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The considerable interest in the recent literature for nonlocal equations and their applications 
to a wide range of scientific problems does not appear to be supported by a corresponding 
advancement in the efforts toward reliable numerical techniques for their solution. The aim of 
this paper is to provide such an algorithm and above all to prove its high order convergence. 
The numerical scheme is applied to a diffusion problem in a biological context, arising in 
population theory. Several simulations are carried out. At first the empirical order of convergence 
on examples with known solution is assessed. Their results are in agreement with the theoretical 
findings. Simulations are then extended to cases for which the solution is not known a priori. Also 
in this case the outcomes support the convergence analysis.

1. Introduction

In relatively recent years there has been a considerable interest in the study of situations incorporating nonlocal effects arising in 
engineering, specifically for instance in heterogeneous material science [9], diffusion [19], modified phase fields [5,10], Allen-Cahn 
[11] and Cahn-Hillier [20] equations also under different boundary conditions, [7,8]. Traveling waves in this context have been 
considered in [15] as well as the possibility of nonuniqueness of the solutions, [16]. The idea has then been extended also to models 
in population biology. Since a century, populations interaction has been the thrust behind the development of population theory, 
initially through models depending only on time and subsequently also on space, see for instance [29,1]. In this context, historically 
the classical studies of Fisher [23] and [27] on population waves propagation play a major role, as well as more recent investigations, 
see e.g. [26,40].

In more recent years a revived attention on variations of the reaction-diffusion equations including integro-differential terms, 
[6,42] and delays [38] has arisen. It is to be remarked that these studies could lead to spatiotemporal heterogeneities [17,29,25]. 
Determination of the speed of invasions is also relevant from a biological point of view, [32], in particular for the control of pests and 
invasive alien species [12]. These investigations are important because they pave the way to relevant applications in mathematical 
biology [37] and medicine [13].

* Corresponding author.
E-mail addresses: domenico.mezzanotte@unito.it (D. Mezzanotte), donatella.occorsio@unibas.it (D. Occorsio), ezio.venturino@unito.it (E. Venturino).

1 Member of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM) and of the Research ITalian network on Approximation 
Available online 15 May 2024
0168-9274/© 2024 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

(RITA).

https://doi.org/10.1016/j.apnum.2024.05.011
Received 1 December 2023; Received in revised form 6 March 2024; Accepted 10 May 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:domenico.mezzanotte@unito.it
mailto:donatella.occorsio@unibas.it
mailto:ezio.venturino@unito.it
https://doi.org/10.1016/j.apnum.2024.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2024.05.011&domain=pdf
https://doi.org/10.1016/j.apnum.2024.05.011
http://creativecommons.org/licenses/by/4.0/


Applied Numerical Mathematics 203 (2024) 255–268D. Mezzanotte, D. Occorsio and E. Venturino

Numerical methods such as the finite difference method and the finite element method for standard reaction-diffusion models 
without nonlocalities are well known in the literature. Conversely, even though models including nonlocalities are frequently used 
[4], to our knowledge there is little information on the numerical schemes used to generate the simulations. In this paper we would 
like to address this issue, particularly focusing on specific reaction-diffusion equations. In the previous work [31], we proposed a line 
method for the integration of a simple nonlinear reaction-diffusion equation. The numerical experiments reveal that an empirical 
fourth-order convergence order is attained. The purpose of this investigation is the analytic assessment of this result for a relevant 
model of biological nature. In particular, a few instances of the latter will also be considered for the numerical experiments in support 
of the theoretical findings.

The paper is organized as follows. Section 2 collects some preliminaries useful for the numerical treatment of the model described 
in Section 3. We introduce the numerical scheme to discretize the equation under study in Section 4, while Section 5 is devoted to 
its error analysis. Finally, in Section 6 we present and comment on several numerical simulations to prove the effectiveness of the 
proposed method.

2. Preliminaries

In what follows the notation 𝑔𝑥(𝑦) has to be understood in the sense that any bivariate function 𝑔(𝑥, 𝑦) is considered to depend 
only on the variable 𝑦. Moreover,  denotes a positive constant, which may have different values at different occurrences, and we 
write  ≠ (𝑛, 𝑓, …) to mean that  > 0 is independent of 𝑛, 𝑓, …. Finally, for sake of brevity we introduce the notation

𝒙 = (𝑥0, 𝑥1,… , 𝑥𝑛−1, 𝑥𝑛) ∈ℝ𝑛+1.

