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time-domain reflectometry data to monitor rootzone
electrical conductivity under saline water irrigation

A . C o p p o l a a, K . S m e t t e m b, A . A j e e l a,c, A . S a e e d a,c, G . D r a g o n e t t i c, A . C o m e g n a a,
N . L a m a d d a l e n a c & A . V a c c a d

aDepartment of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, via dell’Ateneo Lucano, Potenza,
85100, Italy , bCivil, Environmental and Mining Engineering, University of Western Australia, 35 Stirling Highway, CRAWLEY WA 6009,
Perth, Australia , cDepartment of Land and Water Division, Mediterranean Agronomic Institute of Bari, IAMB, Bari, via Ceglie (Valenzano)
70010, Italy , and dDepartment of Chemical and Geological Sciences, University of Cagliari, Via Trentino, 51, Cagliari, 09124, Italy

Summary

Management of saline water irrigation at the field scale requires electrical conductivity to be monitored regularly
in the generally shallow soil layer explored by plant roots. Non-invasive electromagnetic induction (EMI)
sensors might be valuable for evaluating large-scale soil salinity. However, obtaining information on soil surface
salinity from depth-integrated EMI measurements requires either an inversion of the electromagnetic signal or an
empirical calibration. We opted for an empirical calibration of an EM38 sensor, which requires a reference dataset
of local bulk electrical conductivity, 𝜎b, for comparison with EMI readings for estimating regression coefficients.
We used time-domain reflectometry (TDR) to replace direct sampling for local 𝜎b measurements. With empirical
approaches, the different soil volumes involved with the EMI and TDR sensors become problematic. We resolved
this issue by analysing large EMI and TDR datasets recorded at several times along three transects irrigated
with water at 1, 3 and 6 dS m−1 degrees of salinity. A Fourier filtering technique was applied to remove the
high frequency part (at small spatial scales) of the variation in the original data, which was the main source of
dissimilarity between the two datasets. Therefore, calibration focused on the lower frequency information only;
that is, information at a spatial scale larger than the observation volume of the sensors. We show that information
from the TDR observations derives from a combination of local and larger scale heterogeneities, and how it should
be managed for calibration of the EMI sensor. Analysis enabled us to identify characteristics of the calibration
data that should be included to improve prediction.

Highlights

• EMI and TDR sensors have different observation volumes and are not immediately comparable.
• With Fourier filtering the different observation volumes were accounted for in calibration of the EMI data.
• We improved the empirical calibration between EMI and TDR datasets.
• We identified criteria to select data series for EMI sensor calibration.

Introduction

Monitoring the magnitude, temporal dynamics and spatial (both

horizontal and vertical) variation in soil salinity conditions at the

field scale is crucial to identify the most effective strategies for
managing and controlling salinity under irrigation with saline water.

Effective field-scale management of irrigation with saline water
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requires regular monitoring of the time and space distribution of

the electrical conductivity in the rootzone to avoid the deleterious

effects of salt accumulation (Díaz & Herrero, 1992; Rhoades et al.,

1999; Corwin & Lesch, 2005, amongst many others).

Rootzone soil salinity has been assessed traditionally by destruc-

tive soil sampling (mostly by auger) to determine the electrical con-

ductivity of a water-saturated soil paste in the laboratory. To use this

technique for monitoring salinity over large areas is expensive and

time-consuming and so is little used.
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To overcome the limitations of traditional soil sampling,
non-invasive electromagnetic induction (EMI) techniques have
been used extensively to map soil salinity in the field (Corwin &
Lesch, 2005; Doolittle & Brevik, 2014). Depth-weighted apparent
electrical conductivity (ECa) measured by EMI sensors, which can
be expressed with a depth response function (McNeill, 1980), is
a function of soil salinity, together with moisture, clay and other
soil properties (Corwin & Lesch, 2005). However, depth-specific
soil salinity is required, especially the salt dynamics in shallow
profiles that cannot be obtained from the direct measurements of
EMI sensors (ECa).

One of the solutions is to establish empirical calibration rela-
tions between ECa and soil salinity measured at different depth
intervals. Different modelling procedures can be used, such as
searching for calibration coefficients through multiple regression
(Rhoades & Corwin, 1981; Lesch et al., 1992; Triantafilis et al.,
2000; Amezketa, 2006; Yao & Yang, 2010), modelled coefficients
(Slavich & Petterson, 1990), theoretical coefficients calculated with
theoretical EMI depth response functions (Cook & Walker, 1992) or
empirical-mathematical coefficients (the so-called established coef-
ficients) (Corwin & Rhoades, 1982, 1984). However, the approach
has two main drawbacks. First, regression parameters of the empir-
ical models between ECa data and depth-specific soil properties
might be both site- (Lesch et al., 1992) and time-specific (Díaz &
Herrero, 1992; Lesch et al., 1998). The other drawback is the dif-
ference in observation volumes between EMI instruments and soil
samples. For example, the measurement volume of a Geonics EM38
meter is ∼105 cm3, whereas a typical soil core has a volume of
100–150 cm3. If the variation in soil properties occurs at small spa-
tial scales, the calibration models may be inaccurate.

