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ABSTRACT Biometric recognition systems based on 3D palmprint captured with optical technology have
been widely investigated in the last decade; however, they can provide information about the external skin
surface only. This limit can be overcome by Ultrasound, which allows gaining information on the depth
of palm lines and can verify the liveness of the sample, making the recognition systems very hard to
fake. In this work, a feasible palmprint recognition system based on 3D ultrasound images is proposed.
Unlike previous wet setups, the coupling between probe and human is realized through a gel pad, which
permits a comfortable and precise positioning of the hand by the user. Collected 3D images are processed
to generate 2D palmprint images at various under-skin depths. 2D features are then extracted from these
images, experimenting with different procedures, and are merged to define a 3D template that contains lines’
depth information. Recognition performances were evaluated by performing verification and identification
experiments on a home-made database composed of 423 samples from 55 volunteers. An EER rate of 0.36%
and an identification accuracy of 100% are obtained. The suitability of the proposed system in secure access
control applications is finally discussed.

INDEX TERMS Biometric, image processing, palmprint, ultrasound imaging.

I. INTRODUCTION
The increasing demand for biometric authentication systems
has pushed scientific research to investigate and experiment
with both new technologies to collect biometric characteris-
tics and new techniques to extract features and to evaluate
recognition accuracy.

Among the various biometric characteristics, palmprint is
receiving a lot of attention by researchers due to its rich
texture, which can be exploited both in law and foren-
sic applications by capturing high-resolution images [1]–[4]
and in a wide variety of access control systems by using
low-resolution images [5]–[7]. For a long time, palmprint
recognition was only based on features extracted from 2D
optical images, which allow having quick and accurate sys-
tems [8], but can be easily forged [9]. In the last decade,
however, a new modality for achieving 3D palmprint images,
based on structured light imaging [9], [10], was set up and
a wide research activity was dedicated to develop methods
for extracting 3D features [11]–[16]. A possible limitation
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of these approaches could be because 3-D optical images
provide information on the external skin surface only.

Palmprint has often been combined with other biomet-
rics like palm vein pattern in multimodal systems [17]–[19],
realizing a biometric fusion between the characteristics. This
modality is frequently used because it offers several advan-
tages, including an increase in recognition performances of
the system.

Biometric recognition systems mainly collect images
by using optical or infrared technology. Nevertheless,
other approaches like Photoacoustics [20], [21] and Ultra-
sound [22] have been explored in recent years. The intrinsic
capability of providing 3D information of the human body by
Ultrasound can be profitably exploited in biometric systems
for extracting richer features, increasing in this way recog-
nition performances and allowing to extract features even
if the skin is wet or abraded. Also, ultrasound images can
automatically verify the liveness of a sample, for example
by checking veins pulsing, which makes the systems hard to
counterfeit. Wide research activity was dedicated to exper-
imenting systems based on ultrasonic fingerprint, which is
one of the most popular characteristics. Several kinds of such
devices were proposed; in most cases fingerprint image was
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FIGURE 1. Set up for collecting 3D images: (a) the hand is positioned on a plastic plate where there is an open window filled with a gel pad and is
aligned through some pegs, (b) the probe scan the palm from the upper side of the gel; (c) a collected b-mode image: liveness can be automatically
detected by checking for vein pulsing.

obtained in pulse-echo modality with piezocomposite [23],
cMUT [24]–[26] and pMUT [27]–[29] technologies. This last
approach leads to a fingerprint scanner that was compatible
with integration in smartphone devices [30], [31].

Palmprint is another biometric characteristic that can
exploit ultrasound peculiarities. Palm area is much wider
than fingerprint area and, therefore, a mechanical scan is
needed, which make the system bulkier; on the other hand,
features like principal lines and main secondary traits can be
extracted from low-resolution images and hence with lower
frequency probes, making the technological problem less
challenging. The authors’ research group experimented with
some possible set up for collecting 3D ultrasound images of
palmprint [32], [33]. 3D features were consequently extracted
with methods based on palm curvature analysis [34], fol-
lowing a similar approach as the one used with optical
images [9]. To fully exploit 3D information present in the
ultrasound image, another feature extraction method, based
on the analysis of principal lines under-skin depth, was
proposed and experimentally evaluated [35], demonstrating
excellent recognition results. In these works, image acqui-
sition was carried out by submerging in a water tank both
probe and human hand, for water guarantees a very good
acoustic coupling. However, such wet acquisition modality
could be hardly used in applications because user acceptance
is expected to be very low due to the necessity to immerse the
hand in a tank of water. Another drawback is the uncomfort-
able position of the hand when it is immersed, which led to
many bad samples because the user had difficulty holding the
correct position during the acquisition.