In what follows 𝐶0([−𝑎, 𝑎]) denotes the space of the continuous functions, equipped with the uniform norm ‖𝑓‖ ∶= max
𝑥∈[−𝑎,𝑎]

|𝑓 (𝑥)|.
In 𝐶0([−𝑎, 𝑎]), let us consider the following Sobolev-type subspaces defined for any integer 𝑠 ≥ 1 as

𝑊𝑠([−𝑎, 𝑎]) =
{
𝑓 ∈ 𝐶0([−𝑎, 𝑎]), 𝑓 (𝑠−1) ∈ ∶ ‖𝑓 (𝑠)𝜙𝑠‖ <∞

}
, 𝜙(𝑥) =

√
𝑎2 − 𝑥2,

where  denotes the space of all absolutely continuous functions on every closed subset of (−𝑎, 𝑎). The space 𝑊𝑠([−𝑎, 𝑎]) is 
equipped with the norm

‖𝑓‖𝑊𝑠
= ‖𝑓‖+ ‖𝑓 (𝑠)𝜙𝑠‖.

In any 𝑓 ∈ 𝐶([−𝑎, 𝑎]) the 𝑛-th Bernstein polynomial 𝐵𝑛𝑓 is defined as [22,36]

𝐵𝑛𝑓 (𝑥) ∶=
𝑛∑

𝑗=0
𝑝𝑛,𝑗 (𝑥)𝑓 (𝑥𝑗 ), 𝑥𝑗 ∶= −𝑎+ 𝑗ℎ, ℎ = 2𝑎

𝑛
, 𝑥 ∈ [−𝑎, 𝑎], (1)

where

𝑝𝑛,𝑗 (𝑥) ∶=
(
𝑛

𝑗

)(
𝑎+ 𝑥

2𝑎

)𝑗 (𝑎− 𝑥

2𝑎

)𝑛−𝑗
. (2)

Let us fix 𝓁 ∈ℕ, we recall the definition of the 𝑛-th Generalized Bernstein (GB) polynomial of parameter 𝓁, namely the polynomial 
𝐵𝑛,𝓁𝑓 , that takes the following expression

𝐵𝑛,𝓁𝑓 (𝑥) =
𝑛∑

𝑗=0
𝑝
(𝓁)
𝑛,𝑗

(𝑥)𝑓 (𝑥𝑗 ), with 𝑝
(𝓁)
𝑛,𝑗

(𝑥) =
𝑚∑
𝑖=0

𝑝𝑛,𝑖(𝑥)𝑐
(𝑛,𝓁)
𝑖,𝑗

, (3)

where 𝑐(𝑛,𝓁)
𝑖,𝑗

are the entries of the matrix 𝐶𝑛,𝓁 ∈ℝ(𝑛+1)×(𝑛+1)

𝐶𝑛,𝓁 = 𝐈+ (𝐈−𝐀) +…+ (𝐈−𝐀)𝓁−1, 𝐶𝑛,1 = 𝐈, (4)

𝐈 being the identity matrix of order 𝑛 + 1 and 𝐀 being defined as

𝐀 ∶= (𝐀𝑖,𝑗 ), 𝐀𝑖,𝑗 ∶= 𝑝𝑛,𝑗 (𝑥𝑖), 𝑖, 𝑗 ∈ {0,1,… , 𝑛},

with 𝑝𝑛,𝑗 (𝑥) defined as in (2).
Other representations of the GB polynomial are available in the literature, such as the one based on their eigenstructure (see 

e.g. [14,18]). Nevertheless, the choice of expression (3) for the GB polynomial is optimal since it allows to consider 𝐵𝑛,𝓁 as the 
𝑛-th classical Bernstein polynomial 𝐵𝑛 of a function 𝑔 having a suitable sampling vector, i.e. 𝐵𝑛,𝓁𝑓 (𝑥) = 𝐵𝑛𝑔(𝑥) = 𝒑𝑛(𝑥)𝒈𝑛, where 
𝒈𝑛 ∶= 𝐶𝑛,𝓁𝒇 𝑛 with 𝒑𝑛(𝑥) = [𝑝0(𝑥), … , 𝑝𝑛(𝑥)]𝑇 and 𝒇 𝑛 = [𝑓 (𝑥0), … , 𝑓 (𝑥𝑛)]𝑇 . Consequently, the GB polynomial 𝐵𝑛,𝓁𝑓 can be computed 
by using the well-known de Casteljau recursive scheme that is fast and stable [21, §3]. A complete survey on the Generalized 
256

