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Abstract—This paper is focused on non-cooperative target
position estimation via the joint use of Two-Dimensional (2D)
hyperbolic and elliptic passive location techniques based on Time
Difference Of Arrival (TDOA) and Passive Coherent Locator
(PCL) measurements, respectively. A fusion strategy is laid down
at the signal processing level to obtain a reliable estimate of the
current target position. With reference to the scenario with a
single transmitter of opportunity, the mathematical model for
joint exploitation of TDOA and PCL strategies is formulated.
Then, the Cramer Rao Lower Bound (CRLB) for the cartesian
coordinates of the target is established and the theoretical
performance gains achievable over the localization technique
using only TDOA or PCL observations are assessed. Finally,
TDOA-PCL hybrid 2D localization algorithms are provided and
their performance in terms of Root Mean Square Error (RMSE)
is compared with the square root of the CRLB.

Keywords—Time Difference of Arrivals, Passive Coherent Loca-
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I. INTRODUCTION

A big challenge in modern localization systems is the
possibility to estimate the position of a non-cooperative target
via passive techniques [1]–[10]. These approaches are of great
strategic interest being able to operate without the availability
of a dedicated transmitter which is indeed mandatory in active
localization systems. The remarkable consequence is a signif-
icant reduction of the system cost as well as the possibility to
localize a target without being localized.

Due to the importance of the problem, numerous solutions
have been proposed in open literature mostly relying on
hyperbolic and elliptic positioning [11]–[16]. The former class
is based on Time Difference Of Arrival (TDOA) measurements
from signals transmitted by the target of interest (radar or
communication waveforms depending on the target’s mission)
and collected at the receiving nodes. The latter, usually referred
to in radar literature as a Passive Coherent Locator (PCL),
can be accomplished using bistatic target range measurements
obtained via signals transmitted by one/multiple illuminators
of opportunity [17, Chap. 11], reflected by the target, and
acquired by the passive receiver/receivers. Basically, each
measurement localizes the target over an ellipsoid and the
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intersection of multiple ellipsoids due to different transmitter-
receiver pairs enables target positioning. In this respect dif-
ferent transmitters of opportunity could be considered such as
frequency modulated radio [18], [19], digital audio broadcast
and digital video broadcast terrestrial [20]. Many prototypes,
possibly exploiting multiple transmitters [19], have been de-
veloped over the years [21] and their performance has been
assessed [22], [23] with reference to a multitude of applications
ranging form Air Traffic Control (ATC) to indoor surveillance
[24]–[26].

In open literature several algorithms have been proposed
to estimate the cartesian coordinates of the target with ref-
erence to TDOA or elliptic (in particular PCL) localization
approaches. Some examples are represented by the Least
Squares (LS) [27], the Constrained Least Squares (CLS) [11],
[27], the Two-Step Estimation (TSE) [28], and the Iterative
Constrained Least Squares (ICLS) algorithms. Furthermore, to
capitalize the benefits of the possible availability of TDOA
and PCL measurements, some fusion algorithms have been
developed to improve the estimation accuracy achieved using
only one of the aforementioned approaches [29].

However, it is worth pointing out that previous strategies
have been mainly focused on the independent operation of
each sub-system up to bistatic tracking of targets [29]; fusion
is then performed at the data processing level. In this respect
the present study is settled up before the tracking process, i.e.
when the measurements of TDOA and PCL are jointly used to
obtain an estimate of the target position which could be then
used for track update. Otherwise stated, fusion is performed
at signal processing level. Other studies on TDOA and PCL
fusion can be found in [30] and [31].

The paper is organized as follows. With reference to a
two-dimensional (2D) scenario1 with a single transmitter of
opportunity, in Section II, the mathematical model for the joint
exploitation of TDOA and PCL observations is developed. In
Section III, the Cramer Rao Lower Bound (CRLB) for the
cartesian coordinates of the target is established and the per-
formance gains achievable over localization techniques using
only TDOA or PCL is assessed. In addition, a discussion on
the identifiability of the studied localization problem is carried
on. In Section IV, TDOA-PCL hybrid localization algorithms
are provided to estimate target position, whereas, in Section
V, their performance is assessed resorting to Monte-Carlo
simulations and considering as figure of merit the position Root
Mean Square Error (RMSE). Finally, in Section VI conclusions

1Note that, it is straightforward to generalize the developed approach to a
three-dimensional (3D) scenario.
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are drawn and some future research is discussed.

NOTATION

We adopt the notation of using boldface for vectors a
(lower case), and matrices A (upper case). The n-th element
of a and the (n,m)-th entry of A are denoted by an and
An,m, respectively. The transpose operator is represented by
the symbol (·)T . I and 0 indicate respectively the identity
matrix and the matrix with zero entries (their size is determined
from the context). The trace operator is denoted by Tr (·)
and ‖ · ‖ indicates the Euclidean vector norm. E[·] stands for
statistical expectation whereas R

N and R
N×M are the sets of

N -dimensional vectors of real numbers and of N × M real
matrices, respectively. diag (a) indicates the diagonal matrix
whose i-th diagonal element is the i-th entry of a. Finally,
the curled inequality symbol � is used to denote generalized
matrix inequality: for any A ∈ R

N×N , A � 0 means that A
is a positive semi-definite matrix.

