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Abstract
The forecasting of crop yield is one of the most critical research areas in crop sci-

ence, which allows for the development of decision support systems, optimization

of nitrogen fertilization, and food safety. Many tested modeling approaches can be

differentiated according to the models and data used. The models used are tradi-

tional crop models that require data that are often difficult to measure. New modeling

approaches based on artificial intelligence algorithms have proven to be of high per-

formance, flexible, and can be tested based on available data. In this study, four

independent field experiments conducted on Triticum turgidum subsp. durum Desf.

in central–southern Italy were used to train a set of machine learning (ML) algo-

rithms to predict the yield using 16 variables: fertilization, nitrogen management,

pedoclimatic, and remote sensing data. Four ML algorithms were calibrated and

validated over two independent sites, and a linear regression model was used as

a control. The calibrated models can predict the grain yield in the two regions by

using ancillary data, topsoil physical and chemical properties, multispectral drone

imagery, climatic data, and nitrogen fertilizer applied at the site. Among the four

ML algorithms, stochastic gradient boosting (root-mean-square error = 0.58 t ha−1)

outperformed others during calibration and transferability. Nitrogen application rate,

seasonal precipitation, and temperature are the most important features for predicting

wheat yield.

Abbreviations: CAP, common agricultural policy; GBM, gradient boosting machines; KNN, K nearest neighbor; LTE, long term experiment; MAE, mean

absolute error; ML, machine learning; NDRE, normalized difference red edge index; NDVI, normalized difference vegetation index; RF, random forests;

SVM, support vector machine; UAV, unmanned aerial vehicle; VI, vegetation index.
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1 INTRODUCTION

Durum wheat (Triticum turgidum subsp. durum Desf.) is a

cereal crop used in the production of pasta. It represents

approximately 5% of global wheat production in the area

planted (IGC, 2020). Durum wheat is cultivated in Italy, the

Mediterranean basin, the southwestern and northern United

States, Canada, and several other countries. Over the past 20

years, Italy has been the major durum wheat European pro-

ducer (International grain council, www.igc.int/en) sowing an

average of 1,635,764.5 ha of durum wheat (Diotallevi et al.,

2015) and producing 4.0 MT per year (Diotallevi et al., 2015).

The prediction of within-field yields is a challenge in many

rainfed agricultural systems. The ability to forecast wheat

yield can provide growers with invaluable information to

make informed decisions regarding in-season investments and

management decisions, such as the application of N fertil-

izer (Acutis et al., 2014; Padilla et al., 2020). The early

prediction of wheat yield can be valuable for planning man-

agement actions to lower environmental pressure and better

estimate market revenues. There are many methods for cereal

yield modeling, mainly based on phenology, soil, and weather

data, which also support management practices, such as

tillage, weeding, and nitrogen fertilization. On the one hand,

deterministic-based methods DSSAT (Jones et al., 2003),

APSIM (Holzworth et al., 2014; Kheir et al., 2021), Cen-

tury (Lugato et al., 2014), SALUS (Basso et al., 2011), and

ARMOSA (Valkama et al., 2020) allow for the simulation of

each compartment, soil, plant, weather, and their fluxes. There

are some drawbacks for applying these methods, such as the

massive amount of data required (Mereu et al., 2021a), need

for site-specific calibration (Hoogenboom et al., 2004), and

spatial components (Basso et al., 2001).

On the other hand, stochastic methods based on field and

remote sensing offer a new way to find a relationship between

the biotic and environmental predictors and can be deployed

in vast areas (Adamchuk et al., 2004; Chlingaryan et al., 2018;

Kayad et al., 2019).

Within-field wheat yield can vary due to several factors,

such as soil properties, occurrence of pests and diseases,

and nitrogen management (Maestrini & Basso, 2018). Vari-

ability within the same field can be due to differences in

management actions, for example, the amount of fertilizer,

crop rotation, and variety (Colecchia et al., 2015). Since 1993,

scientific research has contributed to more effective and effi-

cient management of the common agricultural policy (CAP)

through a broader range of technical support services to the

Directorate-General Agriculture and Member-State Admin-

istrations (van der Velde & Nisini, 2019). Services have

been developed to support European Union global agricultural

monitoring and food security assessments. Agricultural mon-

itoring is a crucial part of the integrated agricultural control

system (Sagris et al., 2013), which is at the core of the CAP

Core Ideas
∙ Scalable machine learning algorithms were cali-

brated and tested.

∙ Nitrogen fertilization, pedo-climatic data, and

remote sensing data are used as predictors.

∙ Stochastic gradient boosting algorithm performed

better than random forest.

∙ Nitrogen fertilization, precipitation, and tempera-

ture are the essential features.

∙ The stochastic gradient boosting (root-mean-

square error = 0.54 t ha−1) outperformed other

algorithms.

implementation in Europe. Monitoring activities are based

on expertise in crop modeling, agro-meteorology, sampling

methods, environmental geospatial analysis, econometrics,

and European and global statistical services. Monitoring

activities often require the development of control systems,

such as land parcel management and remote sensing checks,

for efficient implementation of the CAP. Additional mod-

eling exercises are helpful for testing particular conditions

to support rural development in coping with climate change

(Mereu et al., 2021) and searching for adaptation strategies

for agricultural-related policies. Long-term field trials offer

a valuable source of information for implementing in-season

management such as N fertilizer applications. However, these

are spatially restricted methods that do not account for pedo-

climatic differences. To deepen our understanding of these

aspects, multi-site long-term trials are complementary to draw

a big picture of climate-soil variability for wheat yield fore-

casts. Combining proximal and remote sensing with other data

sources as input for the plot-scale yield forecast model is a

crucial point to improve yield prediction accuracy (Fioren-

tini et al., 2021). In this field of agronomy research, there

has been an increase in the number of studies that have been

recently published. Filippi et al. (2020a) have assessed the

potential of large yield-mapping datasets and diverse spatial

covariates to forecast mid- and late-season within-field cotton

yield.