Another approach to predict depth-specific soil salinity is to use
an inversion algorithm that converts ECa to depth-specific electrical
conductivity (Borchers et al., 1997; Hendrickx et al., 2002; Li et al.,
2013; Deidda et al., 2014). Depth-specific electrical conductivity
can then be used to establish calibration models of soil salinity
(Huang et al., 2015; Zare et al., 2015). However, this approach
still fails to account for the different observation volumes between
EMI instruments and soil samples. Therefore, there is a need to
make the observation volumes of EMI instruments and soil samples
comparable for EMI calibration.

To measure soil salinity at various depths, direct soil sampling
can be replaced by time-domain reflectometry (TDR) observa-
tions: TDR sensors can be used as a substitute because they
enable simultaneous measurements of water content (𝜃) and the
bulk electrical conductivity (𝜎b) of a soil volume of ∼103 cm3

(e.g. Heimovaara et al., 1995; Robinson et al., 2003; Coppola et al.,
2011a), which is still much smaller than the volume examined by
EMI sensors. The 𝜎b depends on soil water content, 𝜃, electrical
conductivity of the soil solution (salinity), 𝜎w, tortuosity of the
soil-pore system, 𝜏, and other factors related to the solid phase such
as bulk density, clay content and mineralogy. For a specific soil,
TDR sensors may be calibrated in the laboratory for estimating 𝜎w.

In this research, we recorded EMI and TDR measurements at
regularly spaced sites and at 14 different times along three transects

that were irrigated with water that had different degrees of salinity.
We used a classical Fourier approach to filter the high frequency
part (at small spatial scale) of the original EMI and TDR data.
Calibration models will be established between the EMI and TDR
data with both original and filtered datasets. The aims of the study
were threefold and strictly related: (i) to detect the spatial and
temporal variations in soil electrical conductivity with EMI and
TDR data, (ii) to quantify the effects of the different volumes over
which EMI and TDR observations are made by the Fourier filtering
approach and (iii) with this information, to improve our empirical
calibration model between EMI and TDR datasets by the Fourier
filtering approach.

Materials and methods

Experimental site

The experiment was carried out in a 500-m2 field at the Mediter-
ranean Agronomic Institute of Valenzano, Bari (south-eastern coast
of Italy). The soil, a Colluvic Regosol, consisted of a silty-loam
layer about 60 cm in depth on shallow fractured limestone. The field
site consisted of three adjacent transects, 30 m long and 4.2 m wide,
with a distance of 3 m between transects. The transects were irri-
gated with water at three different salinity levels (1, 3, 6 dS m−1),
hereafter identified as transects 1dS, 3dS and 6dS, respectively. The
salt used was calcium chloride (CaCl2).

Each transect consisted of seven rows of a green bean crop,
each 70 cm apart, with plants in each row 40 cm apart. A drip
irrigation system was also installed, consisting of 14 dripper lines
30 cm apart, with 30 cm between drippers along each line and an
individual dripper discharge of 2 l hour−1. The irrigation volumes
were calculated according to the time dynamics of profile water
storage measured by a Diviner 2000 (Sentek Pty Ltd, Stepney, South
Australia) capacitance sensor. For each transect, 24 access tubes,
1 m apart, were installed along the middle line at 60-cm depth to
monitor soil water content before and after irrigation. Irrigation
water was applied every 2 days to bring the soil water content to
field capacity. This provided relatively stable soil water contents
to be maintained close to field capacity. Therefore, changes in the
EMI readings could be ascribed mainly to changes in soil salinity
only. A schematic view of the experimental field, together with the
monitoring grid, is shown in Figure 1.

The EMI measurements

The EMI values in both horizontal (ECaH) and vertical magnetic
dipole (ECaV) configurations were taken by a Geonics EM38
device (Geonics Limited, Ontario, Canada). The EM38 operates at
a frequency of 14.6 kHz with a coil spacing of 1 m, and an effective
measurement depth of ≈0.75 and ≈1.5 m in the horizontal and
vertical dipole configurations, respectively (McNeill, 1980). The
device sends an alternating current through the transmitter coil. This
generates a primary magnetic field, Hp, which in turn causes current
to flow in the soil. This current flow generates a secondary magnetic
field, Hs, which is sensed by the receiver coil. The EM38 actually
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Figure 1 Schematic view of the experimental fields, together with the
monitoring transects. The three transects refer to the: (a) 1 dS m−1,
(b) 3 dS m−1 and (c) 6 dS m−1 treatments.

measures the quadrature component (the imaginary component),
Im, of the ratio of the secondary magnetic field Hs to the primary
magnetic field Hp. The apparent conductivity value from the EM38
(ECa) is given by:

ECa =
4Im

(
Hs∕Hp

)
𝜇0𝜔r2

, (1)

where 𝜇0 = 4𝜋10−7 H m−1 is the magnetic permeability of the free
space, 𝜔 is the angular operating frequency of the device and r is
the coil spacing. The ECa in Equation (1) is accurate only under the
assumptions that the device is held at height 0 above the surface,
the soil has a uniform conductivity, 𝜎, and the induction number of
the device, Nb, is «1 (Hendrickx et al., 2002).