II. PROBLEM FORMULATION AND SYSTEM MODEL

Let us consider a passive location system composed of N
sensor nodes each equipped with both a Time Of Arrival
(TOA) and a PCL receiver. Let

• si = [xi, yi]
T ∈ R

2, i = 1, . . . , N , the sensor nodes
positions;

• u = [xe, ye]
T
∈ R

2 the target position;

• t = [xt, yt]
T ∈ R

2 the transmitter of opportunity
position.

The vectors si and t are supposed perfectly known and the
TDOA measurements are computed with respect to a specific
sensor which, without loss of generality, is s1. Using the above
definitions, in the next 3 sub-sections the observation models
for TDOA, PCL, and hybrid TDOA/PCL are laid down.

A. TDOA System Model

Consider sensor 1 as reference node and denote by τi the
TOA of the signal emitted by the target and received at the
i-th sensor node. TDOA measurements can be expressed as

τi1 = τi − τ1, i = 2, . . . , N. (1)

If c is the speed of light in the vacuum, equation (1) can be
rewritten in terms of range-difference measurements as

ri1 = cτi1 = cτi − cτ1 = ri − r1 = ‖si − u‖ − ‖s1 − u‖,

i = 2, . . . , N.
(2)

Solving for ‖si − u‖ and squaring both sides of (2), after
some algebraic manipulation, yields

(
sTi − sT1

)
u+ ri1r1 =

1

2

(
‖si‖

2 − ‖s1‖
2 − r2i1

)
. (3)

Now, considering the noisy range-difference measurements

r̃i1 = (ri + nTDOA,i)− (r1 + nTDOA,1) = ri1 + δTDOA,i,

i = 2, . . . , N,
(4)

where δTDOA,i = (nTDOA,i − nTDOA,1), i = 2, . . . , N , with
nTDOA,i, i = 1, . . . , N , independent and identically distributed
(i.i.d.) zero-mean Gaussian random variables with variance
σ2

TDOA, the true range-difference measurements can be ex-
pressed as

ri1 = r̃i1 − δTDOA,i, i = 2, . . . , N. (5)

Substituting (5) in (3) and ignoring the term δ2TDOA,i leads
to

1

2

(
r̃2i1 − ‖si‖

2 + ‖s1‖
2
)
+
[(
sTi − sT1

)
, r̃i1

] [u
r1

]

= (r̃i1 + r1) δTDOA,i, i = 2, . . . , N,

(6)

which can be cast in compact form as

aTDOA −HTDOAθ = BTDOAδTDOA, (7)

where θ = [uT , r1]
T and

aTDOA =
1

2




r̃221 − ‖s2‖
2 + ‖s1‖

2

r̃231 − ‖s3‖
2 + ‖s1‖

2

...

r̃2N1 − ‖sN‖2 + ‖s1‖
2


 (8)

HTDOA = −




(
sT2 − sT1

)
r̃21(

sT3 − sT1
)

r̃31
...

...(
sTN − sT1

)
r̃N1


 (9)

δTDOA =




δTDOA,2

δTDOA,3

...
δTDOA,N


 (10)

BTDOA = diag ([r̃21 + r1, r̃31 + r1, . . . , r̃N1 + r1]) . (11)

Finally, δTDOA ∈ R
(N−1)×1 is a zero-mean Gaussian vector

with covariance matrix

QTDOA = E

[
δTDOAδ

T
TDOA

]
= σ2

TDOA

[
IN−1 + 1N−11

T
N−1

]
.

(12)

B. PCL System Model

Unlike TDOA, a conventional PCL system does not require
a reference sensor and, after classic PCL cross-correlation
based processing, the following N bistatic delay/range mea-
surements are available

rti = cτti = ‖t− u‖+ ‖si −u‖ − Li, i = 1, . . . , N, (13)
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where Li = ‖si − t‖. Let us recast the previous equation
into an equivalent rather convenient representation for the
development of position estimation algorithms. Specifically,
starting from the bistatic ranges rti, let us define the following
range-differences

rti1 = rti− rt1 = ‖si−u‖−‖s1−u‖−Li1, i = 2, . . . , N,
(14)

where Li1 = Li − L1, which can be rearranged as

‖si − u‖ = rti1 + Li1 + ‖s1 − u‖, i = 2, . . . , N. (15)

Squaring both sides of (15), after some algebraic manipula-
tion, yields

2
(
sTi − sT1

)
u+ 2 (rti1 + Li1) r1

= ‖si‖
2 − ‖s1‖

2 − (rti1 + Li1)
2
, i = 2, . . . , N.

