42a)

q(e) = − (λe + εΠσe)∇T + ΠσeE (6.42b)

I = σe (E− ε∇T ) (6.42c)

Under the assumption that ∇T and E are homogeneous across and along the nanowire,
and with a vanishing phonon heat flux at the walls (ie., if q(p) (R) = 0), from the sys-
tem (6.42) it follows that in each transversal section the phonon heat flux has a parabolic
profile, whereas the electron heat flux and the current density are constant, namely,

q(p) (r) = λp
∆T

L

(
R2 − r2

)
4`2p

(6.43a)

q(e) = q(e,∆T ) + q(e,E) = (λe + εΠσe)
∆T

L
+ ΠσeE (6.43b)

I = I(∆T ) + I(E) = σe

(
ε
∆T

L
+ E

)
(6.43c)

wherein we have explicitly expressed the two different contributions to the electron heat
flux q(e): that due to the temperature gradient (i.e., q(e,∆T )), and that due to the electric
field (i.e., q(e,E)). Analogously, in Eq. (6.43c) we have expressed the two different contri-
butions to the electric-current density I, namely, I(∆T ) due to the temperature gradient,
and I(E) due to the presence of an electric field.
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Equations (6.43) allow to define the following effective transport coefficients

(λe + εΠσe)
eff =

L

∆T

[
Q

(e,∆T )
tot

πR2

]
=

L

∆T


∫ R

0
2πrq(e,∆T )dr

πR2

 = λe + εΠσe (6.44a)

(Πσe)
eff =

1

E

[
Q

(e,E)
tot

πR2

]
=

1

E


∫ R

0
2πrq(e,E)dr

πR2

 = Πσe (6.44b)

λeff
p =

L

∆T

[
Q

(p)
tot

πR2

]
=

L

∆T


∫ R

0
2πrq(p) (r) dr

πR2

 =
λp

8 Kn2
p

, (6.44c)

(εσe)
eff =

L

∆T

[
J

(∆T )
tot

πR2

]
=

L

∆T


∫ R

0
2πrI(∆T )dr

πR2

 = εσe (6.44d)

σeff
e =

1

E

[
J

(E)
tot

πR2

]
=

1

E


∫ R

0
2πrI(E)dr

πR2

 = σe (6.44e)

wherein Knp = `p/R is the phonon Knudsen number.
The theoretical predictions (6.44) point out that only the phonon contribution to the

effective thermal conductivity λp shows the influence of the radius when `e < R < `p. The
material functions λeff

e , σeff
e , Πeff, and εeff, instead, take the bulk values. Therefore, in such

a situation, a bigger value of Z with respect to the bulk situation may be only obtained
by a reduction in λp.

When Eqs. (6.44) are introduced into Eq. (6.1), one obtains the following effective
figure-of-merit

Zeff =

(
εeff
)2
σeff
e

λeff
e + λeff

p

=
ε2σe

λe +
λp

8 Kn2
p

(6.45)

For increasing values of the phonon Knudsen number Knp, from Eqs. (6.44c) it follows
that λeff

p decreases quadratically, so that from Eq. (6.45) we infer that Zeff increases with
respect to its bulk value and tends quadratically to the limit value ε2σe/λe. A similar
behavior for the figure-of-merit as a function of the transversal radius of the nanowire
may be found in Ref. ?? in the case of Bi2Te3 nanowires (refer to Tab. 6.1 for the values
of the corresponding material functions at room temperature).

If, instead, along with the observations of Chap.3 we take into account the wall con-

tribution by assuming again that the phonon heat flux is q(p) (r) = q
(p)
b (r) + q

(p)
w ?, with

the wall contribution given by Eq. (3.8a), then Zeff changes in ?

