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Introduction: Many lactic acid bacteria (LAB) strains are currently gaining attention 
in the food industry and various biological applications because of their harmless 
and functional properties. Given the growing consumer demand for safe food, 
further research into potential probiotic bacteria is beneficial. Therefore, we aimed 
to characterize Pediococcus pentosaceus DSPZPP1, a LAB strain isolated from 
traditional fermented sausages from the Basilicata region of Southern Italy.

Methods: In this study, we analyzed the whole genome of the P. pentosaceus 
DSPZPP1 strain and performed in silico characterization to evaluate its 
applicability for probiotics and use in the food industry.

Results and Discussion: The whole-genome assembly and functional 
annotations revealed many interesting characteristics of the DSPZPP1 strain. 
Sequencing raw reads were assembled into a draft genome of size 1,891,398  bp, 
with a G  +  C content of 37.3%. Functional annotation identified 1930 protein-
encoding genes and 58 RNAs including tRNA, tmRNA, and 16S, 23S, and 5S 
rRNAs. The analysis shows the presence of genes that encode water-soluble 
B-group vitamins such as biotin, folate, coenzyme A, and riboflavin. Furthermore, 
the analysis revealed that the DSPZPP1 strain can synthesize class II bacteriocin, 
penocin A, adding importance to the food industry for bio-enriched food. The 
DSPZPP1 genome does not show the presence of plasmids, and no genes 
associated with antimicrobial resistance and virulence were found. In addition, 
two intact bacteriophages were identified. Importantly, the lowest probability 
value in pathogenicity analysis indicates that this strain is non-pathogenic to 
humans. 16  s rRNA-based phylogenetic analysis and comparative analysis based 
on ANI and Tetra reveal that the DSPZPP1 strain shares the closest evolutionary 
relationship with P. pentosaceus DSM 20336 and other Pediococcus strains. 
Analysis of carbohydrate active enzymes (CAZymes) identified glycosyl 
transferases (GT) as a main class of enzymes followed by glycoside hydrolases 
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(GH). Our study shows several interesting characteristics of the isolated 
DSPZPP1 strain from fermented Italian sausages, suggesting its potential use as 
a promising probiotic candidate and making it more appropriate for selection as 
a future additive in biopreservation.

KEYWORDS

Pediococcus pentosaceus, probiotics, whole genome sequencing, antimicrobial 
resistance, bacteriocins

1 Introduction

LAB include a group of Gram-positive rods and cocci, 
non-sporing, and catalase-negative microorganisms that are of great 
importance in fermented food industries for their biochemical, 
physiological, and genetic features (Shukla and Goyal, 2014). LAB 
are widely present in foods and used as biopreservatives as well as 
aroma, texture, and flavor enhancers. Various studies have 
demonstrated the close connection between the LAB properties and 
their ability to produce, through fermentation, a wide range of sugars 
and metabolites, such as lactic and acetic acid, ethanol, acetone, 
diacetyl, exopolysaccharides, specific proteases, and protein 
antimicrobials, called bacteriocins (Papagianni, 2012; Cotter et al., 
2013; Gudiña et al., 2015; Barbosa et al., 2017; Zommiti et al., 2018). 
Screening for beneficial bacteria from complex microbial 
communities is becoming more common. Of the many known 
microorganisms, few have been tested to determine their 
characteristics and applications. Among these, microorganisms 
called probiotics are receiving much interest due to their beneficial 
effects on plants, animals, humans, and foods, and there is an 
increasing effort to identify other new bacteria that may be both 
functional and harmless.

Currently, only a limited number of probiotics are used for the 
daily maintenance of intestinal microbial balance and in clinical 
treatment. Among them, some LABs have proved worthy of 
exploration in human health promotion (Jiang et al., 2021).

Although several species of Lactobacillus, Bifidobacterium, and 
Clostridium possess potent probiotic characteristics, these strains are 
not sufficient for the various needs of humans and industry (Min et al., 
2017). Therefore, the identification of additional bacterial species is 
required to enrich the application spectrum of probiotics and their 
applications in food and agriculture (Jiang et al., 2021). Several studies 
have tested and used bacterial species belonging to the genus 
Pediococcus that have highlighted the importance of Pediococcus in the 
field of probiotics, indicating that new strains, isolated from different 
food matrices and belonging to this genus, can play a key role in the 
development of new functional foods (Martino et  al., 2013; 
Vidhyasagar and Jeevaratnam, 2013; Savedboworn et al., 2014; Dubey 
et al., 2015; Chen et al., 2017; Zommiti et al., 2018; Todhanakasem 
et al., 2020; Hu et al., 2021). Numerous studies have reported that 
strains of Pediococcus (P.) pentosaceus are frequently isolated from 
various food sources and biotopes encompassing plant materials, 
bacterial ripened cheese, beverages, pickles, wine, dairy, and meat 
products, with a potent role as starter cultures involved in the 
manufacturing of fermented foods (Halami et al., 2005; Midha et al., 
2012; García-Ruiz et  al., 2014; Lv et  al., 2014; Carafa et  al., 2015; 
Ilavenil et al., 2016; Zommiti et al., 2018).

