Embedding of orthogonal Buekenhout-Metz unitals in the Desarguesian plane of order \boldsymbol{q}^{2}

Gábor Korchmáros, Alessandro Siciliano
Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10-85100 Potenza (Italy)

Received 19 April 2018, accepted 18 February 2019, published online 5 June 2019

Abstract

A unital, that is a $2-\left(q^{3}+1, q+1,1\right)$ block-design, is embedded in a projective plane π of order q^{2} if its points are points of π and its blocks are subsets of lines of π, the point-block incidences being the same as in π. Regarding unitals \mathcal{U} which are isomorphic, as a block-design, to the classical unital, T. Szőnyi and the authors recently proved that the natural embedding is the unique embedding of \mathcal{U} into the Desarguesian plane of order q^{2}. In this paper we extend this uniqueness result to all unitals which are isomorphic, as block-designs, to orthogonal Buekenhout-Metz unitals.

Keywords: Unital, embedding, finite Desarguesian plane.
Math. Subj. Class.: 51E05, 51E20

1 Introduction

A unital is a set of $q^{3}+1$ points equipped with a family of subsets, each of size $q+1$, such that every pair of distinct points are contained in exactly one subset of the family. In Design Theory, such subsets are usually called blocks so that unitals are $2-\left(q^{3}+1, q+1,1\right)$ block-designs. A unital \mathcal{U} is embedded in a projective plane π of order q^{2}, if its points are points of π, its blocks are subsets of lines of π and the point-block incidences being the same as in π.

Sufficient conditions for a unital to be embeddable in a projective plane are given in [21]. Computer aided searches suggest that there should be plenty of unitals, especially for small values of q, but those embeddable in a projective plane are quite rare, see $[3,6$, 27]. Very recently, the GAP package UnitalSz was released [25]. This package contains methods for the embeddings of unitals in the finite projective plane.

[^0]In the finite Desarguesian projective plane of order q^{2}, a unital arises from a unitary polarity: the points of the unital are the absolute points, and the blocks are the non-absolute lines of the polarity. This unital is called classical unital. The following result comes from [23].

Theorem 1.1. Let \mathcal{U} be a unital embedded in $\mathrm{PG}\left(2, q^{2}\right)$ which is isomorphic, as a blockdesign, to a classical unital. Then \mathcal{U} is the classical unital of $\mathrm{PG}\left(2, q^{2}\right)$.

Buekenhout [11] constructed unitals in any translation planes with dimension at most two over their kernel by using the Andrè/Bruck-Bose representation. Buekenhout's work was completed by Metz [24] who was able to prove by a counting argument that when the plane is Desarguesian then Buekenhout's construction provides not only the classical unital but also non-classical unitals in $\operatorname{PG}\left(2, q^{2}\right)$ for all $q>2$. These unitals are called Buekenhout-Metz unitals, and they are the only known unitals in $\operatorname{PG}\left(2, q^{2}\right)$. With the terminology in [5], an orthogonal Buekenhout-Metz unital is a Buekenhout-Metz unital arising from an elliptic quadric in Buekehout's construction.

In this paper, we prove the following result:
Main Theorem. Let \mathcal{U} be a unital embedded in $\operatorname{PG}\left(2, q^{2}\right)$ which is isomorphic, as blockdesign, to an orthogonal Buekenhout-Metz unital. Then \mathcal{U} is an orthogonal BuekenhoutMetz unital.

Our approach is different from that adopted in [23]. Our idea is to exploit two different models of $\mathrm{PG}\left(2, q^{2}\right)$ in $\mathrm{PG}(5, q)$, one of them is a variant of the so-called $\mathrm{GF}(q)$-linear representation. We start off with a representation of a non-classical Buekenhout-Metz unital given in one of these models of $\mathrm{PG}\left(2, q^{2}\right)$, then we exhibit a linear collineation of $\mathrm{PG}(5, q)$ that takes this representation to a representation of a classical unital in the other model of $\mathrm{PG}\left(2, q^{2}\right)$. At this point to finish the proof we only need some arguments from the proof of Theorem 1.1 together with the characterization of the orthogonal Buekenhout-Metz unitals due to Casse, O'Keefe, Penttila and Quinn [12, 29].

2 Preliminary results

The study of unitals in finite projective planes has been greatly aided by the use of the Andrè/Bruck-Bose representation of these planes [1, 9, 10]. Let $\operatorname{PG}(4, q)$ denote the projective 4-dimensional space over the finite field $\operatorname{GF}(q)$, and let Σ be some fixed hyperplane of $\operatorname{PG}(4, q)$. Let \mathcal{N} be a line spread of Σ, that is a collection of $q^{2}+1$ mutually skew lines of Σ. We consider the following incidence structure: the points are the points of $\operatorname{PG}(4, q)$ not in Σ, the lines are the planes of $\operatorname{PG}(4, q)$ which meet Σ in a line of \mathcal{N} and incidence is defined by inclusion. This incidence structure is an affine translation plane of order q^{2} which is at most two-dimensional over its kernel. It can be completed to a projective plane $\pi(\mathcal{N})$ by the addition of an ideal line L_{∞} whose points are the elements of the spread \mathcal{N}. Conversely, any translation plane of order q^{2} with GF (q) in its kernel can be modeled this way [9]. Moreover, it is well known that the resulting plane is Desarguesian if and only if \mathcal{N} is a Desarguesian spread [10].

Our first step is to outline the usual representation of $\operatorname{PG}\left(2, q^{2}\right)$ in $\operatorname{PG}(5, q)$ due to Segre [30] and Bose [7]. While such representation is usually thought of in a projective setting, algebraic dimensions are more amenable to an introductory discussion of it, so we will mainly take a vector space approach along all this section.

Look at $\operatorname{GF}\left(q^{2}\right)$ as the two-dimensional vector space over $\operatorname{GF}(q)$ with basis $\{1, \epsilon\}$, so that every $x \in \operatorname{GF}\left(q^{2}\right)$ is uniquely written as $x=x_{0}+x_{1} \epsilon$, for $x_{0}, x_{1} \in \operatorname{GF}(q)$. Then the vectors (x, y, z) of $V\left(3, q^{2}\right)$ are viewed as the vectors $\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ of $V(6, q)$ where

$$
\begin{aligned}
& x=x_{0}+x_{1} \epsilon \\
& y=y_{0}+\epsilon y_{1} \text { and } \\
& z=z_{0}+\epsilon z_{1} .
\end{aligned}
$$

Therefore the points of $\mathrm{PG}\left(2, q^{2}\right)$ are two-dimensional subspaces in $V(6, q)$, and hence lines of $\operatorname{PG}(5, q)$, the five-dimensional projective space arising from $V(6, q)$. Such lines are the members of a Desarguesian line-spread \mathcal{S} of $\operatorname{PG}(5, q)$ which gives rise to a pointline incidence structure $\Pi(\mathcal{S})$ where points are the elements of \mathcal{S}, and lines are the threedimensional subspaces of $\operatorname{PG}(5, q)$ spanned by two elements of \mathcal{S}, incidence being inclusion. Obviously, $\Pi(\mathcal{S}) \simeq \operatorname{PG}\left(2, q^{2}\right)$, and $\Pi(\mathcal{S})$ is the $\mathrm{GF}(q)$-linear representation of $\operatorname{PG}\left(2, q^{2}\right)$ in $\operatorname{PG}(5, q)$. Since $\operatorname{PG}(5, q)$ is naturally embedded in $\operatorname{PG}\left(5, q^{2}\right)$, we also have an embedding of $\operatorname{PG}\left(2, q^{2}\right)$ in $\operatorname{PG}\left(5, q^{2}\right)$ via $\Pi(\mathcal{S})$.

Actually, we will use a different embedding of $\operatorname{PG}\left(2, q^{2}\right)$ in $\operatorname{PG}\left(5, q^{2}\right)$ which is more suitable for computation.

