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SUMMARY

Controlling cell fate has great potential for regenerative medicine, drug discovery, and basic research. Although transcription factors are

able to promote cell reprogramming and transdifferentiation,methods based on their upregulation often show low efficiency. Smallmol-

ecules that can facilitate conversion between cell types can ameliorate this problem working through safe, rapid, and reversible mecha-

nisms. Here, we present DECCODE, an unbiased computational method for identification of such molecules based on transcriptional

data. DECCODE matches a large collection of drug-induced profiles for drug treatments against a large dataset of primary cell transcrip-

tional profiles to identify drugs that either alone or in combination enhance cell reprogramming and cell conversion. Extensive valida-

tion in the context of human induced pluripotent stem cells shows that DECCODE is able to prioritize drugs and drug combinations

enhancing cell reprogramming.We also provide predictions for cell conversionwith single drugs and drug combinations for 145 different

cell types.

INTRODUCTION

Controlling cell fate has enormous potentials for regenera-
tive medicine (Cohen and Melton, 2011), drug discovery
(Avior et al., 2016), and cell-based therapy (Kikuchi et al.,
2017). A milestone discovery by Yamanaka and colleagues,
who induced human stem cells via genetic reprogramming
of mature somatic cells using four transcription factors
(TFs) (Takahashi and Yamanaka, 2006) (Takahashi et al.,
2007), has recently revolutionized the field of stem cell
biology. To date, numerous studies have revealed distinct
sets of TFs that achieve or promote cell reprogramming
(Soufi et al., 2015) and transdifferentiation (Rosa et al.,
2018; Sekiya and Suzuki, 2011). However, these methods
often suffer from low efficacy due to partly unknown bar-
riers that need to be overcome for complete conversion
(Smith et al., 2016).
Optimizing the reprogramming system using non-inva-

sive approaches, such as small-molecule treatment is a
promising strategy that may increase the reprogramming
potential. The cellular effects of small-molecule treatment
are often rapid, dose dependent, and reversible (Zhang
et al., 2012), and have potential for in situ regeneration
therapeutic interventions (Biswas and Jiang, 2016).

Recently, several methods relying fully or partially on
drug treatment to enhance cell conversion have emerged
(Federation et al., 2014). Many of these use fibroblasts as
the starting cell type, reprogrammed toward pluripotency
(Hou et al., 2013; Zhu et al., 2010) or transdifferentiated
to specialized cell types, including neurons (Ladewig
et al., 2012), endothelial cells (Sayed et al., 2015), pancre-
atic like cells (Zhu et al., 2016), cardiomyocytes (Cao
et al., 2016), hepatocytes (Lim et al., 2016), or other cell
types (Cheng et al., 2015; Li et al., 2017; Wang et al.,
2016). Such studies provide a proof of principle for drug-
based reprogramming, the exact mechanisms of which,
however, are often poorly understood, making extensive
trial-and-error unavoidable. Indeed, methods for identi-
fying small-molecule candidates include either exhaustive
screenings of drug libraries followed by marker gene
readout (Li et al., 2013) or application of drugs known to
modulate specific pathways involved in the desired lineage
commitment (Federation et al., 2014). While these
methods are promising, they are laborious and donot scale.
Whereas computational approaches to identify novel

combinations of TFs to facilitate cell reprogramming have
been developed and validated (Cahan et al., 2014; Rack-
ham et al., 2016), no similar tools exist for small molecules.
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Here, we present a methodology to automatically identify
small molecules that either alone or in combination
enhance cell reprogramming and cell conversion. We
analyzed 447 genome-wide expression profiles of un-
treated primary cells from the FANTOM5 project (Forrest
et al., 2014) together with 107,404 transcriptional re-
sponses to small-molecule treatment from the LINCS proj-
ect (Keenan et al., 2018) to identify small molecules that
drive the cell transcriptional program toward the one of
the desired lineage. We make the results available in an on-
line tool named DECCODE (Drug Enhanced Cell COnver-
sion using Differential Expression), that, when queried,
returns the top compounds predicted to enhance conver-
sion toward the desired cell type. We extensively validated
DECCODE to identify single or combined small molecules

enhancing reprogramming of human fibroblasts toward
human induced pluripotent stem cells (hiPSCs). DEC-
CODE is unbiased, as it does not rely on previous knowl-
edge, and it can scale up to identify drugs to enhance cell
conversion to any desired cell type. We make the results
available in an online tool (available at the following:
https://fantom.gsc.riken.jp/5/cellconv/), which, when
queried, returns the top compounds predicted to enhance
conversion toward a large collection of primary cell types.