To overcome these problems, a new feasible setup is
assembled providing that the user may comfortably place the
hand on a base and a commercial gel pad, usually used in
pediatric diagnostic applications, plays as coupling medium.
First experiments [36] demonstrated that the features extrac-
tion procedure used in the wet system didn’t work adequately
with the new images. Consequently, other procedures for 2D
features extraction [37]–[39] and a first attempt to generate a
3D template [40] were experimented and preliminary tested
on small databases.

In this work, a complete 3D Ultrasound Palmprint recogni-
tion system is proposed and experimentally evaluated through

a much more consistent home-made database. Recognition
performances achievedwith four different 2D features extrac-
tion methods are compared and the one that provided more
accurate results is selected for 3D analyses. A 3D template
is then generated by opportunely combining 2D templates
excerpted at several depths inside the skin. Verification and
identification experiments are finally carried out to verify the
recognition capabilities of the system.

From now on, section II illustrates the set up used for
collecting 3D images; section III presents feature extraction
procedures for generating 2D and 3D templates; section IV
reports verification and identification experiments carried out
to evaluate the systems, and section V contains the conclusion
and a discussion on the potentiality of the proposed system.

II. 3D IMAGE ACQUISITION
3D ultrasound imaging is intensively used in a large number
of medical diagnostic applications [41]–[44] because of its
capability to provide an accurate description of human organs
with no ionizing radiations and lower cost than computer
tomography andmagnetic resonance. In this work, 3D images
of a portion of the human hand were collected by using a
high frequency commercial linear array (LA435 by Esaote
S.p.A., Italy), which is moved by a numerical pantograph
to scan the region of interest [39]. This approach guaran-
tees a higher resolution and a larger field of view if com-
pared to a 3D ultrasound probe [45]. The array, which has
a central frequency of 12 MHz and an aperture of almost
40mm, is controlled by the ULA-OP ultrasound scanner [46].
A 20 mm thick gel pad was employed as coupling medium;
this material ensures an acoustic coupling slightly worse than
water [35], yet this solution allows to obtain a comfortable
and precise positioning of the hand and, not less important,
is expected to be much more acceptable by users. Figure 1
shows some frames of a movie that describes the set up and
an example of image capturing (see also attached video).
During the acquisition, the liveness of the sample can be
automatically detected by verifying the pulsing of veins. It is
to highlight that the whole acquisition system, including the
electronics, could be easily contained in a compact box, even
smaller than the one used for experiments, by substituting the
bulky pantograph with a simple stepper motor.
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FIGURE 2. Example of 3D rendering of a palmprint ultrasound image.

During the motion over the region of interest, which is
50 mm long, 250 B-mode images like the one shown in Fig-
ure 1c are collected and stored. The resulting volumetric
image is cropped to eliminate border values reducing the
useful volume to 25 × 38×11 mm3. After an interpolation,
carried out to obtain a pixel spacing of 46.2 µm along
the three directions, the volume remains represented by a
542 × 814×238 matrix of voxels, where voxel’s bright-
ness has a grayscale dynamic of 8-bit. Figure 2 shows a
3D image of the palm obtained with a global thresholding
operation [47], [48], which eliminates black voxels corre-
sponding to the gel cushion. This volume contains at least
two kinds of 3D information that can be used for recognition
purposes: the 3D profile of palm curvature [34], which may
be also extracted from optical images collected with struc-
tured light scanners [9], [12]; and the depth of principal lines
and main traits, which is contained in under-skin layers [35]
and, therefore, cannot be achieved with optical images.