(16)

Now, considering the noisy bistatic range-difference mea-
surements

r̃ti1 = (rti + nPCL,i)− (rt1 + nPCL,1)

= rti1 + δPCL,i, i = 2, . . . , N,
(17)

where δPCL,i = (nPCL,i − nPCL,1), i = 2, . . . , N , and nPCL,i,
i = 1, . . . , N , i.i.d. zero-mean Gaussian random variables with
variance σ2

PCL, the true bistatic range-difference measurements
can be expressed as

rti1 = r̃ti1 − δPCL,i, i = 2, . . . , N. (18)

Substituting (18) in (16) and ignoring the δ2PCL,i term leads
to

1

2

[
(r̃ti1 + Li1)

2
− ‖si‖

2 + ‖s1‖
2
]

+
[(
sTi − sT1

)
(r̃ti1 + Li1)

] [u
r1

]

= [(r̃ti1 + Li1) + r1] δPCL,i, i = 2, . . . , N.

(19)

As to the sensor 1

rt1 = ‖t− u‖+ ‖s1 − u‖ − L1, (20)

which can be rearranged as

‖t− u‖ = rt1 + L1 − ‖s1 − u‖. (21)

Squaring both sides of (21), after some algebraic manipula-
tion, yields

2
(
sT1 − tT

)
u+2 (rt1 + L1) r1 = (rt1 + Li1)

2
+‖s1‖

2−‖t‖2.
(22)

Again, since
rt1 = r̃t1 − nPCL,1, (23)

ignoring the n2
PCL,1 term, it follows that

1

2

[
(r̃t1 + L1)

2
+ ‖s1‖

2 − ‖t‖2
]

+
[(
tT − sT1

)
, − (r̃t1 + L1)

] [u
r1

]

= [(r̃t1 + L1)− r1]nPCL,1.

(24)

The previous equations can be expressed in a compact
matrix form as

aPCL −HPCLθ = BPCLδPCL, (25)

where

aPCL =
1

2




(r̃t1 + L1)
2 + ‖s1‖

2 − ‖t‖2

(r̃t21 + L21)
2
− ‖s2‖

2 + ‖s1‖
2

(r̃t31 + L31)
2
− ‖s3‖

2 + ‖s1‖
2

...

(r̃tN1 + LN1)
2
− ‖sN‖2 + ‖s1‖

2




(26)

HPCL = −




(
tT − sT1

)
− (r̃t1 + L1)(

sT2 − sT1
)

(r̃t21 + L21)(
sT3 − sT1

)
(r̃t31 + L31)

...
...(

sTN − sT1
)

(r̃tN1 + LN1)




(27)

δPCL =




nPCL,1

δPCL,2

δPCL,3

...
δPCL,N




(28)

BPCL = diag ([(r̃t1 + L1)− r1, (r̃t21 + L21)

+r1, . . . , (r̃tN1 + LN1) + r1]) ,
(29)

and δPCL ∈ R
N×1 is a zero-mean Gaussian vector with

covariance matrix

QPCL = E

[
δPCLδ

T
PCL

]

=

[
σ2

PCL −σ2
PCL1

T
N−1

−σ2
PCL1N−1 σ2

PCL

[
IN−1 + 1N−11

T
N−1

]
]
.

(30)

C. Hybrid TDOA/PCL System Model

Exploiting (7) and (25), the hybrid TDOA/PCL measure-
ment model2 can be formulated as

aHYB −HHYBθ = BHYBδHYB, (31)

where

2Note that, in this paper it is assumed an ideal detection process (Pd = 1 and
Pfa = 0 for all the sensors) and a perfect association between measurements
and corresponding targets.
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aHYB =

[
aTDOA

aPCL

]
, (32)

HHYB =

[
HTDOA

HPCL

]
, (33)

BHYB =

[
BTDOA 0

0 BPCL

]
, (34)

δHYB =

[
δTDOA

δPCL

]
. (35)

δHYB is a zero-mean Gaussian vector with covariance matrix

QHYB =

[
QTDOA 0

0 QPCL

]
. (36)

III. CRLB

Applying Slepian-Bangs formula [32] to the the available
measurements (5), (18), and (23), the Fisher Information
Matrix (FIM) can be written as

J =




∂µT

∂x

∂µT

∂y


Q−1

[
∂µ

∂x
,
∂µ

∂y

]
∣∣∣∣∣∣∣
x=xe,y=ye

= GTQ−1G,

(37)
where ∂µ/∂x (respectively ∂µ/∂y) denotes the column vector
containing the partial derivatives of the noise-free observations
with respect to the unknown parameter x (respectively y),

G =
[

∂µ
∂x ,

∂µ
∂y

]∣∣∣
x=xe,y=ye

, and Q is the covariance matrix

of the interference impairing the measurements. Precisely, for
the TDOA system, µi = µTDOA,i = ‖si − u‖ − ‖s1 − u‖,
i = 2, . . . , N , Q = QTDOA, and G = GTDOA defined as

GTDOAi,1
=

∂µTDOA,i

∂x
= −

(xi − x)

‖si − u‖
+

(x1 − x)