The ECa measurement from EM38 is averaged over a lateral area
approximately equal to the measurement depth. At the beginning of
each measurement period, the sensor was ‘nulled’ according to the
manufacturer’s manual. Readings were taken just after each appli-
cation of irrigation water at 1-m intervals along the central longi-
tudinal line of each transect to give 24 measurements per transect
per time. Taking measurements just after irrigation facilitated rela-
tively time-stable water contents at each site throughout the survey
such that changes in the EMI values could be ascribed mostly to
changes in salinity. There were 14 EM38 survey dates during the
experiment, in the period from 27 May to 7 July 20.

The TDR measurements

For each monitoring date, just after EM38 measurements were
made, direct 𝜎b measurements in the 0–20-cm soil layer were taken
by a TDR probe inserted vertically at the soil surface at 24 sites,
each at a central point of an EM38 measurement. Hereafter, these
𝜎b measurements will be identified as 𝜎b,TDR.

A Tektronix 1502C cable tester (Tektronix Inc., Baverton, OR,
USA) was used in this study. It enables simultaneous measurement
of water content, 𝜃, and bulk electrical conductivity, 𝜎b, of the soil
volume explored by the probe (Heimovaara et al., 1995; Robinson
et al., 2003; Coppola et al., 2011a,2011b, 2013; among many
others). The TDR transmission line consisted of an antenna cable
(RG58, 50Ω characteristic impedance, 200 cm long and with 0.2Ω
connector impedance) and of three wire probes, 20 cm long, 3 cm
internal distance and 0.3 cm in diameter. The apparent dielectric
constant of the soil, 𝜀, can be determined by the propagation
velocity, v, of an electromagnetic wave that travels in the soil:

𝜀 =
( c

v

)2
, (2)

where c is the velocity of electromagnetic waves in free space and
v is the difference in time between the arrival of the two reflections
and the length of the round-trip (back and forth) of the probe in the
soil by the sampling oscilloscope on the cable tester.

The water content, 𝜃, may be related to the dielectric constant by
the following empirical relation (Topp et al., 1980):

𝜃 = −5.3 × 10−2 + 2.92 × 10−2𝜀 − 5.5 × 10−4𝜀2 + 4.3 × 10−6𝜀3 .
(3)

The Tektronix 1502C can measure the total resistance, Rt, of the
transmission line by:

Rt = Zc

(
1 + 𝜌∞

)(
1 − 𝜌∞

) = Rs + Rc, (4)

where Rs is the soil’s contribution to total resistance and Rc accounts
for the contribution of the series resistance from the cable and the
connector, Zc is the characteristic impedance of the transmission
line and 𝜌∞ is a reflection coefficient at a very long time, when the
waveform has stabilized.
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The 𝜎b at 25∘C can be calculated as (Rhoades & van Schilfgaarde,
1976; Wraith et al., 1993):

𝜎b25∘C =
fc

Rs

fT , (5)

where f c is the cell constant of the TDR probe and f T is a
temperature correction factor to be used for values recorded at
temperatures other than 25∘C. Both Rc and f c can be determined
by measuring Rt by TDR in a solution with known 𝜎.

The TDR probe was not embedded permanently at fixed depths
along the soil profile because of interference from the metallic
TDR rods of EMI readings. The TDR values were recorded at
three different depths (0–20, 20–40 and 40–60 cm) immediately
after the last EM38 survey date only (17 July). After the surface
(0–20 cm) value had been recorded, a trench was dug to 20-cm
depth. The TDR probes were inserted vertically at the bottom of
the trench to record values at 20–40-cm depth. The trench was then
deepened to 40 cm and values were recorded at 40–60-cm depth.
The 𝜎b,TDR readings in this last survey were used for calibrating the
EM38. All the remaining 14 data series were used to validate the
calibrated coefficients.

Data analysis

Calibration of EMI by TDR readings

A multiple linear regression was used to determine the specific
calibration coefficients for a given soil depth-interval. It is a
simplified form of the approach originally proposed by Rhoades
& Corwin (1981); it uses surface EMI measurements only in both
vertical (ECaV) and horizontal (ECaH) operation modes (Rhoades
& Corwin, 1981, 1990; Rhoades et al., 1989; Triantafilis et al.,
2000). The depth-specific calibration curves were obtained by
fitting a multiple linear regression model to the 𝜎b,TDR calibration
data measured within discrete depth intervals of the soil profile,
which is given by:

𝜎b,EMI,di = 𝛼di + 𝛽diECaH + 𝛾di

(
ECaH − ECaV

)
, (6)

where 𝜎b,EMI,di is the bulk electrical conductivity estimated in the
soil depth increments, di (0–20, 20–40 and 40–60 cm), from ECa

readings, 𝛼, 𝛽 and 𝛾 are depth-specific empirically determined
coefficients and the difference ECaH–ECaV was used to reduce the
effect of collinearity between the ECaH and ECaV readings (Lesch
et al., 1998).