RESULTS

The DECCODE approach
A schematic representation of our approach is illustrated
in Figure 1A. Given a target cell type, we constructed its

A B

C D

Figure 1. Computational identification of drugs facilitating cell conversion
(A) Workflow of the DECCODE approach. Target cell profiles are constructed from the FANTOM5 collection of human primary cell samples.
Drug-induced consensus profiles are created for each of the treated cell lines included in the LINCS database. Single drugs or drug
combinations are then prioritized based on their similarity with the target cell-type profile.
(B) In silico validation of single drugs facilitating conversion to hiPSCs. Drugs are grouped by their DECCODE scores and the Pluripotency
scores (PSs) of the drug-induced gene expression profiles within each group are computed and represented as a boxplot.
(C) In silico validation of drug combinations of increasing size facilitating conversion to hiPSCs. PSs for drugs within each of the top 30
combinations are compared with random sets of the same size (see supplemental experimental procedure for the details). Random
selection was repeated 100 times.
(D) Improvement obtained when using drug combinations of increasing size. The Spearman correlation between predicted drug
combination profiles and hiPSC profile as more drugs are added is reported in the boxplot. The red line highlights the difference between
the means of subsequent sets.
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cell-type-specific differential gene expression profile us-
ing the FANTOM5 database (Noguchi et al., 2017), the
most extensive atlas of gene expression profiles across
primary human cells (Forrest et al., 2014), thus obtaining
447 expression profiles corresponding to 145 different
cell types (see the supplementary methods). Specifically,
the target cell-type expression profile was compared
against the profiles of all the remaining cell types to
detect differentially expressed genes specific to the target
cell type. We then compared the target cell-type profile
with drug-induced transcriptional profiles obtained
from the LINCS database (GEO: GSE70138). LINCS con-
tains 107,404 differential gene expression profiles corre-
sponding to the transcriptional responses of 41 cell lines
to 1,768 different drugs spanning different concentra-
tions and time points, far exceeding any other publicly
available resource of cellular perturbations (Keenan
et al., 2018).
Since FANTOM5 and LINCS use different expression

profiling technologies, we first converted differential gene
expression profiles in both datasets to differential
pathway-based expression profiles (DPEPs) (Napolitano
et al., 2018) (supplemental experimental procedure) to
enable an integrative analysis over the two datasets. Subse-
quently, we generated a consensus profile for each drug by
merging together DPEPs across different time points and
dosages. Finally, given a cell type of interest, we searched
among the 1,768 drugs that induce a transcriptional
response similar to the expression profile of the target cell
type. The underlying hypothesis is that the selected drugs
will induce a change in gene expression in the starting
cell type by making it more transcriptionally similar to
the target cell type, and thus facilitating the cell conversion
process.

We also developed an extension of thismethod to predict
drug combinations that synergize to enhance cell conver-
sion. In previous work, we showed that combinatorial
drug treatment is effectively described by a linear combina-
tion of the individual drug responses (Rapakoulia et al.,
2017) at the transcriptional level. The same finding has
also been proven at the protein level, where protein dy-
namics in drug combinations can be explained by a linear
superposition of their responses to individual drugs (Geva-
Zatorsky et al., 2010). After confirming that the linear rela-
tionship also holds at the pathway level (supplemental
experimental procedure), we used a multivariable linear
regression model to describe the combined effect of drug
combinations. First, for each drug, we selected the profile
having the highest DECCODE score across the treated
cell lines, thus obtaining a single profile for each drug.
Thenwe used forward selection to pick out the drug subsets
yielding themost significant correlationwith the target cell
profile (supplementary methods).

Application of DECCODE to hiPSC conversion
We first applied DECCODE in the single-drug mode to
identify drugs enhancing cell reprogramming to hiPSCs.
We thus selected hiPSCs as the target cell type and DEC-
CODE returned the list of all 1,768 drugs ranked according
to their predicted efficacy in enhancing cell reprogram-
ming. We performed Drug Set Enrichment Analysis (Napo-
litano et al., 2016) of the first 25 drugs in the ranking to
identify those pathways that are consistently modulated
by most of the drugs. As a result, we observed a consistent
enrichment of pathways associated with pluripotency,
such as differentiation and proliferation (Table S1).
To further assess the validity of the DECCODE score, we

devised an in silico validation method based on assigning a
Pluripotency score (PS) to each drug according to the upre-
gulation of pluripotency-specific genes and downregula-
tion of somatic-specific genes (supplemental experimental
procedure). We then compared the DECCODE scores with
the PSs. A clear trend can be observed with top-ranked
(higher DECCODE scores) drugs exhibiting higher PSs,
and bottom-ranked (lower DECCODE scores) drugs exhib-
iting lower PSs, whereas no obvious correlation existed in
themiddle-ranked profiles (Figure 1B). The full distribution
of the DECCODE scores is reported in Figure S1A.
We then applied DECCODE in the drug combination