‖s1 − u‖
,

i = 2, . . . , N,

(38)

GTDOAi,2
=

∂µTDOA,i

∂y
= −

(yi − y)

‖si − u‖
+

(y1 − y)

‖s1 − u‖
,

i = 2, . . . , N,

(39)

As to the PCL system, µi = µPCL,i = ‖t−u‖+‖si−u‖−Li,
i = 1, . . . , N , and Q = σ2

PCLIN , and G = GPCL given by

GPCLi−1,1
=

∂µPCL,i

∂x
= −

(xt − x)

‖t− u‖
−

(xi − x)

‖si − u‖
, i = 1, . . . , N,

(40)

GPCLi−1,2
=

∂µPCL,i

∂y
= −

(yt − y)

‖t− u‖
−

(yi − y)

‖si − u‖
, i = 1, . . . , N,

(41)
Finally, for the hybrid system the matrix G assumes the

form

GHYB =

[
GTDOA

GPCL

]
. (42)

and Q = QHYB. Additionally, in this case, the FIM can be
computed as

JHYB = JTDOA + JPCL. (43)

Notably, equation (43) implies that

J−1
HYB � J−1

TDOA, (44)

J−1
HYB � J−1

PCL, (45)

which means that the benchmark performance (given by the
CRLB) of the hybrid TDOA/PCL system is better than or equal
to that achieved using the single TDOA or PCL strategy.

A. Identifiability of the Localization Problem

This subsection is devoted to the study of local identifiability
of the estimation problem associated with the hybrid system
based on TDOA and PCL measurements.

Before proceeding further, it is worth pointing out that
model identifiability is a necessary condition for any well-
posed estimation problem. In fact, the absence of such prop-
erty implies that at least two different source states produce
the same probability distributions of the observables making
impossible to learn the true state value3. When the afore-
mentioned property holds true within a neighborhood of a
given source state u0, the estimation problem is said local
identifiable around u0 [33]. Evidently, local identifiability in
all the possible source states is a necessary condition for model
identifiability. The following proposition summarizes our main
result concerning the identifiability issue related to passive
hybrid localization problem.

Proposition 3.1: If there are at least three sensors, s1, s2,
s3, such that:

• each of the four sets {s1, s2, s3}, {s1, s2, t}, {s2, s3, t},
{s1, s3, t} comprises non-collinear points of the plane;

• there exists a pair of distinct sensors
(
s1, s2

)
∈

{s1, s2, s3}
2 so that the remaining sensor, s3 say,

◦ is located outside the triangle defined by the points
{t, s1, s2},

◦ belongs to the half plane induced by the straight
line passing through s1 and s2 and containing t,

then the hybrid localization problem is locally identifiable for
all the possible target locations.

Proof: The proof is given in Appendix A.

IV. LOCALIZATION ALGORITHMS

The observation models for TDOA, PCL, and hybrid
TDOA/PCL, defined in (7), (25), and (31), respectively, can
be expressed in the following general form

3It is worth pointing out that, in some situations, an ambiguous measure
can be helpful to improve the quality of the overall positioning process when
data fusion with other sensors outputs is performed.
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a−Hθ = Bδ = φ. (46)

Starting from (46) and assuming H full-rank, different
techniques can be employed to recover the unknown target
position. Here, the following four algorithms are considered:

• Least Squares (LS);
• Constrained Least Squares (CLS) [27];
• Two-Step Estimation (TSE) [28];
• Iterative Constrained Least Squares (ICLS);

A. LS Strategy

The estimator θ̂LS of θ is given by

θ̂LS = arg min
θ∈R3

{
‖Hθ − a‖2

}
=

(
HTH

)−1

HTa. (47)

B. CLS Strategy

Observing that the three components of the vector θ are
functionally dependent, i.e. r1 = ‖u‖, it is of interest to

consider the CLS estimate θ̂CLS of θ which is given by [27]

θ̂CLS(λ
⋆) = arg min

θ∈R3

{
‖Hθ − a‖2 : θTCθ = 0, r1 ≥ 0

}

=
(
HTH + λ⋆C

)−1

HTa,

(48)

where

C =

[
1 0 0
0 1 0
0 0 −1

]
. (49)

and λ⋆ ∈ R is to be chosen among the roots of

θ̂
T

CLS(λ
⋆)Cθ̂CLS(λ

⋆) = 0 according to the procedure devel-
oped in [27]. It relies on the solution of a specific fourth order
polynomial equation.

C. TSE Strategy

Denoting by Ψ the covariance matrix of φ, i.e.,

Ψ = E

[
φφT

]
= BQBT , (50)

the TSE procedure provides an iterative estimate of the
target position [28]. Specifically, assuming the knowledge of
Q, TSE first implements the following iterative procedure

θ
(k)

TSE =

[
HT

(
Ψ

(k)
)−1

H

]−1

HT
(
Ψ

(k)
)−1

a,

k = 0, . . . ,K,

(51)

where K is the maximum number of iterations, Ψ
(0) =

Q and Ψ
(k), k ≥ 1, is estimated starting from θ

(k−1)

TSE (i.e.,
using the third component for the computation of B). The

algorithm iteratively updates θ
(k)

TSE until ‖θ
(k)

TSE − θ
(k−1)

TSE ‖ ≤

ǫ, k = 1, . . . ,K , with ǫ ≥ 0, or the maximum number of
iterations is reached.