Bernstein polynomials and their applications can be found in [34,36].
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We recall the following GB rule based on the Generalized Bernstein polynomials 𝐵𝑛,𝓁𝑓 [22,31,35]

𝑎

∫
−𝑎

𝑓 (𝑦)𝜑(𝑦− 𝑥)𝑑𝑦 =

𝑎

∫
−𝑎

𝐵𝑛,𝓁(𝑓𝜑𝑥, 𝑦)𝑑𝑦+

𝑎

∫
−𝑎

[𝑓 (𝑦)𝜑𝑥(𝑦) −𝐵𝑛,𝓁(𝑓𝜑𝑥, 𝑦)]𝑑𝑦

=
𝑛∑

𝑗=0
𝑓 (𝑥𝑗 )𝜑(𝑥𝑗 − 𝑥)𝐷(𝓁)

𝑗
+ 𝑒𝑛,𝓁(𝑓𝜑𝑥) =∶𝑛,𝓁(𝑓,𝑥) + 𝑒𝑛,𝓁(𝑓𝜑𝑥), (5)

where

𝐷
(𝓁)
𝑗

= 2𝑎
𝑛+ 1

𝑛∑
𝑖=0

𝑐
(𝑛,𝓁)
𝑖,𝑗

, 𝑥𝑗 ∶= −𝑎+ 𝑗ℎ, ℎ = 2𝑎
𝑛
. (6)

As far as the error of the GB rule is concerned, we recall the following result [31,35]

Theorem 2.1. Under the assumption

sup
𝑥∈[−𝑎,𝑎]

(𝑓𝜑𝑥) ∈𝑊𝑠([−𝑎, 𝑎]), 1 ≤ 𝑠 ≤ 2𝓁,

we have

sup
𝑥∈[−𝑎,𝑎]

|𝑒𝑛,𝓁(𝑓𝜑𝑥)| ≤ 
(
𝑎𝑠+1
(
√
𝑛)𝑠

)
,  ≠ (𝑛,𝑓 ,𝜑), (7)

where

 ∶= sup
𝑥∈[−𝑎,𝑎]

‖𝑓𝜑𝑥‖𝑊𝑠
.

Remark 2.2. By (7), under the assumptions of Theorem 2.1, we have

sup
𝑥∈[−𝑎,𝑎]

|𝑒𝑛,𝓁(𝑓𝜑𝑥)| ∼(ℎ𝑠∕2).

3. The model

Models for the study of population growth, interactions and evolutions are very well known. As explained in the Introduction, 
the first ever population 𝑃 model proposed was by Malthus [30] at the end of the eighteenth century, as a very simple ordinary 
differential equation, in which 𝑟 denotes the per capita growth rate:

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝑟𝑃 (𝑡),

with later improvements by Verhulst [39] that correct the false consequences of the former, preventing that in a finite environment 
a population 𝑃 can continue to grow exponentially without bounds:

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝑟𝑃 (𝑡)
(
1 − 𝑃 (𝑡)

𝐾

)
.

Here 𝐾 denotes the carrying capacity of the environment, how many individuals 𝑃 the environment can sustain; its reciprocal 𝐾−1

can also be seen as a measure of intraspecific competition. The solutions of the model indeed tend to this finite value 𝐾 . Lotka and 
Volterra [28,41] proposed the first models for populations interactions about a century ago. Diffusion in space was introduced in 
later researches, with the classical results of Fisher on the development of population waves [23] in space time, [29]. In this situation, 
the population 𝑢 is a function of both space and time, 𝑢 = 𝑢(𝑥, 𝑡).