Pediococcus pentosaceus, belonging to the family Lactobacillaceae, 
genus Pediococcus, is a species of cocci-shaped LAB in pairs or 
quadruplets and is a non-motile facultative anaerobic Gram-positive 
bacterium (Chen et  al., 2020). Previous studies have shown that 
P. pentosaceus occurs naturally in fermented products and may have 
an active function in product quality, food safety, and production 
efficiency (Balakrishnan and Agrawal, 2014; Jang et al., 2015; Gong 
and Qi, 2020; Montemurro et al., 2020; Jiang et al., 2021; Xu et al., 
2021). Furthermore, different research has reported that P. pentosaceus 
has probiotic functions including anti-inflammatory, anti-cancer, 
antioxidant, detoxifying, and cholesterol-lowering activities (Zhao 
et al., 2012; Thirabunyanon and Hongwittayakorn, 2013; Sellamani 
et al., 2016; Asami et al., 2017; Kim et al., 2019). However, the use of 
LAB does not support the different needs in food processing, so the 
demand for more types of probiotic strains is growing and 
P. pentosaceus represents a good candidate due to its application value 
and probiotic effect attracting great interest by the food industry (Qi 
et al., 2021). Researchers from various countries have studied the 
probiotic potential of P. pentosaceus in local foods to determine the 
best use of P. pentosaceus in the food industry, maintaining its 
probiotic effect in the human body (Shukla and Goyal, 2014; Sellamani 
et al., 2016; Nanasombat et al., 2017; Ghosh et al., 2019).

For this reason, in many studies (Cocolin et al., 2004; Ammor 
et al., 2005; Comi et al., 2005; Aymerich et al., 2006; Baruzzi et al., 
2006; Bonomo et al., 2008), the microbial diversity identification and 
characterization were assessed. In Italy, different typical meat 
products, such as the traditional fermented sausages of the Basilicata 
region, were analyzed to identify suitable starter cultures for use in the 
production process and necessary to guarantee food safety and to 
standardize product properties (Lebert et  al., 2007). It has been 
observed that artisanal products have greater quality than sausages 
from controlled fermentations; commercial starter cultures are often 
not able to compete well with the house flora so their use often results 
in the loss of desirable sensory properties (Bonomo et al., 2008, 2013). 
Therefore, the tendency has been to select appropriate cultures from 
indigenous microorganisms that are more competitive and well 
adapted to the particular product and the specific production 
technology, and with high metabolic capacities, which can beneficially 
affect product quality and safety, preserving their typicity (Ammor 
et al., 2005; Drosinos et al., 2005; Aymerich et al., 2006; Leroy et al., 
2006; Bonomo et al., 2008).

In a previous study, Parente et al. (2001) evaluated the phenotypic 
diversity of lactic acid bacteria (LAB) populations in traditional 
fermented sausages produced in artisanal and industrial plants in 
Basilicata (Southern Italy). In total, 414 LAB cultures were isolated 
from samples of sausages at different stages of ripening and a set of 28 
tests was used to classify and identify the isolates; 50% of the isolates 
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were identified as Lactobacillus (L.) sakei, 22% as Pediococcus 
pentosaceus, and 7% as Leuconostoc spp. and other Lactobacillus spp., 
were present in lower percentages.

Among these tested isolates, there is also our strain (P. pentosaceus 
DSPZPP1) belonging to a cluster that proved interesting properties. So, 
further analyses were conducted on some strains selected among these 
isolates investigated. In the previous study by Bonomo et al. (2008), 49 
lactic acid bacteria (LAB) isolated from traditional fermented sausages 
of the Basilicata region were molecularly investigated for taxonomic 
identification at species and strain levels and technologically 
characterized on the basis of salt tolerance, acid production ability, 
growth at different temperatures, proteolytic, antimicrobial, and nitrate 
reductase activities. Lactobacillus sakei was the predominant species 
(67%) followed by Pediococcus pentosaceus (16%), Leuconostoc 
carnosum (8%), Lb. plantarum (4%), Lb. brevis (2%), and Leuc. 
pseudomesenteroides (2%). The technological characterization was 
conducted to highlight the primary purpose of LAB starter cultures 
used in meat fermentation, which is to enhance product safety and 
extend shelf life. LAB achieve this by reducing pH, growing, and being 
competitive in the conditions of sausage manufacturing, as well as by 
producing antimicrobial compounds. Moreover, a no-hierarchical 
cluster analysis by k-means procedure that classified strains in eight 
clusters on the basis of their technological profile was carried out. One 
of the three clusters that included the strains with the most interesting 
technological characteristics was the number 7 which included our 
strain P. pentosaceus DSPZPP1 (already labeled DBPZ0346). These 
strains presented a good growth, even in the presence of salt and nitrite. 
They also demonstrated a strong acidifying ability, moderate proteolytic 
and nitrate reductase activities, and displayed an antimicrobial activity 
against Staphylococcus epidermidis DSM1798 and Kocuria varians 
LMG14231 strains (Bonomo et  al., 2008). Therefore, based on the 
information on the abilities of this bacterial strain, we  decided to 
deepen the study of the P. pentosaceus DSPZPP1 strain to better 
understand in a more precise and in-depth way the characteristics of 
the strain, which can then be used for various applications. This study 
arises from the need to use different and customized screening methods 
for P. pentosaceus based on individual characteristics and different 
applications of the product (Jiang et al., 2020) and from the limitation 
related to the source and species of P. pentosaceus, which pushes us to 
select strains with probiotic activities from different sources. Although 
numerous studies have found that P. pentosaceus has very important 
uses, systematic and relevant studies on the genetic research and 
application of P. pentosaceus are still lacking (Qi et al., 2021).