The use of machine learning (ML) approaches can capture

nonlinear relationships and has shown a strong ability to pre-

dict crop yield (Paudel et al., 2022a; Shendryk et al., 2021)

when compared with traditional linear approaches (Filippi

et al., 2019a; Shahhosseini et al., 2020). Furthermore, among

the widely used algorithms, random forests (RF) and gradient

boosting machines (GBM) have shown high predictive ability

and improved accuracies (Leo et al., 2021). Artificial neu-

ral networks are also widely used in predictive modeling and

soil mapping (Schillaci et al., 2021). ML is limited by how

 14350645, 2024, 3, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21279 by C

ochraneItalia, W
iley O

nline L
ibrary on [14/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.igc.int/en


1052 FIORENTINI ET AL.

F I G U R E 1 Location and experimental designs of the sites under analysis.

algorithms are trained with datasets that fail to completely

represent possible combinations that can be found in the real

world. When this occurs, we have a very unstable predictive

performance (Chlingaryan et al., 2018).

For Italian durum wheat systems, similar investigations

to evaluate the potential of ML algorithms with vegetation

indices at different phenological stages, pedoclimate data, and

N fertilization levels to predict within-field yield are limited.

This study aimed to develop a machine-learning framework

for predicting the durum wheat yields based on topdressing

nitrogen levels, pedoclimatic data, and remote sensing data.

Soil organic carbon, bulk density, 11 different N fertilization

levels, and vegetation indices acquired using an unmanned

aerial vehicle (UAV) platform at four sites in central–southern

Italy.

2 MATERIALS AND METHODS

2.1 Experimental site’s overview

The study contained four sites located in the Marche region

and two in the Basilicata region (Figure 1). All sites had

different experimental designs and durum wheat (Triticum

turgidum subsp. durum Desf.) were grown for several years

(Table 1).

The climate of the Marche experimental sites is meso-

Mediterranean, whereas that of the two sites in Basilicata

are Mediterranean based on the classification provided by the

Walter and Leith climate diagram (Figure 2). Historical and

in-season weather data are reported in Table 2.

All agronomic management activities performed at the four

experimental sites during the growing season are shown in

Table 2.

2.2 Long-term experiment site

The long-term experimental (LTE) site was located in the

“Pasquale Rosati” experimental farm of the Polytechnic Uni-

versity of Marche in Agugliano, Italy (43˚32′ N, 13˚22′ E, 100

m asl). This site is characterized by a mean annual precipita-

tion of approximately 749 mm and a mean annual temperature

of 15.5˚C with monthly means ranging from 6˚C in February

to 26˚C in July.

During the 2017–2018 crop growing season, the highest

cumulative precipitation (647 mm) was recorded, whereas

the 2018–2019 and 2019–2020 growing seasons recorded a
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FIORENTINI ET AL. 1053

T A B L E 1 Historical and in-season weather data of the four experimental sites.

Years November December January February March April May June July
LET site
Cumulative rainfall (mm)

2017–2018 24 96 29 173 143 37 95 48 2

2018–2019 0 61 70 22 36 59 165 1 0

2019–2020 0 0 4 17 158 119 142 61 5

Long-term data

2000–2020

78 74 55 60 69 54 55 53 37

Mean temperature (˚C)

2017–2018 10 7 9 5 9 16 19 23 26

2018–2019 5 7 5 8 12 13 15 25 28

2019–2020 13 6 7 11 10 14 19 22 25

Long-term data

2000–2020

12 6 7 6 10 12 19 23 26

Marche 1
Cumulative rainfall (mm)

2019–2020 13 64 30 26 128 44 44 50

Long-term data

2000–2020

96 84 50 48 51 65 51 47

Mean temperature (˚C)

2019–2020 12.6 9 6.5 10.1 10.1 13.5 18.5 21.8

Long-term data

2000–2020

12.3 9.2 7.9 7.7 10 12.8 17.4 21.7

Basilicata 1
Cumulative rainfall (mm)

2020–2021 44 24 31 31 1 1 1

Long-term data

2000–2020

64 54 61 50 38 33 33

Mean temperature (˚C)

2020–2021 5.8 7.7 7.3 9.9 16 23.1 26

Long-term data

2000–2020

8.6 8.8 10.9 13.7 18 23.4 26

Basilicata 2
Cumulative rainfall (mm)

2019–2020 79 69 44 31 140 46

Long-term data

2000–2020

64 54 61 50 38 33

Mean temperature (˚C)

2019–2020 8 8.5 11.5 16.1 20 23.3

Long-term data

2000–2020

8.6 8.8 10.9 13.7 18 23.4

Abbreviation: LTE, long term experiment (1994–2022).

contraction of 36% (414 mm) and 22% (506 mm), respec-

tively. The mean annual temperature in the 2019–2020

growing season was 1˚C higher than the previous growing

seasons (Table 1).

The soil of the study area has a silt-clay texture (Calcaric

Gleyic Cambisols), 9.1 g kg−1 of organic carbon, 13.8 mg

kg−1 of phosphorus (Olsen-P), 323.2 mg kg−1 of potassium,

26.7 cmol(+) kg−1 of cation exchange capacity, pH of 8.1,

29.6% of field water capacity, 17.6% of wilting point, and a

slope of approximately 10%.

The LTE, established in 1994 (Orsini et al., 2019), consists

of a rainfed 2-year rotation of durum wheat cultivar Tyrex
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1054 FIORENTINI ET AL.