mode to identify drugs that can jointly enhance reprog-
ramming to hiPSCs. PS and predicted similarity to the
hiPSC profile of the top 30 drug combinations significantly
improvedwhen increasing the number of drugs, as assessed
by Spearman correlation and adjusted R2 values (Figures
1C, 1D, and S2A). However, we observed that the most sig-
nificant improvement was achieved when adding just one
additional drug and gradually decreased as we kept adding
more drugs, eventually reaching a plateau. Akaike informa-
tion criterion further confirmed that the relative goodness
of fit increased more than what would be expected by
chance asmore drugs were added to the single-drugmodels
(Figure S2B). The distribution of the transcriptional similar-
ities between the two drug profiles in each of the top 30
drug pair combinations was compared with randomly cho-
sen drug pairs (Figure S2C). The results indicated that the
two selected drugs in each combination tend to be tran-
scriptionally different. Taken together, these in silico results
suggest that drug combinations may offer an increased ca-
pacity to promote reprogramming compared with single-
drug administration.

Experimental validation of DECCODE for conversion
to hiPSCs
We set out to experimentally validate predictions of DEC-
CODE in both single-drug and drug combination mode
applied to the hiPSCs reprogramming problem. As a biolog-
ical model of reprogramming, we used human secondary
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fibroblasts harboring a doxycycline-inducible OSKM
(OCT4, SOX2, KLF4, C-MYC) gene cassette (hiF-T cells)
(Cacchiarelli et al., 2015). For the single-drug case, we
selected for experimental validation the top-ranked 25
drugs present in either of 2 widely used chemical screening
libraries (supplemental experimental procedure) that were
predicted by DECCODE to enhance the pluripotency tran-
scriptional program. In addition, we selected 20 drugs with
scores in the lower half of the total ranking for comparison.
hiF-T cells were treated with a total of 45 drugs in triplicate.
After 21 days of treatment, cells were stained for the plurip-
otency marker TRA-1-60, imaged, and cell colony number
and area were quantified for each well (see example in Fig-
ure S1D). Increases in efficacy were difficult to detect by
visual inspection due to the already highly efficient sec-
ondary reprogramming system used in the screening; how-
ever, the top-ranked drugs performed significantly better
than the lower-ranked drugs, either when considering the
number of colonies or the total area covered by the colonies
(Figure 2A). Although some drugs with predicted low effi-
cacy performed well in the screen, when ranked, the 45
tested drugs significantly correlated with the observed effi-
cacy based on colony count and covered areas combined
(Spearman r = 0.32, p = 0.033, see Figure S1B). Several
top-ranked drugs have been already associated with

enhancement of reprogramming (Table S2), including
tranylcypromine, which we previously identified as a new
positive regulator of the reprogramming process (Cacchiar-
elli et al., 2015). Another set of experimentally validated
small molecules relevant for hiPSC generation reported in
(Chen et al., 2020) (Table S3), which we analyzed as a
whole, was also ranked significantly high by DECCODE
(Kolmogorov-Smirnov D = 0.33, p = 9.36!3, see Figure S1E).
Tazobactam, an antibiotic of the beta-lactamase inhibitor

class previously unexamined in the context of cell reprog-
ramming, achieved the highest performance when consid-
ering the area covered by the colonies and the second
highest performance when considering the number of col-
onies (Figures 2A and S1C), thus ranking first when consid-
ering both area and colony number together. Tazobactam
was further validated by performing primary reprogram-
ming of human primary foreskin fibroblasts through
OSKM transduction either in the presence or absence of ta-
zobactam. Both the number of colonies and the total area
coveredby the colonies confirmed the ability of tazobactam
to enhance reprogramming to hiPSCs (Figure 2B).
For validation of the drug combinations, we focused on

the best drug pairs as ranked by DECCODE. In particular,
from the ranked list of drug pairs, we chose the top eight
combinations, including a sufficiently variant set of drugs