Zeff =
ε2σe

λe +
λp

8 Kn2
p

(1 + 4Cp Knp)

(6.46)
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reducing to

Zeff =
ε2σe

λe + λp

(
Cp

2 Knp

) (6.47)

for increasing values of Knp. As observed from Eq. (6.47), the figure-of-merit depends now
linearly on the ratio Knp. For increasing values of Knp, Zeff still increases and tends to the
limit value Zlim = ε2σe/λe, but with a linear behavior, as it can be seen also from Fig. 6.4,
wherein the behavior of ZeffT , as a function of the ratio Knp, is plotted for different values
of the numerical coefficient Cp in the case of a nanosample made of a p-doped Bi2Te3

at 300 K. Figure 6.4 also enlightens the crucial role of the coefficient Cp, describing the
phonon-wall collisions. If the walls are rough ?, Cp will be small and the predicted Zeff

will exhibit an enhancement, with respect to the theoretical prediction (6.45) (Cp = 0 in
Fig. 6.4). The values of the material functions are taken by Ref. ?? (refer to Tab. 6.1
for these values at room temperature) in the case of Bi2Te3 nanowires, which are often
used in thermoelectric applications ??. It is worth observing that the ratio Knp can be
modified by varying either R or the temperature, since the mean-free path depends on the
temperature.

Table 6.1: Value of the material functions for a p-doped sample of Bi2Te3 at 300 K ??.

λp [W/mK] λe [W/mK] `p [nm] `e [nm] cv [J/m3K] σe [1/Ωm] ε [V / ◦C]

1.6 2.4 3.0 0.9 1.2× 106 2.0× 105 2.0× 10−4

Cylindrical nanowires with `e < `p < R

If one proceeds to a more thrust miniaturization, R may also become smaller than
the electron mean-free path (that is, R < `e, `p), so that all the heat and current carriers
undergo the hydrodynamic regime. In this case, Eqs. (6.41) reduce to ?

∇2q(p) =
λp
`2p
∇T (6.48a)

∇2q(e) =
1

`2e
[(λe + εΠσe)∇T −ΠσeE]− 2∇ (E · I) (6.48b)

∇2I =
σe
`2e

(ε∇T −E) (6.48c)

which yield the following parabolic profiles in the bulk under the hypotheses that E, I and
∇T are first-order quantities, and that second-order quantities are negligible: ?

q
(p)
b (r) = λp

∆T

L

(
R2 − r2

)
4`2p

(6.49a)

q
(e)
b (r) = q

(e,∆T )
b (r) + q

(e,E)
b (r) =

[
(λe + εΠσe)

∆T

L
+ ΠσeE

] (
R2 − r2

)
4`2e

(6.49b)

Ib (r) = I
(∆T )
b (r) + I

(E)
b (r) = σe

(
ε
∆T

L
+ E

) (
R2 − r2

)
4`2e

(6.49c)

To account for the interactions between the different particles and the walls ?, we may
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Figure 6.4: Theoretical behavior of ZeffT in a p-doped Bi2Te3 nanosample at 300 K as a
function of the ratio Knp: comparison between Eq. (6.45) (Cp = 0) and Eq. (6.46) (Cp 6= 0)
in the case of `e < R < `p. Different values for Cp have been taken into account, in order
to explore the influence of the phonon-wall collisions on Zeff. Refer to Tab. 6.1 for the
values of the material functions.

assume that

q(e) (r) = q
(e)
b (r) + q(e)

w (6.50a)

q(p) (r) = q
(p)
b (r) + q(p)

w (6.50b)

I (r) = Ib (r) + Iw (6.50c)

with the wall contributions given by

q(e)
w = Ce`e

∣∣∣∣∣∂q
(e)
b

∂r

∣∣∣∣∣
r=R

(6.51a)

q(p)
w = Cp`p

∣∣∣∣∣∂q
(p)
b

∂r

∣∣∣∣∣
r=R

(6.51b)

Iw = Ce`e

∣∣∣∣∂Ib

∂r

∣∣∣∣
r=R

(6.51c)

wherein Ce plays the same role of Cp, namely, it is a non-negative numerical coefficient
characterizing the specular and diffusive reflections of the electrons hitting the walls. The
coupling of Eqs. (6.44) with Eqs. (6.50) and (6.51) turns out that the different effective
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material functions are now given by

λeff
e =

λe

8 Kn2
e

(1 + 4Ce Kne) (6.52a)

λeff
p =

λp

8 Kn2
p

(1 + 4Cp Knp) (6.52b)

σeff
e =

σe

8 Kn2
e

(1 + 4Ce Kne) (6.52c)

Πeff = Π (6.52d)

εeff = ε (6.52e)

with Kne = `e/R. Equations (6.52) lead to the following figure-of-merit ?