Calibration of the EMI sensor was carried out on the data
from the three transects, which covered a wide range of salinity
values and distributions. Calibration coefficients were estimated
by pooling the data from all transects into a single dataset. The
1dS, 3dS and 6dS EMI and TDR calibration data series were
first combined in separate EMI and TDR datasets before fitting
Equation (6) to the measurements. Therefore, calibration provided
an identical calibration coefficient vector for the three transects, but
the parameters were different for each of the three depth intervals.

The calibration procedure was applied to both the original and the
filtered data series.

Validation of the calibration equation coefficients

As stated above, for each of the remaining 14 EMI monitoring days,
a direct 𝜎b,TDR value was recorded at 0–20-cm depth at each of
the 24 EMI measurement sites. These data were compared with the
𝜎b,EMI estimates from the predictive equation for the 0–20-cm depth
for the ECaH and ECaV readings. Because no TDR validation data
were available for the deeper intervals (20–40 and 40–60 cm), the
predictive effectiveness of the calibration equations was evaluated
for the 0–20-cm layer only. However, in our case, validation of
the calibration parameters for the first depth only is sensible in
our experiment because the dynamics of salts during the irrigation
season are confined mainly to a depth of about 20 cm. There was
little movement of irrigation water into the deeper soil layers. This
was because of the relatively shallow root system of the selected
crop, and also the irrigation approach used in the experiment (i.e. at
each irrigation time, the water lost by evapotranspiration only was
applied).

Data filtering

The original spatial data series were filtered to omit the variation
from small-scale heterogeneities (recorded by TDR probes only) so
that only information at a spatial scale larger than the observation
volume of both the sensors was retained.

The Fourier transform (FT) of a discrete stationary series of length
M equispaced at intervals Δs (xs, s= 0,1,… , M−1) (where x is the
variable to be transformed and s is the spatial or temporal location
on the series) is defined as (Shumway, 1988):

X (k) = M−1
M−1∑
s=0

(
xs − x

)
exp

(
−2𝜋i𝜈ks

)
, (7)

where k= 0,1 . . . ., M − 1, X(k) are the Fourier coefficients,
i =

√
−1, 𝜈k = k/M is the frequency (or wave number) in cycles

per unit distance (or time) and x is the sample mean. If the series is
detrended, xs in Equation (7) is the detrended series.

The FT in Equation (7) may be written in terms of a sine and
cosine transform, noting that:

exp
(
−2𝜋i𝜈ks

)
= cos

(
−2𝜋𝜈ks

)
− isin

(
−2𝜋𝜈ks

)
. (8)

Thus Equation (7) becomes:

X (k) = XC (k) − iXS (k) . (9)

The Fourier coefficients X(k) are complex numbers. Most software
packages (MatLab, SAS, Microsoft Excel, … ) have a built-in fast
Fourier transform (FFT) algorithm that speeds up considerably the
computation of Equation (7); the sine and cosine transforms are
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available immediately from the real and imaginary parts of the
computed X(k).

The real part of the FFT corresponds to the cosine series and the
imaginary part corresponds to the sine. The MatLab FFT returns
data that can be used to obtain the following coefficients:

ak = − 2
M

imag (X (k)) , 0 < k <
M
2

bk = − 2
M

real (X (k)) , 0 < k <
M
2

, (10)

that can be used for recovering the original data signal by:

x (s) = a0 +
(M−1)∕2∑

k=0

(
ak sin

(
2𝜋𝜈ks

)
+ bk cos

(
2𝜋𝜈ks

))
. (11)

Equation (11) is central in the filtering approach we used in
our research. It can be used to reconstitute a smoothed data
series by retaining selected harmonics only (e.g. low-frequency
harmonics) and omitting the remainder of the original data signal.
The frequencies to be selected can be identified by examining the
power spectral density (see Equation (13) below) of the data series.

The periodogram may be written as the squared modulus of the
FT:

Px

(
𝜈k

)
= |X (k)|2 = [

X2
C (k) + X2

S (k)
]
= X (k)X (k), (12)

where the overbar denotes a complex conjugate, which is an
approximately unbiased estimator for the spectrum (Shumway,
1988). It is common practice to average adjacent values of the
periodogram to obtain estimates with more degrees of freedom, and
so create a smoothed power spectrum.

The average spectral estimator in a frequency interval centred on
𝜈k is defined as:

f P,B
x

(
𝜈k

)
= L−1

(L−1)∕2∑
l=−(L−1)∕2

P
(
𝜈k +

l
M

)
= L−1

(L−1)∕2∑
l=−(L−1)∕2

|X (k + l)|2,

(13)
where L is some odd integer considerably less than M that defines
the averaging window, which may be expressed in frequency terms
as a bandwidth B=L/M (cycles per point) centred on 𝜈k, and
f P,B
x

(
𝜈k

)
is the periodogram-based power spectrum averaged on

B and distributed approximately as a chi-squared, 𝜒2, variable in
which the degrees of freedom depend on the window width, L, used.