A B

Figure 2. Experimental validation of DECCODE to identify drugs that enhance conversion to hiPSCs
(A) Secondary reprogramming: fold change (FC) relative to controls of the number of colonies and their total area following treatment
either with the 25 drugs ranked by DECCODE at the top of the ranking (green boxes) or with 20 drugs ranked in the bottom half of the
ranking (red boxes). Dots represent the effect of individual drugs in terms of the average FC for three replicate experiments against
controls. Main panel shows the combined average of both the number of colonies (count) and their area expressed as FCs; smaller panels
report counts and areas separately.
(B) Primary reprogramming: number of colonies and percentage of their total area following treatment with tazobactam and OSKM
compared with OSKM alone (control). Dots represent the single values for each replicate.
All p-values were obtained through single-tailed Mann–Whitney U test.
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and excluding those already proven not to be effective in
single-drug experiments (supplemental experimental pro-
cedure). Finally, we experimentally tested the top eight
pairs plus two additional top-ranked drug combinations
which included tazobactam. The 10 final pairs included
16 different drugs, which were tested individually and in
combinations using the same experimental setting as
described previously. As shown in Figure 3A, the experi-
mental results demonstrate a clear trend of increasing
reprogramming efficacy from the untreated drugs to the
single-drug treatments and from the single-drug treat-
ments to the drug pair treatments. The two best performing
drug pairs included tazobactam (Figure 3B), highlighting
again the efficiency of the drug in reprogramming. The
top pair, which is a combination of tazobactam and mote-
sanib, showed a 4-fold performance improvement as
compared with untreated cells.
To create a comprehensive resource for drug-assisted cell

conversions, we applied DECCODE to the whole
FANTOM5 set of primary cells. We observed that closely
related cell types exhibit high transcriptional similarity
leading to tautological and nonspecific drug predictions.
To reduce redundancy,we thus used a two-level hybrid clus-
tering of cell types taking into consideration both knowl-
edge-driven and data-driven similarities (Figure 4). In the
first level, we applied the affinity propagation (Frey and
Dueck, 2007) algorithm to cluster primary cells using either

an ontological similarity (supplemental experimental pro-
cedures) or a transcriptional similarity, thus obtaining two
different clusterings (Figure 4). For visualization purposes,
we also performed a hierarchical clustering for both similar-
ity measures (Figure S3). In the second level, cell types that
were grouped together by both ontological and transcrip-
tional clustering, were kept in one cluster, otherwise they
were separated into distinct clusters. Finally, DPEPs of cell
types in the same cluster were merged together to create a
single consensus profile. We thus obtained 69 consensus
DPEPs corresponding to distinct ‘‘meta-cells,’’ i.e., an
ensemble of different cell types very similar in both onto-
logical and transcriptional terms (the 69 meta-cell clusters
are reported in Table S4).
We applied DECCODE to the 69 meta-cells profiles and

found several drugs experimentally proved to facilitate
cell conversions among the top 5% of ranked drugs (Table
S5). Of note, 2 small molecules (Y-27632 and PD0325901)
that were ranked among the top 20 candidates for conver-
sion into the neuronal cell type were previously experi-
mentally proven to promote neural conversion. Y-27632,
a ROCK inhibitor that assists in neuron survival, was used
in combination with six other small molecules to convert
human fibroblasts into neuronal-like cells (Hu et al.,
2015). PD0325901, a MEK-ERK inhibitor, facilitated the
direct conversion of somatic cells to induced neuronal cells
in a chemical cocktail of six compounds (Dai et al., 2015).

A B

Figure 3. Experimental validation of DECCODE to identify drug combinations that enhance conversion to hiPSCs
(A) Number of colonies and total area obtained following treatment with the top 10 drug pairs as ranked by DECCODE (blue boxes), with
each of the 16 drugs included in the 10 pairs (green boxes), and without drug treatment (red boxes). Dots represent the effects of in-
dividual samples for controls or average over triplicates for treatments. The main panel shows the combined outcome of both the number of
colonies and area normalized against the respective control average; smaller panels report counts and areas separately.
(B) Reprogramming efficacy (colonies count and area) of the drug combinations tested.
All p-values were obtained through single-tailed Mann–Whitney U test.
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Our method has been pre-computed on 69 meta-cells
representing all the primary cell types included in the
FANTOM5 database, and the top single- and multi-drug
predictions are publicly available through the DECCODE
website (https://fantom.gsc.riken.jp/5/cellconv/) to pro-
vide an extensive resource that may support and comple-
ment future chemical enhanced cell conversion studies.

DISCUSSION

Therapies based on cell reprogramming and conversion are
becoming a reality (Mandai et al., 2017; Stoddard-Bennett
and Reijo Pera, 2019) along with the need for methods
that improve efficacy and safety of these processes. In the
field of reprogramming and in general cell conversion,
the genomic integrity and safety of the approach are often
overlooked and difficult to globally evaluate. Maximizing
the efficiency and speed is not only a means to improve
the generation throughput of the cell of interest (particu-
larly important in the case of conversion to non-replicating
cells, such as neurons and hepatocytes) but also a means to
bypass clonal expansion of subtypes resulting from of
possible gain-of-function selections. The use of small mol-
ecules, rather than genetic factors, is a promising approach
to address these issues. In addition to the ultimate goal of
finding combinations that can fully convert one cell type
to another, the identification of small molecules that can
perform a partial conversion, or make the conversion
more effective, also represents an important improvement
on current methods. Here, we developed an unbiased
method, DECCODE, which does not rely on expert knowl-
edge of lineage-specific genes and pathways, scales to large
numbers of cell conversions and drugs, and relies on pub-
licly available data, thus not requiring massive screening
efforts. Our method is the first validated computational
approach for prioritizing small molecules promoting cell
reprogramming. We have applied DECCODE to 145