Zeff =
ε2σe (1 + 4Ce Kne)

λe (1 + 4Ce Kne) + λp
`2e
`2p

(1 + 4Cp Knp)

(6.53)

For very small R, the Knudsen numbers Knp and Kne become dominant, and Eq. (6.53)
reduces to

Zeff =
ε2σe

λe + λp

(
Cp
Ce

)(
`e
`p

) (6.54)

In this case an enhancement of Zeff could be achieved by controlling the roughness of
the walls, which determines the relative values of Cp and Ce. In particular, Eq. (6.54)
suggests that Zeff can be changed by modeling the walls of the nanowire in such a way
that the number of reflected electrons is different from the number of reflected phonons,
i.e., varying the ratio Cp/Ce. This can be also observed from Fig. 6.5, which plots the
behavior of ZeffT in a p-doped nanosample made of Bi2Te3 at 300 K as a function of the
ratio Cp/Ce. The analysis of Fig. 6.5 suggests that an enhancement of the figure-of-merit
may be obtained when the number of reflected electrons is bigger than that of reflected
phonons, i.e., the bigger Ce than Cp, the higher Zeff.

6.2.2 The crossed-effects nonlocal model

Recently, nonlinear generalizations of the constitutive equations describing thermo-
electric effects are being explored in a search of new possible strategies to improve the
efficiency of thermoelectric energy conversion. In such generalizations, nonlinear coupling
terms are incorporated into the equations, and microscopic expressions for their respective
transport coefficients are looked for ?????.

Indeed, in a more general setting, in EIT the model equations (6.41) can be also written
as

τpq̇
(p) + q(p) = −λp∇T +∇ ·Q(p) (6.55a)

τeq̇
(e) + q(e) = −λe∇T +∇ ·Q(e) + ΠI (6.55b)

τeİ + I = σe (E− ε∇T ) +∇ ·Q(I) (6.55c)

for vanishing values of µe/ze. In Eqs. (6.55) Q(p), Q(e) and Q(I) stand for second-order
tensors which, under suitable hypotheses in the state space, may be regarded, respectively,
as the flux of q(p), the flux of q(e) and the flux of I. The general form of Eqs. (6.55) makes
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Figure 6.5: Theoretical behavior of ZeffT , arising from Eq. (6.54), in a p-doped Bi2Te3

nanosample at 300 K as a function of the ratio Cp/Ce in the case of R < `e, `p. The
different values of the material functions are taken from Tab. 6.1. The x-axis is in a
logarithmic scale.

them useful to study the consequences of the presence of these higher-order fluxes in
the more general context of thermoelectricity. For example, let us assume the following
constitutive equations ?

Q(p) = `2p∇q(p) (6.56a)

Q(e) = `2e∇q(e) + αeq
(e)I (6.56b)

Q(I) = `2e∇i + α′eIq
(e) (6.56c)

with αe and α′e being suitable coupling terms between the electron heat flux, the electric-
current density and their first-order spatial derivatives ?. A detailed microscopic analysis
of these coefficients may be found in Ref. ?.