The 100% (1− 𝛼) confidence interval for the smoothed spectrum
can be calculated as:

2Lf P,B
x

(
𝜈k

)
𝜒2

2L (𝛼∕2)
≤ f n

x

(
𝜈k

)
≤

2Lf P,B
x

(
𝜈k

)
𝜒2

2L (1 − 𝛼∕2)
, (14)

where 𝛼 is the significance level and f n
x

(
𝜈k

)
is the background

noise power spectrum. The null hypothesis is f P,B
x

(
𝜈k

)
= f n

x

(
𝜈k

)
against f P,B

x

(
𝜈k

)
≠ f n

x

(
𝜈k

)
. If f n

x

(
𝜈k

)
falls within the interval in

Equation (14), we fail to reject the hypothesis. If not, the estimated
power spectrum at a given frequency, 𝜈k, has to be considered

significantly different from that of the assumed background noise.
For the case of white noise, which suggests a uniform distribution
of the power spectrum across frequencies, f n

x

(
𝜈k

)
can be considered

to be the mean of all power spectrum estimates.
The FT was applied to both the EMI and TDR data series for all

the measurement periods. The calibration and validation procedures
applied previously to the original data series were repeated for the
filtered data.

Evaluation of concordance between 𝜎bTDR measurements
and 𝜎bEMI estimates

The agreement between 𝜎b,TDR measurements and 𝜎b,EMI estima-
tions at 0–20-cm depth was evaluated by the concordance corre-
lation coefficient, 𝜌L (Lin, 1989):

𝜌L =
2zxy

z2
x + z2

y +
(
mx − my

)2
, (15)

where mx, my, zx, zy, zxy are means, standard deviations and covari-
ances of the two data series (x= 𝜎b,EMI; y= 𝜎b,TDR), respectively.

Scatter plots of the 𝜎b,EMI and 𝜎b,TDR data series (both original
and filtered) for the 0–20-cm depth were evaluated by the line of
perfect concordance (1:1 line) and the reduced major axis of the data
(RMA) (Freedman et al., 1991). The method combines measures
of both precision and accuracy to determine how close the two
data series are to the line of perfect concordance 𝜎b,EMI = 𝜎b,TDR.
Compared with the classical Pearson correlation coefficient, 𝜌P,

𝜌P =
zxy

zxzy

, (16)

𝜌L not only measures the strength of a linear relationship (how close
the data in the scatter plot are to a line), but also the strength of
agreement (how close that line is to the line of perfect agreement,
the 1:1 line). In this sense, 𝜌L may also be calculated as (Cox, 2005):

𝜌L = 𝜌PCb,

Cb =
2

(v + 1∕v + u2)
,

v = zx∕zy (17)

and
u =

(
mx − my

)
∕
√

zxzy ,

where Cb is a bias correction factor that measures how far the
best-fitting line deviates from the 1:1 line. The maximum value of
Cb = 1 (0<Cb < 1), which means that there is no deviation from the
line. The further Cb is from 1, the greater is the deviation from the
line. In other words, Cb is a measure of accuracy (how much the
average estimated value differs from the average measured value,
assumed to be the true value) and refers to the systematic error,
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Figure 2 Spatial distribution of 𝜎b, time-domain reflectometry (TDR)
measured at the three depths (0–20, 20–40 and 40–60 cm) and the ECaH
and the ECaV at the calibration date (last survey date, 17 July). The three
treatments are shown in sequence (on the x-axis, data points 1–24 refer to
the 1dS transect, data points 25–48 refer to the 3dS transect and data points
49–72 refer to the 6dS transect).

whereas 𝜌P is a measure of precision (measures the variability of
measurements around their average) and refers to the random error.

The RMA line(or standard deviation, SD, line) is given by:

y =
(

my − 𝛽mx

)
+ 𝛽mx. (18)

This line passes through the means of the x and y values and has a
slope given by the sign of Pearson’s correlation coefficient, 𝜌P, and
the ratio of the SD of the two series (Freedman et al., 1991; Cox,
2005):

𝛽 = sign

(
n∑

i=1

xiyi

)
√√√√√√√√√√

n∑
i=1

y2
i

n∑
i=1

x2
i

, (19)

where 𝜌L increases in value as (i) the RMA approaches the line
of perfect concordance (a question of accuracy) and (ii) the data
approach the RMA (a question of precision). In the ideal case of
perfect concordance, the intercept of the RMA, 𝛼 should be= 0 and
𝛽 should be= 1. Therefore, 𝛼 ≠ 0 or 𝛽 ≠ 1 indicates additive and or
multiplicative biases (location and or scale shifts).

Results and discussion

Calibration and validation of the original data

Calibration. The thin lines with symbols in Figure 2 show
the spatial distribution of 𝜎b,TDR measured at the three depths
(0–20, 20–40 and 40–60 cm) for the calibration date (17 July).
The solid and the dashed bold lines represent the ECaH and
ECaV depth-integrated measurements, respectively, obtained by the
EM38. For comparison, the three salinity treatments are shown in

Figure 3 Results of the calibration procedure applied to: (a) the original
datasets and (b) the filtered datasets for the three depth intervals (0–20,
20–40, 40–60 cm). In the graph the three treatments are shown in sequence
(on the x-axis, data points 1–24 refer to the 1dS transect, data points 25–48
refer to the 3dS transect and data points 49–72 refer to the 6dS transect).
TDR, time-domain reflectometry; EM, electromagnetic.

sequence. Positions 1 to 24 on the x-axis refer to the 1dS transect,
positions 25 to 48 to the 3dS transect and positions 49 to 72 refer to
6dS.