In $V\left(6, q^{2}\right)$, let \widehat{V} be the set of all vectors $\left(x, x^{q}, y, y^{q}, z, z^{q}\right)$ with $x, y, z \in \operatorname{GF}\left(q^{2}\right)$. With the usual sum and multiplication by scalars from $\operatorname{GF}(q), \widehat{V}$ is a six-dimensional vector space over $\operatorname{GF}(q)$. On the other hand, $V(6, q)$ is naturally embedded in $V\left(6, q^{2}\right)$. Therefore, the question arises whether there exists an invertible endomorphism of $V\left(6, q^{2}\right)$ that takes \widehat{V} to $V(6, q)$. The affirmative answer is given by the following proposition.
Proposition 2.1. \widehat{V} is linearly equivalent to $V(6, q)$ in $V\left(6, q^{2}\right)$.
Proof. Write $V(6, q)$ as the direct sum $W^{(1)} \oplus W^{(2)} \oplus W^{(3)}$, with

$$
\begin{aligned}
W^{(1)} & =\{(a, b, 0,0,0,0): a, b \in \mathrm{GF}(q)\} \\
W^{(2)} & =\{(0,0, a, b, 0,0): a, b \in \mathrm{GF}(q)\} \\
W^{(3)} & =\{(0,0,0,0, a, b): a, b \in \mathrm{GF}(q)\}
\end{aligned}
$$

Clearly, each $W^{(i)}$ is isomorphic to $V(2, q)=\{(a, b): a, b \in \operatorname{GF}(q)\}$. Take a basis $\left\{u_{1}, u_{2}\right\}$ of $V(2, q)$ together with a Singer cycle σ of $V(2, q)$. Since σ has two distinct eigenvalues, both in $\operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$, we find two linearly independent eigenvectors v_{1}, v_{2} that form a basis for $V\left(2, q^{2}\right)$. Such a basis $\left\{v_{1}, v_{2}\right\}$ is called a Singer basis with respect to $V(2, q)$ [15]. In this context, $V(2, q)=\left\{x v_{1}+x^{q} v_{2}: x \in \operatorname{GF}\left(q^{2}\right)\right\}$ [14].

Applying this argument to $W^{(i)}$ with $i=1,2,3$, gives a Singer basis $\left\{v_{1}^{(i)}, v_{2}^{(i)}\right\}$ of $W^{(i)}$ such that $W^{(i)}=\left\{x v_{1}^{(i)}+x^{q} v_{2}^{(i)}: x \in \mathrm{GF}\left(q^{2}\right)\right\}$. In this basis we have

$$
\begin{equation*}
V(6, q)=\left\{x v_{1}^{(1)}+x^{q} v_{2}^{(1)}+y v_{1}^{(2)}+y^{q} v_{2}^{(2)}+z v_{1}^{(3)}+z^{q} v_{2}^{(3)}: x, y, z \in \operatorname{GF}\left(q^{2}\right)\right\} \tag{2.1}
\end{equation*}
$$

Now, the result follows from the fact that the change from any basis of $V\left(6, q^{2}\right)$ to the basis $\left\{v_{1}^{(i)}, v_{2}^{(i)}: i=1,2,3\right\}$ is carried out by an invertible endomorphism over $\operatorname{GF}\left(q^{2}\right)$.

We call the vector space \widehat{V} the cyclic representation of $V(6, q)$ over $\operatorname{GF}\left(q^{2}\right)$.

To state Proposition 2.1 in terms of projective geometry, let $\mathrm{PG}(5, q)$ denote the projective space arising from $V(6, q)$. Also, let $\mathrm{PG}(\widehat{V})=\left\{\langle v\rangle_{q}: v \in \widehat{V}\right\}$ be the five-dimensional projective space whose points are the one-dimensional $\mathrm{GF}(q)$-subspaces spanned by vectors in \widehat{V}.

Corollary 2.2. $\mathrm{PG}(\widehat{V})$ is projectively equivalent to $\operatorname{PG}(5, q)$ in $\operatorname{PG}\left(5, q^{2}\right)$.
We call the the projective space $\operatorname{PG}(\widehat{V})$ the cyclic representation of $\operatorname{PG}(5, q)$ over $\operatorname{GF}\left(q^{2}\right)$.

Recall that a $2 \times 2 q$-circulant (or Dickson) matrix over $\mathrm{GF}\left(q^{2}\right)$ is a matrix of the form

$$
D=\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{2}^{q} & d_{1}^{q}
\end{array}\right)
$$

with $d_{1}, d_{2} \in \operatorname{GF}\left(q^{2}\right)$.
Let \mathcal{B} denote the basis $\left\{v_{1}^{(i)}, v_{2}^{(i)}: i=1,2,3\right\}$ of \widehat{V}.
Proposition 2.3. In the basis \mathcal{B}, the matrix associated to any endomorphism of \widehat{V} is of the form

$$
\left(\begin{array}{lll}
D_{11} & D_{12} & D_{13} \tag{2.2}\\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right),
$$

where $D_{i j}$ is a $2 \times 2 q$-circulant matrix over $\operatorname{GF}\left(q^{2}\right)$.
Proof. It is easily seen that any matrix of type (2.2) is associated to an endomorphism of \widehat{V}.
Conversely, take an endomorphism τ of $V\left(6, q^{2}\right)$ and let $T=\left(t_{i j}\right), t_{i j} \in \operatorname{GF}\left(q^{2}\right)$, be the matrix of τ in the basis \mathcal{B}. For a generic array $\mathbf{x}=\left(x, x^{q}, y, y^{q}, z, z^{q}\right) \in \widehat{V}$,

$$
T \mathbf{x}^{t}=\left(\begin{array}{c}
\vdots \\
t_{k, 1} x+t_{k, 2} x^{q}+t_{k, 3} y+t_{k, 4} y^{q}+t_{k, 5} z+t_{k, 6} z^{q} \\
\vdots
\end{array}\right), \text { for } k=1, \ldots, 6
$$

If $y=z=0$, a necessary condition for $T \mathbf{x}^{t} \in \widehat{V}$ is

$$
\left(t_{k, 1} x+t_{k, 2} x^{q}\right)^{q}=t_{k+1,1} x+t_{k+1,2} x^{q}
$$

for $k=1,3,5$, that is,

$$
\left(t_{k, 2}^{q}-t_{k+1,1}\right) x+\left(t_{k, 1}^{q}-t_{k+1,2}\right) x^{q}=0,
$$

for $k=1,3,5$ and for all $x \in \operatorname{GF}\left(q^{2}\right)$. This shows that the polynomial in x of degree q on the left hand side of the last equation has at least q^{2} roots. Therefore, it must be the zero polynomial. Hence $t_{k+1,1}=t_{k, 2}^{q}$ and $t_{k+1,2}=t_{k, 1}^{q}$, for $k=1,3,5$. To end the proof, it is enough to repeat the above argument for $x=z=0$ and then for $x=y=0$.

Next we exhibit quadratic forms on $V\left(6, q^{2}\right)$ which induce quadratic forms on \widehat{V}.
The vector space $V(2 n, q)$ has precisely two (nondegenerate) quadratic forms, and they differ by their Witt-index, that is the dimension of their maximal totally singular subspaces;
see $[22,32]$. These dimensions are $n-1$ and n, and the quadratic form is elliptic or hyperbolic, respectively. In terms of the associated projective space $\operatorname{PG}(2 n-1, q)$, the elliptic (resp. hyperbolic) quadratic form defines an elliptic (resp. hyperbolic) quadric of $\operatorname{PG}(2 n-1, q)$.

Fix a basis $\{1, \epsilon\}$ for $\operatorname{GF}\left(q^{2}\right)$ over $\operatorname{GF}(q)$, and write $x=x_{0}+\epsilon x_{1}$, for $x \in \operatorname{GF}\left(q^{2}\right)$ with $x_{0}, x_{1} \in \operatorname{GF}(q)$. Here, ϵ is taken such that $\epsilon^{2}=\xi$ with ξ a nonsquare in $\operatorname{GF}(q)$ for q odd, and that $\epsilon^{2}+\epsilon=s$ with $s \in C_{1}$ and $s \neq 1$ for q even, where C_{1} stands for the set of elements in $\operatorname{GF}(q)$ with absolute trace 1. Furthermore, Tr denotes the trace map $x \in \mathrm{GF}\left(q^{2}\right) \rightarrow x+x^{q} \in \mathrm{GF}(q)$.

