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Abstract. This paper deals with the issue of monitoring the
spatial distribution of bulk electrical conductivity, σb, in the
soil root zone by using electromagnetic induction (EMI) sen-
sors under different water and salinity conditions. To de-
duce the actual distribution of depth-specific σb from EMI
apparent electrical conductivity (ECa) measurements, we in-
verted the data by using a regularized 1-D inversion proce-
dure designed to manage nonlinear multiple EMI-depth re-
sponses. The inversion technique is based on the coupling
of the damped Gauss–Newton method with truncated gen-
eralized singular value decomposition (TGSVD). The ill-
posedness of the EMI data inversion is addressed by using
a sharp stabilizer term in the objective function. This spe-
cific stabilizer promotes the reconstruction of blocky targets,
thereby contributing to enhance the spatial resolution of the
EMI results in the presence of sharp boundaries (otherwise
smeared out after the application of more standard Occam-
like regularization strategies searching for smooth solutions).
Time-domain reflectometry (TDR) data are used as ground-
truth data for calibration of the inversion results. An exper-
imental field was divided into four transects 30 m long and
2.8 m wide, cultivated with green bean, and irrigated with
water at two different salinity levels and using two differ-
ent irrigation volumes. Clearly, this induces different salinity
and water contents within the soil profiles. For each transect,
26 regularly spaced monitoring soundings (1 m apart) were

selected for the collection of (i) Geonics EM-38 and (ii) Tek-
tronix reflectometer data. Despite the original discrepancies
in the EMI and TDR data, we found a significant correla-
tion of the means and standard deviations of the two data se-
ries; in particular, after a low-pass spatial filtering of the TDR
data. Based on these findings, this paper introduces a novel
methodology to calibrate EMI-based electrical conductivities
via TDR direct measurements. This calibration strategy con-
sists of a linear mapping of the original inversion results into
a new conductivity spatial distribution with the coefficients
of the transformation uniquely based on the statistics of the
two original measurement datasets (EMI and TDR conduc-
tivities).

1 Introduction

Soil water content and salinity vary in space both vertically
and horizontally. Their distribution depends on management
practices and on the complex nonlinear processes of soil wa-
ter flow and solute transport, resulting in variable storages
of solutes and water (Coppola et al., 2015). Monitoring the
actual distribution of water and salts in the soil profile ex-
plored by roots is crucial for managing irrigation with saline
water, while still maintaining an acceptable crop yield. For
water and salt monitoring over large areas, there are now non-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1510 G. Dragonetti et al.: Calibrating EMI electrical conductivities with TDR measurements

invasive techniques based on electromagnetic sensors which
allow the bulk electrical conductivity of soils, σb, to be de-
termined (Sheets and Hendrickx, 1995; Corwin and Lesch,
2005; Robinson et al., 2012; Doolittle and Brevik, 2014;
Von Hebel et al., 2014, among many others).
σb depends on (i) soil water content θ , (ii) electrical con-

ductivity of the soil solution (salinity) σw, (iii) tortuosity of
the soil-pore system τ and (iv) other factors related to the
solid phase such as bulk density, clay content and mineral-
ogy.

Electromagnetic induction (EMI) sensors provide mea-
surements of the depth-weighted apparent electrical conduc-
tivity (ECa) according to the specific distribution of the bulk
electrical conductivity σb, as well as the depth response func-
tion of the sensor used (McNeill, 1980). Thus, the depen-
dence on σb makes ECa sensitive to soil salinity and water
distributions. In principle, specific procedures for estimat-
ing salinity and water content may be developed through
controlled laboratory experiments where σb, σw and θ are
measured simultaneously (Rhoades and Corwin, 1981). That
said, to monitor salinity and water content, it is crucial
to correctly infer the depth-distribution of σb from profile-
integrated ECa readings. To date, this issue has been tack-
led by applying two different strategies: the first is to use
empirical calibration relations relating the depth-integrated
ECa readings to the σb values measured by alternative meth-
ods – like Time-domain reflectometry (TDR) – within dis-
crete depth intervals (Rhoades and Corwin, 1981; Lesch et
al., 1992; Triantafilis et al., 2000; Amezketa, 2006; Yao and
Jingsong, 2010; Coppola et al., 2016). The second consists of
the 1-D inversion of the observations from the EMI sensor to
reconstruct the vertical conductivity profile (Borchers et al.,
1997; Hendrickx et al., 2002; Monteiro Santos et al., 2010;
Lavoué et al., 2010; Mester et al., 2011; Minsley et al., 2012;
Deidda et al., 2014; Von Hebel et al., 2014).

With regard to ECa inversion, a forward model still com-
monly used is the cumulative response model or local-
sensitivity model (LSM; McNeill, 1980). McNeill’s linear
approach is well suited to the cases characterized by an in-
duction number B (defined as the ratio between the coil dis-
tance and the skin depth) much smaller than 1. However,
because of the increasing computing power, improved for-
ward modeling algorithms based on more accurate nonlinear
approaches are becoming increasingly common (Hendrickx
et al., 2002; Deidda et al., 2003, 2014; Lavoué et al., 2010;
Monteiro Santos et al., 2010). For example, these more so-
phisticated forward modeling codes can cope with a wider
range of conductivities for which the assumption B� 1 is
not necessarily met.

To obtain reliable vertical distributions of electrical con-
ductivity, the ECa data used for the inversion should consist
of multi-configuration data. Hence, data collection should be
performed either with the simultaneous use of different sen-
sors or with different acquisition configurations with only
one sensor (different configurations may consist of, for ex-

ample, different coil orientations, varying inter-coil separa-
tions and/or frequencies – see, for example, Díaz de Alba
and Rodriguez, 2016). Multi-configuration data can be effec-
tively used to invert for vertical electrical conductivity profil-
ing since the ECa measurements actually investigate differ-
ent, overlapping soil volumes. Devices specifically designed
for the simultaneous acquisition of multi-configuration data
are currently available. Some of them consist of one trans-
mitter and several receivers with different coil separations
and orientations (Monteiro Santos et al., 2010). If, instead,
a sensor with a single inter-coil distance and frequency is
available, a possible alternative to having multi-configuration
measurements could be to record the data at different heights
above the ground.