A recognition procedure based on this last modality is
implemented by excerpting several 2D images at various
depths from the volume shown in Figure 2. The first 2D
fingerprint image is obtained by projecting the 3D profile
P1(x, y, z) of the external surface of the palm on the xy plane.
Then, a 3D profile P2(x, y, z), parallel to P1(x, y, z) but trans-
lated of 46.2µm, i.e. one pixel, along z inside the skin, is pro-
jected on the xy plane to achieve the second 2D palmprint
image. Similarly, other 2D images are extracted at increasing
under-skin depths until information on lines and traits is no
more distinguishable. Figure 3 shows the 7 shallowest 2D
images extracted with the above-reported procedure. We can
observe that, as the depth increase, some traits become less
evident while some others remain recognizable. It can also be
seen that the seventh image is much darker than the previous
ones. Deeper images are increasingly darker and, therefore,
they are not used for features extraction.

III. FEATURE EXTRACTION
To achieve a template that contains information of principal
lines’ depth, four procedures for extracting a feature from 2D
images are evaluated. Then, the best of them is applied to all
images shown in Fig. 3 to obtained n 2D templates, which are
opportunely combined to generate a 3D template.

A. 2D FEATURE EXTRACTION
Awide variety ofmethods to extract features from a 2D image
of palmprint can be found in the literature [49], [50]. In [35],
a classical line detection procedure was used for ultrasound
images collected by using water as coupling medium, obtain-
ing good results. However, as shown in [36], that procedure
provided unsatisfactory results with images acquired by using
gel as coupling medium.

To improve the accuracy of 2D features, several procedures
were experimented with and compared in this work. All these
methods perform, at a certain stage and in different ways,
a filtering operation aimed to reduce speckle noise, generated
by the interference between transmitting and receivingwaves,
which inherently affects ultrasound images [51]. Speckle
noise is a multiplicative noise with a granular pattern that
deteriorates both resolution and contrast of the image; it
depends on several parameters, including the kind of probe,
its distance from the target and the operating frequency.
One of the most popular approaches to reduce speckle noise
is based on the use of spatial domain methods [52]–[55].
In the present work, two of these techniques are evaluated:
Frost [56], [57], which is, basically, an adaptive filter that
uses exponentially weighting factors depending on the vari-
ance; and Speckle Reducing Anisotropic Diffusion (SRAD)
[58], [59], which is a non-linear filter able to reduce multi-
plicative noise.

Main operations of the first procedure [37], called here
‘‘Method A’’, are summarized below:

• Frost filter;
• Normalization;
• Bottom-hat;
• Morphological operations;
• Resize.

After the Frost filter stage, a normalization of gray levels
was performed, to minimize differences between max and
min values of the input image; then, a bottom-hat transforma-
tion [60], [61] highlights the palmprint lines that have to be
detected. The image is then binarized by choosing a suitable
threshold and some classical morphological operations (clos-
ing, thinning and pruning) are performed. Finally, the image
is resized to a dimension of 107 × 160 pixels, to speed up
subsequent matching operations.

‘‘Method B’’, instead, experiments a SRAD filter to reduce
speckle noise and a Derivative of Gaussian (DoG) filter [62],
[63], which is a bandpass filter able to eliminate spatial
frequencies that are too far from the center of the band; in
this way, edges are expected to be enhanced. In this method,
the resize operation is performed at the beginning to dimin-
ish also the processing time needed to obtain the template.
Also, in this case, binarization is performed by using a fixed
threshold. Similar morphological operations as the previous
method were finally carried out. The main steps of ‘‘Method
B’’ are resumed as follow:

• Resize;
• SRAD filter;
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FIGURE 3. 2D palmprints extracted at increasing under skin depths with step 46.2 µm: (a) is the superficial one and (g) corresponds to a depth of
about 323 µm.