In this study, the whole-genome assembly and functional 
annotations of P. pentosaceus DSPZPP1 strain were performed to gain 
a thorough understanding of the functions and related mechanisms 
of the strain and to reveal interesting characteristics of the strain, 
suggesting its potential use as a promising probiotic candidate and 
making it more appropriate for selection as a future additive 
in biopreservation.

2 Materials and methods

2.1 Bacterial strain and culture conditions

The P. pentosaceus DSPZPP1 strain was isolated from traditional 
fermented sausage (Basilicata region, Southern Italy) (Parente et al., 

2001; Bonomo et al., 2008). The strain was maintained as freeze-dried 
stocks in reconstituted (11% w/v) skim milk, containing 0.1% (w/v) 
ascorbic acid in the culture collection of the Microorganisms Genetics 
Laboratory of the Department of Sciences, University of Basilicata 
(Potenza, Italy), and routinely propagated in MRS broth at 37°C for 
16 h before the analyses.

2.2 Whole-genome sequencing and 
annotation

Genomic DNA was extracted from 5 mL of late-exponential phase 
(A600 = 0.7–0.8) bacterial culture using The quick-DNATM fungal/
bacterial MiniPrep Kit, provided By Zymo research Europe GmbH 
(Freiburg, Germany). DNA integrity Was confirmed through agarose 
electrophoresis, while Its concentration and purity were assessed By 
readings obtained using a NanoDrop ND-1000 spectrophotometer 
(NanoDrop technologies Inc., Wilmington, USA). The indexed 
libraries were generated using The Illumina Nextera DNA flex library 
preparation Kit. A whole-genome sequencing experiment was 
performed on The Illumina NextSeq 500 platform with a 2x150bp 
paired-end module at The biogem research institute, medicinal 
investigational research—M.I.R. (Ariano Irpino-AV, Italy). Prior 
quality control assessment Is performed using FASTQC v0.12.1.1 
High-quality (HQ) filtered reads from The Raw data were obtained 
using NGS QC toolkit v2.3.3 (Patel and Jain, 2012) with The quality 
score cutoff ≥Q20. Primary assembly (contigs) were generated from 
high-quality filtered reads using short read de-novo assembler 
VELVET v1.2.10 (Zerbino, 2010). Scaffolding of pre-assembled 
contigs Was performed using SSPACE v2.0 (Boetzer et  al., 2011). 
Output scaffolds were further anchored using Pediococcus 
representative genome P. pentosaceus ATCC 25745 [NCBI RefSeq ID: 
NC_008525.1] For correct ordering and orientation using MeDuSa 
WebServer: http://combo.dbe.unifi.it/medusa, Accessed February 2, 
2023 (Bosi et  al., 2015) To generate a final draft genome. Gene 
prediction and annotation Are performed using The online 
subsystem-based bacterial genome annotation server RAST: https://
rast.nmpdr.org/, Accessed February 7, 2023 (Aziz et  al., 2008). 
Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) were detected 
using barrnap (Seemann, 2023) and ARAGORN (Laslett and 
Canback, 2004) tools, respectively.

2.3 Phylogenetic analysis and genome 
visualization

Phylogenetic analysis was performed using the 16 s rRNA gene to 
study the evolutionary relationship of the DSPZPP1 strain with other 
Pediococcus strains, obtaining dendrograms by the unweighted pair 
group method (UPGMA) clustering algorithm. 16 s rRNA gene 
sequence of DSPZPP1 was screened against the ‘16 s rRNA sequence 
database’ in EZBioCloud: https://www.ezbiocloud.net/, Accessed 
February 9, 2023 (Yoon et al., 2017a). Multiple sequence alignment 
(MSA) was performed using the MUSCLE program (Edgar, 2004) in 

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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MEGA11 standalone software (Tamura et al., 2021). Output MEGA 
alignment file was used to construct the phylogeny tree using the 
neighbor-joining (Mailund et al., 2006) method with a bootstrap value 
of 500. Graphical visualization of different sequence features for the 
circular genome of P. pentosaceus DSPZPP1 was performed using 
CGView’s PROKSEE server: https://proksee.ca/, Accessed February 9, 
2023 (Stothard et al., 2019).

2.4 Comparative genome analysis

To evaluate the similarity between the DSPZPP1 draft genome 
and other Pediococcus strains, a pairwise genome sequence 
comparison was performed. This was measured in terms of average 
nucleotide identity (ANI) (Yoon et al., 2017b), and correlation indexes 
of tetra-nucleotide signatures (Tetra) (Noble et al., 1998) were studied 
by comparing the draft genome sequence of DSPZPP1 strain against 
complete genome sequences of other Pediococcus strains published on 
NCBI. Average nucleotide identity was calculated using BLAST 
(ANIb) (McGinnis and Madden, 2004) and MUMMER (ANIm) 
(Marçais et al., 2018), and analysis was performed using JSpeciesWS: 
https://jspecies.ribohost.com/jspeciesws/, Accessed February 9, 2023 
(Richter et al., 2016).

2.5 Identification of plasmids and 
bacteriophages

DSPZPP1 Draft genome was screened for presence of plasmids 
and bacteriophages using PlasmidFinder v2.1: https://cge.food.dtu.dk/
services/PlasmidFinder/, Accessed February 7, 2023 (Carattoli et al., 
2014) and PHAge Search Tool Enhanced Release PHASTER 
webserver: https://phaster.ca/, Accessed February 9, 2023 (Arndt et al., 
2016), respectively.