Unfortunately, like every other physical measurement,
frequency-domain electromagnetic measurements are sensi-
tive to noise that is very hard to model effectively. Moreover,
as discussed, for example, in Lavoué et al. (2010), Mester et
al. (2011) and Von Hebel et al. (2014), an instrumental shift
in conductivity values could be observed due to system mis-
calibration and the influence of surrounding conditions such
as temperature, solar radiation, power supply conditions, the
presence of the operator, zero-leveling procedures, cables
close to the system and/or the field setup (see, amongst oth-
ers, Sudduth et al., 2001; Robinson et al., 2004; Abdu et al.,
2007; Gebbers et al., 2009; Nüsch et al., 2010). Hence, the
ECa data from EMI measurements would generally require
a proper calibration. One option could be to use soil cores
as ground-truth data. In this case, ECa measurements at the
sampling locations can be compared against ECa data pre-
dicted by the theoretical forward response applied to the true
electrical conductivity distribution measured directly on the
soil cores (Triantafilis et al., 2000; Moghadas et al., 2012).
Clearly, this strategy is extremely time- (and resource-) con-
suming. To avoid drilling, Lavoué et al. (2010) introduced a
calibration method, later also adopted by Mester et al. (2011)
and Von Hebel et al. (2014), using the electrical conductiv-
ity distribution obtained from electrical resistivity tomogra-
phy (ERT) data as input for electromagnetic forward mod-
eling. The ECa values predicted on the basis of ERT data
were used to remove the observed instrumental shift and cor-
rect the measured conductivity values by linear regression.
However, in general, a prerequisite for such an approach con-
cerns the reliability of the inversion of the ERT result. This
is not only due to the quality of the original data but also
the adopted inversion procedure. Indeed, ERT inversion is
an ill-posed problem: its solutions are characterized by non-
uniqueness and instability with respect to the input data (Yu
and Dougherty, 2000; Zhdanov, 2002; Günther, 2011). In
the Tikhonov regularization framework, ill-posedness is ad-
dressed by including the available prior information. Such
information can be very general. For example, it can be geo-
metrical (i.e., associated with the presence of smooth or sharp
boundaries between different lithologies). Obviously, the fi-
nal result largely reflects the initial guess formalized via the
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chosen regularization term (Pagliara and Vignoli, 2006; Gün-
ther, 2011; Vignoli et al., 2012; Fiandaca et al., 2015).

When relatively shallow depths have to be explored (1–
2 m), direct soil sampling and ERT can be effectively re-
placed by TDR observations. TDR devices are designed to
measure the dielectric properties of soils. More precisely,
they measure the apparent electrical permittivity, from which
not only the dielectric constant but also the effective elec-
trical conductivity can be deduced (e.g., Dalton et al., 1984;
Topp et al., 1988; Weerts et al., 2001; Noborio, 2001; Robin-
son et al., 2003; Lin et al., 2007, 2008; Thomsen et al., 2007;
Huisman et al., 2008; Koestel et al., 2008; Bechtold et al.,
2010). In general, TDR measurements might be difficult to
use to recover the electrical conductivity with the desired
accuracy. However, in the literature, many examples are re-
ported in which, within the range 0.002–0.2 S m−1 (compat-
ible with the examples investigated in the present research)
and by properly using the TDR device (e.g., by paying at-
tention to minimize the effects of nonparallel device rods in-
serted into the ground), the TDR conductivity can be mea-
sured with an uncertainty level lower than 5 % (e.g., Huis-
man et al., 2008; Bechtold et al., 2010). Besides, since the
TDR measurements are commonly calibrated in saline solu-
tions just before the field data acquisitions, they could po-
tentially provide a reliable, absolute estimation of the actual
ground conductivity (Ferré et al., 1998a). For this reason, in
some cases, TDR observations have been proposed as a valid
tool for ground-truthing the ERT and, possibly, as an ancil-
lary information source to constraint for the ERT inversions
(Koestel et al., 2008). For additional studies dealing with the
use of ERT data for the validation of the EMI and TDR mea-
surements for soil characterization, we refer the reader to, for
example, Cassiani et al. (2012) and Ursino et al. (2014).

In the present research, we focus on the use of TDR data to
absolutely calibrate the conductivities obtained by inverting
the EMI measurements. To do this, a dataset collected during
an experiment carried out along four transects under differ-
ent salinity and water content conditions (and monitored with
both EMI and TDR sensors) is utilized. We first tackle the
problem of inferring the soil electrical conductivity distribu-
tion from multi-height ECa readings via the proper inversion
strategy. Then we assess the quality of these reconstructions
by using TDR data as ground-truth. In this respect, in the fol-
lowing we discuss how to effectively compare the σb values
generated by the EMI inversion with the associated TDR val-
ues. In fact, as discussed by Coppola et al. (2016), because
of their relatively smaller observation volume, TDR data pro-
vide quasi-point-like measurements and do not integrate the
small-scale variability (in soil water content, solute concen-
trations, etc.) induced by natural soil heterogeneity. By con-
trast, EMI data necessarily overrule the small-scale hetero-
geneities seen by TDR probes as they investigate a much
larger volume. Accordingly, the paper provides a method-
ology to calibrate EMI results by TDR readings. This pro-
cedure relies on conditioning the original TDR data and in
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Figure 1. Schematic view of the experimental field.

the statistical characteristics of the two EMI and TDR data
series. On the basis of the proposed analysis, we discuss the
physical reasons for the differences between EMI and TDR-
based bulk electrical conductivity and identify a method to
effectively migrate the reliable TDR information across the
larger volume investigated by EMI.