The second step of TSE attempts to improve the estimation
accuracy exploiting the dependency among the components of
the vector θ starting from the error vector g defined as

g = θ̂TSE −Gθ̄, (52)

where

θ̂TSE =
[
θ
2

TSE1
, θ

2

TSE2
, θ

2

TSE3

]T
, (53)

θ̄ =
[
θ21 , θ

2
2

]T
, (54)

G =

[
1 0
0 1
1 1

]
, (55)

and θTSE is the final output of (51). Notice that, if g = 0

the position of the target is directly obtained at the first step.
However, errors inevitably affect θTSE which can be modeled
as

θTSE = θ + n, (56)

where n = [n1, n2, n3]
T are the estimation errors at the

first step. Substituting (56) in (52) and ignoring the terms n2
1,

n2
2, n2

3, the covariance matrix of the error vector g can be
approximated as [28]

Ω = E
[
ggT

]
≈ 4DFD, (57)

where D = diag
(
θTSE

)
and F is an approximation for the

covariance matrix of θTSE [28]

F ≈
(
HT

Ψ
−1H

)−1

, (58)

with Ψ the matrix obtained evaluating (50) in corre-
spondence of the last instance of (51). Modeling g as
a Gaussian random vector, the unconstrained Maximum
Likelihood Estimator (MLE) of θ, obtained minimizing(
θ̂TSE −Gθ

)
Ω

−1
(
θ̂TSE −Gθ

)
is given by

θ̂ =
(
GT

Ω
−1G

)−1

GT
Ω

−1θ̂TSE. (59)

Equation (59) gives the estimate related to the square value
of the x and y target coordinates, respectively. Hence, the
possible target locations are given by

uTSE,k =

[
(−1)k

√
|θ̂1|, (−1)(k

2+k+2)/2

√
|θ̂2|

]T
,

k = 1, . . . , 4.

(60)

Based on (2), (14), and (21), the final estimate (chosen
among the four candidates in (60)) is selected as the one which
gives the minimum square error χk, k = 1, . . . , 4, defined as
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χTDOA,k =

N∑

i=2

(‖si − uTSE,k‖ − ‖s1 − uTSE,k‖ − r̃i1)
2
,

k = 1, . . . , 4
(61)

for TDOA system,

χPCL,k =

[
(‖t− uTSE,k‖+ ‖s1 − uTSE,k‖ − L1 − r̃t1)

+

N∑

i=2

(‖si − uTSE,k‖ − ‖s1 − uTSE,k‖ − Li1 − r̃ti1)

]2

,

k = 1, . . . , 4
(62)

for PCL system, and

χHYB,k = χTDOA,k + χPCL,k, k = 1, . . . , 4 (63)

for hybrid TDOA/PCL system.

D. ICLS Strategy

This is a new iterative procedure which at each recursion
solves the problem

θ̂
(k)

ICLS = arg min
θ∈R3

{∥∥∥∥
(
Ψ

(k)
)−1/2

Hθ −
(
Ψ

(k)
)−1/2

a

∥∥∥∥
2

:

θTCθ = 0, r1 ≥ 0

}

=

(
HT

(
Ψ

(k)
)−1

H + β⋆
kC

)−1

HT
(
Ψ

(k)
)−1

a,

k = 0, . . . ,K,
(64)

where K is the maximum number of iterations, β⋆
k ∈ R is

such that θ̂
(k)T

ICLS (β
⋆
k)Cθ̂

(k)

ICLS(β
⋆
k) = 0 and θ̂

(k)

ICLS,3(β
⋆
k) ≥ 0. The

iterative technique to find the position estimate is the same as

that in Section IV-C, with the initialization B(0) = I and

the update B(k), k ≥ 1, obtained starting from θ̂
(k−1)

ICLS . The

algorithm iteratively updates θ̂
(k)

ICLS until

∥∥∥∥θ̂
(k)

ICLS − θ̂
(k−1)

ICLS

∥∥∥∥ ≤

ǫ, k = 1, . . . ,K , with ǫ ≥ 0 or the maximum number of
iterations is reached. Note that, the second step of the TSE is
no longer required since the obtained solution directly fulfills
condition (52).