2.6 Identification of antimicrobial 
resistance genes, virulence genes, and 
prediction of pathogenicity

Screening of antimicrobial resistance genes was performed 
against different databases including Comprehensive Antibiotic 
Resistance Database (CARD) (Alcock et  al., 2023), ResFinder 
(Florensa et al., 2022), ARG_ANNOT (Gupta et al., 2014), and 
NCBI AMRFinder Plus (Feldgarden et  al., 2021). In addition, 
virulence factor genes in the draft genome were identified using 
the Virulence Factor Database (VFDB; Chen et  al., 2005). 
Screening of both antimicrobial resistance and virulence genes 
against different mentioned databases is performed using the 
standalone tool ABRicate.2 In addition, the pathogenicity of 
sequenced strain toward the human host is assessed using 
PathogenFinder v1.1: https://cge.food.dtu.dk/services/
PathogenFinder/, Accessed February 9, 2023 (Cosentino 
et al., 2013).

2 https://github.com/tseemann/abricate

2.7 Analysis of carbohydrate-active 
enzymes (CAZymes)

Identification of different classes of carbohydrate active enzymes 
(CAZymes) was performed using an HMMER-based search (Wheeler 
and Eddy, 2013) against the carbohydrate-active enzyme database 
(CAZyDB) (Drula et al., 2022). Draft genome assembly of DSPZPP1 
was scanned in dbCAN3 webserver: https://bcb.unl.edu/dbCAN2/
index.php, Accessed February 13, 2023 (Yin et al., 2012) for automated 
annotation of CAZymes with E-value and coverage cutoff of 1e-15 and 
0.35, respectively.

2.8 Identification of bacteriocins

Bacteriocins in the DSPZPP1 draft genome were analyzed using 
the web tool BAGEL4: http://bagel4.molgenrug.nl/, Accessed February 
14, 2023 (van Heel et al., 2018). Subsequently, the bacteriocin domains 
were manually confirmed using BLASTp: https://blast.ncbi.nlm.nih.
gov/Blast.cgi, Accessed February 14, 2023 (McGinnis and Madden, 
2004) against databases of non-redundant protein sequences (nr) with 
30% identity and 80% coverage thresholds.

3 Results

3.1 Draft genome assembly characteristics 
of Pediococcus pentosaceus DSPZPP1

Whole-genome sequencing using Illumina NextSeq 500 generated 
approximately 6.14 million paired-end reads. After quality control 
analysis, approximately 5.15 million HQ reads were obtained which 
were assembled into 15 scaffolds to generate the final draft genome of 
size 1,891,324 bp, with a G + C content of 37.3%. A total of 1988 
protein-coding RNA genes were identified. Detailed genome assembly 
statistics and other characteristics are described in Table 1.

3.2 Functional annotation

Gene prediction and functional annotation of the DSPZPP1 draft 
genome are performed using RAST3 (Aziz et al., 2008), a subsystem-
based classification system. A total of 1930 protein-encoding genes 
(PEGs) and 58 RNAs were predicted [see Supplementary Table S1 
(ProteinEncodingGene_Annotation)]. Of 1930 coding sequences, 
1,531 were functional (79.32%) and 399 were hypothetical/unknown 
proteins (20.6%). A total of four ribosomal RNAs, including one 16 s, 
one 23 s, and two 5 s (one partial sequence), 53 TRNAs, and one 
tmRNA, were identified. Predicted 1930 protein-encoding genes were 
assigned to 23 different SEED subsystem categories (Figure 1). It is 
observed that the maximum pool of protein-encoding genes 
contributed to “Protein Metabolism” (111) followed by 
“Carbohydrates” (97) and “Biosynthesis of Nucleosides & 
Nucleotides” (88). Different LAB strains are known to synthesize 

3 https://rast.nmpdr.org/rast.cgi
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water-soluble B-group vitamins, which emphasizes its use in the 
production of effective vitamin-enriched products (LeBlanc et al., 
2011). Our analysis reveals that the DSPZPP1 strain can synthesize 
B-group vitamins, including biotin, riboflavin, folate, and coenzyme 
A [see Supplementary Table S1 (RASTDetailedSubsystemAnnotation)], 
making DSPZPP1, a stronger probiotic candidate.

3.3 Taxonomy analysis and genome 
visualization

The UPGMA tree derived using 16S rRNA gene sequence shows 
that the DSPZPP1 strain has a closer phylogenetic relationship with 
other strains from the Pediococcus genus. P. pentosaceus strains are 
clustered together forming different branches compared to another 
genus. The phylogenetic tree derived using MEGA11 (Tamura et al., 
2021) is depicted in Figure  2. Phylogeny analysis identified 
P. pentosaceus DSM 20336 strain [NCBI RefSeq accession: NZ_
JQBF00000000.1] as the closest homolog of DSPZPP1. The phylogeny 
tree is depicted in Figure 2. Genomic features of the annotated draft 
genome of P. pentosaceus DSPZPP1 can be  visualized using the 
circular genome map depicted in Figure 3.

3.4 Comparative genome analysis

Average nucleotide identity (ANI) analysis using BLAST 
(McGinnis and Madden, 2004) and MUMMER (Marçais et al., 2018), 
along with tetra correlation analysis study, confirms P. pentosaceus 
DSM 20336 strain is the closest phylogenetic neighbor of DSPZPP1. 
This conclusion is supported by the highest tetra correlation coefficient 
value of 0.9985. The ANI values obtained are 98.54 and 99.04% using 
BLAST and MUMMER, respectively. Detailed percent identity 
statistics of this analysis are described in Table 2.