human primary cell types from FANTOM5 and made the
results available, providing a comprehensive resource,
including both single drugs and combinations of two drugs
predicted to facilitate conversion to a variety of cell types.
Together with such resources, we also released the full auto-
mated pipeline used for colony quantification, including
source code and high-resolution plate scans (Napolitano
et al., 2020) (https://doi.org/10.5281/zenodo.3732772).
Although the number of gene expression profiles

following drug treatment available in public databases is
substantial, the number of unique small molecules profiled
is not. Indeed, only a subset of small molecules that have
been experimentally validated to facilitate cell conver-
sions, were transcriptionally profiled in LINCS. Moreover,
considering that many of the profiled agents are kinase in-
hibitors, relevant for cancer therapy, publicly available
drug profile resources represent a small portion of the
‘‘druggable genome’’ in cell conversion applications.
Future profiling efforts that include additional libraries of
small molecules will increase the utility of our approach.
Since our method relies on the analysis of transcriptomic

data, there are some restrictions regarding the small mole-
cules that can be captured. For example, epigenetic modi-
fiers, such as HDAC inhibitors are extensively used in cell
conversions to tackle the epigenetic barriers between
different types of cells. The broad action and the nonspe-
cific transcriptional behavior (Chen et al., 2015) of these
drugs limits their identifiability by DECCODE. In contrast,
our approach gives priority to compounds exhibiting
strong transcriptional regulation toward the target cell
type. Looking forward, results from our validation experi-
ments could be used in future studies to identify and weigh
the most relevant but less transcriptionally evident path-
ways. On the other hand, it may be advisable to combine
compounds identified in this study with treatment with
epigenetic modifiers to further increase the efficacy of cell
conversion.

Figure 4. Two-level clustering to obtain
cell-type-specific consensus profiles
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Experiments on human fibroblasts confirmed the ability
of DECCODE to predict single or combined small mole-
cules facilitating cell reprogramming to iPSCs. Although
we see no reason to believe that adding small molecules
predicted by DECCODE to the reprogramming protocol
would affect pluripotency in a negative way compared
with other compounds in the reprogramming cocktails
already present, full understanding of the efficacy of DEC-
CODE for conversion to iPSCs, and other cell types, will
require deep characterization of converted cells in terms
of karyotype, pluripotency, and other relevant parameters.
Deeper examination of reprogrammed cellsmay also reveal
additional insights, as our validation experiments showed
that increased efficacy was sometimes due to increased col-
ony counts and at other times due to increased colony
sizes, which may in turn be due to different drug treat-
ments having different effects on processes, such as prolif-
eration or reprogramming kinetics. The efficiency of
reprogramming when treating cells with the best-ranked
drugs was increased when compared with the control
case and evenmore when using drug pairs. In the screening
of high- and low-ranking drugs, a secondary reprogram-
ming system highly optimized for hiPSC generation was
used and, consequently, although statistically significant,
the biological effects from drug treatment on colony for-
mation were moderately strong and in many cases hardly
visible by eye. Indeed, in the follow-up primary reprogram-
ming experiment with tazobactam, the biological and sta-
tistical effects were considerably higher as this assay is
less efficient.
The purpose of DECCODE is to provide a completely un-

biased, data-driven approach to prioritize small molecules
facilitating cell conversion. Alternative methods special-
ized for the case of specific cell types may also have utility.
We used a knowledge-based approach, the PS, as an indica-
tion of the DECCODE performance, and indeed the PS
itself, or other cell-type-specific transcriptional scoring ap-
proaches, may be useful in identifying suitable drug treat-
ments for distinct target lineages. An unbiased method
like DECCODE may identify different sets of molecules
than more targeted methods. As an example, tazobactam,
which proved to be effective in reprogramming, had a
high DECCODE score and a low PS and consequently
would have been missed by PS prioritization. Although
this does not prove that the DECCODE score is superior
to the PS in the particular case of iPSC reprogramming, it
does provide evidence that DECCODE is complementary
to knowledge-based approaches, and thus more generally
applicable.
In summary, our work demonstrates that DECCODE is

able to distinguish and prioritize small molecules based on
their potential to promote reprogramming and its useful-
ness in facilitating cell conversion should not be underesti-

mated.We identified the core reprogramming chemicals for
each lineage commitment, which could aid in establishing
the role of various smallmolecules in different cell fates.We
made our results available via a user-friendly interface to
facilitate the design of cell conversion experiments
involving chemical compounds. Our method provides a
significanthead start toward thedevelopmentof systematic
chemical-based reprogramming strategies.