Proposition 2.4. Let $\alpha, \beta \in \operatorname{GF}\left(q^{2}\right)$ satisfy the following conditions:

$$
\left\{\begin{array}{l}
4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2} \text { is nonsquare in } \operatorname{GF}(q), \text { for } q \text { odd, } \\
\alpha^{q+1} /\left(\beta^{q}+\beta\right)^{2} \in C_{0} \text { with } \beta \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q), \text { for } q \text { even, }
\end{array}\right.
$$

where C_{0} stands for the set of elements in $\operatorname{GF}(q)$, q even, with absolute trace 0 . Let $Q_{\alpha, \beta}$ be the quadratic form on $V\left(6, q^{2}\right)$ given by

$$
\begin{align*}
& Q_{\alpha, \beta}\left(X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}\right)= \\
& \quad \delta^{q} X_{1} Z_{2}+\delta X_{2} Z_{1}+\alpha \delta Y_{1}^{2}+\alpha^{q} \delta^{q} Y_{2}^{2}+\operatorname{Tr}(\delta \beta) Y_{1} Y_{2} \tag{2.3}
\end{align*}
$$

with $\delta=\epsilon$ or $\delta=1$ according as q is odd or even. then the restriction $\widehat{Q}_{\alpha, \beta}$ of $Q_{\alpha, \beta}$ on \widehat{V} defines an elliptic quadratic form on \widehat{V}.

Proof. Two cases are treated separately according as q is odd or even.
If q is odd, let $b_{\alpha, \beta}$ denote the symmetric bilinear form on $V\left(6, q^{2}\right)$ associated to $Q_{\alpha, \beta}$. The matrix of $b_{\alpha, \beta}$ in the canonical basis is

$$
B_{\alpha, \beta}=\left(\begin{array}{ccc}
O_{2} & O_{2} & E \\
O_{2} & A_{\alpha, \beta} & O_{2} \\
\bar{E} & O_{2} & O_{2}
\end{array}\right)
$$

with

$$
E=\left(\begin{array}{cc}
0 & \epsilon^{q} \\
\epsilon & 0
\end{array}\right), \quad \bar{E}=\left(\begin{array}{cc}
0 & \epsilon \\
\epsilon^{q} & 0
\end{array}\right) \quad \text { and } \quad A_{\alpha, \beta}=\left(\begin{array}{cc}
2 \alpha \epsilon & \operatorname{Tr}(\epsilon \beta) \\
\operatorname{Tr}(\epsilon \beta) & 2 \alpha^{q} \epsilon^{q}
\end{array}\right) .
$$

A straightforward computation shows that $B_{\alpha, \beta}$ induces a symmetric bilinear form on \widehat{V}. Let $\widehat{Q}_{\alpha, \beta}$ denote the resulting quadratic form on \widehat{V}.

Since det $A_{\alpha, \beta}=4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2}$ is nonsquare in $\operatorname{GF}(q)$, it follows that $Q_{\alpha, \beta}$ is nondegenerate. Hence $\widehat{Q}_{\alpha, \beta}$ is nondegenerate, as well. Let H be the four-dimensional subspace $\left\{\left(x, x^{q}, 0,0, z, z^{q}\right): x, z \in G F\left(q^{2}\right)\right\}$ of \widehat{V}. Then the restriction of $\widehat{Q}_{\alpha, \beta}$ on H is a hyperbolic quadratic form, as $L_{1}=\left\{\left(x, x^{q}, 0,0,0,0\right): x \in \operatorname{GF}\left(q^{2}\right)\right\}$ and $L_{2}=$ $\left\{\left(0,0,0,0, z, z^{q}\right): z \in G F\left(q^{2}\right)\right\}$ are totally isotropic subspaces with trivial intersection. The orthogonal space of H with respect to $b_{\alpha, \beta}$ is $L=\left\{\left(0,0, y, y^{q}, 0,0\right): y \in \operatorname{GF}\left(q^{2}\right)\right\}$. By [22, Proposition 2.5.11], $\widehat{Q}_{\alpha, \beta}$ is elliptic if and only if the restriction of $\widehat{Q}_{\alpha, \beta}$ on L is elliptic, that is,

$$
\begin{equation*}
\operatorname{Tr}\left(\alpha \epsilon y^{2}+\epsilon \beta y^{q+1}\right)=0 \tag{2.4}
\end{equation*}
$$

has no solution $y \in \operatorname{GF}\left(q^{2}\right)$ other than 0 .
Write $y=y_{0}+\epsilon y_{1}, \alpha=a_{0}+\epsilon a_{1}$ and $\beta=b_{0}+\epsilon b_{1}$ with $y_{0}, y_{1}, a_{0}, a_{1}, b_{0}, b_{1} \in \operatorname{GF}(q)$. As $\epsilon^{q}=-\epsilon$ and $\epsilon^{2}=\xi$, we have

$$
\begin{aligned}
y^{q} & =y_{0}-\epsilon y_{1} \\
y^{q+1} & =y_{0}^{2}-\xi y_{1}^{2} \\
y^{2} & =y_{0}^{2}+\xi y_{1}^{2}+2 \epsilon y_{0} y_{1} \\
y^{2 q} & =y_{0}^{2}+\xi y_{1}^{2}-2 \epsilon y_{0} y_{1} \\
\alpha \epsilon y^{2} & =\xi\left(2 a_{0} y_{0} y_{1}+a_{1}\left(y_{0}^{2}+\xi y_{1}^{2}\right)\right)+\epsilon\left(a_{0}\left(y_{0}^{2}+\xi y_{1}^{2}\right)+2 \xi a_{1} y_{0} y_{1}\right) \\
\alpha^{q} \epsilon^{q} y^{2 q} & =\xi\left(2 a_{0} y_{0} y_{1}+a_{1}\left(y_{0}^{2}+\xi y_{1}^{2}\right)\right)-\epsilon\left(a_{0}\left(y_{0}^{2}+\xi y_{1}^{2}\right)+2 \xi a_{1} y_{0} y_{1}\right),
\end{aligned}
$$

whence

$$
\operatorname{Tr}\left(\alpha \epsilon y^{2}\right)=2 \xi\left(2 a_{0} y_{0} y_{1}+a_{1}\left(y_{0}^{2}+\xi y_{1}^{2}\right)\right)
$$

Moreover,

$$
\operatorname{Tr}\left(\epsilon \beta y^{q+1}\right)=2 \xi b_{1}\left(y_{0}^{2}-\xi y_{1}^{2}\right)
$$

Then Equation (2.4) has a nontrivial solution $y \in \operatorname{GF}\left(q^{2}\right)$ if and only if $\left(y_{0}, y_{1}\right) \neq(0,0)$ with $y_{0}, y_{1} \in \mathrm{GF}(q)$ is a solution of

$$
\begin{equation*}
\left(a_{1}+b_{1}\right) y_{0}^{2}+2 a_{0} y_{0} y_{1}+\xi\left(a_{1}-b_{1}\right) y_{1}^{2}=0 . \tag{2.5}
\end{equation*}
$$

By a straightforward computation, (2.5) occurs if and only if $4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2}=u^{2}$ for some $u \in \mathrm{GF}(q)$. But the latter equation contradicts our hypothesis. Therefore, Equation (2.4) has no nontrivial solution in $\operatorname{GF}\left(q^{2}\right)$ and hence $\widehat{Q}_{\alpha, \beta}$ is elliptic.

For q even, the above approach still works up to some differences due to the fact that the well known formula solving equations of degree 2 fails in even characteristic. For completeness, we give all details.

If q is even, the restriction of $Q_{\alpha, \beta}$ on \widehat{V} is a quadratic form $\widehat{Q}_{\alpha, \beta}$ on \widehat{V}, and the matrix of the associated bilinear form b_{β} is

$$
B_{\beta}=\left(\begin{array}{ccc}
O_{2} & O_{2} & E \\
O_{2} & A_{\beta} & O_{2} \\
E & O_{2} & O_{2}
\end{array}\right)
$$

where

$$
E=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad A_{\beta}=\left(\begin{array}{cc}
0 & \operatorname{Tr}(\beta) \\
\operatorname{Tr}(\beta) & 0
\end{array}\right)
$$

Since $\beta \notin \mathrm{GF}(q)$, a straightforward computation shows that the radical of b_{β} is trivial, which gives $\widehat{Q}_{\alpha, \beta}$ is nonsingular. As for the odd q case, the orthogonal space of H with respect to b_{β} is L. Therefore, $\widehat{Q}_{\alpha, \beta}$ is elliptic if and only if

$$
\begin{equation*}
\operatorname{Tr}\left(\alpha y^{2}+\beta y^{q+1}\right)=0 \tag{2.6}
\end{equation*}
$$

has no nontrivial solution $y \in \operatorname{GF}\left(q^{2}\right)$.