3.5 Analysis of antimicrobial resistance 
(AMR), virulence genes, and pathogenicity

Different LAB strains including P. pentosaceus are used in 
various food industry applications (Lv et al., 2014; Torres-Miranda 
et  al., 2022; Oliveira et  al., 2023). Therefore, it is important to 

TABLE 1 Assembly statistics and genome characteristics of P. 
pentosaceus DSPZPP1.

Attribute Value

Total no. of sequences 15

Size (bp) 1,891,398

Minimum sequence length (bp) 211

Maximum sequence length (bp) 1,848,864

Median sequence length (bp) 876

Mean sequence length (bp) 126093.2

N50 length (bp) 1,848,864

L50 3

GC content (%) 37.30

Count of protein-coding genes 1930

Count of rRNAs 4 (One 16 s rRNA, one 23 s rRNA and 

two 5 s rRNAs)

Count of tRNAs 53

Count of tmRNAs 1

Plasmids 0

Bacteriophages 4 (2 intact, 1 incomplete, and 1 

questionable)

Probability of being a human pathogen 0.173

FIGURE 1

Overview of RAST functional annotation results for the draft genome of P. pentosaceus DSPZPP1. The number in parentheses for each subsystem 
category indicates the count of protein-encoding genes (PEGs) involved in the respective subsystem processes.
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conduct a safety assessment prior to its use as a probiotic or within 
the food industry. Therefore, for the safety evaluation of the 
DSPZPP1 strain, the draft genome sequence was analyzed for the 
presence of antimicrobial resistance (AMR) genes, virulence genes, 
and pathogenicity toward the human host. Analysis shows the 
absence of antimicrobial resistance (Supplementary File S1) and 

virulence gene/s. Furthermore, pathogenicity analysis gives a 
probability value of 0.173, indicating a very low chance of this 
strain being a human pathogen (Supplementary File S2). Based on 
these findings, we  can safely postulate that the P. pentosaceus 
DSPZPP1 strain is suitable for use as a probiotic and in different 
food industry applications.

FIGURE 2

16s rRNA gene-based phylogeny tree constructed using MEGA11. All the Pediococcus strains form a separate branch confirming the closest 
evolutionary relationship. The DSPZPP1 strain is identified as the closest evolutionary neighbor of P. pentosaceus DSM 20336.
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FIGURE 3

Circular genome map of P. pentosaceus DSPZPP1 of size 1.89 Mbp. Genome visualization consists of five rings. The outer concentric circle followed by 
the second circle represents the position of protein-coding genes and RNAs on forward and reverse strands, respectively. The middle circle represents 
draft genome scaffolds colored in gray followed by a ring showing GC content (black). Next, the inner ring shows GC Skew [(G–C)/(G+C)] distribution. 
Positive GC Skew is indicated in red and negative GC skew in sky blue.

TABLE 2 Average nucleotide identity (ANI) and tetra frequency analysis P. pentosaceus DSPZPP1 genome in comparison with other P. pentosaceus 
strains.

Genome ANIb [%]a %Aligned ANIm [%]b %Aligned
Tetra correlation 

coefficient

P. pentosaceus DSM 20336 98.54 83.8 99.04 84.41 0.9985

P. pentosaceus wikim20 98.44 83.99 98.96 84.55 0.99789

P. pentosaceus ATCC 33316 98.54 84.09 99.03 84.52 0.99847

P. pentosaceus FDAARGOS_1009 98.55 83.67 99.05 84.18 0.9982

P. pentosaceus ATCC 25745 98.3 85.24 98.91 85.56 0.99789

P. pentosaceus SL4 98.26 85.77 98.74 86.19 0.99845

aAverage nucleotide identity calculated using BLAST (ANIb) (McGinnis and Madden, 2004). bAverage nucleotide identity calculated using MUMMER (ANIm) (Marçais et al., 2018).
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FIGURE 5

Representation of intact bacteriophage region 1 [Scaffold_1:652710–696,134] (A) and region 2 [Scaffold_1:948804–1,006,219] (B) showing functional 
genes.

3.6 Identification of plasmids and 
bacteriophages

Pediococcus pentosaceus DSPZPP1 does not show the presence of 
any plasmid sequences. Bacteriophage analysis identified the presence 
of two intact, one incomplete, and one questionable bacteriophage in 
the genome. All the identified bacteriophages are located on different 
regions of scaffold 1 (Figure 4) in the genome. Identified two intact 
plasmids—region 1 of length 43.4 Kb (Figure 5A) and region 2 of 
length 57.4 Kb (Figure 5B)—contain significant genes to be functional 
are described in Table 3. Detailed results of identified bacteriophages 
are described in Table 3.

3.7 Analysis of carbohydrate-active 
enzymes (CAZymes)

HMMER-based screening in dbCAN3 identified 46 
carbohydrate activity-related enzymes in the DSPZPP1 draft 
genome from four different CAZyme classes, namely glycosyl 
transferases (GTs), glycoside hydrolases (GHs), carbohydrate 
esterases (CEs), and auxillary activities (AAs) (Figure 6). Highest 
number (21) of CAZymes were identified from glycosyl transferases 
class, which are known to be involved in the formation of glycosidic 
bonds, followed by glycoside hydrolases (20), modulating the 
hydrolysis and rearrangement of glycosidic bonds along with few 

FIGURE 4

Positions of four identified bacteriophages in draft genome sequence of P. pentosaceus DSPZPP1. The four identified bacteriophages include two 
intact, one questionable, and one incomplete which are located on scaffold 1 having genome coordinates as Scaffold_1:616309  bp - 629709  bp, 
Scaffold_1:652710  bp −696,134  bp, Scaffold_1:925982–948,780, and Scaffold_1:948804–1,006,219, for bacteriophage one, two, three and four, 
respectively.
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other classes depicted in Figure 6. A list of all identified CAZymes 
is available in Supplementary Table S2.