V. PERFORMANCE ASSESSMENT

The performance of the proposed hybrid TDOA/PCL sys-
tem is assessed in comparison with classic TDOA or PCL
techniques. To this end a 2D localization scenario with one
omnidirectional broadcast transmitter of opportunity and 4

receiving sensor nodes is considered. Specifically, as shown
in Figure 1, 3 sensor nodes are located at the vertices of an
equilateral triangle with side equal to 500 m, the reference
sensor is located at the origin of the system, and the transmitter
of opportunity is located on the bisector of the third quadrant
of the system 5 km far from the reference sensor. To show
the benefits of the proposed hybrid TDOA/PCL system, two
different analyses are conducted:

• CRLB maps, i.e.,

√
Tr (J−1) with J the appropriate

FIM, for different values of σTDOA and σPCL;
• RMSE of the estimated target position using LS, CLS,

TSE, and ICLS algorithms for different values of σTDOA

and σPCL.
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]

transmitter of opportunity
receiving sensors

500 m

5 km

Figure 1. Geometric configuration of the sensor nodes and the transmitter
of opportunity.

A. CRLB Analysis

CRLB for TDOA, PCL, and hybrid TDOA/PCL systems
is compared for different values of σTDOA and σPCL. A grid
of 10 square km (with a resolution of 25 m) centered at the
reference sensor is considered and for each point CRLBs are
computed. Figures 2(a), 2(b), and 3 show the CRLB maps
obtained for σTDOA = σPCL = 3 m. The results highlight
that the CRLB for PCL is significantly smaller than the
CRLB for TDOA and the best performance is achieved jointly
exploiting both TDOA and PCL measurements. Furthermore,
given σTDOA = 3 m and increasing σPCL, the performance gap
between conventional PCL and hybrid TDOA/PCL becomes
larger and larger. This behaviour is shown in Figures 4(a)
and 4(b) where the CRLB maps for conventional PCL and
hybrid TDOA/PCL are evaluated considering σTDOA = 3 m
and σPCL = 30 m. The analysis herein conducted highlights
that the TDOA shows severe theoretical performance losses
with respect to both PCL and hybrid approaches. Therefore,
just the hybrid architecture and the standard PCL system are
considered in subsequent analysis in terms of RMSE.
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Figure 2. CRLB maps for TDOA (a) and PCL (b) systems considering
σTDOA = σPCL = 3 m.

B. RMSE Analysis

Performance of PCL and hybrid TDOA/PCL systems are
compared considering as figure of merit the RMSE of the
estimated position using LS, CLS, TSE, and ICLS algorithms.
For each strategy the RMSE is evaluated resorting to Monte
Carlo simulation based on 105 independent trials. The true
position of the target is [xe, ye] = 5[cos(π/8), sin(π/8)] km
and different values of σTDOA and σPCL are considered.

Figures 5 and 6 show the RMSE curves versus σTDOA

assuming σPCL = 5 m and 25 m, respectively. For both
study cases, results highlight that the LS algorithm achieves
the worst performance, whereas the TSE algorithm ensures
an RMSE almost overlapped with the corresponding CRLB.
Furthermore, Figure 5 highlights that the TSE algorithm for
hybrid TDOA/PCL uniformly outperforms all the PCL-based
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Figure 3. CRLB for hybrid TDOA/PCL system considering σTDOA =
σPCL = 3 m.

competitors. As to the LS and CLS, there exists a threshold
for σTDOA, σ̄TDOA say, such that the hybrid framework can
improve the PCL performance as long as σTDOA ≤ σ̄TDOA.
Nevertheless, the results of Figure 6 reveal that increasing
σPCL the joint exploitation of TDOA and PCL measurements
leads to more reliable estimates of the target position than
the conventional PCL strategy regardless of the considered
estimation algorithm. As to the ICLS, it shows performance
comparable with the TSE for the hybrid system, even if for
not all the considered σTDOA values; in fact, in some cases, it
tends to have some performance losses with respect to both
the TSE and CLS techniques. Moreover, analyzing the curves
of subplots (b), the evidence is that when the ICLS is applied
to a PCL system only, it has poor performances, with RMSE
values close to those shown by the LS algorithm.

VI. CONCLUSIONS

A non-cooperative target position estimation technique
jointly exploiting hyperbolic and elliptic passive location mea-
surements has been proposed. Specifically, considering a pas-
sive sensor network where each node is equipped with a TDOA
and a PCL receiver within a scenario with single transmitter of
opportunity, the mathematical model for the joint exploitation
of TDOA and PCL observations has been formulated. Then,
CRLBs for TDOA, PCL and hybrid TDOA/PCL localization
have been given together with some estimation algorithms for
the cartesian coordinates of the target. At the analysis stage,
results have shown the performance gains achievable using the
proposed hybrid localization framework over classic TDOA or
PCL systems.

Possible future researches might concern the study of the im-
pact of a non-ideal detection process (Pd < 1 and Pfa > 0) as
well as the development of appropriate techniques to overcome
this drawback, the definition of advanced association strategies,
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Figure 4. CRLB maps for PCL (a) and hybrid TDOA/PCL (b) systems
considering σTDOA = 3 m and σPCL = 30 m.

and the design of algorithms for sensors deployment optimiza-
tion. It is also worth to consider TDOA and PCL receivers not
necessarily co-located as well as the design of robust strategies
accounting for some uncertainty in the position of the receiving
sensor nodes. Moreover, the effect of jamming on localization
performance could be also studied [34]. Finally, it would be
definitely interesting to assess the performance of the hybrid
localization algorithms in the presence of real measured data.
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Figure 5. RMSE vs σTDOA assuming σPCL = 5 m. Subplot (a) refers to the
hybrid system, whereas subplot (b) to the PCL.