• DoG filter;
• Morphological operations.
‘‘Method C’’ [40] uses SRAD filter and bottom-hat; this

last transformation is performed along four directions and
the resulting images are summed through an OR operation.
After a contrast adjustment, the image is binarized with an
adaptive threshold, determined by the analysis of the his-
togram reporting the number of pixels for each level gray.
Other morphological operations were performed before the
final resize. Here below the sequence of operations:
• SRAD filter;
• Bottom hat along four directions: 0◦, 45◦, 90◦, 135◦;
• Logical sum;
• Contrast adjustment;
• Morphological operations;
• Resize.
The last procedure, indicate here as ‘‘Method D’’, was

described in detail in [39]. It was based on an approach
proposed in [64] and consists of a higher number of steps
than the previous ones with the aim to achieve more accurate
results:
• Contrast adjustment;
• Resize;
• Frost filter;
• Contrast adjustment;
• Normalization;
• Median filter, only along 0◦;
• Mean filters along four directions: 0◦, 45◦, 90◦, 135◦;
• Bottom hat along four directions: 0◦, 45◦, 90◦, 135◦;
• Logical sum;
• Morphological operations.

In this case, after a first contrast adjustment, the image is
scaled down and deformed to a square matrix of 128 ×
128 pixels to perform in a more effective way filter and
transformation along diagonal directions. The image obtained
is filtered using Frost filter and then another contrast adjust-
ment is performed. The next operations are the normalization
and the clonation to obtain four copies of the image to be
processed along four different directions (0◦, 45◦, 90◦, 135◦).
A median filter is applied only to image along direction
0◦,in order to reduce salt and pepper noise, and then mean
filters and bottom-hat operations are applied along the four
directions. Obtained images are summed through logical OR.

FIGURE 4. Templates obtained with the various procedures from the 2D
image of Figure 3a: (a) ‘‘Method A’’, (b) ‘‘Method B’’, (c) ‘‘Method C ’’,
(d) ‘‘Method D’’.

Finally, binarization with a fixed threshold and morphologi-
cal operations are performed.

Figure 4 shows the templates generated with each of the
four methods from the image of Figure 3a.

Each of these procedures was evaluated with preliminary
tests carried out on a small number of samples. In this work,
they are compared by using the same database, which con-
tains a much greater number of samples than those previously
employed.

B. 3D TEMPLATE GENERATION
The procedure used to generate a 3D template able to account
for palmprint lines’ depth receives as input the 2D templates
extracted from the 2D palmprint images of Figure 3 with one
of the procedures described in the previous section. Figure 5
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FIGURE 5. The 7 templates extracted with ‘‘Method D’’ from the corresponding 2D images of Figure 3.

shows the results obtained by using ‘‘Method D’’. As can be
seen, by increasing the under skin depth, the template con-
tains less and less information on principal lines and, more-
over, an increasing number of secondary traits, not present in
the first template, appears.

To generate the 3D template, it is assumed that the 2D
template extracted from the shallowest image (Figure 5a)
contains the maximum information and therefore only the
traits present in this template are those on which the depth
is evaluated. As a consequence, white pixels of deeper tem-
plates, in different positions than those of the first template,
have to be eliminated.

The 3D template is then defined as a 3D matrix A(i, j, k),
where the i × j dimension is the same as that of the 2D
template and the k dimension is n, i.e., the number of 2D
templates: in this work n=7. A(i, j, 1) is obtained by perform-
ing a DILATE operation on the shallowest template. Then,
A(i, j, k) is achieved by performing a logical AND operation
between corresponding pixels of A(i, j, k − 1) and the k
shallowest template; the result is dilated and stored.

The AND operation ensures that the A(i, j, k) will not
present new traits concerning A(i, j, k − 1); therefore, it may
be considered as a filter for spurious traits that may appear in
deeper images.

The DILATE operation is introduced to consider that the
depth of a palmprint line may be not perpendicular to the x−y
plane and, therefore, the same trait in a template extracted
at a given depth may be slightly translated concerning the
shallower template or to the deeper one. The dimension β of
the structured element used for the dilation is a parameter that
has to be optimized because if it is too large, spurious traits
could be included, while if it is too small, traits belonging to a
principal line but not exactly perpendicular to the x− y plane
could be eliminated.

Figure 6a shows a representation in the colour scale of
the 3D template generated by setting the dimension of the
DILATE operator to 4; this value was determined in a heuris-
tic way. The 2D image corresponding to the shallowest 2D
Palmprint (Figure 3a) after the resize operation is reported
in Figure 6b for comparison. Each pixel value ranges from 0
(blue), when a trait is never detected in any 2D template,
to 6 (red), when it is detected in all the 2D templates. Fur-
ther examples of 3D templates with the corresponding 2D
grayscale images are reported in Figure 7: same user as
Figure 6 but collected at a different time in Figure 7a, other
users in Figures 7b and 7c.