3.8 Bacteriocin identification

Pediococcus pentosaceus is a lactic acid bacterium, which produces 
small bactericidal peptides called bacteriocins. Pediococcus strains are 
used as natural preservatives to extend the shelf life and hygienic 
quality of food because of their characteristic property of producing 
bacteriocins. It acts against different food contamination-causing 

bacteria such as Staphylococcus aureus, Listeria monocytogenes, and 
Clostridium botulinum. DSPZPP1 draft genome was assessed for the 
presence of bacteriocin compounds. The analysis identified the 
presence of pediocin-like bacteriocin gene, penocin A, class II 
bacteriocin (Diep et al., 2006) on scaffold 1 from position 1916 bp to 
22,093 bp (Figure 7). Identified bacteriocin peptide sequence is used 
for BLASTp analysis. Penocin A of the DSPZPP1 genome shows an 
exact match (100% identity) with the “class II bacteriocin” protein of 
Pediococcus (NCBI Accession ID: WP_011672822.1) having 8e-36 
E-value and 100% query coverage. This confirms the presence of 
bacteriocin penocin A in the draft genome sequence of P. pentosaceus 

TABLE 3 Bacteriophages predicted in draft genome of P. pentosaceus DSPZPP1 using PHASTER.

Region
Region 
length

Completeness Score
Position in draft 

genome
GC%

No. of 
proteins

Most common phage

1 13.4 Kb Questionable 80 Scaffold_1:616309–629709 39.17% 21 PHAGE_Lactob_phiAT3_NC_005893

2 43.4 Kb Intact 150 Scaffold_1:652710–696134 36.59% 58 PHAGE_Lactob_Sha1_NC_019489

3 22.7 Kb Incomplete 40 Scaffold_1:925982–948780 38.07% 12 PHAGE_Bacill_AR9_NC_031039

4 57.4 Kb Intact 150 Scaffold_1:948804–1006219 37.30% 57 PHAGE_Lactob_Sha1_NC_019489

FIGURE 6

Distribution of different classes of carbohydrate-active enzymes (CAZymes) identified in the P. pentosaceus DSPZPP1 draft genome. Different CAZymes 
classes are represented in different colors. From the inner to the outer ring, the representation includes the Class of CAZyme, CAZyme families, and 
count of genes identified in each CAZyme family, respectively.
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DSPZPP1. The analysis concludes the ability of the DSPZPP1 strain 
to produce the class II bacteriocin, confirming its significance in 
selection as a probiotic strain.

4 Discussion

Currently, numerous P. pentosaceus strains have been isolated and 
identified from different fermented food sources such as milk and 
sausages. Most of the food-derived strains were shown to be safe and 
very stable, confirming to have probiotic effects (Min et al., 2017). In 
the recent years, different P. pentosaceus strains were studied (Martino 
et al., 2013; Vidhyasagar and Jeevaratnam, 2013; Savedboworn et al., 
2014; Dubey et  al., 2015; Chen et  al., 2017) and tested having 
promising potential as a biological preservative for foods and flavor 
additive appearing as a potentially predominant probiotic strain (Jiang 
et al., 2021). It has also been observed that it possesses interesting 
properties such as antimicrobial ability, resistance to stresses, oxidative 
level reduction, bile tolerance, β-galactosidase activity, impact on gut 
microbiome composition, and resistance to gastrointestinal tract 
conditions (Osmanagaoglu et al., 2010; Dubey et al., 2016; Li et al., 
2021). Such investigations support the use of Pediococcus strains in the 
field of probiotics, suggesting role of newly isolated strains from varied 
food products belonging to the same genus may play a key role in 
being used in a new generation of functional foods. Looking 
simultaneously at the continuous demand for safe food by consumers 
and the unique properties of different LAB strains leading them to 
potential probiotic candidates, it is necessary to expand the list of 
potential probiotic bacteria. Therefore, before practical use of bacteria 
as a probiotic, it is important to perform specific study, which focuses 
on different aspects involving microorganisms’ safety evaluation, 
acquired antibiotic resistance, virulence factors, and probiotic viability 
at the end of shelf life to claim suggested single strain as GRAS 
(generally regarded as safe) or QPS (qualified presumption of safety) 
(Dobson et al., 2002; Todorov and Dicks, 2009; Zommiti et al., 2018; 
Li et al., 2021).

This study conducted on the bacterial strain P. pentosaceus 
DSPZPP1 is the continuation and deepening of previous in vitro 

studies carried out to isolate and investigate the microflora from 
traditional fermented sausages of Basilicata region, in order to 
formulate autochthonous starter cultures and to standardize the 
production process of sausages, to preserve their typical organoleptic 
and sensory characteristics, and to improve the quality of final product 
(Parente et al., 2001; Bonomo et al., 2008). In these products, LAB play 
an important role in meat preservation and fermentation processes 
and are considered technologically fundamental, providing diversity 
by the modification of raw material to obtain new sensory properties 
and improve the safety, stability, and shelf life of meat products 
(Fontana et al., 2005) and contribute to the flavor, color, and texture 
development (Aymerich et  al., 2006). The identification and 
technological characterization of LAB involved in meat fermentation 
are crucial to selecting the best strains to use as starters (Ammor et al., 
2005; Rantsiou et al., 2006).