F I G U R E 2 Walter and Lieth climate diagram of the four experimental sites (2000−2020 long-term series).

and maize (Zea mays L.) cv. DK440 (hybrid, FAO Class 300,

Dekalb). Crop rotation was duplicated in two adjacent fields to

allow all crops to be present each year (Figure 1). Within each

field, three soil management (main plot, 1500 m2 each) sys-

tems (conventional tillage; minimum tillage; and no-tillage)

and three N fertilizer (sub-plot, 500 m2 each) levels were

arranged according to a split-plot experimental design with

two randomized blocks and were repeated in the same plots

every year. Conventional tillage, which is representative of

the business-as-usual tillage practice in the study area, and

minimum tillage plots were plowed along the maximum slope

every year by a mouldboard (with two plows) at a depth of

40 cm or a chisel at a depth of 25 cm in autumn for wheat

and in summer for maize. The seedbed was prepared by dou-

ble harrowing prior to sowing. Durum wheat was sown at the

beginning of autumn at a seeding rate of 220 kg ha−1, with

a row distance of 0.17 m. Each year, N fertilization in the

form of urea (46%) was split into two applications: 50% at

the end of tillering and 50% before head emergence. Weeds,

pests, and diseases were controlled chemically. The sequences

of the agronomic practices applied at LTE are reported in

Table 2.

The no-tillage soil was left undisturbed, except for sod

seeding, crop residuals, weed chopping, and total herbicide

spraying before seeding. The three N fertilizer treatments

were N0, N90, and N180, corresponding to 0, 90, and 180 kg

N ha−1, respectively, distributed in two rates for wheat. The

unfertilized N0 treatment was used as the control. The N90

treatment was compliant with the agri-environmental mea-

sures adopted within rural development plans at the local scale

(https://www.regione.marche.it/Regione-Utile/Agricoltura-

Sviluppo-Rurale-e-Pesca/Produzione-Integrata#Tecniche-

Agronomiche). The N180 treatment represented conventional

management.

2.3 Marche 1 experiment description

The Marche 1 experiment was conducted during the 2019–

2020 growing season at the Guzzini private farm in Recanati
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T A B L E 2 Agronomic management activities at the four experimental sites over the growing seasons.

Agro-technique 2018 2019 2020 2021
LET site
Ploughing 10/02/2017 09/26/2018 11/11/2019

Harrowing and seedbed preparation 11/20/2017 11/01/2018 11/25/2019

Sowinga 11/21/2017 11/30/2018 12/27/2019

Weed control: Glyphosate 03/28/2018 03/08/2019 02/10/2020

N fertilization 03/29/2018 03/18/2019 02/25/2020

04/30/2018 05/02/2019 04/09/2020

Pest control: Azoxystrobin, cyproconazole 04/24/2018 04/22/2019 04/20/2020

Harvest 07/06/2018 07/07/2019 07/06/2020

Marche 1
Ploughing 10/02/2019

Harrowing and seedbed preparation 11/11/2019

Sowing 11/15/2019

Weed control: Glyphosate 04/22/2020

N fertilization 01/20/2020

03/20/2020

Pest control: Azoxystrobin, cyproconazole 04/22/2020

Harvest 06/28/2020

Basilicata 1
Ploughing 28/09/2020

Harrowing and seedbed preparation 14/12/2020

Sowing 18/01/2021

Weed control: Glyphosate and

metsulfuron-methyl

23/03/2021

N fertilization 14/12/2020

20/04/2021

Pest control: Pyraclostrobin 23/03/2021

Harvest 19/07/2021

Basilicata 2
Harrowing and seedbed preparation 16/12/2019

Sowing 07/01/2020

Weed control: Glyphosatea and

Metsulfuron-methyl

15/03/2020

N fertilization 16/12/2019

14/04/2020

Pest control: Pyraclostrobin 15/03/2020

Harvest 20/07/2020

Abbreviation: LTE, long-term experiment.
aSeed rate: 220 kg ha−1, row spacing: 0.17 m.

(43˚23′ N, 13˚31′ E, 115 m asl), central Italy. The mean annual

precipitation is 719 mm and the mean annual temperature is

16.8˚C, with monthly means ranging from 7.7˚C in February

to 24.7˚C in August. During the 2019–2020 crop growing sea-

son, the farm site was characterized by a seasonal rainfall of

approximately 400 mm (approximately 100 mm lower than

the precipitation recorded at Agugliano weather station during

the same growing season) and by mean temperatures 1.5˚C

lower than the temperature recorded at Agugliano (Table 1).

The soil of the farm site has a silt-clay texture, Calcaric Gleyic

Cambisols (Seddaiu et al., 2016), with 8.4 g kg−1 of organic

carbon, 10.3 mg kg−1 of phosphorus, 283.2 mg kg−1 of
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1056 FIORENTINI ET AL.

potassium, 28.0 meq 100 g−1 of cation exchange capacity, pH

of 8.1, 28.5% of field water capacity, 16.2% of wilting point,

and a slope of about 6%.

The Marche 1 site was chosen because of the similar agro-

nomic management, soil, and weather conditions. Indeed, the

Marche 1 site had a rainfed 2-year crop rotation with durum

wheat cv. Tyrex and maize cv. DK440 (Hybrid, FAO class

300). The soil was managed using CT, where two N lev-

els were applied to two adjacent areas (Figure 1). Seedbed

preparation was performed as reported at the LTE site, where

plowing was performed along the maximum slope by a

mouldboard plow (with two plows) at a depth of 0.4 m

in autumn. Before seeding, a harrowing operation was per-

formed while sowing was performed at a seed rate of 240 kg

ha−1 with a row spacing of 0.13 m. The two N levels corre-

sponded to 90 and 180 kg N ha−1 and were distributed at two

rates. Each rate consisted of half of the total N and it was pro-

vided to the crop in the form of urea (46%). The first rate was

provided at the end of tillering and the last rate before head

emergence. Weeds, pests, and diseases were controlled chem-

ically. The sequences of the agronomic practices applied at

the farm site are shown in Table 2.