EXPERIMENTAL PROCEDURES

Gene expression data
We used untreated primary cell profiles from the FANTOM5 collec-

tion and drug-induced gene expression profiles from the LINCS

collection. We selected all primary human cells having at least

two biological replicates from the FANTOM5 database (http://

fantom.gsc.riken.jp/5/data), resulting in 447 samples,which corre-

spond to 145 different cell types. Expression tables of robust CAGE

peaks for these samples were processed as follows: we kept only the

promoters located within 500 bp of known RefSeq transcripts

(87,400 promoters). We added read counts of all the promoters

sharing the same Entrez id annotation, resulting in 18,980 genes

(Figure S4A). Read counts of samples were converted in counts

per million values and averaged across the same cell type. Z score

normalization was applied to each gene across cell types to obtain

differential expression profiles for each cell type. Subsequently,

genes in every cell type were ranked according to their expression,

from the most expressed to the least expressed gene.

LINCS database is available as gene-based expression profiles.We

downloaded the fifth level of differential gene expression signa-

tures released on the GEO website (GEO: GSE70138), which in-

cludes 107,404 profiles corresponding to 1,768 different drugs in

41 cell lines, 83 concentrations, and 4 treatment durations. Data

access was performed through the cmapR package (Enache et al.,

2019). Genes in each drug profile were ranked according to their

expression, from themost upregulated to the most downregulated

gene.

Single- and multi-drug DECCODE scores
We converted LINCS and target cell-type PEPs to ranks based on

their enrichment score (from the most enriched to the least en-

riched pathway). Then, we ranked each LINCS PEP by computing

its L1 distance from the target cell-type PEP:

Dðdi; tÞ =
X250

p=1

!!di;p ! tp
!!

where di is the LINCS PEP for drug i, i = 1,., 17,259 (number of

drug-induced PEPs), t is the target cell type PEP, p = 1,., 250 (num-

ber of pathways in C2 collection). We finally converted the dis-

tance to the target cell type to a similarity measure:

Sðdi; tÞ = 1!Dðdi; tÞ

For further analysis, we considered only the top-ranked profile

for each small molecule, resulting in 1,768 profiles (number of

unique small molecules). The DECCODE score ranges from 0 to
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1, where a score close to 1 signifies a strong predicted similarity to

the target profile, whereas a score close to 0 means no predicted

similarity. Figure S1F shows the distribution of the top 30 DEC-

CODE drug scores against all the 1,768 DECCODE scores for all

meta-cell cluster profiles.

To produce DECCODE scores for drug combinations, we consid-

ered only the top-ranked PEP for each drug based on its L1 distance

to the target cell type. For each drug PEP (1,768), we fitted a simple

linear regression model and we ranked drugs based on the

Spearman correlation between fitted and observed values. We

picked the top 30 drug PEPs and searched through the remaining

drugs to find out which one should be added to the currentmodels

to best improve the Spearman correlation. Repeated occurrences of

the same drug sets in different order were discarded.We continued

to add variables to the top 30 models until we reached 10 predic-

tors. DECCODEmulti-drug score in each step is the Spearman cor-

relation between fitted and target PEPs.

Human cellular reprogramming
All the reprogramming experiments and procedures were per-

formed as described previously (Cacchiarelli et al., 2015). In sum-

mary, secondary reprogramming was performed by seeding, on a

confluent irradiated mouse embryonic fibroblast (MEF) feeder

layer, clonal TERT-immortalized secondary fibroblasts (hiF-T)

harboring a doxycycline-inducible OSKM cassette. The day after

seeding reprogramming was initiated by doxycycline supplemen-

tation and protracted for 21 days. For primary reprogramming,

BJ foreskin fibroblasts were infected with a lentivirus harboring

the constitutive OSKM cassette (pLM-fSV2A) (Papapetrou et al.,

2011) split onto an irradiated MEF feeder layer and reprogrammed

for 15 days.