The results of Bonomo et al. (2008) highlighted that the LAB 
population plays a significant role in influencing the organoleptic and 
sensory characteristics of the final product. This influence is exerted 
through specific and important activities that enhance the quality and 
safety of fermented sausages. Moreover, the LAB ecosystem is 
characterized by a species-site-dominance, and this dominance is 
closely related to the environmental parameters. Traditional fermented 
sausages show a distinctive organoleptic profile, which can 
be attributed to the isolated strains. Although these strains belong to 
the species commonly associated with sausage fermentation, they 
possess specific physiological and technological characteristics that 
contribute to the uniqueness of these traditional products (Bonomo 
et al., 2008). Therefore, this study evaluated the complete genome 
sequence of P. pentosaceus DSPZPP1 and performed a complete 
characterization of the assembled draft genome. Functional annotation 
of protein-encoding genes predicted from assembled draft genome 
shows the presence of gene sequences responsible for the metabolism 
of carbohydrates and proteins, which is an important probiotic and 
technological feature in LAB (Franz et al., 2006; LeBlanc et al., 2011). 
Functional annotation analysis highlights the presence of gene 
sequences responsible for central carbohydrates and metabolism of 
proteins/amino acids, biosynthesis, and degradation of different 
compounds, such as cell envelope components, and for transport 

FIGURE 7

Overview of pediocin-like bacteriocin gene Penocin A in the draft genome of P. pentosaceus DSPZPP1.
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mechanisms, marking important features in probiotic strains (Oliveira 
et al., 2023). Moreover, the tolerance to acids and bile was another 
significant characteristic in LAB because the strains must resist transit 
and the complexity of the gastrointestinal tract to perform its probiotic 
functional role. In the P. pentosaceus DSPZPP1 genome, the F0F1-
ATPase synthase complex proteins and general stress response genes 
are bacterial defense mechanisms that allow strains to respond and 
thrive in rapidly changing environmental conditions ensuring the 
proper functioning of DNA repair and structure pathways (Cotter and 
Hill, 2003; Sanchez et  al., 2008; Oliveira et  al., 2023). Functional 
annotation analysis also revealed the potential of P. pentosaceus 
DSPZPP1 strain to biosynthesize different naturally occurring water-
soluble vitamin B molecules including riboflavin, biotin, and folate 
[see Supplementary Table S1 (RASTDetailedSubsystemAnnotation)].

Many lactic acid bacteria (LAB) strains such as L. fermentum, 
L. gasseri, and L. lactis are known to produce B-group vitamins 
(Sybesma et al., 2004; Jayashree et al., 2010; LeBlanc et al., 2011). This 
property makes LAB strains promising supplements to enhance the 
biological activity of compounds (Nguyen et  al., 2015) and are 
currently being used in different applications in the food industry 
(LeBlanc et al., 2011; Nguyen et al., 2015; Levit et al., 2021; Wang et al., 
2021). The property of vitamin B biosynthesis by isolated DSPZPP1 
strain implies its significant potential use as a vitamin supplement 
along with its other applications in the food industry. 16s rRNA-based 
phylogeny analysis integrated with ANI and TETRA analysis indicates 
the closest evolutionary relationship between sequenced P. pentosaceus 
DSPZPP1 strain and other P. pentosaceus strains available at NCBI.

In total, 46 CAZymes from four different classes have been 
identified that play a key role in sugar metabolism. Different types of 
GTs are involved in the biosynthesis of disaccharides, oligosaccharides, 
and polysaccharides, which contribute to the formation of glycosidic 
bonds (Drula et al., 2022). CAZyme analysis identified 21 enzymes 
belonging to 9 GT families, belonging to GT2 and GT4 families 
representing 52.4% of the total GTs, which are responsible for the 
synthesis of sucrose, cellulose and chitin synthases, glucosyltransferase, 
and galactosyltransferase. Another majority class of enzymes involved 
in carbohydrate metabolism was that of GHs with an important role 
in the hydrolysis of the carbohydrate glycosidic bonds; among the 20 
GHs belonging to 11 families, the genes responsible for the synthesis 
of β-glucosidase (GH1), β-galactosidase (GH2), α-glucosidase (GH13) 
are present in the genome of DSPZPP1 strain. These enzymes are 
fundamental in the development of the strain in different 
environments as they act in the metabolism of sugars, such as lactose, 
sucrose, and oligosaccharides (Vera et al., 2020; Drula et al., 2022; 
Oliveira et al., 2023). Moreover, enzymes of the family GH73 were also 
detected, which are responsible for the cleavage of the β-1,4-glycosidic 
linkage between N-acetylglucosamine (NAG) and N-acetylmuramic 
acid (NAM) of bacterial peptidoglycan; because of their cleavage 
specificity, they are commonly described as 
β-N-acetylglucosaminidases. Enzyme lysozyme (GH25) was also 
identified as involved in the cleavage of the β-1,4-glycosidic bond of 
bacterial cell walls. The characterized lysozymes from this family 
exhibit both β-1,4-N-acetyl- and β-1,4-N,6-O-diacetylmuramidase 
activities and degrade O-acetylated peptidoglycan present in 
Staphylococcus aureus and other pathogens (Levit et al., 2021). These 
enzymes work as a primary line of defense against bacterial infections. 
Additionally, the P. pentosaceus DSPZPP1 genome also encodes GH36 
enzymes that exhibit α-galactosidase and α-N-acetylgalactosaminidase 