2 Materials and methods

The experiment was carried out at the Mediterranean Agro-
nomic Institute of Bari (MAIB) in south-eastern Italy. The
soil was pedologically classified as Colluvic Regosol, con-
sisting of a silty-loam layer of an average depth of 0.6 m
on fractured calcarenite bedrock. The experimental setup
(Fig. 1) consisted of four transects of 30 m length and 2.8 m
width, equipped with a drip irrigation system with five drip-
per lines placed 0.35 m apart and characterized by an inter-
dripper distance of 0.2 m. The dripper discharge was 2 L h−1.
Green beans were grown in each transect. The irrigation vol-
umes were calculated according to the time dynamics of wa-
ter content in the first 0.25 m measured by a TDR probe in-
serted vertically at the soil surface. TDR readings were taken
just before and 2 hours after every irrigation. Based on the
difference between the water content at field capacity and
that measured just before irrigation, it was easy to assess the
volumes needed to bring the soil water content back to the
field capacity level.
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The four transects were irrigated with water at two dif-
ferent salinity levels and with two different water vol-
umes. Transect 1: 100 % of the irrigation water at 1 dS m−1

(hereafter 100-1dS), Transect 2: 50 % of irrigation water at
1 dS m−1 (50-1dS), Transect 3: 100 % of the irrigation wa-
ter at 6 dS m−1 (100-6dS) and Transect 4: 50 % of irrigation
water at 6 dS m−1 (50-6dS). Water salinity was induced by
adding calcium chloride (CaCl2) to tap water. Irrigation vol-
umes were applied every 2 days.

EMI readings – in vertical magnetic dipole configurations
– were collected by using a Geonics EM38 device (Geon-
ics Limited, Ontario, Canada). The EM38 operates at a fre-
quency of 14.6 kHz with a coil spacing of 1 m, and with
a nominal measurement depth of ∼ 1.5 m (McNeill, 1980).
The lateral footprint of the EM38 measurement can be con-
sidered approximately equal to the vertical one. Thus, the σb
seen by the EMI, in a given depth layer, necessarily differs
from that seen by a TDR probe at the same depth layer, due
to the very different spatial resolutions.

At the beginning of the measurement campaign, the EMI
sensor was “nulled” according to the manufacturer’s man-
ual. Readings were taken just after each irrigation applica-
tion at 1 m step, along the central line of each transect, for an
overall total of 26 soundings per transect. Multi-height EM38
readings were acquired at heights of 0.0, 0.2, 0.4 and 0.6 m
from the ground. Taking measurements just after irrigation
allowed relatively time-stable water contents to be assumed
at each site throughout the monitoring phases.

Just after the EM38 measurements, a TDR probe was in-
serted vertically at the soil surface in 26 locations, each
corresponding to the central point of an EM38 reading. A
Tektronix 1502C cable tester (Tektronix Inc., Baverton, OR,
USA) was used in this study. It enables simultaneous mea-
surement of water content θ and bulk electrical conductivity
σb of the soil volume explored by the probe (Heimovaara
et al., 1995; Robinson and Friedman, 2003; Coppola et al.,
2011, 2015). The TDR transmission line consisted of an an-
tenna cable (RG58, 50� characteristic impedance, 2 m long
and with 0.2� connector impedance) and three-wire probes
(0.25 m long, 0.07 m inter-axis distance and 0.005 m in di-
ameter). The TDR probe was not embedded permanently at
fixed depths along the soil profile to avoid any potential dis-
turbance to the EMI acquisitions. The TDR readings were
taken at three different depth intervals (0.0–0.2, 0.2–0.4, 0.4–
0.6 m). After the measurements at the surface (0.0–0.2 m), a
trench was dug up to 0.2 m depth. TDR probes were then in-
serted vertically for the additional collection of the data in
the interval 0.2–0.4 m, after which the trench was deepened
up to 0.4 m and readings were taken at 0.4–0.6 m. The σb,TDR
readings were used for the calibration of the EM38 inversion
results.

3 Data handling

3.1 Multi-height EMI readings inversion

Nonlinear 1-D forward modeling, which predicts multi-
height EMI readings from a loop-loop device, can be ob-
tained by suitable simplification of Maxwell’s equations that
takes the symmetry of the problem into account. This ap-
proach is described in detail in Hendrickx et al. (2002), and
is based on a classical approach extensively described in the
literature (Wait, 1982; Ward and Hohmann, 1988). The pre-
dicted data are functions of the electrical conductivity and
the magnetic permeability in a horizontally layered medium.

When the coils of the recording device are vertically ori-
ented with respect to the ground surface, the reading at
height h can be expressed by using the following integral:

−ρ3

∞∫
0

λ2e−2hλR0(λ)J0(ρλ)dλ, (1)

where ρ denotes the distance between the coils, J0(λ) is the
Bessel function of the first kind of order 0 and R0(λ) is a
complex valued function which depends upon the electro-
magnetic properties of the ground layers. A similar expres-
sion is valid also when the coils are horizontally aligned.
Hence, the dependence of the measured data on the electrical
conductivity, σk , of the (homogeneous) j th layer is incor-
porated into the function R0(λ). We discretize the problem
with n layers whose characteristic parameters σj (with j = 1,
. . . , n) are the unknowns we invert. In the present research,
we neglect any dependence of the electromagnetic response
on magnetic permeability as we assume it is fixed and equal
to the permeability of empty space. In principle, it is possi-
ble to consider two measurements for each location: one for
the horizontal and one for the vertical configuration of the
transmitting and receiving loops. In this case, the data used
as inputs for the inversion are 2 ·m, with m representing the
number of heights h1, h2, . . . , hm where the measurements
are performed.