As before, let $y=y_{0}+\epsilon y_{1}, \alpha=a_{0}+\epsilon a_{1}$ and $\beta=b_{0}+\epsilon b_{1}$ with $y_{0}, y_{1}, a_{0}, a_{1}, b_{0}, b_{1} \in$ $\mathrm{GF}(q)$. As $\epsilon^{q}=\epsilon+1$ and $\epsilon^{2}=\epsilon+s$, with $s \in C_{1}$, we have

$$
\begin{aligned}
y^{q}= & y_{0}+y_{1}+\epsilon y_{1} \\
y^{q+1}= & y_{0}^{2}+y_{0} y_{1}+s y_{1}^{2} \\
y^{2}= & y_{0}^{2}+s y_{1}^{2}+\epsilon y_{1}^{2} \\
y^{2 q}= & y_{0}^{2}+(s+1) y_{1}^{2}+\epsilon y_{1}^{2} \\
\alpha y^{2}= & a_{0} y_{0}^{2}+s\left(a_{0}+a_{1}\right) y_{1}^{2}+\epsilon\left(a_{0} y_{1}^{2}+a_{1} y_{0}^{2}+(s+1) a_{1} y_{1}^{2}\right) \\
\alpha^{q} y^{2 q}= & a_{0} y_{0}^{2}+s\left(a_{0}+a_{1}\right) y_{1}^{2}+\left(a_{0} y_{1}^{2}+a_{1} y_{0}^{2}+(s+1) a_{1} y_{1}^{2}\right) \\
& \quad+\epsilon\left(a_{0} y_{1}^{2}+a_{1} y_{0}^{2}+(s+1) a_{1} y_{1}^{2}\right),
\end{aligned}
$$

whence

$$
\operatorname{Tr}\left(\alpha y^{2}\right)=a_{0} y_{1}^{2}+a_{1} y_{0}^{2}+(s+1) a_{1} y_{1}^{2}
$$

and

$$
\operatorname{Tr}\left(\beta y^{q+1}\right)=b_{1}\left(y_{0}^{2}+y_{0} y_{1}+s y_{1}^{2}\right)
$$

Therefore, Equation (2.6) has a nontrivial solution in $\operatorname{GF}\left(q^{2}\right)$ if and only if

$$
\left(a_{1}+b_{1}\right) y_{0}^{2}+b_{1} y_{0} y_{1}+\left(a_{0}+a_{1}+s a_{1}+s b_{1}\right) y_{1}^{2}=0
$$

Assume $y=y_{0} \in \mathrm{GF}(q)$ is a nontrivial solution of (2.6). Then $a_{1}=b_{1}$. This gives

$$
\frac{\alpha^{q+1}}{\left(\beta^{q}+\beta\right)^{2}}=\frac{a_{0}^{2}}{a_{1}^{2}}+\frac{a_{0}}{a_{1}}+s \in C_{1}
$$

a contradiction since

$$
\frac{a_{0}^{2}}{a_{1}^{2}}+\frac{a_{0}}{a_{1}} \in C_{0}
$$

Assume that $y=y_{0}+\epsilon y_{1} \in \operatorname{GF}\left(q^{2}\right)$, with $y_{1} \neq 0$, is a solution of (2.6). Then $y_{0} y_{1}^{-1}$ is a solution of

$$
\begin{equation*}
\left(a_{1}+b_{1}\right) X^{2}+b_{1} X+a_{0}+a_{1}+s\left(a_{1}+b_{1}\right)=0 \tag{2.7}
\end{equation*}
$$

where $b_{1} \neq 0$.
Let $Y=\left(a_{1}+b_{1}\right) b_{1}^{-1} X$. Replacing X by Y in (2.7) gives $Y^{2}+Y+d=0$ where

$$
d=\frac{a_{0}^{2}+a_{1} a_{0}+s a_{1}^{2}}{b_{0}^{2}}+\frac{a_{0}^{2}+a_{1}^{2}}{b_{0}^{2}}+\frac{a_{0}+a_{1}}{b_{0}}+s
$$

Here, $d \in C_{1}$ by

$$
\frac{a_{0}^{2}+a_{1} a_{0}+s a_{1}^{2}}{b_{0}^{2}}=\frac{\alpha^{q+1}}{\left(\beta^{q}+\beta\right)^{2}} \in C_{0}
$$

This shows that Equation (2.7) has no nontrivial solution in $\operatorname{GF}(q)$. Hence Equation (2.6) has no nontrivial solution in $\operatorname{GF}\left(q^{2}\right)$, as well. Therefore $\widehat{Q}_{\alpha, \beta}$ is elliptic.

Let $\widehat{\mathcal{Q}}_{\alpha, \beta}$ stand for the elliptic quadric in $\operatorname{PG}(\widehat{V})$ defined by the quadratic form $\widehat{Q}_{\alpha, \beta}$ on \widehat{V}. Then the coordinates of the points of $\operatorname{PG}(\widehat{V})$ that lie on $\widehat{\mathcal{Q}}_{\alpha, \beta}$ satisfy the equation

$$
\begin{equation*}
\delta^{q} X Z^{q}+\delta X^{q} Z+\alpha \delta Y^{2}+\alpha^{q} \delta^{q} Y^{2 q}+\operatorname{Tr}(\delta \beta) Y^{q+1}=0 \tag{2.8}
\end{equation*}
$$

with $\delta=\epsilon$ or $\delta=1$ according as q is odd or even.

3 The GF (q)-linear representation of Buekenhout-Metz unitals

In the light of Proposition 2.1, we introduce another incidence structure $\Pi(\widehat{\mathcal{S}})$.
Let $\widehat{\phi}$ be the bijective map defined by

$$
\begin{array}{lccc}
\widehat{\phi}: & V\left(3, q^{2}\right) & \longrightarrow & \widehat{V} \\
& (x, y, z) & \longmapsto & \left(x, x^{q}, y, y^{q}, z, z^{q}\right)
\end{array} .
$$

By Proposition 2.1, $\widehat{\phi}$ is the field reduction of $V\left(3, q^{2}\right)$ over $\mathrm{GF}(q)$ in the basis $\left\{v_{1}^{(i)}, v_{2}^{(i)}, i=1,2,3\right\}$ of $V\left(6, q^{2}\right)$.

The points of $\operatorname{PG}\left(2, q^{2}\right)$ are mapped by $\widehat{\phi}$ to the two-dimensional GF (q)-subspaces of \widehat{V} of the form

$$
\left\{\left(\lambda x, \lambda^{q} x^{q}, \lambda y, \lambda^{q} y^{q}, \lambda z, \lambda^{q} z^{q}\right): \lambda \in \mathrm{GF}\left(q^{2}\right)\right\}, \text { for } x, y, z \in \operatorname{GF}\left(q^{2}\right)
$$

and hence lines of $\mathrm{PG}(\widehat{V})$. Such lines form a line-spread $\widehat{\mathcal{S}}$ of $\mathrm{PG}(\widehat{V})$. By Proposition 2.1 and Corollary 2.2, $\widehat{\mathcal{S}}$ is projectively equivalent to \mathcal{S} in $\operatorname{PG}\left(5, q^{2}\right)$. Hence, $\widehat{\mathcal{S}}$ is also a Desarguesian line-spread of $\operatorname{PG}(\widehat{V})$. Therefore, in $\operatorname{PG}\left(5, q^{2}\right) \Pi(\widehat{\mathcal{S}})$ is projectively equivalent to the $\mathrm{GF}(q)$-linear representation $\Pi(\mathcal{S})$ of $\mathrm{PG}\left(2, q^{2}\right)$.

The following lemma goes back to Singer, see [31].
Lemma 3.1. Let ω be a primitive element of $\mathrm{GF}\left(q^{2}\right)$ over $\mathrm{GF}(q)$ with minimal polynomial $f(T)=T^{2}-p_{1} T-p_{0}$. then the multiplication by ω in $\mathrm{GF}\left(q^{2}\right)$ defines a Singer cycle of $V(2, q)=\{(a, b): a, b \in \mathrm{GF}(q)\}$ whose matrix is the companion matrix of $f(T)$.