2.4 Basilicata 1 experiment description

The Basilicata 1 experiment was conducted during the 2020–

2021 growing season at the “Az. Agricola Pugliese” private

farm located near Laterza (40˚42′ N, 16˚42′ E, 362 m asl),

southern Italy. According to the Walter and Leith climatic

classes, the climate of the study area (Figure 2c) was Mediter-

ranean. The mean annual precipitation is 669 mm, and the

mean annual temperature is 18˚C, with monthly means rang-

ing from 8.6˚C in January to 26.4˚C in July. During the

2020–2021 crop growing season, the farm site was character-

ized by a seasonal rainfall of 133 mm and a mean temperature

of 13.7˚C (Table 1). The soil of the Basilicata site 1 has a

silt-clay texture (Haplic Calcisol) with 9.1 g kg−1 of organic

carbon, 20.5 mg kg−1 of phosphorus (Olsen-P), 75.2 mg

kg−1 of potassium, 17.88 cmol(+) kg−1 of cation exchange

capacity, pH of 8.25, 33.4% of field water capacity, 20.6% of

wilting point, and a slope of approximately 2%. The experi-

ment was conducted using durum wheat (var. Kanakis, RAGT

Semences, France).

Seedbed preparation was performed as reported in the LTE

and Marche 1 sites, where plowing was performed along

the maximum slope using a mouldboard plow (with two

plows) at a depth of 0.30 m in autumn. Before seeding,

a harrowing operation was performed in December, while

sowing was done in January with a seed rate of 240 kg

ha−1 with a row spacing of 0.13 m. Weed control was

performed in March using glyphosate and metsulfuron-

methyl, while Pyraclostrobin was used for pest control. An

experimental trial for precision agriculture was conducted

during the 2020–2021 growing season. Variable-rate N fer-

tilization was performed with a prescription map, as shown

in Figure 1, where two homogenous areas were identified by

the spatial variability of the soil with respect to physical and

chemical characteristics (Denora et al., 2022).

The amount of N applied (urea 46%) was calculated based

on the estimated N uptake by the crop and the soil characteris-

tics. The N levels provided to the crop were 120 kg N ha−1 and

95 kg N ha−1, split into two rates along the crop cycle, while

within the two areas, we identified plots of 25 m2 where the N

levels applied were 150 kg N ha−1and 0 kg N ha−1 (Figure 1).

The sequences of the agronomic practices used at the farm site

are shown in Table 2.

2.5 Basilicata 2 experiment description

The Basilicata 2 experiments were carried out during the

2019–2020 growing season at the “Az. Agricola F. lli Lillo”

private farm located in Matera (40˚42′ N, 16˚39′ E, 401 m

asl), southern Italy. According to the Walter and Leith cli-

matic classes, the climate of the study area (Figure 2d) was

Mediterranean. The mean annual precipitation is 670 mm, and

the mean annual temperature is 18˚C, with monthly means

ranging from 8.6˚C in January to 23.4˚C in June. During the

2019–2020 crop growing season, the farm site was character-

ized by a seasonal rainfall of 409 mm and a mean temperature

of 14.5˚C (Table 1). The soil of the Basilicata site 2 has a

silt-clay texture (Haplic Vertisol) with 11.6 g kg−1 of organic

carbon, 11.3 mg kg−1 of phosphorus (Olsen-P), 185.2 mg

kg−1 of potassium, 21.2 cmol(+) kg−1 of cation exchange

capacity, pH of 8.2, 32.2% of field water capacity, 18.9% of

wilting point, and a slope of approximately 3%. The exper-

iment was conducted using durum wheat (var. PR22D89,

Pioneer Hi-Bred, Italy).

Seedbed preparation was performed as reported at the LTE,

Marche 1, and Basilicata 1 sites, where plowing was per-

formed along the maximum slope by a mouldboard plow

(with two plows) at a depth of 0.30 m in autumn. Before

seeding, a harrowing operation was performed in December,

while sowing was done in January with a seed rate of 240 kg

ha−1 with a row spacing of 0.13 m. Weed control was per-

formed in March using glyphosate and metsulfuron-methyl,

while Pyraclostrobin was used for pest control. An experi-

mental trial for precision agriculture was conducted during

the 2019–2020 growing season. Variable-rate nitrogen fertil-

ization was performed with a prescription map, as shown in

Figure 1, where two homogenous areas were identified by

the spatial variability of the soil with respect to physical and

chemical characteristics (Denora et al., 2022).

The amount of N applied (ammonium nitrate, 26%) was cal-

culated based on the estimated nitrogen uptake by the crop and
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FIORENTINI ET AL. 1057

T A B L E 3 Experimental sites design and test areas description.

Site Number of samples Treatments Area of samples (m2) Years of experiment Total
LTE 18 N0 1 3 (2018, 2019, 2020) 162

18 N90 1 3 (2018, 2019, 2020)

18 N180 1 3 (2018, 2019, 2020)

Marche 1 6 N90 1 1 (2020) 18

12 N222 1 1 (2020)

Basilicata 1 6 N0 1 1 (2021) 18

3 N95 1 1 (2021)

3 N120 1 1 (2021)

6 N150 1 1 (2021)

Basilicata 2 6 N40 1 1 (2020) 21

6 N118 1 1 (2020)

3 N133 1 1 (2020)

3 N139 1 1 (2020)

3 N150 1 1 (2020)

Abbreviation: LTE, long-term experiment.

the soil characteristics. The N levels provided to the crop were

150, 139, 133, and 118 kg N ha−1, whereas within the two

areas, we identified plots of 4 m2 where the N levels applied

were 40 kg N ha−1 (Figure 1). The sequences of the agronomic

practices used at the farm site are shown in Table 2.