FIGURE 6. (a) 3D template obtained from 2D templates of Figure 5;
(b) the shallower 2D image (see Figure 3a) after resizing.

FIGURE 7. Three more examples of 2D images with the corresponding
templates: (a) is captured from the same user as Figure 6 but at a
different time; (b) and (c) belong to two different users.

IV. RECOGNITION RESULTS
An evaluation of the recognition capability of the proposed
system is carried out by performing both verification and
identification experiments on a home-made database com-
posed of 423 samples collected from 55 different adult indi-
viduals of both sexes with the experimental setup described
in Figure 1.

A. VERIFICATION EXPERIMENTS
Verification is a recognition modality that has the aim to
authenticate a person based on the claimed identity. A verifi-
cation system is therefore a one to one system that performs
a match between a query template, extracted from a sample
released by a user, with the stored reference template, which
was been previously generated from another sample of the
declared individual.

In this work, for both 2D and 3D cases, verification exper-
iments were executed by comparing each template with all
the others in the database. This approach allows having a
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higher number of scores than the classical reference-query
one, proving more reliable results.

1) COMPARISON AMONG 2D METHODS
The method adopted to calculate the matching score between
two 2D templates is based on a classic pixel-to-area com-
parison [9], [49], which basically performs a logical AND
operation between corresponding pixels of the two images
and then normalizes the result to the arithmetic mean of the
total number of white pixels present in the comparing images:

S2D(R,Q) =
2

MR +MQ

n∑
i=1

n∑
j=1

R(i, j)⊕ Q(i, j) (1)

where R and Q are the reference and query binary images,
respectively, MR and MQ are the sum of white pixels in R
and Q, respectively, and n× n is template dimension.
A possible incorrect alignment of the hand was taken into

account by performing the match several times while trans-
lating and rotating the query template of a small quantity. The
highest score is the one used in statistic analysis [9].

If the two matched templates belong to the same user,
the score is registered as a genuinematchwhile, if they belong
to different users, the score is registered as an impostor match.
The user is authenticated if the matching score exceeds a
predefined threshold, which depends on the application. If an
impostor score results higher than the threshold, a False
Acceptance error is committed; on the other hand, if a genuine
score is lower than the threshold, a False Rejection error
occurs. For each value of the threshold, False Acceptance
Rate (FAR) and False Rejection Rate (FRR) can be com-
puted as the ratio of the number of false acceptance and
rejection and the total scores, respectively. It is intuitive than
by increasing the threshold from 0 to 1, FAR grows from
0 to 100% while FRR decreases from 100% to 0. There is
a threshold value for which FAR=FRR: the corresponding
error rate is called Equal Error Rate (EER). This parameter is
often used for evaluating and comparing different biometric
recognition systems.

Recognition performances of biometric systems are usu-
ally compared through Detection Error Tradeoff (DET)
curves, which plot FAR vs FRR. Figure 8 shows DET curves
for the four 2D features extraction procedures described in
section III. The closer the curve to the axes, the better the
recognition performances of the system. As can be seen
‘‘Method D’’ is clearly the best. In this plot, the EER value
of each procedure can be obtained by calculating the inter-
section of the curves with the first bisector. The numerical
values of the EER have reported in Table 1 together with two
other parameters that allow comparing the various methods in
term of computational cost: Feature Extraction Time (FET)
and Matching Time (MT). As can be seen, ‘‘Method D’’ is
the second fastest after ‘‘Method B’’, which however exhibits
a much higher EER. The hardware used for simulations is an
Intel(R) Core(TM) i9-9900 processor@3.10GHzwith 32GB
RAM.

TABLE 1. EER values, features extraction time (FEA) and matching
time (MT) for the four 2D methods.

FIGURE 8. DET curves for the four 2D features extraction methods. The
EER is given by the intersection of the curves with the first bisector
(FAR=FRR).