Population theory in biology is nowadays a well established branch of scientific research. The omnicomprehensive book of Murray 
[33] presents a wide spectrum of problems and applications. In this light, we consider here a one population model in which diffusion 
is combined with a more recent observation, that something happening in a certain location in space can affect populations residing 
even at long distances from the occurrence of the perturbation. These nonlocal models have been investigated in the literature in 
other fields, but to our knowledge the application to mathematical population theory is novel, with the exception of our earlier 
investigation [31].

Consider the following integrodifferential equation for the time evolution of a population on a spatial domain:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= 𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2

+ 𝑟(𝑢, 𝑥, 𝑡) −𝑚(𝑥)𝑢(𝑥, 𝑡), (8)
257

where (𝑢, 𝑥, 𝑡) represents a non-local operator defined by
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(𝑢, 𝑥, 𝑡) =

𝑎

∫
−𝑎

𝜑(𝑦− 𝑥)𝑢(𝑦, 𝑡) 𝑑𝑦, (9)

with 𝜑(𝑦 − 𝑥) sufficiently smooth. A few assumptions are in order. The population reproduction rate 𝑟 ≥ 0 is constant, and the 
mortality 𝑚(𝑥) ∈ 𝐶([−𝑎, 𝑎]), 𝑚(𝑥) ≥ 0 ∀𝑥 ∈ [−𝑎, 𝑎] depends on the spatial location.

In what follows we will devise a numerical scheme for solving the equation in (8) subject to the initial conditions

𝑢(𝑥,0) = 𝑘(𝑥) ≥ 0, 𝑘 ∈ 𝐶([−𝑎, 𝑎]), (10)

and to the Dirichlet boundary conditions

𝑢(−𝑎, 𝑡) = 𝑏−(𝑡) ≥ 0, 𝑢(𝑎, 𝑡) = 𝑏+(𝑡) ≥ 0, 𝑡 > 0, 𝑏± ∈ 𝐶([0,∞)), (11)

where 𝑘(𝑥) and 𝑏±(𝑡) are known functions.
To be specific from the ecological point of view, the model assumes that available food is always abundant, justifying the use of a 

kind of Malthus law in the formulation, and the reproduction is influenced at a distance. In the latter situation for instance, feeding 
in good pastures for wandering herbivores may lead to the appearance of newborns in other areas.

4. The numerical method

To determine an approximate solution of equation (8), we propose here a “method of lines”. To describe the numerical procedure, 
we start by considering the following spatial mesh of 𝑛 + 1 equally spaced nodes

 =∶
{
𝑥𝑖 = −𝑎+ ℎ𝑖, 𝑖 = 0,1,… , 𝑛, ℎ = 2𝑎

𝑛
.
}

By collocating equation (8) at the 𝑛 − 1 internal nodes {𝑥𝑖}𝑛−1𝑖=1 , and employing the boundary conditions (11) to assess the solution 
values at the endpoints 𝑥0 = −𝑎 and 𝑥𝑛 = 𝑎, the restrictions of the solution at the internal nodes 𝑥𝑖 become univariate functions 
depending only on time 𝑡. Hence, setting

𝑢𝑖(𝑡) ∶= 𝑢(𝑥𝑖, 𝑡),
𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

||||𝑥=𝑥𝑖 =∶ 𝑢′𝑖(𝑡) (12)

𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2

=∶𝐷𝑥𝑥𝑢(𝑥, 𝑡),
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2

||||𝑥=𝑥𝑖 =∶𝐷𝑥𝑖𝑥𝑖
𝑢(𝑡),

𝒖(𝑡) = [𝑢1(𝑡),… , 𝑢𝑛−1(𝑡)]𝑇 , 𝑫𝑥𝑥𝒖(𝑡) = [𝐷𝑥1𝑥1
𝑢(𝑡),𝐷𝑥2𝑥2

𝑢(𝑡),… ,𝐷𝑥𝑛−1𝑥𝑛−1
𝑢(𝑡)]𝑇 ,

(𝒖, 𝑡) = [(𝑢, 𝑥1, 𝑡),… ,(𝑢, 𝑥𝑛−1, 𝑡)]𝑇 , (𝑢, 𝑥𝑖, 𝑡) =

𝑎

∫
−𝑎

𝜑(𝑦− 𝑥𝑖)𝑢(𝑦, 𝑡)𝑑𝑦,

(𝒖, 𝑡) = [𝑚(𝑥1)𝑢1(𝑡),… ,𝑚(𝑥𝑛−1)𝑢𝑛−1(𝑡)]𝑇 ,

we obtain the following system of ordinary differential equations depending only on the time 𝑡, written in compact form:

𝒖′(𝑡) =𝑫𝑥𝑥𝒖(𝑡) + 𝑟(𝒖, 𝑡) −(𝒖, 𝑡). (13)

Now, the numerical approach we propose here consists in the following steps:

1. to discretize the second partial derivatives in space by finite difference schemes;
2. to approximate the integrals (𝒖) by the GB rule recalled in Section 2, thus obtaining an “approximate” ordinary differential 

equations (ODEs) system of the first order;
3. to apply to this “approximate” ODEs system thus obtained the Runge-Kutta-Fehlberg scheme of order (4,5).

To preserve the accuracy (ℎ4) of the Runge-Kutta scheme, steps 1-2 have to be performed in a clever way that we now describe.
Step 1 The finite difference schemes approximating the second partial derivatives are of order (ℎ4) (see e.g. [24]). We use 

different formulae, according to the points that are internal or “close” to the boundary. To be more precise, we make use of the 
five points classical central finite difference scheme (see e.g. [24]) at the nodes 𝑥𝑖, 𝑖 = 2, … , 𝑛 − 2. At the points 𝑥1 and 𝑥𝑛−1 finite 
difference formulae are employed that are subject to two constraints. They must use only nodes in the mesh and must retain the 
same fourth-order accuracy as the classical ones. Such formulae can be constructed by the method of the undetermined coefficients 
[2,3], or simply found in tables.

Step 2 The integrals (𝑢, 𝑥𝑖, 𝑡) are discretized by the GB quadrature formula (5) described in Section 2, i.e.

 (𝑢, 𝑥 , 𝑡) =
𝑛∑
𝜑(𝑥 − 𝑥 )𝑢(𝑥 , 𝑡)𝐷(𝓁)

, (14)
258

𝑛,𝓁 𝑖

𝑗=0
𝑗 𝑖 𝑗 𝑗
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Assuming that the integrand belongs to be the Sobolev space 𝑊𝑠([−𝑎, 𝑎]), the order accuracy of the rule is (ℎ𝑠∕2). Hence for smooth 
𝜑𝑥 the rate of convergence is generally larger than (ℎ4).

About the discretized additional conditions, note that from (10) they become

𝑢𝑖(0) = 𝑘(𝑥𝑖), 𝑖 = 0,… , 𝑛. (15)

At the endpoints ±𝑎 the boundary conditions (11) are employed providing the remaining two equations

𝑢0(𝑡) = 𝑏−(𝑡), 𝑢𝑛(𝑡) = 𝑏+(𝑡). (16)

Now, setting

𝐷̃𝑥1𝑥1
𝑢(𝑡) ∶= 1

ℎ2

[5
6
𝑢0(𝑡) −

5
4
𝑢1(𝑡) −

1
3
𝑢2(𝑡) +

7
6
𝑢3(𝑡) −

1
2
𝑢4(𝑡) +

1
12

𝑢5(𝑡)
]
,

𝐷̃𝑥𝑖𝑥𝑖
𝑢(𝑡) ∶= 1

ℎ2

[
− 1
12

𝑢𝑖−2(𝑡) +
4
3
𝑢𝑖−1(𝑡) −

5
2
𝑢𝑖(𝑡) +

4
3
𝑢𝑖+1(𝑡) −

1
12

𝑢𝑖+2(𝑡)
]
, 𝑖 = 2,… , 𝑛− 2,

𝐷̃𝑥𝑛−1𝑥𝑛−1
𝑢(𝑡) ∶= 1

ℎ2

[ 1
12

𝑢𝑛−5(𝑡) −
1
2
𝑢𝑛−4(𝑡) +

7
6
𝑢𝑛−3(𝑡) −

1
3
𝑢𝑛−2(𝑡) −

5
4
𝑢𝑛−1(𝑡) +

5
6
𝑢𝑛(𝑡)