2.6 Proximal sensing measurements

To follow whole crop development, three phenological phases

have been defined to perform UAV multispectral image acqui-

sition. Multispectral images were acquired at crop tillering,

Zadoks Scale 22 (ZS22; Zadoks et al., 1974), stem elonga-

tion, Zadoks Scale 35 (ZS35), and anthesis-Zadoks Scale 60

(ZS60) to compute the normalized difference vegetation index

(NDVI) and normalized difference red edge index (NDRE).

At crop maturity, Zadoks Scale 92 (ZS92), following the

approach of Fiorentini et al. (2019). The test areas were ran-

domly selected and georeferenced using the Leica Zeno 20

(Leica Geosystem) for each experimental site. Grain yield

(t ha−1) was measured for each test area. The grain yield (t

ha−1), expressed in dry matter, was measured using a labo-

ratory thresher for each test area (1-m long row). The total

number of test areas for each site is reported in Table 3.

2.7 Unmanned aerial vehicle image
acquisition and elaboration

Multispectral images were acquired at approximately 12:00

am using two different UAV platforms and multispectral

cameras. For the Marche region sites, multispectral images

were acquired using the MAIA S-2 multispectral camera

(SAL Engineering) to compute NDVI and NDRE using the

following equations:

NDVI = (NIR − Red)
(NIR + Red)

(1)

NDRE = (NIR − Red EDGE)
(NIR + Red EDGE)

(2)

For the Basilicata region sites, multispectral images were

acquired using the Parrot Sequoia multispectral sensor (Parrot

Drone SAS) to compute NDVI and NDRE. Both UAVs were

equipped with an incident light sensor to avoid sun radiation

variation during flight and perform better imagery acquisition,

recording the light variation, and then correcting the spectral

bands. Moreover, to obtain images with better spatial accu-

racy, ground control points were positioned in the area under

investigation and then georeferenced before each flight oper-

ation. The relevant flight settings for each experimental site

are listed in Table 4.

Each image acquired by a UAV flight requires an image

processing operation for geometric correction, coregistration,

and radiometric correction, conversion to the proper format

file, and preparation of all image datasets for the orthomosaic

map generation process. The image processing was com-

posed of the following three main steps: (1) orthomosaic

reflectance map generation, (2) computation of the vegeta-

tion indices (VIs) map, and (3) data extraction. After the

flight, the raw images were exported from the multispec-

tral cameras to the computer. Agisoft Metashape (Agisoft

LLC) was used to generate the orthomosaic reflectance map.

The software was based on the structure-from-motion algo-

rithm (Verhoeven, 2011). To complete the second and third
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FIORENTINI ET AL. 1059

main steps, the orthomosaic reflectance map was imported

into R statistical software (Core Team, 2014), and then the

“stack” function of the raster R package (Hijmans et al.,

2011) was used. Based on previous studies (Fiorentini et al.,

2021; Orsini et al., 2019a, 2020; Pro et al., 2021), NDVI and

NDRE are VIs with a high correlation with durum wheat crop

parameters and are computed using Equations (1) and (2),

where Red (665 nm) is the red band, Red Edge is the red-

edge spectral band (705 nm), and NIR is the near-infrared

spectral band (865 nm). To extract the NDVI and NDRE val-

ues only at the points where the sampling was obtained, we

imported a .xlsx file containing the georeferenced positions

of samples by using the “read_excel” function of the readxl
R package (Wickham, 2016). Then, the “extract” function

of the raster R package (Hijmans et al., 2011) was used to

extract the values in a data frame format and the created data-

frame object was exported in a CSV file format using the

“write.csv” function of the utilis R package (Wickham et al.,

2019).

2.8 Soil data

Soil organic matter was determined according to the mod-

ified Walkley–Black method (Walkley & Black, 1934); the

Van Bemmelen factor (= 1.724) has been used to obtain soil

organic carbon; soil texture according to the pipette method

(Gee & Bauder, 1986); and available phosphorous (Olsen,

1954), potassium (Della Chiesa et al., 2019), and cation

exchange capacity (Rhoades, 1983). The ratio of carbon to

nitrogen (C/N), organic matter, and nitrogen (N) content were

measured for each experimental site. Thirty six samples were

acquired at the LTE site, six soil samples were acquired at

the Marche 1 site, six soil samples were acquired at Basilicata

1, and six soil samples were acquired at Basilicata 2. All soil

samples were acquired before sowing at each site under analy-

sis. Only soil organic carbon, N, and C/N ratio have been used

as variables.

2.9 Modelling approach

The data provided to the different ML algorithms are com-

prehensive in fertilization management, climatic data such

as temperature and precipitation, and chemical properties of

the soil and VIs. This allows us to provide all the available

data to the different ML algorithms to better describe the

weather–soil–crop system (Figure 3).

The fertilization management input is related to the N input

(kg N ha−1) provided to the crop for all sites, and all fertiliza-

tion management information is reported in Table 3. Climatic

data such as the mean temperature (˚C) and the sum of precip-

itation (mm) were calculated from the UAV flight performed

at ZS22 to the UAV flight performed at ZS60 by using the

free accessible climate data NASA Prediction of Worldwide

Energy Resources (POWER) using the NASA POWER R

package (Sparks, 2018).