Equations (6.56) have the advantage of being simple and manageable, and point out
the role of crossed effects in the simplest possible way. In fact, in steady states, by
straightforward calculations the coupling of Eqs. (6.55) and (6.56) turn out the following
generalization of Eq. (6.3) ?

q = −λ∇T + Π̃I (6.57a)

I = σ̃e (E− ε̃∇T ) (6.57b)
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wherein

Π̃ = ΠΠ∗ = Π

[
1 +

αeσeE

Π
· (E− ε∇T )

]
(6.58a)

σ̃e = σeσ
∗
e = σe

[
1 + α′eσe

(
E ·E + ε2∇T · ∇T

)]
(6.58b)

ε̃ = εε∗ = ε
[
1 + α′eσe

(
E ·E− ε2∇T · ∇T

)]
(6.58c)

In the classical linear theory, the Onsager relations (OR) ??, linking q and I to their
respective thermodynamic forces ∇T−1 and E, yield the relation Π = εT . In the present
case, instead, by taking into account Eqs. (6.58a) and (6.58c) one obtains

Π̃− ε̃T = aE ·E + b∇T · ∇T + cE · ∇T (6.59)

with

a =
(
αe − α′eεT

)
σe (6.60a)

b = α′eσeε
3T (6.60b)

c = −αeσeε (6.60c)

and a nonlinear breaking of the OR between the effective transport coefficient clearly
ensues. Besides appealing from the theoretical point of view, these results are also inter-
esting in practical applications. In particular, for a thermoelectric energy generator the
maximum efficiency, as a function of the ratio x in Eq. (6.28), reads ?

ηmax = ηc (1 + Ψ1)

ZT + 2 (1−Ψ2)
[
1−

√
1 + ZT (1 + Ψ2)

]
ZT

 (6.61)

wherein Ψ1 and Ψ2 are dimensionless parameters given as

Ψ1 = σe

{
α′e
(
E ·E− ε2∇T · ∇T

)
− αeE

Π
· (E−∇T )

}
(6.62a)

Ψ2 = σe

[
2α′eE ·E +

αeE

Π
· (E−∇T )

]
(6.62b)

which vanish in the absence of coupling effects in Eqs. (6.56). Equation (6.61) shows that
for a miniaturized system (the characteristic size of which is of the order of the mean-free
path of the heat carriers), the maximum efficiency is not only a function of ZT , but it is
also related to the degree of the Onsager symmetry (OS) breaking.

In Fig. 6.6 we plot the behavior of the ratio ηmax/ηc as a function of Ψ2 for increasing
strength of Ψ1 (Ψ1 = 0.01, Ψ1 = 0.1, Ψ1 = 1). For the sake of computation, we assume
that ψ2 spans from 10−2 to 10−1. Moreover, for the sake of illustration, we assume that the
non-dimensional product ZT = 3, as for a Bi-doped n-type PbSeTe /PbTe quantum-dot
superlattice sample at 500 K grown by molecular beam epitaxy ?.

As it can be seen, increasing values of Ψ1 and/or of Ψ2 lead to an enhancement of the
thermoelectric efficiency with respect to the absence of nonlinear coupling terms, since in
that case the ratio ηmax/ηc would be equal to 0.33.

6.2.3 The nonlinear model

Since the early days in the study of thermoelectric phenomena it was seen that Π = εT .
This relation was proved by Onsager ??? in a more general setting on reciprocity relations
between coupling coefficients in coupled linear constitutive equations.
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Figure 6.6: Behavior of the ratio ηmax/ηC as a function of Ψ2 for different values of Ψ1.
For the sake of illustration we assumed Ψ1 = 0.01, Ψ1 = 0.1 and Ψ1 = 1. Theoretical
results arising from Eq. (6.61).

Although one may find many examples in which the OR comply with the experimental
evidence ???, in some situations, especially in the nonlinear regime, the OR are no longer
valid. As we previously observed, the problem of checking the validity of the OR goes
beyond the pure theoretical interests, since these relations could have also consequences
in practical applications. For example, in maximizing the efficiency of the thermoelectric
energy conversion, we will show that when the OS holds, the maximum efficiency depends
only on the so-called figure-of-merit, but a more general expression is required if such
symmetry is broken.