As for the TDR data, the 1dS data mostly overlap at all three
depths. By increasing the salinity of the irrigation water the
electrical conductivity at the soil surface progressively increases
in treatments 3dS and 6dS, whereas deeper in the soil profile
(20–40 and 40–60-cm depths) it remains at approximately the
same average values observed in treatment 1dS. This confirms
indirectly that the salt dynamics of the irrigation water mostly
affected the top layer only. This is because both the shallow roots of
the crop used and the irrigation strategy adopted meant that at each
irrigation time only the water lost through evapotranspiration was
supplied.

The ECaH and ECaV series vary in parallel in treatments 1dS
and 3dS (Figure 2). This means that the EMI sensor in the two
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Table 1 Calibration coefficients obtained by fitting Equation (6) to the
dataset of the last measurement date (17 July) for both the original and
filtered data series and for the three depth intervals

Calibration coefficients

Data Depth 𝛼 𝛽 𝛾 R2

ORG data 0–20 0.315 −0.091 1.961 0.64
20–40 −0.099 1.728 −1.082 0.36
40–60 0.051 1.438 −0.968 0.29

FLT data 0–20 0.278 −0.198 2.371 0.93
20–40 0.056 1.348 −0.843 0.59
40–60 0.041 1.471 −0.984 0.50

ORG and FLT refer to the original and the filtered data, respectively.

Figure 4 Distribution over time of the transect means for: (a) the water
content, 𝜃TDR, (b) the bulk electrical conductivity, 𝜎b,TDR, measured by
time-domain reflectometry (TDR) at 0–20-cm depth and (c) the apparent
electrical conductivity, ECaH, measured by the electromagnetic induction
(EMI), for all 15 monitoring dates and for the three transects.

configurations is sensing the same vertical distribution in 𝜎b, but the
values are weighted by the different depth responses. By contrast,
in the 6dS treatment the two signals become markedly different
because of the major change in salinity at the soil surface. In the
horizontal mode, the sensor is more sensitive to the increase in
salinity at the soil surface.

A comparison of the TDR and EMI series shows that macroscop-
ically ECaH follows the general trend of the TDR data. This is

particularly evident along the 6dS part of the graph. A site-by-site
comparison of EMI and TDR data, however, would reveal a weak
correlation between the data series. In several parts of the graph
TDR values decrease when EMI values increase, and vice versa. In
general, the small-scale patterns of variation revealed by the TDR
values are smoothed in the set of EMI values.

Figure 3(a) shows the results of the calibration procedure
applied separately for the three depth intervals, 0–20, 20–40 and
40–60 cm, by pooling all the 1dS, 3dS and 6dS data. The TDR
calibration data (𝜎b,TDR) cover the range 0.25–0.75, 0.30–1.0 and
0.25–1.5 for 1dS, 3dS and 6dS, respectively. Calibration for tran-
sects 1dS and 3dS results in almost overlapping 𝜎b,EMI estimates for
the three depths, with values in a relatively narrow range and unable
to reproduce the small-scale (local scale) fluctuations observed by
TDR. Although the 𝜎b,EMI estimates for transect 6dS reproduce the
macroscopic spatial (both horizontal and vertical) pattern observed
by TDR, they cannot resolve the local-scale fluctuations recorded by
TDR. Importantly, values in the 6dS survey cover the whole range
of values observed for the three transects. The corresponding cali-
bration parameters 𝛼, 𝛽 and 𝛾 (see Equation (6)) for the three depth
intervals are given in Table 1 and are labelled ORG data (original
data). Goodness of fit, evaluated in terms of R2, was 0.64, 0.36 and
0.29 for the 0–20, 20–40 and 40–60-cm depths, respectively.

Validation. The predictive effectiveness of the calibration param-
eters was evaluated by comparing 𝜎b estimated from EMI values
(𝜎b, EMI) with those of the 𝜎b,TDR validation data recorded at the
0–20-cm depth for the 14 data series (24 readings per transect per
data series, a total of 1008 data) not used in the calibration pro-
cedure. The dataset used for validation (Figure 4a–c) shows the
variation in transect means over time for water content, 𝜃TDR, bulk
electrical conductivity, 𝜎b,TDR, measured by TDR at 0–20-cm depth,
and the apparent electrical conductivity, ECaH, measured by the
EMI, for all 15 of the monitoring periods and for the three transects.

As for 𝜃TDR, our data show that the irrigation strategy enabled
quite a stable value (average 𝜃TDR = 0.25) to be maintained during
the experiment, such that the dynamics of bulk electrical conduc-
tivity could be ascribed mostly to changes in soil water electrical
conductivity. The variation over time in the average 𝜎b,TDR from
the TDR electrical conductivities for the 1dS transect is reason-
ably stable during the experiment because of the relatively low
salinity of the irrigation water. By contrast, for transects 3dS and
6dS the bulk electrical conductivity gradually increases because of
the progressive accumulation of salts from the irrigation water at
0–20-cm depth. It is worth noting that ECaH shows a similar aver-
age behaviour to that observed for TDR. The TDR and EMI sensors
provide local (0–20 cm) and profile-integrated values, respectively,
therefore the similar behaviour again suggests that the salt dynamics
were confined mostly to the shallow soil layer.