The NASA POWER climate data are used in many deter-

ministic models. Moreover, this allows us to scale the use

of this developed model to the regional level because NASA

POWER covers the entire globe.

The NDVI and NDRE (Fiorentini et al., 2021; Orsini et al.,

2019, 2020; Pro et al., 2021) can be calculated from satellite

images, such as the Copernicus Satellite System, which covers

the entire globe or commercial satellite systems.

To provide a temporal component and thus the crop growth

development to the ML algorithms, the difference in the val-

ues of the NDVI and NDRE between the three UAV flights

(ZS22, ZS35, and ZS60) was calculated using the following

equations:

Δ NDRE 35 22 = NDRE ZS35 − NDRE ZS22 (3)

Δ NDRE 60 35 = NDRE ZS60 − NDRE ZS35 (4)

Δ NDRE 60 22 = NDRE ZS60 − NDRE ZS22 (5)

ΔNDVI 35 22 = NDVI ZS35 − NDVI ZS22 (6)

Δ NDVI 60 35 = NDVI ZS60 − NDVI ZS35 (7)

Δ NDVI 60 22 = NDVI ZS60 − NDVI ZS22 (8)

2.10 Machine learning algorithms

Five different ML methods were compared: (1) linear model

(LM) as the benchmark algorithm, (2) support vector machine

(SVM; Cortes & Vapnik, 1995), (3) K nearest neighbors

(KNN; Dasarathy, 1990), (4) RF (Svetnik et al., 2003), and

(5) stochastic gradient boosting (Friedman, 2002). These ML

algorithms were chosen because they can be easily com-

pared using the scientific literature (Chlingaryan et al., 2018).

An SVM has the potential to resolve the problem of over-

fitting when analyzing high-dimensional data to solve both

regression (Chlingaryan et al., 2018) and classification tasks

(Yang et al., 2016), such as the prediction of nitrogen con-

tent and yield or image classification crop-weed. The SVM

algorithm was optimized by adjusting the regularization con-

stant, and the best model was selected based on the lowest

root-mean-square error (RMSE).
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1060 FIORENTINI ET AL.

F I G U R E 3 Source data and machine learning approach. NDRE, normalized difference red edge index; NDVI, normalized difference

vegetative index; UAV, unmanned aerial vehicle.

T A B L E 5 Algorithm name, abbreviation, R package used, and list of the hyperparameters optimized.

Algorithm Abbreviation R package Tuning hyperparameter
Linear model LM base Intercept

Support vector machine SVM kernelab regularization constant

K nearest neighbors KNN kknn kmax, distance, kernel

Random forest RF random forest Mtry

Stochastic gradient boosting GBM gbm ntrees, interaction.depth,

shrinkage, n.minobsinnode

T A B L E 6 Summary statistics of the measured grain yield (t ha−1) of the four experimental sites.

Site Mean Standard deviation Maximum Minimum Interquartile range
LTE 3.75 1.72 6.85 0.71 2.67

Marche 1 5.5 0.73 6.52 4.02 1.25

Basilicata 1 3.62 1.29 4.87 1.44 2.2

Basilicata 2 5.18 0.88 6.67 3.45 0.89

Note: Model calibration and transferability.

Abbreviation: LTE, long-term experiment.

The KNN is an intuitive algorithm that classifies or pre-

dicts unlabeled instances using examples with known labels

(L. Zhang et al., 2010). KNN attempts to find the k closest

instances in the training set and assigns the instance to the

label that appears most frequently within the k-subset, which

can be done by taking votes if the values of the target func-

tion are discrete or by computing the mean if the values are

continuous (Mitchell, 1997).

RF use an ensemble-learning method consisting of many

decisions or regression trees and (Breiman, 2001; Kim & Lee,

2016) a bagging technique to split the dataset into homoge-

nous subsets (trees) in parallel. When building each tree, RF

randomly samples the training data, and a random subset of

features is used to create a predictive model. Final predictions

are made by combining (bagging) all trees/models and using

the average predicted results.

Similar to RF, stochastic gradient boosting uses an ensem-

ble learning method but uses boosting rather than bagging.

Model predictions are improved by sequentially converting

weak learners (variables) that are poorly correlated with the

target variable into strong and well-correlated learners (Fried-

man, 2002a). The GBM algorithm was tuned by adjusting the

maximum tree depth (interaction depth), number of boosting

iterations or trees (ntrees), shrinkage, and minimum terminal

node size (n.minobsinnode), and the model with the lowest

RMSE was selected.
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FIORENTINI ET AL. 1061

All ML model hyperparameters were adjusted using a 15-

grid search and fivefold cross-validation. The models were

evaluated against observed yields using the coefficient of

determination (R2), RMSE, and mean absolute error (MAE).

Moreover, the varImp function of the caret R package was

used to visualize the variable importance to describe which

covariate contributed the most to improve the accuracy of

the models (Kuhn, 2008). The permutation-based variable

importance was used (Altmann et al., 2010), which offers

several advantages. It is a model-agnostic approach for

assessing the influence of an explanatory variable on a

model’s performance. The plots of the variable importance

measures are easy to understand because they are compact

and present essential variables in a single graph. These

measurements can be compared between models and may

lead to interesting insights.

By contrast, in regularized regression models, the effect

of one variable may dominate the impact of other correlated

variables. The main disadvantage of the permutation-based

variable importance measure is its dependence on the random

nature of the permutations. Consequently, different permuta-

tions generally produce different results. Moreover, the value

of the measure depends on the choice of loss function.

To compare the performances of the algorithms, the caret

R package (Kuhn, 2008) was adopted. This allows for the use

of different algorithms in the same modeling framework. The

R package used to create the models is reported in Table 5.