A least squares data fitting approach leads to the minimiza-
tion of the function:

f (σ)=
1
2

2m∑
i=1

r2
i (σ ), (2)

where σ = (σ1, . . . , σn)T , and r2
i (σ ) is the misfit between the

ith measurement and the corresponding forward modeling
prediction based on Eq. (1).

We solve the nonlinear minimization problem by the in-
version procedure described in Deidda et al. (2014). The al-
gorithm is based on a damped regularized Gauss–Newton
method. The problem is linearized at each iteration by means
of a first order Taylor expansion. The use of the exact Ja-
cobian (Deidda et al., 2014) makes the computation faster
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Figure 2. Examples of sharp and smooth inversions applied to the dataset 100-6dS. The results are shown together with their corresponding
data misfit.

and more accurate than using a finite difference approxima-
tion. The damping parameter is determined in order to en-
sure both the convergence of the method and the positiv-
ity of the solution. The regularized solution to each linear
subproblem is computed by the truncated generalized singu-
lar value decomposition (TGSVD – Díaz de Alba and Ro-
driguez, 2016) employing different regularization operators.
Besides the classical regularization matrices based on the
discretization of the first and second derivatives, in all the
cases characterized by sharp interfaces, we tested a nonlin-
ear regularization stabilizer promoting the reconstruction of
blocky features and thus to improve the spatial resolution of
EMI inversion results. (Zhdanov et al., 2006; Ley-Cooper
et al., 2015; Vignoli et al., 2015, 2017). The advantage of
this relatively new regularization is that, when appropriate
prior knowledge about the medium to reconstruct is avail-
able, it can mitigate the smearing and over-smoothing effects
of the more standard inversion strategies. This, in turn, can
make the calibration of the EMI data against the TDR data
more effective. For this reason, in the following, the EMI re-
sults used for our assessments are those inferred by means
of this sharp inversion. The differences between the “stan-
dard” smooth (based on the first derivative) reconstruction
and the sharp one are clearly shown in Figs. 2 and 4. In all
cases, the inversions are performed with a 100-layer homo-
geneous discretization, down to 8 m, with fixed interfaces.
We opted for such a parameterization to be able to (i) control
the inversion results by acting merely on the regularization
parameters and (ii) remove the regularization effects possi-
bly originated by the discretization choice (e.g., the number
of layers, interfaces locations). In this way, it was possible
to use an automatic strategy for the selection of the regular-
ization parameters. In Figs. 2 and 4, the sharp results (up-
per panels) associated with the cases 100-6dS and 50-6dS

are compared against the corresponding smooth inversions
(middle panels). Even if the data misfit levels largely match
(lower panels in Figs. 2 and 4, but also Figs. 3 and 5), the
two inversion strategies produce reconstructions that differ
significantly. This is due to the inherent ill-posedness of the
EMI inversion. By solely considering the geophysical obser-
vations, it is impossible to decide which model is the best.
In this research, based on the fact that, just after the irriga-
tion, the effect of the water is supposed to remain localized
in the shallowest portion of the soil section, the sharp inver-
sion was found to provide more reliable results. Moreover,
to some extent, the general better agreement of the data cal-
culated from the sharp model supports the idea that the elec-
trical property distributions are better inferred via the sharp
regularization. In any case, since in this research we cali-
brate the EMI-derived models (and not the data), the final
calibrated result will reflect the assumptions made in the first
place, when the EMI data are inverted (specifically, the regu-
larization assumptions).

A possible alternative way to still effectively use the TDR
data to calibrate the EMI measurements (and not the asso-
ciated conductivity model) could consist of performing the
calibration in the data space (and not in the model space). In
the data-space calibration, the measured TDR conductivity
could be used as input model to calculate the ECa response
of the EMI device actually used. In turn, this calculated ECa
response can be compared against the measured EMI data
and used for their calibration. However, eventually, this lat-
ter data-space calibration will also have to deal with the in-
version issues once the calibrated EMI data need to be con-
verted into conductivities (σb). In this paper, we chose the
model-space calibration strategy as, in general, in the avail-
able EMI inversion codes, it is not always easy to decouple
the forward modeling routines from the overall inversion al-
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Figure 3. Comparison of the data fitting associated with the sharp and smooth inversions applied to the dataset 100-6dS (Fig. 2). The
calculated data corresponding to the sharp and smooth results are shown together with the observations for each of the four measured
channels (heights).

Figure 4. Examples of sharp and smooth inversions applied to the dataset 50-6dS. The results are shown together with their corresponding
data misfit.

gorithm. Hence, the discussed approach could be more di-
rectly applicable and beneficial for practitioners. However,
it is true that the data-space calibration naturally takes into
account the scale mismatch between the TDR and the EMI
measurements with no need for any statistical calculation.

It is worth noting that the constant magnetic permeabil-
ity assumption is not always valid. Inverting for the mag-
netic permeability is sometimes not only necessary but it can
also provide an additional tool for soil characterization (e.g.,
Beard and Nyquist, 1998; Farquharson et al., 2003; Sasaki et
al., 2010; Guillemoteau et al., 2016; Noh et al., 2017; Deidda
et al., 2017).

For the sake of clarity, hereafter, the σb values gener-
ated from the EMI data inversion will be identified explicitly
as σb,EMI.