The scatter plots of 𝜎b,EMI estimates at 0–20-cm depth against the
𝜎b,TDR data for the three treatments 1dS ORG, 3dS ORG and 6dS
ORG are shown in Figure 5(a–c). The graphs also give the perfect
concordance line (the 1:1 line) together with the main regression
axis (MRA). Table 2 gives the classical Pearson’s, 𝜌P, and Lin’s,
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Figure 5 Scatter plots of 𝜎b,EMI estimates against 𝜎b,TDR measurements at 0–20-cm depth for the 1dS, 3dS and 6dS treatments. All data shown in the figure
refer to the 14 measurement dates not included in the calibration. The top row represents the original (ORG) data: (a) 1dS, (b) 3dS and (c) 6dS. The bottom
row represents the filtered (FLT) data: (d) 1dS, (e) 3dS and (f) 6dS. The graphs also show the line of perfect concordance (the 1:1 line, solid line) and the main
regression axis (MRA) (the main regression axis, dashed line).

𝜌L, correlation coefficients, together with the intercept, 𝛼, and the
slope, 𝛽, of the MRA. These values were obtained by analysing the
data from all of the 14 measurement periods simultaneously.

The 1dS and 3dS data in Figure 5(a,b) suggest that the TDR
probes record variation in the 0–20-cm layer, which is not detected
by the EMI sensor. This result is reflected in the weak concordance
(𝜌L = 0.11 for 1dS; 𝜌L = 0.25 for 3dS) and MRA parameters
(𝛽 = 1.45, 𝛼 =−0.20 for 1dS; 𝛽 = 1.83, 𝛼 =−0.37 for 3dS), which
results in an MRA line that is far from the 1:1 line.

The validation results for the 6dS transect (𝜌L = 0.56) were better
(Figure 5c); the MRA line is closer to the 1:1 line (𝛽 = 1.17;
𝛼 =−0.16), which indicates acceptable accuracy. There is still a
relatively large scatter of data around the MRA line, which might
partly arise from different sources of noise in the TDR and EMI
data. Figure 6 shows the variation in the 𝜌L coefficient obtained
by comparing 𝜎b,EMI estimates and the 𝜎b,TDR data at 0–20-cm
depth for individual monitoring days for each of the three transects.
Comparison on a daily basis reflects the behaviour already indicated
by the values obtained by analysing all of the data for the 14

Table 2 Correlation coefficients and concordance parameters for both the
original and filtered data series and for all the three treatments

Correlation
coefficients MRA parameters

Data Transect treatments 𝜌P 𝜌L 𝛽-MRL 𝛼-MRL

ORG data 1dS 0.11 0.11 1.45 −0.20
3dS 0.31 0.25 1.83 −0.37
6dS 0.59 0.56 1.17 −0.16

FLT data 1dS 0.28 0.26 1.09 −0.08
3dS 0.53 0.48 1.20 −0.13
6dS 0.73 0.69 0.99 −0.04

ORG and FLT refer to the original and the filtered data, respectively. The
values were obtained by analysing the data of all the 14 measurement dates
simultaneously. MRA, main regression axis.

measurement periods simultaneously. The 𝜌L covers the following
ranges: −0.06 to 0.28 (average 0.10), 0.12–0.29 (average 0.21) and
0.10–0.77 (average 0.49) for the 1dS, 3dS and 6dS salinity levels,
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Figure 6 Concordance coefficients for both the original and filtered data
series and for the three treatments. The values were obtained by comparing
𝜎b electromagnetic induction (EMI) estimates and the 𝜎b TDR data for a
single monitoring day for each of the three transects. ORG and FLT refer to
the original and the filtered data, respectively.

respectively. In general, the systematic error decreases with the
increase in level of salinity for the three transects.

Calibration and validation of filtered data

Filtering. Both the calibration and validation steps carried out on
the original data were also applied to the filtered data series. The
analysis focused on the low-frequency portion of each data series.
The harmonics to be considered were selected by analysing the
power spectral density of each data series. Figure 7 shows an
example of the power spectra for 𝜎b,TDR 0–20-cm depth and for the
EMaH values. The data are for the calibration measurement day on
17 July.

As for transects 1dS and 3dS in Figure 7(a,b), the TDR power
spectral density shows multi-scale variation with smaller and
larger frequency peaks (around the 0.15 and 0.35 frequencies). By
contrast, almost all the variance in the EMaH series is in the lower
frequency region of the spectra, which corresponds to the smaller
spatial scale. The remaining information in the ECaH spectra was
identified mostly as noise. It seems that the variation in TDR
values derives from a combination of smaller- and larger-scale
heterogeneities. In contrast, the EMI sensor smooths the small-scale
variation recorded by the TDR probes, such that the small-scale
patterns of variation revealed by a set of TDR values might not be
evident in a set of EMI values at the same sites.

