Letter to the editor

Levosimendan's ability on veno-arterial extracorporeal membrane oxygenation weaning: Evidence says yes!

The International Journal of Artificial Organs I-2 © The Author(s) 2023 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/03913988221145502 journals.sagepub.com/home/jao

Alberto Marabotti^{1,2}, Pietro Bertini³, Gianluca Paternoster⁴, Giovanni Landoni^{5,6} and Fabio Guarracino³

Date received: I November 2022; accepted: 29 November 2022

Dear Editor,

We read with great interest the work "Levosimendan's effect on veno-arterial extracorporeal membrane oxygenation weaning"¹ by Hau et al., recently published in IJAO. They demonstrated an absent improvement in veno-arterial (VA) ECMO weaning and a longer ECMO duration in the group of patients treated with levosimendan. This data is countercurrent compared to our recently published meta-analysis: we analyzed 10 observational retrospective studies, including 987 patients. We demonstrated more successful weaning from VA-ECMO in the levosimendan group,² data in line with the previous meta-analysis.^{3,4} We also performed again a random effect meta-analysis add-ing Hau et al.'s data and including information from another recent study by Chen et al.,⁵ and our results were not significantly altered (Figures 1 and 2).

We agreed with the explanation Hau et al. gave: levosimendan was more easily administered in patients with a severely impaired left ventricular function, delaying the start

Figure 1. Mortality in VA ECMO patients treated with Levosimendan versus controls: levosimendan administration was associated with a reduced risk of mortality in overall ECMO recipients (191/517 [36.9%] in the levosimendan group versus 307/588 [54.8%] in the control group, RD = -0.14; 95% CI [-0.23 to -0.05].

⁵Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy

⁶Vita-Salute San Raffaele University, Milan, Italy

Corresponding author:

Pietro Bertini, Cardiothoracic and Vascular Anesthesia and Intensive Care, Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero Universitaria Pisana – Via Roma 67, Pisa 56124, Italy. Email: pietro.bertini@gmail.com

Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy

²Intensive Care Unit and Regional ECMO Referral Centre, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy

³Cardiothoracic and Vascular Anaesthesia and Intensive care,

Department of Anaesthesia and Critical Care Medicine, Pisa, Italy ⁴Division of Cardiac Resuscitation, Cardiovascular Anesthesia and Intensive Care, San Carlo Hospital, Potenza, Italy

Study, year	No of events / total		Risk difference	Weight	Risk difference
	Levosimendan	Control	random (95% CI)	(%)	random (95% CI)
Affronti, 2013	5/6	3/11		- 4.9	0.56 (0.16 to 0.96)
Distelmaier, 2016	149 / 179	41/61	 ♠ <u> </u>	9.5	0.16 (0.03 to 0.29)
Zipfel, 2018	24 / 37	16 / 49		8.2	0.32 (0.12 to 0.52)
Sangalli, 2016	9 / 10	0 / 10		7.5	0.82 (0.58 to 1.06)
Haffner, 2018	21/27	29 / 36		8.1	-0.03 (-0.23 to 0.18)
Jacky, 2018	24 / 26	30 / 38		8.9	0.13 (-0.03 to 0.30)
Vally, 2019	32 / 38	41/65		8.9	0.21 (0.05 to 0.38)
Guilherme, 2020	34 / 48	50 / 78		8.8	0.07 (-0.10 to 0.23)
Pan, 2020	50 / 54	74 / 91		9.8	0.11 (0.01 to 0.22)
Alonso-Fernandez-Gatta, 2020	14 / 23	44 / 100		7.8	0.17 (-0.05 to 0.39)
Hau, 2022	24 / 38	43 / 81		8.4	0.10 (-0.09 to 0.29)
Chen, 2022	38 / 46	55 / 113		9.2	0.34 (0.20 to 0.48)
Total (95% CI)	424 / 532	426 / 733		100.0	0.23 (0.11 to 0.35)
Test for heterogeneity: $\tau^2 = 0.03$:	χ^2 =46.20, df=11, P =	0.00: I ² =82%			
Test for overall effect: Z=3.75, p	č0.001		Favors Control Favors Levosimendan	1	
			1 -0.5 0 0.5	1	

Figure 2. Weaning success in VA ECMO patients treated with Levosimendan versus controls: levosimendan administration was associated with a higher weaning success in overall ECMO recipients (424/532 [79.7%] in the levosimendan group versus 426/733 [58.1%] in the control group, RD=0.23; 95% CI [0.11 to 0.35].

of the weaning from ECMO, which was not taken into consideration until reaching at least 20% of left ventricular ejection fraction. We believe that their explanation is extendible to other observational studies.^{6,7} In observational studies, levosimendan is used in patients with poorer left ventricular function, not in a standardized way. This evidence may explain the longer ECMO duration in the levosimendan group. Even in our meta-analysis, including only observational studies, we demonstrated a non-significantly increased ECMO duration in the levosimendan group. Putting this data altogether, we may speculate that observational studies may underpower levosimendan efficacy in ECMO weaning. Observational studies with small samples may therefore lose statistical significance, which becomes apparent when increasing the number of patients is considered, as in metaanalysis. Thus, Hau et al. may not achieve an advantage in weaning from ECMO due to a small study sample, even though they demonstrated a 10% higher ECMO weaning success rate in the levosimendan group. In light of this, the two ongoing randomized trials, LEVOECMO (NCT04728 932) and Weanlevo (NCT04158674), will be able to provide more certain answers. We expect that in randomized trials, the advantageous effect on weaning will be even more pronounced, confirming levosimendan's beneficial effects in VA ECMO patients.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Pietro Bertini D https://orcid.org/0000-0002-3878-044X Giovanni Landoni D https://orcid.org/0000-0002-8594-5980

References

- Hau M, Fong K-M and Au S-Y. Levosimendan's effect on venoarterial extracorporeal membrane oxygenation weaning. *Int J Artif Organs* 2022; 45: 571–579.
- Bertini P, Paternoster G, Landoni G, et al. Beneficial effects of levosimendan to wean patients from VA-ECMO: a systematic review and meta-analysis. *Minerva Cardiol Angiol*. Epub ahead of print 10 June 2022. DOI: 10.23736/s2724-5683.22.06054-9
- Yang B, Zhao T, Guo B, et al. Short-term effects of levosimendan use for venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. *Perfusion*. Epub ahead of print 23 October 2021. DOI: 10.1177/02676591211051860
- Kaddoura R, Omar AS, Ibrahim MIM, et al. The effectiveness of levosimendan on veno-arterial extracorporeal membrane oxygenation management and outcome: A systematic review and meta-analysis. *J Cardiothorac Vasc Anesth* 2021; 35: 2483–2495.
- Chen Y-W, Lee W-C, Wu P-J, et al. Early levosimendan administration improved weaning success rate in extracorporeal membrane oxygenation in patients with Cardiogenic Shock. *Front Cardiovasc Med* 2022; 9: 912321.
- Alonso-Fernandez-Gatta M, Merchan-Gomez S, Gonzalez-Cebrian M, et al. Levosimendan in veno-arterial extracorporeal membrane oxygenator supported patients: impact on the success of weaning and survival. *Artif Organs* 2021; 45: 717–725.
- Guilherme E, Jacquet-Lagrèze M, Pozzi M, et al. Correction to: can levosimendan reduce ECMO weaning failure in cardiogenic shock?: a cohort study with propensity score analysis. *Crit Care* 2020; 24(1): 487.