Proposition 3.2. Any endomorphism of $V\left(3, q^{2}\right)$ with matrix $A=\left(a_{i j}\right)$ defines the endomorphism of \widehat{V} with matrix

$$
\left(\begin{array}{ccc}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right)
$$

where $D_{i j}=\operatorname{diag}\left(a_{i j}, a_{i j}^{q}\right)$.
The Frobenius transformation $\psi:(x, y, z) \mapsto\left(x^{q}, y^{q}, z^{q}\right)$ of $V\left(3, q^{2}\right)$ defines the endomorphism of \widehat{V} with matrix

$$
\left(\begin{array}{ccc}
\widehat{F} & 0 & 0 \\
0 & \widehat{F} & 0 \\
0 & 0 & \widehat{F}
\end{array}\right)
$$

where

$$
\widehat{F}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Proof. The Singer cycle defined by a primitive element ω of $\operatorname{GF}\left(q^{2}\right)$ over $\operatorname{GF}(q)$ acts on the $\mathrm{GF}(q)$-vector space $\left\{\left(x, x^{q}\right): x \in \operatorname{GF}\left(q^{2}\right)\right\}$ by the matrix $D=\operatorname{diag}\left(\omega, \omega^{q}\right)$. For every entry $a_{i j}$ of A, write $a_{i j}=\omega^{e(i, j)}, 0 \leq e(i, j) \leq q^{2}-2$. From Lemma 3.1, the multiplication by $a_{i j}$ in $\operatorname{GF}\left(q^{2}\right)$ defines the endomorphism with matrix $D^{e(i, j)}=\operatorname{diag}\left(a_{i j}, a_{i j}^{q}\right)$. From this the first part of the proposition follows. The second part comes from Cooperstein's paper [14].

Remark 3.3. From a result due to Dye [16], the stabilizer of the Desarguesian partition \mathcal{K} in $\mathrm{GL}(6, q)$ is the semidirect product of the field extension subgroup $\mathrm{GL}\left(3, q^{2}\right)$ by the cyclic subgroup $\langle\psi\rangle$ generated by the Frobenius transformation. In terms of projective geometry, the stabilizer of the Desarguesian spread \mathcal{S} in $\operatorname{PGL}(6, q)$ is $\left(\mathrm{GL}\left(3, q^{2}\right) \rtimes\right.$ $\langle\psi\rangle) / \mathrm{GF}(q)^{*}$ [16]. It should be noted that the center of $\mathrm{GL}(\widehat{V})$ is the subgroup $\left\{c I: c \in \operatorname{GF}(q)^{*}\right\}$. Proposition 3.2 provides the representation in $\operatorname{GL}(\widehat{V})$ and $\operatorname{PGL}(\widehat{V})$ of these stabilizers.

In [2] and [17] the orthogonal Buekenhout-Metz unitals are coordinatized in $\operatorname{PG}\left(2, q^{2}\right)$. Let L_{∞} be the line of $\operatorname{PG}\left(2, q^{2}\right)$ with equation $Z=0$ and $P_{\infty}=\langle(1,0,0)\rangle_{q^{2}}$.
Theorem 3.4. Let $\alpha, \beta \in \mathrm{GF}\left(q^{2}\right)$ such that

$$
\left\{\begin{array}{l}
4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2} \text { is nonsquare in } \operatorname{GF}(q), \text { for } q \text { odd, } \\
\alpha^{q+1} /\left(\beta^{q}+\beta\right)^{2} \in C_{0} \text { with } \beta \in \mathrm{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q), \text { for } q \text { even. }
\end{array}\right.
$$

Then

$$
U_{\alpha, \beta}=\left\{\left\langle\left(\alpha y^{2}+\beta y^{q+1}+r, y, 1\right)\right\rangle_{q^{2}}: y \in \operatorname{GF}\left(q^{2}\right), r \in \mathrm{GF}(q)\right\} \cup\left\{P_{\infty}\right\}
$$

is an orthogonal Buekenhout-Metz unital. $U_{\alpha, \beta}$ is classical if and only if $\alpha=0$.
Conversely, every orthogonal Buekenhout-Metz unital can be expressed as $U_{\alpha, \beta}$ for some $\alpha, \beta \in \mathrm{GF}\left(q^{2}\right)$ which satisfy the above conditions.

We go back to the projective equivalence of $\Pi(\mathcal{S})$ and $\Pi(\widehat{\mathcal{S}})$ arising from the bijective map $\widehat{\phi}$. The line set $\widehat{\phi}\left(U_{\alpha, \beta}\right)=\left\{\widehat{\phi}(P): P \in U_{\alpha, \beta}\right\}$ can be regarded as the restriction on $U_{\alpha, \beta}$ of the $\operatorname{GF}(q)$-linear representation of $\operatorname{PG}\left(2, q^{2}\right)$ in $\operatorname{PG}(\widehat{V})$.
Remark 3.5. Thas [33] showed that the $\mathrm{GF}(q)$-linear representation of the classical unital is a partition of an elliptic quadric in $\operatorname{PG}(5, q)$. Thas's result is obtained here when the representation $\widehat{\phi}\left(U_{0, \beta}\right)$ is used. Let $\delta=\epsilon$ for odd q, and $\delta=1$ for even q. For any $\beta \in \operatorname{GF}\left(q^{2}\right)$ satisfying the conditions of Theorem $3.4, U_{0, \beta}$ is the set of absolute points of the unitary polarity associated to the Hermitian form h_{β} of $V\left(3, q^{2}\right)$ with matrix

$$
H_{\beta}=\left(\begin{array}{ccc}
0 & 0 & \delta^{q} \\
0 & \operatorname{Tr}(\delta \beta) & 0 \\
\delta & 0 & 0
\end{array}\right)
$$

Hence $U_{0, \beta}$ has equation

$$
\delta X^{q} Z+\delta^{q} X Z^{q}+\operatorname{Tr}(\delta \beta) Y^{q+1}=0
$$

Let Tr denote the trace map of $\operatorname{GF}\left(q^{2}\right)$ over $\operatorname{GF}(q)$. For any $v, v^{\prime} \in V\left(3, q^{2}\right)$,

$$
\operatorname{Tr}\left(h_{\beta}\left(v, v^{\prime}\right)\right)= \begin{cases}b_{0, \beta}\left(\widehat{\phi}(v), \widehat{\phi}\left(v^{\prime}\right)\right), & \text { for } q \text { odd } \\ b_{\beta}\left(\widehat{\phi}(v), \widehat{\phi}\left(v^{\prime}\right)\right), & \text { for } q \text { even. }\end{cases}
$$

This shows that the points in $\widehat{\phi}\left(U_{0, \beta}\right)$ belong to $\widehat{\mathcal{Q}}_{0, \beta}$. In particular, the line set $\widehat{\phi}\left(U_{\alpha, \beta}\right)$ is a partition of $\widehat{\mathcal{Q}}_{0, \beta}$.

We now put in evidence the relation between the elliptic quadric $\widehat{\mathcal{Q}}_{\alpha, \beta}$ and the Buekenhout representation of $U_{\alpha, \beta}$ in the Andrè/Bruck-Bose model of $\operatorname{PG}\left(2, q^{2}\right)$.

The subspace $\Lambda=\left\{\left\langle\left(x, x^{q}, y, y^{q}, c, c\right)\right\rangle_{q}: c \in \operatorname{GF}(q), x, y \in \operatorname{GF}\left(q^{2}\right)\right\}$ is an hyperplane of $\operatorname{PG}(\widehat{V})$ containing the 3 -dimensional subspace $\Sigma=\left\{\left\langle\left(x, x^{q}, y, y^{q}, 0,0\right)\right\rangle_{q}\right.$: $\left.x, y \in \mathrm{GF}\left(q^{2}\right)\right\}$. The line set $\mathcal{N}=\left\{\widehat{\phi}(P): P \in L_{\infty}\right\}$ is a Desarguesian line spread of Σ. Hence, \mathcal{N} defines the Andrè/Bruck-Bose model of $\operatorname{PG}\left(2, q^{2}\right)$ in Λ : the points are the lines of \mathcal{N} and the points of Λ not in Σ, the lines are the planes of Λ not in Σ which meet Σ in a line of \mathcal{N} and \mathcal{N} itself, incidence is defined by inclusion. We denote by $\pi(\mathcal{N})$ this model of $\mathrm{PG}\left(2, q^{2}\right)$. The set $\bar{U}_{\alpha, \beta}=\bigcup_{P \in U_{\alpha, \beta}}(\widehat{\phi}(P) \cap \Lambda)$ is the Buekenhout representation of $U_{\alpha, \beta}$ in $\pi(\mathcal{N})$.

The hyperplane Λ is the orthogonal space of the point $R=\langle(1,1,0,0,0,0)\rangle_{q}$ with respect the polarity associated with the quadric $\widehat{\mathcal{Q}}_{\alpha, \beta}$. Since $R \in \widehat{\mathcal{Q}}_{\alpha, \beta}$, the intersection between Λ and $\widehat{\mathcal{Q}}_{\alpha, \beta}$ is a cone $\Gamma_{\alpha, \beta}$ projecting an elliptic quadric from R and containing the spread element $\widehat{\phi}\left(P_{\infty}\right)=\left\{\left\langle\left(x, x^{q}, 0,0,0,0\right)\right\rangle_{q}: x \in \operatorname{GF}\left(q^{2}\right)\right\}$ as a generator.