3.2 TDR-based water content and bulk electrical
conductivity

The Tektronix 1502C can measure the total resistance Rt of
the transmission line by

Rt = Zc
(1+ ρ∞)
(1− ρ∞)

= Rs+Rc (3)

where Rs is the soil’s contribution to total resistance and
Rc accounts for the contribution of the series resistance from

Hydrol. Earth Syst. Sci., 22, 1509–1523, 2018 www.hydrol-earth-syst-sci.net/22/1509/2018/



G. Dragonetti et al.: Calibrating EMI electrical conductivities with TDR measurements 1515

Figure 5. Comparison of the data fitting associated with the sharp and smooth inversions applied to the dataset 50-6dS (Fig. 4). The calculated
data corresponding to the sharp and smooth results are shown together with the observations for each of the four measured channels (heights).

the cable. The connector Zc is the characteristic impedance
of the transmission line and ρ is a reflection coefficient at a
very long time, when the waveform has stabilized.

The σb value at 25 ◦C can be calculated as the following
(Rhoades and van Schilfgaarde, 1976; Wraith et al., 1993):

σ 25 ◦C
b =

Kc

Zc
fT , (4)

where Kc is the geometric constant of the TDR probe and
fT is a temperature correction factor to be used for values
recorded at temperatures other than 25 ◦C. Both Zc and Kc
can be determined by measuring Rt with the TDR probe im-
mersed in a solution with known conductivity σb. Hereafter,
these σb measurements will be identified as σb,TDR.

3.3 Evaluation of concordance between σb,TDR
measurements and σb,EMI estimates

The agreement between σb,TDR measurements and σb,EMI es-
timations in the 0.0–0.6 m range was evaluated by the con-
cordance correlation coefficient, ρL.

ρL =
2sxy

s2
x + s

2
y +

(
mx −my

)2 , (5)

wheremx ,my , sx , sy , sxy are means, standard deviations and
covariances of the two data series (x= σb,EMI; y= σb,TDR).

Scatter plots of the σb,EMI and σb,TDR data series (both
original and filtered) were evaluated by the line of perfect
concordance (1 : 1 line) and the reduced major axis of the
data (RMA; Freedman et al., 1991). The method combines
measurements of both precision and accuracy to determine
how close the two data series are to the line of perfect con-
cordance σb,EMI= σb,TDR. Compared to the classical Pearson
correlation coefficient, ρP:

ρP =
sxy

sxsy
. (6)

ρL not only measures the strength of the linear relationship
(how close the data in the scatter plot are to a line) but also
the level of agreement (how close that line is to the line of
perfect agreement, the 1 : 1 line). In this sense, ρL may also
be calculated as (Cox, 2006)

ρL = ρPCb, Cb =
2(

v+ 1/v+ u2
) , v = sx/sy (7)

and

u=
(
mx −my

)
/
√
sxsy, (8)

where Cb is the bias correction factor measuring how far the
best-fit line deviates from the 1 : 1 line. The maximum value
of Cb= 1 (0<Cb< 1) corresponds to no deviation from the
line. The smaller Cb is, the greater the deviation from the
line. In other words, Cb is a measure of accuracy (how much
the average estimate differs from the average measurement
value, assumed to be the true value) and refers to the system-
atic error, whereas ρP is a measure of precision (measures
the variability in measurements around their own average)
and refers to the random error. The RMA line is given by the
following:

y =
(
my −βmx

)
+βx = α+βx. (9)

This line passes through the means of the x and y values
and has a slope given by the sign of Pearson’s correlation
coefficient, ρP, and the ratio of the standard deviations, s,
of the two series (Freedman et al., 1991; Corwin and Lesch,
2005):
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β = sy/sx . (10)

ρL increases in value as (i) the RMA approaches the line of
perfect concordance (a matter of accuracy) and (ii) the data
approach the RMA (a matter of precision). In the ideal case
of perfect concordance, the intercept of the RMA, α, should
be 0 and β should be 1. Therefore, α 6= 0 or β 6= 1 indicate
additive and/or multiplicative biases (location and/or scale
shifts). The concordance was evaluated for the original TDR
data, as well as for the filtered TDR data. For the analysis
described in detail later in the paper, it is worth noting that
the coefficients α and β depend only on the statistical char-
acteristics (mean and standard deviation) of the two series, as
α=my −βmx and β = sy/sx .

3.4 Fourier filtering

Because of their relatively small observation volume
(∼ 10−3 m3), TDR sensors provide quasi-point-like measure-
ments and are, thus, more effective in capturing small-scale
variability (in water content, solute concentrations) induced
by natural soil heterogeneity. Thus, the variability within a
set of TDR readings is expected to originate from a combi-
nation of small and large-scale heterogeneities (high and low
spatial frequency components). By contrast, the EMI mea-
surements (because of the size and physics of the instrumen-
tation) necessarily integrate out the small-scale variability in
the TDR scale of investigation.

Hence, in order to make the two datasets comparable, the
original spatial TDR data series need to be filtered to remove
the variation from small-scale heterogeneities (recorded only
by the TDR probe). In this way, only the information on a
spatial scale equal to or larger than the observation volume
of both sensors is preserved.

Thus, a simple filter based on the Fourier transform (FT) is
applied to the TDR series. So, a low-pass frequency filtering
is performed on the TDR data to remove all components re-
lated to the small-scale heterogeneities and make it compara-
ble with the EMI measurements. More specifically, for each
transect, we consider the σb,EMI reconstruction and, for each
of its 1-D models, calculate the average conductivity value
within each depth interval for which the TDR data are avail-
able (namely 0.0–0.2, 0.2–0.4, 0.4–0.6 m). Hence, for each
depth interval, along the entire transect, we can calculate the
mean and standard deviation of the conductivity values re-
trieved from the EMI observations. Subsequently, this stan-
dard deviation (associated with the EMI data) is compared
with the standard deviation of the iteratively low-pass filtered
TDR data for the same depth interval. In this way, an opti-
mal cut-off frequency can be selected to make the scales of
the two kinds of measurements compatible. Figure 6 shows
the comparison between the standard deviations of the EMI
and filtered TDR data, for the 50-6dS transect, at 0.2–0.4 m
depth. In this specific case, the selected cut-off frequency to

Figure 6. Standard deviation of the EMI series (horizontal black
line) for the 50-6dS transect at 0.2–0.4 m depth. The squares show
the corresponding standard deviations for the TDR series for differ-
ent levels of filtering. The intersection of the EMI line with the TDR
curve allows for identifying the optimal cut-off frequency range
(∼ 0.313 cycles m−1) to make the two standard deviations similar.

filter the TDR data is 0.313 cycles m−1, corresponding to a
3.2 m range. This is not surprising at this is on the order of
magnitude of the footprint of the EMI measurements.