]
,

we consider the following discretized ODEs system

𝑑𝑢̂𝑖(𝑡)
𝑑𝑡

= 𝐷̃𝑥𝑖𝑥𝑖
𝑢̂(𝑡) + 𝑟𝑛,𝓁(𝑢̂, 𝑥𝑖, 𝑡) −𝑚(𝑥𝑖)𝑢̂𝑖(𝑡), 𝑖 = 1,2,… , 𝑛− 1, (17)

which can be rewritten in compact form as follows

𝒖̂ ′(𝑡) = 𝑫̃𝑥𝑥𝒖̂(𝑡) + 𝑟𝑛,𝓁(𝒖̂, 𝑡) −(𝒖̂, 𝑡). (18)

5. Error analysis

The main result of this investigation concerns the convergence of the method. To this end, the theoretical analysis provides the 
following result:

Theorem 5.1. The proposed discretization scheme (18) is convergent of order 4, namely

‖𝒖− 𝒖̂
∗‖ =(ℎ4).

Proof. Let us denote by ̂𝒖∗(𝑡) ∶= [𝑢̂∗1(𝑡), … , ̂𝑢∗
𝑛−1(𝑡)]

𝑇 the solution of the system (18) computed through the Runge-Kutta-Fehlberg (4,5), 
we have

‖𝒖̂− 𝒖̂
∗‖ =(ℎ4). (19)

Now we estimate the discretization error, and by (13) and (18) we get

‖𝒖′ − 𝒖̂
′‖ ≤ ‖𝑫𝑥𝑥𝒖− 𝑫̃𝑥𝑥𝒖̂‖+ 𝑟‖(𝒖) −𝑛,𝓁(𝒖̂)‖ (20)

+ ‖(𝒖) −(𝒖̂)‖ =∶ 𝐼1 + 𝐼2 + 𝐼3.

We recall that the finite differences scheme used ensures that (see [24])

𝐼1 ≤ ℎ4. (21)

To estimate 𝐼2 we use

𝐼2 ≤ 𝑟
(‖(𝒖) −𝑛,𝓁(𝒖)‖+ ‖𝑛,𝓁(𝒖) −𝑛,𝓁(𝒖̂)‖) .

Assuming that 𝑢𝜑𝑥 is sufficiently smooth (say 𝑢𝜑𝑥 ∈𝑊8([−𝑎, 𝑎])) in view of Theorem 2.1

‖(𝒖) −𝑛,𝓁(𝒖)‖ ≤ ℎ4.
To estimate ‖𝑛,𝓁(𝒖) −𝑛,𝓁(𝒖̂)‖, consider the following inequalities

|𝑛,𝓁(𝑢̂, 𝑥𝑖, 𝑡) −𝑛,𝓁(𝑢, 𝑥𝑖, 𝑡)| ≤ 𝑛∑
𝑗=0

|𝐷(𝓁)
𝑗

||𝜑(𝑥𝑗 − 𝑥𝑖)||𝑢(𝑥𝑗 , 𝑡) − 𝑢̂(𝑥𝑗 , 𝑡)| (22)

≤ sup
𝑥,𝑡

|𝜑(𝑥− 𝑥𝑖)||𝑢(𝑥, 𝑡) − 𝑢̂(𝑥, 𝑡)| 𝑛∑
𝑗=0

|𝐷(𝓁)
𝑗

| (23)
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≤ ‖𝜑𝑥‖‖𝒖− 𝒖̂‖,  ≠ (𝑛). (24)
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Table 1

Example 6.1, model (26) - Em-
pirical order of convergence.

𝑛 𝑒𝑛(𝑢) EOC𝑛

8 1.91e-02
16 3.72e-04 5.68
32 1.62e-05 4.52
64 1.70e-06 3.25
128 5.51e-07 1.63
256 1.26e-08 5.45
512 6.37e-10 4.31
EOCmean 4.14

Hence, setting Φ = sup𝑥∈[−𝑎,𝑎] ‖𝜑𝑥‖
‖𝑛,𝓁(𝒖) −𝑛,𝓁(𝒖̂)‖ ≤ Φ‖𝒖− 𝒖̂‖ ≤ Φℎ4. (25)

Finally, setting 𝑀 = sup𝑥∈[−𝑎,𝑎]𝑚(𝑥)

𝐼3 ≤ 𝑀ℎ4.