Proposition 3.6. The cone $\Gamma_{\alpha, \beta}$ coincides with the Buekenhout representation $\bar{U}_{\alpha, \beta}$ of $U_{\alpha, \beta}$ in $\pi(\mathcal{N})$, that is,

$$
\bigcup_{P \in U_{\alpha, \beta}}(\widehat{\phi}(P) \cap \Lambda)=\Gamma_{\alpha, \beta} .
$$

Proof. We have $\widehat{\phi}\left(P_{\infty}\right)=\widehat{\mathcal{Q}}_{\alpha, \beta} \cap \Sigma$. For any $P=\left\langle\left(a y^{2}+\beta y^{q+1}, y, 1\right)\right\rangle_{q^{2}} \in U_{\alpha, \beta}$,

$$
\widehat{\phi}(P)=\left\{\left\langle\left(\lambda\left(a y^{2}+\beta y^{q+1}\right), \lambda^{q}\left(a^{q} y^{2^{q}}+\beta^{q} y^{q+1}\right), \lambda y, \lambda^{q} y^{q}, \lambda, \lambda^{q}\right)\right\rangle_{q}: \lambda \in \operatorname{GF}\left(q^{2}\right)\right\} .
$$

Then $\widehat{\phi}(P) \cap \Lambda=\left\langle\left(\alpha y^{2}+\beta y^{q+1}+r, \alpha^{q} y^{2 q}+\beta^{q} y^{q+1}+r, y, y^{q}, 1,1\right)\right\rangle_{q}$. From a straightforward calculation involving Equation (2.8) of $\widehat{\mathcal{Q}}_{\alpha, \beta}$ it follows that $\widehat{\phi}(P) \cap \Lambda \in \Gamma_{\alpha, \beta}$. Since the size of $\bigcup_{P \in U_{\alpha, \beta} \backslash\left\{P_{\infty}\right\}}(\widehat{\phi}(P) \cap \Lambda)$ equals the size of $\Gamma_{\alpha, \beta} \backslash \widehat{\phi}\left(P_{\infty}\right)$ the result follows.

Remark 3.7. The affine points of $\Gamma_{\alpha, \beta}$ satisfy the equation

$$
\begin{equation*}
\delta^{q} X+\delta X^{q}+\alpha \delta Y^{2}+\alpha^{q} \delta^{q} Y^{2 q}+\operatorname{Tr}(\delta \beta) Y^{q+1}=0 \tag{3.1}
\end{equation*}
$$

with $\delta=\epsilon$ or $\delta=1$ according as q is odd or even. It may be observed that Equation (3.1) is the equation of the affine points of $U_{\alpha, \beta}[13,20]$. Equation (3.1) in homogeneous form is

$$
\delta^{q} X Z^{2 q-1}+\delta X^{q} Z^{q}+\alpha \delta Y^{2} Z^{2 q-2}+\alpha^{q} \delta^{q} Y^{2 q}+\operatorname{Tr}(\delta \beta) Y^{q+1} Z^{q-1}=0
$$

which is satisfied by the points of the $\mathrm{GF}(q)$-linear representation $\widehat{\phi}\left(U_{\alpha, \beta}\right)$ of $U_{\alpha, \beta}$.
In [28], Polverino proved that the $\mathrm{GF}(q)$-linear representation of an orthogonal Buekenhout-Metz unital cover the $\mathrm{GF}(q)$-points of an algebraic hypersurface of degree four minus the complements of a line in a three-dimensional subspace. She also showed that the hypersurface is reducible if and only if the unital is classical. Polverino's result is obtained here when the representation $\widehat{\phi}\left(U_{0, \beta}\right)$ is used. Let \mathcal{F} be the hypersurface of $\operatorname{PG}\left(5, q^{2}\right)$ with equation

$$
\mathcal{F}: \delta^{q} X_{1} Z_{1} Z_{2}^{2}+\delta X_{2} Z_{1}^{2} Z_{2}+\alpha \delta Y_{1}^{2} Z_{2}^{2}+\alpha^{q} \delta^{q} Y_{2}^{2} Z_{1}^{2}+\operatorname{Tr}\left(\delta \beta^{q}\right) Y_{1} Y_{2} Z_{1} Z_{2}=0
$$

The intersection $\widehat{\mathcal{F}}$ of \mathcal{F} with $\operatorname{PG}(\widehat{V})$ consists of all points of $\operatorname{PG}(\widehat{V})$ satisfying the equation

$$
\begin{equation*}
\delta^{q} X Z^{2 q+1}+\delta X^{q} Z^{q+2}+\alpha \delta Y^{2} Z^{2 q}+\alpha^{q} \delta^{q} Y^{2 q} Z^{2}+\operatorname{Tr}\left(\delta \beta^{q}\right) Y^{q+1} Z^{q+1}=0 \tag{3.2}
\end{equation*}
$$

Clearly, $\widehat{\mathcal{F}}$ contains the three-dimensional subspace Σ. By the above arguments, the $\mathrm{GF}(q)-$ linear representation $\widehat{\phi}\left(U_{\alpha, \beta}\right)$ covers the points in $\widehat{\mathcal{F}}$ minus the complements of $\widehat{\phi}\left(L_{\infty}\right)$ in Σ. Furthermore, Equation (3.2) defines an algebraic hypersurface of degree four of $\mathrm{PG}(5, q)$. A straightforward, though tedious, calculation shows that Equation (3.2) is precisely the algebraic hypersurface provided by Polverino in [28].

As elliptic quadrics in $\operatorname{PG}(\widehat{V})$ are projectively equivalent, some linear collineation τ_{α} of $\mathrm{PG}(\widehat{V})$ takes $\widehat{\mathcal{Q}}_{0, \beta}$ to $\widehat{\mathcal{Q}}_{\alpha, \beta}$. Actually we need such a linear collineation τ_{α} with some extra-property.
Proposition 3.8. In $\mathrm{PG}(\widehat{V})$ there exists a linear collineation τ_{α} which takes $\widehat{\mathcal{Q}}_{0, \beta}$ to $\widehat{\mathcal{Q}}_{\alpha, \beta}$, preserves the subspaces Λ, Σ, and fixes $\widehat{\phi}\left(P_{\infty}\right)$ pointwise. Therefore it maps the cone $\Gamma_{0, \beta}$ into $\Gamma_{\alpha, \beta}$.
Proof. The restriction $\left.\widehat{Q}_{\alpha, \beta}\right|_{L}$ on the subspace $L=\left\{\left(0,0, y, y^{q}, 0,0\right): y \in \operatorname{GF}\left(q^{2}\right)\right\}$ of $\widehat{Q}_{\alpha, \beta}$ given by (2.3) is the quadratic form defined by

$$
\left.\widehat{Q}_{\alpha, \beta}\right|_{L}\left(y, y^{q}\right)=\alpha \delta y^{2}+\alpha^{q} \delta^{q} y^{2 q}+\operatorname{Tr}(\delta \beta) y^{q+1} \in \mathrm{GF}(q)
$$

which is of elliptic type by the proof of Proposition 2.4. As two such forms are equivalent, some endomorphism of L maps $\left.\widehat{Q}_{0, \beta}\right|_{L}$ to $\left.\widehat{Q}_{\alpha, \beta}\right|_{L}$. In a natural way, as in the proof of Proposition 2.3, we may identify any endomorphism of L with a $2 \times 2 q$-circulant matrix. Doing so, the endomorphism with matrix

$$
D=\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{2}^{q} & d_{1}^{q}
\end{array}\right)
$$

where

$$
\begin{aligned}
d_{1}^{q+1}+d_{2}^{q+1} & =1 \\
d_{1} d_{2}^{q} & =\alpha \delta \operatorname{Tr}(\delta \beta)^{-1},
\end{aligned}
$$

maps $\left.\widehat{Q}_{0, \beta}\right|_{L}$ to $\left.\widehat{Q}_{\alpha, \beta}\right|_{L}$. Let τ_{α} be the linear collineation of $\mathrm{PG}(\widehat{V})$ defined by the matrix

$$
D_{\alpha}=\left(\begin{array}{ccc}
I_{2} & O_{2} & O_{2} \\
O_{2} & D & O_{2} \\
O_{2} & O_{2} & I_{2}
\end{array}\right)
$$

It is easily seen that τ_{α} preserves the subspaces Λ, Σ, and fixes $\widehat{\phi}\left(P_{\infty}\right)$ pointwise, and that it maps the cone $\Gamma_{0, \beta}$ into $\Gamma_{\alpha, \beta}$.