4 Results and discussion

Hereafter, the original and filtered data will be labeled ORG
and FLT, respectively. The graphs in the top panels in Fig. 7
compare σb,TDR measured by TDR against the correspond-
ing conductivity σb,EMI retrieved by the EMI (sharp) inver-
sion for the all the transects. From the left, the graphs refer
to the transects identified as 100-6dS, 50-6dS, 100-1dS and
50-1dS, respectively. All plots show the data for the entire
investigated profile between 0.0 and 0.6 m, together with the
line of perfect concordance (1 : 1, black line), and the main
regression axis (MRA, red line).

The general conclusion is that, in all four transects and for
all three considered depth layers, the σb,EMI values under-
estimate the σb,TDR measurements, such that the MRA line
generally lies above the 1 : 1 line. Not surprisingly, the EMI
result seems quite insensitive to TDR variability. Also, a con-
siderable scatter around the MRA line may be observed for
all transects.

Table 1 shows the MRA coefficients (Cb, α, β), as well
as the Pearson, ρP, and the concordance correlation, ρL, for
the three depth layers and for all four transects investigated.
We recall that the bias correction factor Cb, the slope β and
the intercept α should be close to 1, 1 and 0, respectively,
for the MRA to approximate the line of perfect concordance.
For all the transects and all the depth layers considered, the
parameters confirm the relatively loose relationship between
σb,EMI and σb,TDR already observed in the graphs, both in
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Figure 7. Comparison between σb,TDR and σb,EMI for all four transects for the depth range 0.0–0.6 m. The graphs in the top panels (a) show
the original TDR and EMI data, while those in the bottom panels (b) the filtered (FLT) TDR and EMI data after the regression based on
MRA parameters (rg).

Table 1. Concordance parameters for the four transects for the
TDR_ORG and EMI_ORG data. The table reports the concordance,
ρL, and the Pearson, ρP, correlation, as well as parameters α and β
of the MRA line. The bias factor, Cb, is also shown.

Transect Cb ρL ρP β α

100-1dS 0.10 0.02 0.33 2.04 0.25
50-1dS 0.10 0.00 0.08 3.06 0.14
100-6dS 0.18 0.02 0.07 2.92 −0.21
50-6dS 0.34 0.08 0.32 1.84 0.04

terms of accuracy (the distance of the MRA line from the
1 : 1) and precision (the data scatter around the MRA line).

Von Hebel et al. (2014) found a similar behavior when
comparing their EMI and ERT datasets. In that case, the ECa
values measured by EMI systematically underestimated the
ECa generated by applying EMI forward modeling to the σb
distribution retrieved by ERT. To remove the bias, the au-
thors performed a linear regression between measured and
predicted ECa after applying a 10-term moving average to
the original data. By using the regression coefficients, all the
measured ECa values were converted to ERT-calibrated ECa
values.

Here, we follow a different approach to calibrate the
σb,EMI values against the σb,TDR measurements based on
the MRA coefficients and, thus, on the statistical parameters
(mean and standard deviation) of the two data series. Specif-
ically, the present approach looks for a systematic correction

of the bias based on well-defined statistical sources of the
discrepancies. In short, the proposed method performs the
calibration in the σb model space, instead of the ECa data
space. Our model-space approach mostly relies on the statis-
tical parameters of the two series. Analyzing the role of these
statistics in explaining the discrepancies between EMI and
TDR data observed in Fig. 7a may help to understand how
they can be effectively used for making EMI results directly
comparable with the TDR values.

In nearly all of the graphs in the top panels in Fig. 7, the
discrepancies between σb,EMI and σb,TDR values can be de-
composed into the following components:

1. The distance along the σb,EMI axis of the MRA line from
the 1 : 1 line, which is the difference between the σb,EMI
and the σb,TDR means.

2. The difference in the slope of the MRA and of the
1 : 1 lines, which stems from the different variability in
σb,EMI (its standard deviation) and that of σb,TDR. We
recall here that the slope of the MRA is just the ratio of
the two standard deviations, β̂ = sy/sx .

3. The scatter of the data around the MRA line, which may
come from different sensors’ noise and the influence of
surrounding conditions (e.g., temperature).

Below, we analyze in detail the role of all three points with
the support of the measured data.

1. The distance of the MRA from the 1 : 1 line is mostly
due to the difference in the observed means. The plot in
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Figure 8. (a) Comparison of the means for the two original series
(squares and solid line for TDR, circles and dashed line for EMI)
and (b) the same comparison on a 1 : 1 plot (triangles and solid re-
gression line). In (a), the four cases are shown in sequence. For each
case, the three values are for the three depth intervals 0.0–0.2, 0.2–
0.4 and 0.4–0.6 m.

Fig. 8a compares the means for the two original series
(squares and solid line for TDR, circles and dashed line
for EMI). Figure 8b reports the same comparison on a
1 : 1 plot (triangles and solid regression line). The mean
values confirm the general underestimation of TDR by
the EMI data. However, the trends are evidently simi-
lar, which is reflected in the high correlation between
the means of the two series, with a significantly high
R2
= 0.81. This high correlation has very positive im-

plications from an applicative point of view, since after
the calibration in a specific site, it allows the EMI mean
to be inferred given the mean of TDR readings taken in
that soil, and thus provides the possibility to migrate the
more reliable TDR information across the larger area
that can be practically investigated during an EMI sur-
vey.