To cope with nonlinear effects in thermoelectric applications, in Ref. ? nonlinear ther-
moelectric equations have been introduced on a mesoscopic level to generalize Eqs. (6.3).
Whenever terms proportional to ∇ (µe/ze) are neglected, those equations read

τpq̇
(p) + q(p) = −λp∇T +

2τp
cvT

(
∇q(p) · q(p) + q(p)∇ · q(p)

)
(6.63a)

τeq̇
(e) + q(e) = − (λe + εΠσe)∇T +

2τe
cvT

(
∇q(e) · q(e) + q(e)∇ · q(e)

)
+ ΠσeE (6.63b)

τeİ + I = σe (E− ε∇T ) +
τe
%e

(∇I · I + I∇ · I) (6.63c)

wherein all the thermo-physical quantities are supposed to be constant, so that the nonlin-
earity is only due to the product of the partial heat fluxes and of the electrical current with
their gradients. However, in the most general case the material functions are temperature
dependent, and introduce a further nonlinearity in the system of equations. Here, such a
situation is not considered.
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In steady states, and whenever q and I may only vary along the longitudinal direction
y of the system, Eqs. (6.63) reduce to ?

q(p) = −λp∇yT (6.64a)

q(e) = − (λe + εΠσe)∇yT +

(
8τe
cvT

)
EIq(e) + ΠσeE (6.64b)

I = σe (E − ε∇yT ) (6.64c)

which allow to introduce the following effective Peltier coefficient ?

Πeff = Π

[
1−

(
8τe
cvT

)
EI

]−1

(6.65)

whereas the other material functions coincide with their own bulk values (i.e., λeff ≡ λ,
εeff ≡ ε and σeff

e ≡ σe). Equation (6.65) shows a nonclassical part of the effective Peltier
coefficient related to nonlinear effects following by the coupling between q(e) and I both
in Eq. (6.6b), and in Eq. (6.64b). Equation (6.65) also allow to point out the influence
of nonlinear effects on the breaking of the OS at nanoscale. In fact, if one assumes that
Π− εT = 0 (i.e., OR holding for the bulk coefficients), then from that relation it follows

Πeff − εeffT =

(
8τeε

cv

)
Ei

[
1−

(
8τe
cvT

)
EI

]−1

≈
(

8τeε

cv

)
EI (6.66)

namely, the second Kelvin relation breaks down for the effective coefficients. In particular,
in this case, the following nondimensional parameter

ξ∗ =
Πeff

εeffT
≈ 1 +

(
8τe
cvT

)
EI (6.67)

accounts for the breaking above. Whenever ξ∗ = 1 (i.e., when the term τeEI/ (cvT )
vanishes), the usual OR are recovered. Thus, at a given temperature, the degree of
violation of the OS depends on the material functions τe and cv, as well as on the intensity
of the electrical field and of the electrical current, namely, the higher the product EI, the
higher the deviation Πeff − εeffT from zero.

The aforementioned breaking of the second Kelvin relation at nanoscale also has some
interesting consequences on the efficiency (6.4) of a thermoelectric energy generator. In
fact, in such a case the maximum attainable ηmax becomes

ηmax =
ηc
ξ∗

(
ZTξ∗ + 2− 2

√
1 + ZTξ∗

ZTξ∗

)
=
ηc
ξ∗

(√
ZTξ∗ + 1− 1√
ZTξ∗ + 1 + 1

)
(6.68)

showing that nonlinear effects may be used to reach higher values of η. In fact, for a given
value of the figure-of-merit, from Eq. (6.68) we also infer that the smaller ξ∗, the higher
ηmax. This means that the thermoelectric efficiency also depends on the degree of the
breaking of the second Kelvin relation for the effective Seebeck and Peltier coefficients.

This result is illustrated in Fig. 6.7, wherein we plot the thermoelectric efficiency as a
function of ξ∗, for two different values of ZT . It is worth noticing that the effects of the
breaking of the second Kelvin relation on the efficiency are not negligible, and it is higher
for larger values of Z. Thus, in order to enhance the thermoelectric efficiency, it would be
desirable to act both on ZT and ξ∗, making the first as large as possible, and the latter as
small as possible. This last task can be achieved for moderate values of the product EI
and using materials for which the ratio 8τe/ (cvT ) is as small as possible, in such a way
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Figure 6.7: Behavior of the ratio of the maximum thermoelectric efficiency and the Carnot
efficiency (i.e., ηmax/ηc) versus the nondimensional ratio ξ∗ = Πeff/εeffT , for two fixed
values of ZT (i.e., ZT = 0.5 and ZT = 1). The results arise from Eq. (6.68), wherein the
nondimensional parameter ξ∗ accounts for the degree of the breaking of the second Kelvin
relation. In figure, the case ξ∗ = 1 corresponds to situation where the OS holds.