The secondary reprogramming experiment to test drug combina-

tions was performed in sub-optimal conditions to allow easier iden-

tification of gain-of-function events. As the split of hiF-T at conflu-

ence above 60% deeply impinge the reprogramming efficiency,

sub-optimal conditions were obtained by splitting cells only upon

semi-confluencybefore reprogramming them, thus creating a reduc-

tion of reprogramming efficiency of at least 10 times, as evident by

the reduced colony number. At the end of each reprogramming,

quantitative analysis of colony number and area was performed us-

ing a TRA-1-60 chromogenic staining in bright field. All candidate

drugs for reprogramming were tested for the entire duration of the

reprogramming process at a final concentration of 10 nM in several

technical or biological replicates, as indicated.

Data and code availability
DECCODE top single- and multi-drug predictions for 69 meta-cells

are publicly available through the DECCODE website (https://

fantom.gsc.riken.jp/5/cellconv/). The full automated pipeline used

for colony quantification, including source code and high-resolu-

tion plate scans are available on (doi: 10.5281/zenodo.3732772).
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M., Huber, K.V.M., Schmitner, N., Kimmel, R.A., Romanov, R.A.,

et al. (2017). Artemisinins target GABAA receptor signaling and

impair a cell identity. Cell 168, 86–100.e15.

Li, W., Li, K., Wei,W., and Ding, S. (2013). Chemical approaches to

stem cell biology and therapeutics. Cell Stem Cell 13, 270–283.

Lim, K.T., Lee, S.C., Gao, Y., Kim, K.-P., Song, G., An, S.Y., Adachi,

K., Jang, Y.J., Kim, J., Oh, K.-J., et al. (2016). Small molecules facil-

itate single factor-mediated hepatic reprogramming. Cell Rep. 15,

814–829.

Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C.,

Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., et al.

(2017). Autologous induced stem-cell-derived retinal cells for mac-

ular degeneration. N. Engl. J. Med. 376, 1038–1046.

Napolitano, F., Sirci, F., Carrella, D., and Di Bernardo, D. (2016).

Drug-set enrichment analysis: a novel tool to investigate drug

mode of action. Bioinformatics 32, 235–241.

Napolitano, F., Carrella, D., Mandriani, B., Pisonero-Vaquero, S.,

Sirci, F., Medina, D.L., Brunetti-Pierri, N., and di Bernardo, D.

(2018). gene2drug: a computational tool for pathway-based

rational drug repositioning. Bioinformatics 34, 1498–1505.

Napolitano, F., Rapakoulia, T., Annunziata, P., Hasegawa, A., Car-

don, M., Napolitano, S., Vaccaro, L., Iuliano, A., Wanderlingh,

L.G., Kasukawa, T., et al. (2020). Automatic Identification of Small

Molecules that Promote Cell Conversion and Reprogramming—

Plate Scans, Colony Quantification Scripts, and DECCODE

Ranking https://doi.org/10.5281/zenodo.3672708.

Noguchi, S., Arakawa, T., Fukuda, S., Furuno, M., Hasegawa, A.,

Hori, F., Ishikawa-Kato, S., Kaida, K., Kaiho, A., Kanamori-Ka-

tayama, M., et al. (2017). FANTOM5 CAGE profiles of human

and mouse samples. Sci. Data 4, 170112.

Papapetrou, E.P., Lee, G., Malani, N., Setty, M., Riviere, I., Tiruna-

gari, L.M.S., Kadota, K., Roth, S.L., Giardina, P., Viale, A., et al.

(2011). Genomic safe harbors permit high b-globin transgene

expression in thalassemia induced pluripotent stem cells. Nat. Bio-

technol. 29, 73–81.

Rackham, O.J.L., Firas, J., Fang, H., Oates, M.E., Holmes, M.L.,

Knaupp, A.S., Suzuki, H., Nefzger, C.M., Daub, C.O., Shin, J.W.,

et al. (2016). A predictive computational framework for direct re-

programming between human cell types. Nat. Genet. 48, 331–335.

Rapakoulia, T., Gao, X., Huang, Y., De Hoon, M., Okada-Hata-

keyama, M., Suzuki, H., and Arner, E. (2017). Genome-scale regres-

sion analysis reveals a linear relationship for promoters and

enhancers after combinatorial drug treatment. Bioinformatics 33,

3696–3700.

Rosa, F.F., Pires, C.F., Kurochkin, I., Ferreira, A.G., Gomes, A.M.,

Palma, L.G., Shaiv, K., Solanas, L., Azenha, C., Papatsenko, D.,

et al. (2018). Direct reprogramming of fibroblasts into antigen-pre-

senting dendritic cells. Sci. Immunol. 3, eaau4292.

Sayed, N., Wong, W.T., Ospino, F., Meng, S., Lee, J., Jha, A., Dex-

heimer, P., Aronow, B.J., and Cooke, J.P. (2015). Transdifferentia-

tion of human fibroblasts to endothelial cells: role of innate immu-

nity. Circulation 131, 300–309.