activity, GH32 family that contains invertases and enzymes hydrolyze 
fructose-containing different polysaccharides, and enzymes belonging 
to GH65 act on substrates containing α-glucosidic linkages and 
contains mainly phosphorylases (Vera et  al., 2020). The genome-
encoded CAZymes play an important role in carbohydrate synthesis 
and hydrolysis during the fermentation process; so, the ability of the 
bacteria to use carbohydrates is a significant indicator of the 
functionality of the strain and puts the basics for the cultivation and 
selection of the strain (Jiang et al., 2020). A further class of enzymes 
identified with the CAZymes analysis was CEs belonging to three 
families. CE2 enzymes are α/β-hydrolases, containing an N-terminal 
β-sheet “jelly-roll” domain that acts as a carbohydrate-binding domain 
(CBM) and is linked to a C-terminal domain that contains the 
α/β-hydrolase fold (SGNH-hydrolase motif) (Vollmer, 2008). CE 
family 9 esterases catalyze the deacetylation of N-acetylglucosamine-
6-phosphate to glucosamine-6-phosphate and this reaction has been 
demonstrated to be important for both amino sugar metabolism and 
peptidoglycan cell wall recycling in bacteria (Egloff et  al., 2001). 
Carbohydrate esterase family 20 (CE20) comprises xyloglucan acetyl 
esterases (XacXaeA) putatively related to arabinoxylan deacetylation. 
XacXaeA is the founding member of the family, specific to 
O-acetylation, as it is not capable of cleaving N-acetylated 
carbohydrates. It shows activity on a broad range of O-acetylated 
mono- and disaccharides and did not show a positional preference for 
acetylated oxygens. XacXaeA was active toward cell wall extracted 
xyloglucan oligosaccharides, deacetylating distinct types of structures 
(Montanier et al., 2009).

The effective probiotic LAB strains mediate antagonistic effects 
against pathogens by producing internal antimicrobial substances, 
influencing the metabolism, or stimulating the host immunity. These 
strains can tolerate acid and bile, adhere to epithelial surfaces, and 
exhibit antimicrobial properties and antagonistic activity against 
intestinal pathogens (Park, 2001; Liu et al., 2022). Among all effective 
probiotic LABs, P. pentosaceus is a known potential probiotic strain 
and has shown broad-spectrum antibacterial activity against external 
foodborne pathogens by preventing the adhesion of pathogenic 
bacteria in the gut (Bambirra et  al., 2007; Savard et  al., 2011). 
P. pentosaceus strains have been studied to produce bacteriocins or 
other antimicrobial compounds, such as extracellular polysaccharides, 
when they form biofilms or are attached to the surface, and have been 
found to show antagonistic effects against various foodborne 
pathogens (Papagianni and Anastasiadou, 2009; Ladha and 
Jeevaratnam, 2018; Todhanakasem et al., 2020). In our analysis, the 
P. pentosaceus DSPZPP1 genome shows the presence of the pediocin-
like bacteriocin gene penocin A, a class II bacteriocin. Class II 
pediocin-like bacteriocins are an important and dominant group of 
antimicrobial peptides that have common features in gene clusters, the 
structural genes coding for the central peptide, the gene coding for the 
immune protein and the transporter genes (Papagianni and 
Anastasiadou, 2009; Cui et al., 2012; Collins et al., 2017; Chen et al., 
2020; Tatsaporn and Kornkanok, 2020; Oliveira et al., 2023). In this 
study, the identified operon of penocin A presented the necessary 
genes and it is a cluster of biosynthetic genes encoding bacteriocin 
(Miller et al., 2005; Drider et al., 2006).

In addition to this probiotic characteristic, the draft genome 
does not show the presence of virulence genes and antimicrobial 
resistance (AMR) genes. Low pathogenicity value characterizes 
sequenced strains as non-human pathogens and can be safely used 
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in biological applications. Therefore, these properties make the 
P. pentosaceus DSPZPP1 strain an excellent candidate to be used 
safely as a probiotic as well as a natural preservative to improve the 
quality of food. The presence of mobile genetic elements is an 
important factor to be investigated in microorganisms destined for 
food application as the presence of plasmids and prophages can 
be  vehicles of horizontal gene transfer of pathogenic genes or 
antimicrobial resistance genes to other microorganisms (Canchaya 
et al., 2003; Ferri et al., 2017; Oliveira et al., 2023). The absence of 
plasmid sequences indicates the stability of the DSPZPP1 genome. 
Four bacteriophages were identified located at different positions in 
the genome described in Table 3.

In conclusion, our analysis revealed that the P. pentosaceus 
DSPZPP1 strain, isolated from Italian fermented sausages, can serve 
as a promising probiotic bacterium. Additionally, it may be used as a 
future additive in biopreservation to enhance food quality, extend 
shelf life, and contribute to the final technological properties of the 
biological product. Furthermore, detailed elucidation of the DSPZPP1 
draft genome sequence provides deeper insights into the characteristics 
of isolated strains, which may contribute to the development of 
probiotics and future additives in future.
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