2. The different slope of the two lines has to be ascribed to
the different variability in the two series. Figure 9a com-
pares the standard deviations for the two original series
(squares and solid line for TDR, circles and dashed line

Figure 9. (a) Comparison of the standard deviations of the TDR
original series (squares and solid line), of the EMI original se-
ries (circles and dashed line), and of the filtered (FLT) TDR series
(crosses and dashed line) and (b) the same comparison on a 1 : 1
plot: the original TDR and EMI data (triangles and solid regression
line); filtered (FLT) TDR and original EMI data (squares and dashed
regression line). In (a), the four cases are shown in sequence. For
each case, the three values are for the three depth intervals 0.0–0.2,
0.2–0.4 and 0.4–0.6 m.

for EMI). Figure 9b reports the same comparison on a
1 : 1 plot (triangles and solid regression line). Conceptu-
ally, the different variability in the two series can be re-
lated to the different sensor observation volumes (origi-
nated from the different spatial sensitivity of the sensors
– Coppola et al., 2016). For TDR probes, most of the
measurement sensitivity is close to the rods (Ferré et al.,
1998b). Conversely, the spatial resolution of inverted
EMI ECa values may be much lower as the resolution
of the EMI result depends on the physics of the method,
the specifications (and configuration) of the recording
device and the regularization strategy applied during the
inversion. Thus, the EMI is generally unable to capture
the small-scale variability seen by the TDR. For our cal-
ibration purposes, it is important to make the variabil-
ity in EMI and TDR conductivities actually compara-
ble. As discussed by Coppola et al. (2016), a possible
method can consist of filtering out the high-frequency

Hydrol. Earth Syst. Sci., 22, 1509–1523, 2018 www.hydrol-earth-syst-sci.net/22/1509/2018/

antonio
Evidenziato



G. Dragonetti et al.: Calibrating EMI electrical conductivities with TDR measurements 1519

components (at small spatial scale) of the original TDR
data, while retaining the lower-frequency information.
This corresponds to keep the information on a spatial
scale larger than the observation volume of the TDR
sensor and attuned with the resolution of the σb,EMI dis-
tribution. From a practical point of view, this makes
sense, as TDR readings are often “too local” to actu-
ally represent the macroscopic physical characteristics
of interest for applications (water content, solute con-
centrations). The volume explored by a TDR probe may,
or may not, include preferential channels (Mallants et
al., 1994; Oberdörster et al., 2010), stones (Coppola et
al., 2011, 2013), small-scale changes in the texture and
structure (Coppola et al., 2011), which can make the in-
terpretation of local measurements difficult for practi-
cal applications. In this sense, EMI’s removal of these
small-scale effects may be desirable from a manage-
ment perspective. Consistently, the original TDR data
are conditioned via a low-pass filtering, as described in
Sect. 3. The filtering results, in terms of standard devi-
ations, are reported in Fig. 9a (crosses and dashed line)
and Fig. 9b (squares and dashed regression line). As ex-
pected, the low-pass filter makes the standard deviations
much closer (almost overlapping) in all transects and all
considered depth layers. The regression improved sig-
nificantly from 0.25 for the original data to 0.78 after
the TDR data filtering.

3. The scatter is consistently reduced by the spatial filter-
ing (as similarly discussed in Von Hebel et al., 2014).

Eventually, the calibrated σ
rg
b,EMI distribution (super-

script “rg” means EMI data after regression) can then be ob-
tained from the original σb,EMI via the linear mapping

σ
rg
b,EMI = α+βσb,EMI, (11)

where the coefficients α and β can be easily calculated from
the means and standard deviations of the EMI results and the
filtered TDR data. Thus, if mEMI and mTDR(FLT), and sEMI,
and sTDR(FLT) are the means and the standard deviations of
the original σb,EMI EMI data and of the filtered σb,TDR(FLT)
TDR data, respectively, the MRA line coefficients can be ex-
pressed as α=mTDR(FLT)−βmEMI and β = sTDR(FLT)/sEMI.

The bottom panels in Fig. 7 show the results of the ap-
plication of the linear mapping. In particular, they compare
the calibrated EMI data (EMI rg) with the filtered TDR
(TDR FLT) measurements. The MRA parameters and the
concordance coefficients in the case of filtered TDR data are
reported in Table 2. Clearly, considering the (calibrated) EMI
and (filtered) TDR standard deviations turns the MRA line to
be practically matching the 1 : 1 line, with the coefficient β
approaching 1. Moreover, from Table 2, the improvement of
the bias Cb and the concordance ρL is generally significant.
On the contrary, the Pearson’s correlation ρP is not influ-
enced by the recalibration as the proposed approach deals

Table 2. Concordance parameters for the four transects for the
TDR_FLT and EMI_ORG data. The table reports the concordance,
ρL, and the Pearson, ρP, correlation, as well as parameters α and β
of the MRA line. The bias factor, Cb, is also shown.

Transect Cb ρL ρP β α

100-1dS 0.74 0.24 0.33 1.02 0.29
50-1dS 0.62 0.05 0.08 1.02 0.27
100-6dS 0.87 0.06 0.07 1.02 0.57
50-6dS 0.79 0.25 0.32 1.02 0.31

with the statistics of the data series rather than the single data.
Thus, after the application of the low-pass filter to the TDR
data, the coefficient β is close to 1, and the calibration turns
out to be (almost) a simple shift of the inverted σb,EMI. The
amount of this shift is equal to the difference between the
mean values mTDR(FLT) and mEMI. To summarize, the TDR
filtering allows removing of the outlier values generated by
the small-scale variability and preserving of the information
content necessary to properly calculate the shift required for
the absolute calibration of the EMI inversion results.