Sekiya, S., and Suzuki, A. (2011). Direct conversion of mouse fibro-

blasts to hepatocyte-like cells by defined factors. Nature 475, 390–

393.

Smith, Z.D., Sindhu, C., and Meissner, A. (2016). Molecular fea-

tures of cellular reprogramming and development. Nat. Rev. Mol.

Cell Biol. 17, 139–154.

Soufi, A., Garcia, M.F., Jaroszewicz, A., Osman, N., Pellegrini, M.,

and Zaret, K.S. (2015). Pioneer transcription factors target partial

Stem Cell Reports j Vol. 16 j 1381–1390 j May 11, 2021 1389

http://refhub.elsevier.com/S2213-6711(21)00159-4/sref10
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref10
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref10
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref11
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref11
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref11
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref12
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref12
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref12
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref13
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref13
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref13
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref13
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref13
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref14
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref14
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref14
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref15
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref15
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref15
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref15
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref16
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref16
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref17
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref17
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref17
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref17
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref18
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref18
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref18
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref18
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref19
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref19
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref19
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref19
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref21
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref21
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref21
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref21
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref21
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref22
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref22
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref22
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref22
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref23
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref23
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref23
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref23
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref24
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref24
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref24
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref24
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref24
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref25
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref25
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref27
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref27
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref27
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref27
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref29
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref29
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref29
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref29
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref30
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref30
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref30
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref31
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref31
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref31
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref31
https://doi.org/10.5281/zenodo.3672708
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref34
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref34
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref34
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref34
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref35
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref35
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref35
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref35
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref35
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref36
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref36
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref36
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref36
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref37
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref37
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref37
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref37
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref37
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref38
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref38
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref38
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref38
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref39
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref39
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref39
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref39
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref40
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref40
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref40
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref41
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref41
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref41
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref42
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref42


DNA motifs on nucleosomes to initiate reprogramming. Cell 161,

555–568.

Stoddard-Bennett, T., and Reijo Pera, R. (2019). Treatment of Par-

kinson’s disease through personalized medicine and induced

pluripotent stem cells. Cells 8, 26.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent

stem cells from mouse embryonic and adult fibroblast cultures

by defined factors. Cell 126, 663–676.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., To-

moda, K., and Yamanaka, S. (2007). Induction of pluripotent stem

cells from adult human fibroblasts by defined factors. Cell 131,

861–872.

Wang, Y., Qin, J., Wang, S., Zhang, W., Duan, J., Zhang, J., Wang,

X., Yan, F., Chang, M., Liu, X., et al. (2016). Conversion of human

gastric epithelial cells to multipotent endodermal progenitors us-

ing defined small molecules. Cell Stem Cell 19, 449–461.

Zhang, Y., Li, W., Laurent, T., and Ding, S. (2012). Small molecules,

big roles—the chemicalmanipulation of stem cell fate and somatic

cell reprogramming. J. Cell Sci. 125, 5609–5620.

Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J.,

Zhang, K., and Ding, S. (2010). Reprogramming of human primary

somatic cells by OCT4 and chemical compounds. Cell StemCell 7,

651–655.

Zhu, S., Russ, H.A.,Wang, X., Zhang,M.,Ma, T., Xu, T., Tang, S., He-

brok, M., and Ding, S. (2016). Human pancreatic beta-like cells

converted from fibroblasts. Nat. Commun. 7, 10080.

1390 Stem Cell Reports j Vol. 16 j 1381–1390 j May 11, 2021

http://refhub.elsevier.com/S2213-6711(21)00159-4/sref42
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref42
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref43
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref43
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref43
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref45
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref45
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref45
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref46
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref46
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref46
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref46
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref47
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref47
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref47
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref47
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref48
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref48
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref48
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref49
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref49
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref49
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref49
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref50
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref50
http://refhub.elsevier.com/S2213-6711(21)00159-4/sref50

	Automatic identification of small molecules that promote cell conversion and reprogramming
	Introduction
	Results
	The DECCODE approach
	Application of DECCODE to hiPSC conversion
	Experimental validation of DECCODE for conversion to hiPSCs

	Discussion
	Experimental procedures
	Gene expression data
	Single- and multi-drug DECCODE scores
	Human cellular reprogramming
	Data and code availability

	Supplemental information
	Author contributions
	Acknowledgments
	References