APPENDIX

A. Proof of Proposition 3.1

Before proceeding with the proof of the proposition, some
relevant and useful results available in the open literature are
now reported [33].

Let us consider a random vector x in R
L, whose prob-

ability density function (pdf) belongs to a family of func-
tions parametrized by vector a u ∈ R

M . Precisely, at each
u ∈ A ⊆ R

M , with A the source state space, it is associated
a continuous pdf f(x;u).

Definition A.1: A parameter point u0 ∈ A is said to be
locally identifiable if there exists an open neighborhood Iu0

of u0 containing no other u in Iu0∩A which is observationally
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Figure 6. RMSE vs σTDOA assuming σPCL = 25 m. Subplot (a) refers to
the hybrid system, whereas subplot (b) to the PCL.

equivalent4 to u0 [33].

The following lemma summarizes the main technical result
concerning the local identifiability issue related to an estima-
tion problem [33], [35].

Lemma A.2: Let u0 be a regular point5 of the FIM J(u).
Then, u0 is locally identifiable if and only if J(u0) is non
singular [33, Theorem 1].

From Lemma A.2, being the FIM in (37) a continuous
function in R

2 apart from the closed set {t, s1, . . . , sN}, it

4Two parameter points (structures) u1 and u
2 are said to be observationally

equivalent if f(x,u1) = f(x,u2) for all x in R
L [33].

5Let M(u) be a matrix whose elements are continuous functions of u

everywhere in A (open set in R
M ). The point u0

∈ A is said to be a regular
point of the matrix if there exists an open neighborhood of u0 in which M(u)
has constant rank [33].

can be claimed that a sufficient condition to ensure the local
identifiability of the considered localization problem is that the
FIM in (37) is invertible, i.e.,

det (J) = det

(
GT

HYB

[
Q−1

TDOA 0

0 Q−1
PCL

]
GHYB

)
> 0. (65)

Therefore, the local identifiability of the localization problem
can be studied by means of the rank of the matrix

Rank
(
P TP

)
= Rank (P ) = Rank

(
Q−1/2GHYB

)

= Rank (GHYB) ,
(66)

where

P =

[
Q

−1/2
TDOA 0

0 Q
−1/2
PCL

]
GHYB.

From (42) and (66), it follows that (for any point where
the FIM is well-defined) if at least one between GPCL and
GTDOA is rank-2 then GHYB is full-rank too and local iden-
tifiability holds true. In the following, to avoid redundancies,
the identifibility study is conducted with reference to the PCL
system, whereas the final result is directly given for the TDOA
counterpart without any explicit proof.

To proceed further, let us observe that the identifiability issue
of a PCL system with N sensors, corresponding to a matrix
GPCL of size N × 2 matrix, can be carried out analyzing
all the sensing configurations composed of a transmitter of
opportunity and all the possible different pairs of sensors. To
this end, note that if for a specific point in R

2 it can be ensured
the existence of a PCL system with 2 sensors for which the
resulting matrix GPCL is rank-2, then the problem is locally
identifiable in that specific point. Indeed, the above condition
guarantees that there exists a neighborhood of that point such
that the overall system of equations associated with the PCL-
based localization problem at hand admits a unique solution.

1) Rank of GPCL for a configuration with 2 sensors: the
considered configuration comprises a transmitter of opportu-
nity, t, and two sensors, s1 and s2, with {t, s1, s2} non-
collinear. Moreover, without loss of generality, let us assume
that s1 = [0, 0]T , i.e., s1 is located at the center of the
reference system.

Based om previous considerations, the goal is to study the
rank of the matrix

GPCL =

[
u

‖u‖
−

t− u

‖t− u‖
,

u− s2

‖u− s2‖
−

t− u

‖t− u‖

]
(67)

for all the target positions different from s1, s2 and t. To this
end, two distinct conditions (associated to the target location)
are considered and analyzed in the following: the former
assumes that u is such that u

‖u‖ and u−s2

‖u−s2‖
are linearly

dependent (Case A); the latter comprises the location points
for which u

‖u‖ and u−s2

‖u−s2‖
are linearly independent (Case B).

• Case A: If u
‖u‖ and u−s2

‖u−s2‖
are linearly dependent, then

u

‖u‖
= λ

u− s2

‖u− s2‖
, (68)

with λ = ±1, since they are unitary norm vectors.



SUBMITTED TO IEEE TRANS. ON AEROSPACE AND ELECTRONIC SYSTEMS 10

In this situation, the following two sub-cases can be
distinguished:

[A.1]: for λ = 1, it immediately follows that
Rank (GPCL) = 1; such condition corresponds to
the point of R2

u =
1

1− ‖u−s2‖
‖u‖

s2 ⇒ u = αs2, (69)

with α < 0 or α > 1.
[A.2]: for λ = −1, the matrix GPCL reduces to

GPCL =

[
u

‖u‖
−

t− u

‖t− u‖
, −

u

‖u‖
−

t− u

‖t− u‖

]
.