FIGURE 9. DET curves obtained with the 3D method for various values
of α; the best result obtained with the 2D method is reported for
comparison.

2) 3D METHOD
As ‘‘Method D’’ clearly provided the best 2D recognition
results, verification experiments were carried out by using
only 3D templates generated with this method. The matching
formula (1) for 3D comparisons has been modified as follow:

S3D(R,Q) =
2

MR +MQ

n∑
i=1

n∑
j=1

R(i, j, 1)⊕ Q(i, j, 1)

⊕ |OR(i, j)− OQ(i, j)| < α (2)
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FIGURE 10. Impostor and genuine distributions obtained with the 3D method for α ranging from 6 (a) down to 2 (e) and
with the 2D method (f).

where R(i, j, 1) and Q(i, j, 1) are the 3D reference and query
templates, respectively, at level 1, α is an integer with values
ranging from 0 to the number of levels N in the 3D template
and OR(i, j) and OQ(i, j) are the occurrences of value ‘‘1’’ in
R(i, j, k) andQ(i, j, k). The condition |OR(i, j)−OQ(i, j)| < α

guarantees that the result of the comparison for each pixel
is ‘‘1’’ only if the difference of occurrences between R and
Q is lower than α. The lower α the higher the similarity
requested for the two comparing templates. Similar to the 2D
cases, various comparisons were made by performing small

rotations and translations of the query template to account for
incorrect positioning during the acquisition.

The times for generating a 3D template and for performing
a 3D matching were 0.26 s and 2 s, respectively.

Figure 9 shows DET curves obtained for several values
of α. In the plot, the DET curve obtained for the best 2D case,
i.e., by using ‘‘Method D’’, is also plotted for comparison.
As can be seen, the use of a 3D template allows to improve
2D recognition performances almost for any value of α, best
results being achieved for α=3 and α=4.
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TABLE 2. Mean and standard deviation of impostor and genuine
distributions and EER calculated for the various recognition methods.

TABLE 3. Mean, standard deviation and occurrences of NSD < 0.2 for the
distributions of Figure 12.

To further deepen the influence of α on the recognition
performances of the system, a statistical analysis on impostor
and genuine distributions was carried out. Figure 10 shows
the distributions of genuine and impostor scores obtained
with the 3D method, for various values of α, and with the
best 2D method. In the plots, recognition error quantity is
proportional to the area generated by the intersection of the
impostor and genuine distributions. For each distribution,
mean and standard deviation value are computed and results
are shown in Table 2 together with the ERR values. As can be
seen, by increasing α, a growth of the mean value is observed
for both impostor and genuine score distributions and for
impostor standard deviation. The standard deviation of gen-
uine, instead, is almost constant for any α. Results obtained
with 2D templates show that impostor and genuine’s mean
and impostor standard deviation have values intermediate to
those obtained with α=3 and α=4 in the 3D case, while
2D genuine standard deviation is sensibly higher than all 3D
one’s. Hence, it appears that the improvement of recognition
performances obtained with the 3D method is to be attributed
to this last behaviour.

To verify the optimal value of the dimension β of the
structuring element for the dilate operation in 3D template
generation, several simulations were performed. Figure 11
shows the DET curves obtained for various values of β
when α=4. As can be seen, best performances are obtained
for β=4. This result was confirmed for other values of α as
well.

If compared with the wet system experimented in [35],
the present one exhibits only slightly worse recognition
performances in verification modality (EER 36% vs 21%),
while it shows an improvement concerning results obtained
in [34], where a 3D feature extraction based on curvature
analysis was adopted. Other comparisons could be done with
performances of 3D palmprint recognition system that uses
optical technologies for collecting the images reported in [16]
(Table 3 ) or in [35] (Table 2 ). In general, a direct compari-
son should require similar experimental conditions, databases
etc.; anyway, it can be asserted that the recognition rate of

FIGURE 11. DET curves obtained with α=4 for various values of β.

the proposed system is more than satisfactory and suitable
for practical applications.