The algorithms were trained based on the LTE and Basili-

cata 1 experimental sites with 183 data points. In contrast, the

Marche 1 and Basilicata 2 experimental sites were chosen as

test datasets to measure the accuracy of the models with 36

data points.

3 RESULTS

3.1 Summary statistics

The results show that the grain yield (t ha−1) obtained from

the four sites is different, with a mean value of 3.75 t ha−1

for the LTE site, 5.50 t ha−1 for the Marche 1 site, 3.62 t

ha−1 for Basilicata 1 site, and 5.18 t ha−1 for the Basilicata 2

site (Table 6). Instead of considering the interquartile range,

we had a higher interquartile range for Agugliano (2.67) and

Basilicata 1 (2.20) and a lower interquartile range Marche 1

(1.25) and Basilicata 2 (0.89).

3.2 Model calibration and transferability

The results of the fivefold cross-validation are presented in

numerical format in Table 7.

The GBM and RF models obtained significantly lower

RMSE and MAE values and considerably higher R2 values

compared with the LM, SVM, and KNN models.

T A B L E 7 Machine learning algorithms, abbreviation, root mean

square error (RMSE), mean absolute error (MAE), and r squared value.

Model Abbreviation RMSE MAE R2

Linear model LM 0.68 0.55 0.85

Support vector machine SVM 0.69 0.55 0.85

K nearest neighbors KNN 0.65 0.47 0.86

Random forest RF 0.47 0.37 0.93

Stochastic gradient

boosting

GBM 0.48 0.37 0.92

The results demonstrate that the GBM and RF models per-

formed better than the other models evaluated in this work,

with RMSE values of 0.48 t ha−1 and 0.47 t ha−1, respec-

tively, whereas the LM, SVM, and KNN models obtained

RMSE values of 0.68, 0.69 and 0.65 t ha−1 , respectively. The

hyperparameter for each model is listed in Table 8.

Model transferability was tested using a dataset that did

not include the models during the training procedure (Chol-

let & Allaire, 2018). Table 9 lists the transferability error

performance of the model.

The results demonstrate that the GBM model performed

better than the other models (Table 9) as it obtained lower

RMSE and MAE values and considerably higher R2 values

compared with the other models.

GBM obtained lower RMSE values of 0.3, 1.02, 0.5, and

0.41 for RF, KNN, SVM, and LM, respectively. In compari-

son, the worst model in terms of metric transferability errors

was KNN, which had an RMSE of 1.60, which was unaccept-

able considering the interquartile range of the Marche 1 and

Basilicata 2 datasets. The GBM also had a lower confidence

interval than the other models (Figure 4).

3.3 Feature importance

The variable importance of all the models is shown in

Figures 5–7. The nitrogen variable was the most important

feature in all models except the linear model. Based on of

the feature importance of the ML models, the three most

important variables in descending order were nitrogen, pre-

cipitation, and temperature. While considering the feature

importance of the best model, such as the GBM, the five most

important features are nitrogen management, precipitation,

temperature, nitrogen soil content, and NDVI ZS22.

4 DISCUSSION

4.1 Model calibration and transferability

In this study, we compared the capability of predicting

durum wheat yield in central–south Italy using several

ML algorithms that incorporate nitrogen fertilization level,
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1062 FIORENTINI ET AL.

T A B L E 8 Hyperparameter definition for the model calibration procedure.

Model Abbreviation Tuning hyperparameter
Linear model LM Intercept = True

Support vector machine SVM Regularitation constant = 1

K nearest neighbors KNN Kmax = 5, distance = 2,

kernel = optimal

Random forest RF mtry = 31

Stochastic gradient boosting GBM n. trees = 100, interaction depth = 3,

shrinkage = 0.1, n.

minobsinnode = 10

T A B L E 9 Transferability models error metric.

Model Abbreviation RMSE MAE R2

Linear model LM 0.99 0.81 0.56

Support vector machine SVM 1.08 0.94 0.43

K nearest neighbors KNN 1.60 1.14 0.03

Random forest RF 0.81 0.66 0.71

Stochastic gradient boosting GBM 0.58 0.48 0.84

Abbreviation: MAE, mean absolute error; RMSE, root mean square error.

pedoclimatic, and remote sensing data as source data. Pre-

vious studies have primarily focused on the use of on-farm

or remote-sensing data sources (Feng et al., 2020; Haghverdi

et al., 2018; Huang et al., 2016; Meng et al., 2019).

In Greece, Dietrich et al. (2022) used two modeling

approaches to predict durum wheat yield. The first approach

used a multiple linear regression model trained with the

enhanced vegetation index (EVI) and the normalized multi-

band drought index, and the second used the sentinel 2 bands

for several dates as input of three ML algorithms: RF, KNN,

and GBM. The RF and KNN models achieved higher accuracy

with R2
> 0.87 and RMSE < 455 kg ha−1. In this study, data

on pedoclimate and fertilization levels were provided to the

algorithms to be trained. In Mexico (Gómez et al., 2021), the

performance of eight different algorithms to predict durum

yield with climate and remote sensing data was evaluated

using feature and no-feature selection methods. The authors

showed that RF with no feature selection achieved an R2 of

0.84.

Other studies have focused on publicly available datasets

but were either conducted on one field site or neglected the

squaring growth stage when N fertilizer is commonly applied

(Filippi et al., 2020; Nguyen et al., 2019).

In the current study, a combination of different sources

improved the model’s performance. These findings agree with

other studies, where more data improved yield predictions

(Filippi et al., 2019; 2020; Nguyen et al., 2019), particularly

with Paudel et al. (2022), which reported a median normalized

RMSE of 7.49% for soft wheat.

Moreover, the in situ remote sensing used in this study

could be replaced by free multispectral satellite data, such as

Sentinel 2.