Remark 3.9. Bearing in mind Remark 3.3, one can ask whether τ_{α} is an incidence preserving map of $\Pi(\widehat{\mathcal{S}})$. The answer is negative by $d_{1} d_{2} \neq 0$ and Proposition 3.2. This implies that $\Gamma_{0, \beta}$ and $\Gamma_{\alpha, \beta}$ are Buekenhout representations of unitals of $\operatorname{PG}\left(2, q^{2}\right)$ and that they are not projectively equivalent. In particular, this provides a new proof for the existence of non-classical unitals embedded in $\mathrm{PG}\left(2, q^{2}\right)$.

It is clear that the image $\widehat{\mathcal{S}}^{\tau_{\alpha}}$ of the Desarguesian line-spread $\widehat{\mathcal{S}}$ under the linear collineation τ_{α} is a Desarguesian line-spread and it defines the $\mathrm{GF}(q)$-linear representation $\Pi\left(\widehat{\mathcal{S}}^{\tau_{\alpha}}\right)$ of $\mathrm{PG}\left(2, q^{2}\right)$.

4 The proof of the Main Theorem

In our proof the models of $\mathrm{PG}\left(2, q^{2}\right)$ treated in Section 3 play a role. Two of them arose from Desarguesian line-spreads of $\operatorname{PG}(\widehat{V})$ denoted by $\widehat{\mathcal{S}}$ and $\widehat{\mathcal{S}}^{\tau_{\alpha}}$ respectively, the third was the Andrè/Bruck-Bose model $\pi(\mathcal{N})$ in the 4-dimensional subspace Λ.

In $\mathrm{PG}\left(2, q^{2}\right)$ consider a unital \mathcal{U} isomorphic, as a block-design, to an orthogonal Buekenhout-Metz unital $U_{\alpha, \beta}$ with $\alpha \neq 0$. It is known [2,17] that $U_{\alpha, \beta}$ has a special point which is the unique fixed point of the automorphism group of $U_{\alpha, \beta}$. Hence the automorphism group of \mathcal{U} fixes a unique point of \mathcal{U}. Up to a change of the homogeneous coordinate system in $\operatorname{PG}\left(2, q^{2}\right)$, the special point of $U_{\alpha, \beta}$ is $P_{\infty}=\langle(1,0,0)\rangle_{q^{2}}$ and the tangent line of $U_{\alpha, \beta}$ at P_{∞} is $L_{\infty}: Z=0$. Up to a linear collineation, $P_{\infty} \in \mathcal{U}$ is the fixed point of the automorphism group of \mathcal{U} and L_{∞} is the tangent to \mathcal{U} at P_{∞}. Therefore, \mathcal{U} and $U_{\alpha, \beta}$ share P_{∞} and L_{∞}.

We interpret the isomorphism between \mathcal{U} and $U_{\alpha, \beta}$ in each of the above three models of $\operatorname{PG}\left(2, q^{2}\right)$. The representation $\widehat{\mathcal{U}}=\{\widehat{\phi}(P): P \in \mathcal{U}\}$ of \mathcal{U} in $\Pi(\widehat{\mathcal{S}})$ is isomorphic, as a block-design, to $\widehat{U}_{\alpha, \beta}=\left\{\widehat{\phi}(P): P \in U_{\alpha, \beta}\right\}$. The Buekenhout representation $\overline{\mathcal{U}}=\bigcup_{P \in \mathcal{U}}(\widehat{\phi}(P) \cap \Lambda)$ of \mathcal{U} in $\pi(\mathcal{N})$ is isomorphic, as a block-design, to $\bar{U}_{\alpha, \beta}=\bigcup_{P \in U_{\alpha, \beta}}(\widehat{\phi}(P) \cap \Lambda)$. Here, by Proposition 3.6, $\bar{U}_{\alpha, \beta}$ is the cone $\Gamma_{\alpha, \beta}$. This gives that the representation $\widetilde{\mathcal{U}}=\left\{L \in \widehat{\mathcal{S}}^{\tau_{\alpha}}: L \cap \Lambda \subset \bar{U}\right\}$ of \mathcal{U} in $\Pi\left(\widehat{\mathcal{S}}^{\tau_{\alpha}}\right)$ is isomorphic, as a block-design, to $\widetilde{U}_{\alpha, \beta}=\left\{L \in \widehat{\mathcal{S}}^{\tau_{\alpha}}: L \cap \Lambda \subset \Gamma_{\alpha, \beta}\right\}$.

From Proposition 3.8, the lines which are the points of $\widetilde{U}_{\alpha, \beta}$ partition the elliptic quadric $\widehat{\mathcal{Q}}_{\alpha, \beta}=\widehat{\mathcal{Q}}_{0, \beta}^{\tau_{\alpha}}$. On the other hand, from Remark 3.5, $\widehat{\mathcal{Q}}_{0, \beta}$ is partitioned by lines which are the points of the classical unital $\widehat{U}_{0, \beta}$ in $\Pi(\widehat{\mathcal{S}})$. This yields that $\widetilde{U}_{\alpha, \beta}$ coincides with $\widehat{U}_{0, \beta}^{\tau_{\alpha}}$. It turns out that $\widetilde{U}_{\alpha, \beta}$ is a classical unital in $\Pi\left(\widehat{\mathcal{S}}^{\tau_{\alpha}}\right)$, and hence $\widetilde{\mathcal{U}}$ is isomorphic, as a block-design, to the classical unital.

Now we quote the following result from [23] which was the keystone in the proof of Theorem 1.1.

Lemma 4.1. Let \mathcal{U} be a unital embedded in a Desarguesian finite projective plane π and isomorphic, as a block-design, to the classical unital. For any block B of \mathcal{U}, let ℓ be the line of π containing B. Then B is an orbit of a cyclic subgroup of order $q+1$ contained in the projectivity group of ℓ. This implies that B is a Baer subline of ℓ.

We emphasize that the proof of Lemma 4.1 only uses arguments involving point-block incidences of \mathcal{U} viewed as a block-design embedded in π.

Therefore, Lemma 4.1 applies to $\widetilde{\mathcal{U}}$. Thus, every block of $\widetilde{\mathcal{U}}$ is a Baer subline of $\Pi\left(\widehat{\mathcal{S}}^{\tau_{\alpha}}\right)$, that is, a regulus of $\operatorname{PG}(\widehat{V})$. From this, each block of $\overline{\mathcal{U}}$ is the intersection of these reguli with Λ. In particular, each block of $\overline{\mathcal{U}}$ through $\widehat{\phi}\left(P_{\infty}\right)$ is the union of $\widehat{\phi}\left(P_{\infty}\right)$ with q collinear affine points, and this implies that each block of $\widehat{\mathcal{U}}$ through $\widehat{\phi}\left(P_{\infty}\right)$ is a regulus of $\operatorname{PG}(\widehat{V})$ whose lines are in $\widehat{\mathcal{S}}$. Under $\widehat{\phi}$, these reguli correspond to Baer sublines of $\mathrm{PG}\left(2, q^{2}\right)$ through P_{∞}. This yields that the points of \mathcal{U} on each of the q^{2} secant lines to \mathcal{U} form a Baer subline through P_{∞}. By the characterization of such unitals of $\operatorname{PG}\left(2, q^{2}\right)$
given in [12, 29], we may conclude that \mathcal{U} is a Buekenhout-Metz unital. By definition, the Buekenhout representation $\overline{\mathcal{U}}$ of \mathcal{U} is a cone that project an ovoid \mathcal{O} from a point of $\widehat{\phi}\left(P_{\infty}\right)$ not in \mathcal{O}. Here an ovoid is a set of $q^{2}+1$ points in a 3-dimensional subspace of Λ no three of which are collinear.