Figure 10 shows, on the left, the original σb,EMI distribu-
tion to be compared against the σ rg

b,EMI results (on the right)
obtained through the application of the linear transformation
in Eq. (10). The calibrated transects preserve the spatial vari-
ability in the original EMI inversions, but are now charac-
terized by value ranges that are more realistic (as they are
obviously closer to the TDR measurements assumed to be
more representative of the real soil conditions). The results
in Fig. 10 obviously reflect the experimental irrigation setup.
Hence, not surprisingly, the conductivity of the 100-6dS case
(irrigated with 100 % of the water at 6 dS m−1) is the most ef-
fected (Fig. 10d), while the 50-1dS case (corresponding to an
irrigation with 50 % of the water at 1 dS m−1) is the example
with the lowest conductivity range (Fig. 10g). The intermedi-
ate irrigation tests 50-6dS (Fig. 10e) and 100-1dS (Fig. 10f)
show very similar maximum and minimum conductivity val-
ues over the two transects. However, there is a difference
concerning the spatial distributions. In particular, in the 100-
1dS case, the highest σ rg

b,EMI values characterize not only the
shallower 0.0–0.1 m portion (Fig. 10f) but they also appear to
spread almost homogenously all over the section. On the con-
trary, in the 50-6dS test, the maximum values are limited to
the first soundings at the beginning of the transect and to the
0.2–0.4 m depth interval. More important, if we compare the
original 50-6dS (Fig. 10b) and 100-1dS (Fig. 10c) conductiv-
ity distributions against the corresponding calibrated results
(Fig. 10e and f), the original σb,EMI section, which used to
be the generally most conductive one (50-6dS, Fig. 10b), is
now the most resistive (Fig. 10e) and vice versa. This, one
more time, demonstrates that the proper calibration may lead
to significantly different conclusions.
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Figure 10. Maps of bulk electrical conductivity for the (a) 100-6dS, (b) 50-6dS, (c) 100-1dS and (d) 50-1dS transects showing the original
σb,EMI resulting from the inversion of the observed EMI data. (e)–(h) Show instead the corresponding results after the calibration via the
TDR measurements (i.e., by applying Eq. 10).

As already discussed, the high correlation of the means
and the standard deviations of the two series are central for
this procedure to be of practical interest. In short, the pro-
cedure can be summarized as follows: (i) an area is moni-
tored via EMI survey and a few TDR calibration measure-
ments are collected concurrently. (ii) The availability of the
two different datasets allows for performing of the regression
for the mean and the standard deviation of the original EMI
inversion results and the filtered TDR data, like those shown
in Figs. 8b and 9b. (iv) These statistical parameters can be
promptly used for the calculation of the coefficients α and β
to be inserted into Eq. (10). (v) The original EMI inversion
results are not always reliable when compared with the di-
rect measurements obtained by using a TDR probe. Rather,
they only contain the low-frequency information supplied by
TDR (most likely together with some shifts connected with
the poor absolute calibration of the EMI system and/or the
working conditions, e.g., the temperature). Thus, for quan-
titative analyses, it may be crucial to transform the original
EMI result σb,EMI into a new calibrated section σ rg

b,EMI by
means of the linear mapping in Eq. (10).

The proposed workflow enables us to translate the origi-
nal non-calibrated σb,EMI data into the actual σb we would
collect in ideal conditions, and which would perfectly match
“low-resolution” TDR measurements. σ rg

b,EMI is our best pos-
sible estimation of the true electrical conductivity on the
scale of investigation of the EMI survey. It is the original
σb,EMI after the application of the appropriate rescaling and
shifts deduced by the more reliable and absolutely calibrated
TDR measurements.

5 Conclusions

The objective of the paper is to infer the bulk electrical con-
ductivity distribution in the root zone from multi-height (po-
tentially non-calibrated) EMI readings. TDR direct measure-
ments are used as ground-truth σb data to evaluate the cor-
rectness of the σb estimations generated by EMI inversion.
For all four transects and for all three depth layers consid-
ered in this study, the σb,EMI values underestimate the σb,TDR
measurements, such that the MRA line generally lies above
the 1 : 1 line. Also, a considerable scatter around the MRA
line was observed for all transects.

The proposed analysis allows for discussing the physical
reasons for the differences between EMI- and TDR-based
electrical conductivity and developing an approach to cali-
brate the original σb,EMI by using the σb,TDR measurements.

Our approach is based on the MRA coefficients and,
hence, on the statistical parameters (mean and standard devi-
ation) of the two series. Specifically, the approach looks for
a systematic correction of the bias based on well-defined sta-
tistical sources of the discrepancies. A low-pass filtering has
been carried out on the TDR data to obtain a significantly
high correlation between the standard deviations of the two
data series. After that, a simple linear transformation can be
applied to the originally inverted EMI section σb,EMI to get a
calibrated σb result.

On the one hand, the proposed strategy relies on the as-
sumption that TDR direct measurements supply absolutely
calibrated observations of the electrical conductivity of the
soil and can be effectively used to calibrate the conductivity
distributions inferred from EMI data. The availability of EMI
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calibrated data paves the way to reliable reconstructions of
the electrical conductivity distribution over large areas (typi-
cal for EMI surveys, but not for TDR campaigns) unaffected
by the usual EMI miscalibrations. This, in turn, can result in
the possibility of effective time-lapse surveys and/or consis-
tent merging of subsequent surveys.

On the other hand, the proposed statistical workflow for
making the TDR measurement comparable with the associ-
ated EMI results provides a more sophisticated approach than
simple smoothing to upscale the TDR data. Thus, from the
opposite perspective, the approach in question can be used to
tackle the problems connected with handling the TDR data
characterized by excessively high spatial resolution.
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