that the values of the effective and of the bulk Peltier coefficients are sensibly close. As in
the case of the model equations (6.63) the nondimensional parameter ξ∗ is bigger than 1,
according with Fig. 6.7 the breaking of the OR arising from nonlinear effects reduces the
maximum efficiency.

A result analogous to Eq. (6.68) was found in Ref. ? under the assumption that the
time-reversal symmetry breaks down. In that paper the authors wrote the Onsager matrix
assuming that the material functions depends on the external magnetic field B. They
assumed that ε (B) 6= ε (−B), in contrast to the equality required by OS ?, whereas λ (B) =
λ (−B) and σe (B) = σe (−B). The maximum value of the thermoelectric efficiency was
calculated as a function of the nondimensional ratio

x =
ε (B)

ε (−B)

and it was found to be

ηmax = ηcξ

√
Z∗T + 1− 1√
Z∗T + 1 + 1

(6.69)

where

Z∗ =
σe (B) ε (B) ε (−B)

λ (B)

is the effective figure-of-merit. It is worth noticing that Eqs. (6.68) and (6.69) coincide if
one sets ξ = 1/ξ∗ and Z∗ = Zξ∗. However, our analysis is more general, because it does
not assume that the breaking of the OR is related to the magnetic field but to nonlinear
effects.
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Chapter 7
Perspectives

We close this book with some perspectives on open problems to be further analyzed.
The first of them is, of course, the detailed microscopic understanding of the generalized
transport equations, starting from phonon kinetic theory, and using several different tech-
niques to work out approximate solutions of it. Several factors to be taken into account
would be, for instance, the role of detailed phonon dispersion relations, the frequency and
the temperature dependence of the phonon collision times, the role of the different effective
phonon mean-free paths, the slip heat flow along the walls, and so on.

A second open problem is the detailed comparison with experiments for a variety of
relevant materials, as Si, Ge, SixGe1-x, Bi, Te, Bi2Te3, and so on, as well as for system with
different porosities and for graded systems. It would be useful to characterize in details the
suitable material transport functions for such materials, in a wide range of temperatures.
The role of phonon hydrodynamics in two-dimensional systems (graphene, silicon thin
layers, microporous thin layers) should also be explored with more depth, because there
are hints of their increased relevance as compared to three-dimensional systems. Radial
heat transport from hot spots, and its application to temperature measurement (or to
nanodevice refrigeration) is also a lively topic. Quantum confinement should also be
considered at very low temperatures, or in very narrow channels. In such a case, the
thermal phonon wavelength becomes comparable to the size of the system and the quantum
discrete levels of energy become relevant, instead of the continuous approach.

It would be interesting to deal at length with time-dependent phenomena, for a wide
range of frequencies. The use of thermal waves (not necessarily the very high-frequency
ones) could be useful for characterizing some properties of the materials, as for instance
the porosity, or the distribution of the radii of particles embedded in a heat conducting
matrix.

Another topic worth of exploration would be the several devices necessary for the theo-
retical (or practical) development of phononics, namely, heat rectifiers and heat transistors,
in order to enhance rectification and to achieve negative differential thermal conductivity.

More emphasis on thermoelectricity, and the analysis not only of heat conductivity,
but also of electrical conductivity, Seebeck coefficient, Peltier coefficient, as well as their
possible nonlinear contributions, should also be paid, in order to improve efficiencies of
thermoelectric conversion.

In summary, the formulation of mesoscopic heat-transport equations, well characterized
for technologically useful materials, and well connected with microscopic understanding of
transport in such materials and with a generalized entropy, entropy flux and second law,
seems to be truly one of the current most exciting frontiers in nonequilibrium thermody-
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