To conclude the proof we only need to prove that \mathcal{O} is an elliptic quadric. Since the ovoids in $\operatorname{PG}(3, q)$ with odd q are elliptic quadrics, see [4, 26], we assume $q=2^{h}$. In $\operatorname{PG}\left(3,2^{h}\right)$, there are known two ovoids, up to projectivities, namely the elliptic quadric which exist for $h \geq 1$, and the Tits ovoid which exists for odd $h \geq 3$; see [18, Chapter 10]. Let Ω be the 3 -dimensional subspace of Λ containing \mathcal{O}. Note that $\mathcal{O}=\Omega \cap \overline{\mathcal{U}}$. Set α_{∞} to be the plane $\Omega \cap \Sigma$. Then α_{∞} meets \mathcal{O} exactly in the point $\mathcal{O} \cap \widehat{\phi}\left(P_{\infty}\right)$, and it is a simple matter to show that α_{∞} contains only one line $\widehat{\phi}(P)$ of \mathcal{N}. Also, $\widehat{\phi}(P)$ is distinct from $\widehat{\phi}\left(P_{\infty}\right)$. Let $\alpha_{1}, \ldots, \alpha_{q}$ denote the further planes of Ω through $\widehat{\phi}(P)$. As these planes are lines of $\pi(\mathcal{N})$ through the point $\widehat{\phi}(P)$, each of them meets $\overline{\mathcal{U}}$ in 1 or $q+1$ points. This holds true for \mathcal{O}.

It is well known [19, Section 12.3] that in a finite Desarguesian projective plane through any point off a unital there are exactly $q+1$ tangent lines, that is, lines of the plane that intersects the unital in exactly one point. In terms of the unital $\overline{\mathcal{U}}$ this property states that there is only one plane among $\alpha_{1}, \ldots, \alpha_{q}$ that meets \mathcal{O} in exactly one point. Let α_{1} denote this plane. Then the block $\alpha_{i} \cap \mathcal{O}$ of $\overline{\mathcal{U}}$, for $i=2, \ldots, q$, is the intersection of α_{i} with a regulus in $\operatorname{PG}(\widehat{V})$. Since that regulus does not contain $\widehat{\phi}(P)$, the block $\alpha_{i} \cap \mathcal{O}$ is a conic C_{i} of α_{i}, for $i=2, \ldots, q$. Thus the blocks $\alpha_{i} \cap \mathcal{O}$, for $i=2, \ldots, q$, are $q-1$ conics that partition all but two points of \mathcal{O}. By [8, Theorem 5] \mathcal{O} is an elliptic quadric.

References

[1] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186, doi:10.1007/bf01187370.
[2] R. D. Baker and G. L. Ebert, On Buekenhout-Metz unitals of odd order, J. Comb. Theory Ser. A 60 (1992), 67-84, doi:10.1016/0097-3165(92)90038-v.
[3] J. Bamberg, A. Betten, C. E. Praeger and A. Wassermann, Unitals in the Desarguesian projective plane of order 16, J. Statist. Plann. Inference 144 (2014), 110-122, doi:10.1016/j.jspi. 2012.10.006.
[4] A. Barlotti, Un'estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. Serie $3 \mathbf{1 0}$ (1955), 498-506, http : / /www .bdim.eu/item?id=BUMI_1955_3_10_4_498_0.
[5] S. Barwick and G. Ebert, Unitals in Projective Planes, Springer Monographs in Mathematics, Springer, New York, 2008, doi:10.1007/978-0-387-76366-8.
[6] A. Betten, D. Betten and V. D. Tonchev, Unitals and codes, Discrete Math. 267 (2003), 23-33, doi:10.1016/s0012-365x(02)00600-3.
[7] R. C. Bose, On a representation of the Baer subplanes of the Desarguesian plane $\mathrm{PG}\left(2, q^{2}\right)$ in a projective five dimensional space $\operatorname{PG}(5, q)$, in: Colloquio Internazionale sulle Teorie Combinatorie, Tomo I, Accademia Nazionale dei Lincei, Rome, 1976 pp. 381-391, proceedings of a conference held in Rome, September 3-15, 1973.
[8] M. R. Brown, C. M. O'Keefe and T. Penttila, Triads, flocks of conics and $Q^{-}(5, q)$, Des. Codes Cryptogr. 18 (1999), 63-70, doi:10.1023/a:1008376900914.
[9] R. H. Bruck and R. C. Bose, The construction of translation planes from projective spaces, J. Algebra 1 (1964), 85-102, doi:10.1016/0021-8693(64)90010-9.
[10] R. H. Bruck and R. C. Bose, Linear representations of projective planes in projective spaces, J. Algebra 4 (1966), 117-172, doi:10.1016/0021-8693(66)90054-8.
[11] F. Buekenhout, Existence of unitals in finite translation planes of order q^{2} with a kernel of order q, Geom. Dedicata 5 (1976), 189-194, doi:10.1007/bf00145956.
[12] L. R. A. Casse, C. M. O'Keefe and T. Penttila, Characterizations of Buekenhout-Metz unitals, Geom. Dedicata 59 (1996), 29-42, doi:10.1007/bf00181524.
[13] D. B. Chandler, The sizes of the intersections of two unitals in $\mathrm{PG}\left(2, q^{2}\right)$, Finite Fields Appl. 25 (2014), 255-269, doi:10.1016/j.ffa.2013.10.001.
[14] B. N. Cooperstein, External flats to varieties in $\mathbb{P G}\left(M_{n, n}(\mathrm{GF}(q))\right)$, Linear Algebra Appl. 267 (1997), 175-186, doi:10.1016/s0024-3795(97)80049-3.
[15] N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Combin. 24 (2017), P2.33, https : / / www. combinatorics.org/ojs/index.php/eljc/article/view/v24i2p33.
[16] R. H. Dye, Spreads and classes of maximal subgroups of $\operatorname{GL}_{n}(q), \mathrm{SL}_{n}(q), \mathrm{PGL}_{n}(q)$ and $\mathrm{PSL}_{n}(q)$, Ann. Mat. Pura Appl. 158 (1991), 33-50, doi:10.1007/bf01759298.
[17] G. L. Ebert, On Buekenhout-Metz unitals of even order, European J. Combin. 13 (1992), 109117, doi:10.1016/0195-6698(92)90042-x.
[18] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, Oxford University Press, New York, 1985.
[19] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathematical Monographs, Oxford University Press, New York, 2nd edition, 1998.
[20] J. W. P. Hirschfeld and G. Korchmáros, Arcs and curves over a finite field, Finite Fields Appl. 5 (1999), 393-408, doi:10.1006/ffta.1999.0260.
[21] A. M. W. Hui and P. P. W. Wong, On embedding a unitary block design as a polar unital and an intrinsic characterization of the classical unital, J. Comb. Theory Ser. A 122 (2014), 39-52, doi:10.1016/j.jcta.2013.09.007.
[22] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, volume 129 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1990, doi:10.1017/cbo9780511629235.
[23] G. Korchmáros, A. Siciliano and T. Szőnyi, Embedding of classical polar unitals in $\operatorname{PG}\left(2, q^{2}\right)$, J. Comb. Theory Ser. A 153 (2018), 67-75, doi:10.1016/j.jcta.2017.08.002.
[24] R. Metz, On a class of unitals, Geom. Dedicata 8 (1979), 125-126, doi:10.1007/bf00147935.
[25] G. P. Nagy and D. Mezőfi, UnitalSZ - a GAP package, Version 0.5, 23 March 2018, https : //nagygp.github.io/UnitalSZ/.
[26] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital. Serie 310 (1955), 507-513, http: / /www . bdim.eu / item?id=BUMI_1955_3_10_4_507_0.
[27] T. Penttila and G. F. Royle, Sets of type (m, n) in the affine and projective planes of order nine, Des. Codes Cryptogr. 6 (1995), 229-245, doi:10.1007/bf01388477.
[28] O. Polverino, Linear representation of Buekenhout-Metz unitals, Discrete Math. 267 (2003), 247-252, doi:10.1016/s0012-365x(02)00618-0.
[29] C. T. Quinn and R. Casse, Concerning a characterisation of Buekenhout-Metz unitals, J. Geom. 52 (1995), 159-167, doi:10.1007/bf01406836.
[30] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964), 1-76, doi:10.1007/bf02410047.
[31] J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385, doi:10.2307/1990067.
[32] D. E. Taylor, The Geometry of the Classical Groups, volume 9 of Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1992.
[33] J. A. Thas, Semipartial geometries and spreads of classical polar spaces, J. Comb. Theory Ser. A 35 (1983), 58-66, doi:10.1016/0097-3165(83)90026-2.

[^0]: E-mail addresses: gabor.korchmaros@unibas.it (Gábor Korchmáros), alessandro.siciliano@unibas.it (Alessandro Siciliano)