During the calibration model procedure that used fivefold

cross-validation, the GBM and RF models were found to be

the best models (Table 7). This is in agreement with other

studies predicting yield or other crop parameters (Kayad et al.,

2019; Liang et al., 2015; Richetti et al., 2018; Wu et al., 2019).

The superior performance of GBM and RF compared to the

other models is attributed to how each ML algorithm builds

the optimal model. Both GBM and RF use ensemble learning

methods, in which several models are combined to improve

the overall model performance (Zhang & Ma, 2012). In GBM,

weak learners (variables) are sequentially converted to strong

learners to decrease bias from highly correlated variables. In

contrast, RF generates models (trees) from a random subset of

the training data and averages all trees to reduce the variance

(Leo et al., 2021).

To verify that the models we created are reliable, scalable,

and usable, they were tested using data that models have not

processed during the calibration procedure (Chollet & Allaire,

2018). Two datasets were provided to test the transferability

of the model between the Marche region (Marche 1) and the

Basilicata region (Basilicata 2). The GBM model obtained a

statistically higher performance, with the lowest RMSE and

MAE values and a higher R2. Moreover, the GBM was the

most stable model in terms of metric errors and obtained

the lowest variation in error metrics, RMSE, MAE, and R2,

between calibration and transferability. The worst model was
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FIORENTINI ET AL. 1063

F I G U R E 4 Observed versus predicted grain yield (t h−1) for the (a) linear model, (b) support vector 384 machine, (c) k nearest neighbors, (d)

random forest, and (e) stochastic gradient boosting.

LM, as observed in several studies, that used LM as a control

algorithm (Chlingaryan et al., 2018).

4.2 Feature importance

Variable importance is valuable for interpreting the models

obtained and providing helpful information for future ML

modeling approaches.

N was the most important feature for improving the predic-

tion accuracy of all the models, except for linear regression.

This agrees with several studies that have revealed that nitro-

gen is a critical driver of durum wheat grain yield (Fiorentini

et al., 2021 Orsini et al., 2020; Pro et al., 2021; Seddaiu et al.,

2016).

Nayak et al. (2022) also reported that nitrogen was the

covariate that improved the accuracy of the RF trained with a

multidata source approach.

Mineral nitrogen fertilization is fundamental to increase

the concentration of chlorophyll in leaves (Fiorentini et al.,

2019) and metabolic processes that enable the production of
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1064 FIORENTINI ET AL.

F I G U R E 5 Variable importance for (a) linear regression (b) and support vector machine algorithms. NDRE, normalized difference red edge

index; NDVI, normalized difference vegetation index.

amino acids, and thus, strongly affects grain quality (Abad

et al., 2004).

Optimization of nitrogen supply is an important research

topic for policy makers and farm decision makers, especially

from an environmental perspective (Adenuga et al., 2019).

After this abrupt geopolitical shift, nitrogen fertilizer prices

have increased, and many countries are creating strategies to

ensure that there is sufficient fertilizer available. The farm

decision maker aims to reduce corporate production costs and

reduce the farm carbon footprint (Menegat et al., 2022). From

an environmental point of view, it is important to optimize

nitrogen because excess can result in nitrate leaching (Rath

et al., 2021).

To compare different nitrogen fertilization management

practices in different crops, the agronomic research commu-

nity employs nitrogen use efficiency, which is a dimensionless

value used to calculate the nitrogen uptake from the crop (Rüt-

ting et al., 2018) and compare different nitrogen management

practices.

In addition to N, other important variables for improv-

ing the accuracy of the model were the mean temperature

in January and the amount of precipitation in April, while

no information regarding the vegetation indices was reported.

This is in accordance with the reports of Seddaiu et al. (2016)

who studied the factors influencing N fertilization.

Precipitation is important not only for providing the water

needed for crop growth but also for the nutrients in fertilizers

to enter the circulating solution from which the crop is able to

uptake agronomic input (Z. Li et al., 2022).

Temperature controls crop development; numerous stud-

ies have shown that degree-days can well model the entire

phenological development of the crop (Q. Y. Li et al., 2012).

Moreover, multi-source data and several ML algorithms have

been used to predict wheat grain yields in China (Han et al.,

2020). By calculating the decreased accuracy (mean square

error) after removing one variable from the RF model, the

authors showed the order of variable importance of the

EVI, minimum temperature, precipitation, NDVI, and soil
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F I G U R E 6 Variable importance for (a) k nearest neighbor (b) and random forest algorithms. NDRE, normalized difference red edge index;

NDVI, normalized difference vegetation index.

moisture. The soil nitrogen content led to a higher accuracy

for the GBM model.

5 CONCLUSIONS

One of the most important research topics in agriculture and

food safety is the development of a model that can predict

high-accuracy on-season durum wheat yield. It is crucial to

consider covariates that can represent the climate, soil, crop,

and agronomic management systems.

In this study, we explore the possibility of combining

several different source data, such as nitrogen management,

pedoclimatic, and remote sensing data of four Italian exper-

imental sites, to train and test five ML algorithms to predict

durum wheat yield.

Stochastic gradient boosting was the best ML algorithm,

with a 0.58 RMSE of the test set and a lower error metric

variation between calibration and transferability.

It was observed that N, precipitation, and temperature

were the features that helped improve the model’s accuracy.

Therefore, they must be considered in future grain yield ML

modeling exercises.

The generated model can be scaled for the Marche and

Basilicata regions using the soil samples acquired in the

field, the multispectral satellite images from the Copernicus

program, and the meteorological data from NASA.
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F I G U R E 7 Variable importance for the stochastic gradient boosting algorithm. NDRE, normalized difference red edge index; NDVI,

normalized difference vegetation index.
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