Now, note that the target locations u fulfilling (68)
with λ = −1 describe the line segment connecting
s1 and s2. Being, by assumption, s1, s2, and t
not-aligned, then t−u and u are not-aligned and
in this case GPCL has rank-2.

• Case B: If u
‖u‖ and u−s2

‖u−s2‖
are linearly independent,

then applying Lemma A.4 with a = u
‖u‖ and b =

u−s2

‖u−s2‖
, the matrix G has rank 1 if and only if t−u

‖t−u‖

belongs to the straight line passing through u
‖u‖ and

u−s2

‖u−s2‖
. This is possible if and only if:

[B.1]: the point (t − u)/‖t − u‖ is equal to the first
extreme u/‖u‖. As a consequence

u =

‖u‖

‖t−u‖

1 + ‖u‖

‖t−u‖

t ⇒ u = αt, (70)

with 0 < α < 1.
[B.2]: the point (t− u)/‖t− u‖ is equal to the second

extreme (u− s2)/‖u− s2‖. As a consequence

u =
1

1 + ‖t−u‖
‖u−s2‖

t+

‖t−u‖
‖u−s2‖

1 + ‖t−u‖
‖u−s2‖

s2

⇒ u = αt + βs2,

(71)

with 0 < α < 1 and α+ β = 1.

Summarizing, in Figure 7, the points in the 2D space
where the PCL system is non identifiable are shown for a
configuration with 2 sensors and a transmitter of opportunity.

Remark A.3: Let us now focus on a PCL system with a
transmitter of opportunity and 3 receiving sensors assuming
that a third sensor s3 is added to the sensing configuration
of Figure 7; in particular, the points t, s1, s2, s3 are supposed
triple by triple not-aligned. Now, if s3 is placed outside the
triangle defined by the points {t, s1, s2} and s3 belongs to
the half plane induced by the straight line passing through
s1 and s2 and containing t, then it is always possible to
find a configuration made by the transmitter and 2 appropriate
sensors such that the problem is locally identifiable also along
the (previously non-identifiable) line segments departing from
the remaining sensor (but for the point t). As a result, the only
point for a PCL system with a transmitter of opportunity and 3

Figure 7. Geometric representation of the region of locally identifiable states
for the PCL system in the 2D space and a configuration with a transmitter of
opportunity and 2 receiving sensors (not-aligned).

receiving sensors deployed in such a way where identifiability
can not be claimed is just the transmitter location.

Concluding, it can be claimed that sufficient condition to
ensure the local identifiability for the PCL system, except for
the transmitter location, is to deploy three sensors according
to the configuration depicted in Remark A.3.

2) Rank of GTDOA for a configuration with 3 sensors:
the feasibility study for the TDOA system is similar to that
described for the PCL. Precisely, 3 not-aligned sensors ensure
the identifiability of the location problem for all the points
except for those on the straight lines passing through each
pair of sensors and external to the segments connecting them,
i.e. (assuming s1 = [0, 0]T ),

[C.1]: u = s2 + α(s3 − s2), with α < 0 or α > 1.
[C.2]: u = αs2, with α < 0 or α > 1.
[C.3]: u = αs3, with α < 0 or α > 1.

In Figure 8, the points where TDOA is non identifiable in
a 2D space for a configuration with 3 not-aligned sensors is
pictorially represented. Hence, a sufficient condition for the
local identifiability of a PCL system is to place a fourth sensor
inside the triangle defined by {s1, s2, s3}.

3) Rank of G for a hybrid system: to evaluate the rank
of GHYB for the general hybrid system, the results obtained
for isolated PCL and TDOA can be invoked. Precisely, from
Remark A.3 it follows that the PCL with one transmitter and 3
sensors triple by triple not-aligned and deployed according to
the strategy given in Remark A.3 ensures the local identifia-
bility in R

2 except for the transmitter location; however, the 3
not-aligned receiving TDOA sensor configuration ensures the
identifiability at the PCL-transmitter location and the proof of
the proposition is completed.

B. Lemma on Linear Dependence of Vectors

Lemma A.4: Let a and b two linearly independent vectors
∈ R

2. Then, (a− c) and (b− c) are linearly dependent if and
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Figure 8. Geometric representation of the region of locally identifiable states
for the TDOA system in a 2D space and a configuration with 3 not-aligned
sensors.

only if c is a point on the straight line passing through a and
b.

Proof: The vectors (a − c) and (b − c) are linearly
dependent if and only if ∃ (α1, α2) 6= (0, 0) such that the
linear combination α1(a − c) + α2(b − c) = 0. The latter
condition is equivalent to

c = a
α1

α1 + α2
+ b

(
1−

α1

α1 + α2

)
= b+ β (a− b) . (72)
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