To make the two data series comparable, the data were filtered
and the portion of the data series in the lower frequency region of
the spectra only was retained, which emphasizes the component of
the information that is shared by the two data series.

As for the 6dS transect, Figure 7(c), it is evident that the TDR
spectrum follows the shape (albeit with different values) of that of
the ECaH series, which suggests that the variation in soil properties
at small spatial scales is negligible. Therefore, the pattern of
variation in ECaH is the same as that detected by the TDR.

In all the cases the information on the low frequency portion of
the EMI data series was contained in the first three harmonics (four
for the 3dS). The remaining signal was mostly noise. Six and five
harmonics were used to restore the lower frequency TDR signal for
the 1dS and the 3dS data series, respectively. For these, the filtered

Figure 7 Power spectra for the 𝜎b, TDR 0–20-cm depth and the EMaH
values for the (a) 1dS, (b) 3dS and (c) 6dS transects. Data are for the
calibration measurement date of 17 July. TDR, time-domain reflectometry;
EM, electromagnetic.

signal, calculated as the sum of the remaining harmonics, included
both the higher frequency peak and the noise. For 6dS, the large
variance TDR signal was contained in the first three harmonics, and
the remaining information was identified as noise only, as for the
ECaH signal.

Figure 8(a–f) shows the results of filtering for the ECaH, ECaV
and TDR calibration data series (17 July series) for all three
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treatments. As in Figure 7(c), the ECaH and TDR signals show
the same predominant pattern of variation at a scale of about
10 m with evident in-phase cycling. This is not verified completely
for transects 1dS and 3dS where the two signals partly cycle in
opposition, and large ECaH values might correspond to small TDR
values and vice versa.

We consider that this analysis illustrates the strength of the infor-
mation in the 6dS data series. It shows the full range of variation in
soil salinity, the similarity in spectra, a large signal:noise ratio and
the in-phase ECaH and TDR signals make the 6dS data appropri-
ate for more robust calibration and more effective prediction. These
features should be used as a criterion to select data series to use for
the calibration of EMI sensors. The results for all the remaining data
series largely reproduced the variation observed for the calibration
data series and for brevity are not shown here.

Calibration. After filtering, the EMI data were calibrated again
with Equation (6). The data used in the regression equation were the
filtered ECaH, ECaV and TDR data series of the last measurement
date (17 July). Figure 3(b) and Table 1 give the calibration results
for the filtered data. Goodness of fit improved considerably, and
R2 increased from 0.64 to 0.93 (0–20 cm), from 0.36 to 0.59
(20–40 cm) and from 0.25 to 0.50 (40–60 cm).

Validation. Validation was carried out with the filtered data series
for all the remaining 14 monitoring periods. Graphical and quantita-
tive evaluations of the 𝜎b,EMI predictions are shown in Figure 5(d–f)
and Table 2. The approach is labelled as FLT (filtered data). The 1:1
plots show a considerable decrease in the scatter (especially evident
for 1dS and 3dS). The MRA line and 1:1 line become closer in tran-
sects 1dS (𝛽 = 1.09; 𝛼 =−0.08) and 3dS (𝛽 = 1.20; 𝛼 =−0.13). In
the 6dS transect, the MRA and 1:1 lines almost overlap (𝛽 = 0.99;
𝛼 =−0.04). The concordance improved markedly for 1dS (𝜌L from
0.11 to 0.26) and 3dS (𝜌L from 0.25 to 0.48) and by 23% for 6dS
(𝜌L from 0.56 to 0.69). The graph in Figure 6 also shows the vari-
ation in the 𝜌L coefficient obtained by comparing filtered (FLT)
𝜎b,EMI estimates and filtered 𝜎b,TDR data for single monitoring days.
Comparison on a day-by-day basis emphasizes the improvements
obtained by filtering. The 𝜌L now covers the range 0.15–0.38 (aver-
age 0.24), 0.26–0.53 (average 0.43) and 0.35–0.85 (average 0.60)
for the 1dS, 3dS and 6dS salinity levels, respectively.

Conclusions

Filtering enabled us to identify some important characteristics in
a data series that should be included for more robust calibration
and more effective predictions: (i) the ability to see the full range
of variation in soil salinity, (ii) similar power spectra, (iii) a large
signal:noise ratio and (iv) in-phase cycling of ECaH and TDR
predominant signals. These characteristics should be used as criteria
to select data series to be used for calibration of EMI sensors.

The strength of the filtering methodology we have described is
that it enables an EMI sensor to be calibrated based on the actual
information content at selected spatial scales (selected frequencies);

that is, desirable scales can be selected for calibrating the EMI
sensor. In this sense, it is obviously much more sophisticated than
a simple moving average filter.

Our methodology enabled empirical calibration to be improved;
however, a major concern is that the detailed part of the signal is
lost because filtering the data means that the small-scale variation
in soil salinity cannot be restored. The problem requires some
multi-scale approaches to retain both the high and low frequency
parts of the signal for use in restoring both the small- and large-scale
components of the signal. Another option that we are considering
is to develop separate calibrations for both small- and larger-scale
variation.
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