B. IDENTIFICATION EXPERIMENTS
Different from verification, identification modality tries to
establish the identity of an unknown person. The system in
this case compares a test template with all templates con-
tained in a database: the highest score determines the identity
if it exceeds a predefined threshold; otherwise, the person
is considered as not present in the database. Identification
experiments were performed by comparing each 3D template
with all the remaining ones. Following this approach, results
are scheduled in 423 tables: each table contains 422 scores,
ordered from highest to lowest, with m genuine and n impos-
tor scores. Matching obtained by setting both α=3 and
α=4 were evaluated; a similar analysis was carried out by
using 2D templates as well. In any case, all the m genuine
scores ranked in first places, meaning that the identification
rate is 100%. It is to point out that identification experiments
carried out in this way result more stringent concerning the
classical methods, which compare an example with only one
template for each member of the population. To further test
the robustness of the identification procedure, the distance
between the lowest genuine score and best impostor score,
which is the worse case, was calculated for all experiments.
Figure 12 shows the distribution of such values, normalized
to the lowest genuine score, obtained by setting α=3 (a) and
α=4 (b). The same distribution achieved by matching 2D
templates is shown in Figure 12c for comparison. For each of
these distributions mean and standard deviation were com-
puted and results are reported in Table 3. As can be seen,
on one hand, 3D distributions exhibit a lower mean value
than the 2D one, which would be not desirable, but on the
other hand, they present a lower standard deviation, which
instead is a merit because it ensures that a lower number
of score differences is close to 0. To better investigate this
behaviour, a further parameter is tabulated: the occurrences
of Normalized Score Differences (NSD) that assume a value
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FIGURE 12. Distribution of the distance of the highest impostor score
from the lowest genuine one, normalized to the genuine: (a) 3D (α=3),
(b) 3D (α=4) and (c) 2D.

less than 0.2 (NSD < 0.2). This value is sensibly higher in the
2D distribution, demonstrating that the 3D method is much
more robust than the 2D one.

V. DISCUSSION
As shown in the previous section, the proposed system
provided quite similar recognition results as the wet one
presented in [35] but, due to the natural position of the
hand, the number of discarded acquisitions was dramatically
reduced. In addition, it proved much more acceptable by
users, which is a very important factor in practical biometric
systems. The achieved recognition rate was anyway compa-
rable with that of the majority of optical unimodal palmprint
systems.

The proposed approach has the further merit of being
able to automatically detect the liveness of the sample by
checking vein pulsing during image acquisition, whichmakes
it very difficult to spoof. Furthermore, the same volumetric

image can be exploited for extracting other 3-D palmprint
features through curvature methods [34] as well as other
features than palmprint like inner hand geometry [65], hand
geometry [66], [67] and vein pattern [68], [69], implement-
ing in this way a hand-based multimodal system, which is
expected to improve the overall performances of the system.

The 3-D technique also benefits from other advantages
of Ultrasound, including not being sensitive to many kinds
of surface contamination, humidity and environment light or
temperature.

Despite the achieved results, the acquisition system could
be still improved by realizing an ergonomic pad, made of
polydimethylsiloxane (PDMS) [26] or similar composite,
to allow an even more precise and comfortable position of
the hand and by experimenting with improved beamform-
ing techniques, which are currently under study, to enhance
image quality and repeatability. Furthermore, advanced tech-
niques exploited in biometric recognition, like machine learn-
ing techniques [70]–[73], could be profitable experimented
on ultrasound images as well. To this end, a new and more
consistent database should be established to provide a more
reliable evaluation of the system.

A main drawback of the systems is its relatively high
total cost, which however could be sensibly contained by
using compact and cheap ultrasound scanners that recently
appeared on the market [74] that use probes based on the
emerging CMUT technology [75], [76].

VI. CONCLUSION
In this work, a feasible palmprint recognition system based
on 3D ultrasound imaging is proposed and experimentally
evaluated. A gel pad was employed to couple human hand
and probe, providing a precise and comfortable positioning
for the user. A 3D template that contains information on
the depth of principal lines and main wrinkles was gener-
ated by opportunely combining 2D templates extracted from
images collected at several under-skin depths. The system
was evaluated through verification and identification exper-
iments carried out on a preliminary home-made database,
which demonstrate that recognition accuracy is more than
satisfactory and suitable for practical applications, especially
in high secure access control field.
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