Combining the last estimate with (21), and (25) with (20), we can conclude that the discretization error behaves like (ℎ4). □

6. Numerical examples

In this section, we perform some numerical simulations to test the effectiveness of the method on some variants of the model (8). 
In this context, we consider different kernel functions 𝜑(𝑦 − 𝑥) and various choices for the Dirichlet boundary conditions 𝑏±(𝑡) and 
the initial conditions 𝑘(𝑥).

All the numerical tests are carried out in Matlab R2022a in double precision on a MacBook Pro laptop under the macOS operating 
system. The software developed is only a prototype, but it is available from the authors upon request.

6.1. Tests in which the solution is known a priori

First of all, we report some examples, namely Examples 6.1, 6.2 and 6.3, where the analytical solution 𝑢(𝑥, 𝑡) is known. We also 
fix 𝑎 = 2 and 𝑇 = 10 to make direct comparisons in similar contexts. Consequently, in each table, we display the maximum relative 
errors attained by the chosen numerical scheme for increasing values of 𝑛

𝑒𝑛(𝑢) = sup
𝑡∈[0,𝑇 ]

max
𝑥∈[−𝑎,𝑎]

|𝑢(𝑥, 𝑡) − 𝑢̂𝑛(𝑥, 𝑡)||𝑢(𝑥, 𝑡)| ,

where 𝑢̂𝑛(𝑥, 𝑡) is the numerical solution of the discretized model for a fixed number 𝑛 of equally spaced points of the grid.
The tables also display the Empirical Order of Convergence (EOC𝑛) and the Mean Empirical Order of Convergence (EOCmean), 

defined as follows

EOC𝑛 =
log

(
𝑒𝑛∕2(𝑢)
𝑒𝑛(𝑢)

)
log2

, EOCmean =
1

𝑃 − 2

𝑃∑
𝑘=3

EOC2𝑘 ,

where 𝑃 denotes a fixed integer. In these cases of study we set it equal to 9.
Tables 1, 2 and 3 display the numerical results attained by the first three examples applied to the considered model. We observe 

that when using an equally spaced grid of 513 nodes, we manage to approximate the exact solution with around 10 exact significant 
digits, while the Mean Empirical Order of Convergence is always around 4. This circumstance is not surprising, since we are dealing 
with finite difference schemes of order 4.

In Example 6.3, note that the oscillation of the EOC𝑛 values can be addressed to the difficulty of the example itself. On the other 
hand, we are comforted by the fact that the MEOC is around 4 also in this case, according to the theoretical expectations.

Example 6.1.

𝑢(𝑥, 𝑡) = 𝑥2𝑡, (26)

𝑟 = 1
2
, 𝜑(𝑦− 𝑥) = sin(𝑦− 𝑥), 𝑚(𝑥) = 𝑥+ 3,

𝑢(𝒙,0) = (0,… ,0), 𝑢(−𝑎, 𝑡) = 𝑢(𝑎, 𝑡) = 𝑎2𝑡.
260
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Table 2

Example 6.2, model (27) - Em-
pirical order of convergence.

𝑛 𝑒𝑛(𝑢) EOC𝑛

8 9.40e-03
16 7.36e-04 3.68
32 6.61e-05 3.48
64 6.68e-06 3.31
128 1.87e-07 5.16
256 3.30e-09 5.82
512 2.56e-10 3.69
EOCmean 4.19

Table 3

Example 6.3, model (28) - Em-
pirical order of convergence.

𝑛 𝑒𝑛(𝑢) EOC𝑛

8 1.47e-02
16 1.27e-04 6.85
32 9.12e-06 3.80
64 3.56e-06 1.36
128 3.32e-07 3.42
256 2.34e-09 7.15
512 3.85e-10 2.60
EOCmean 4.20

Example 6.2.

𝑢(𝑥, 𝑡) = 𝑥+ 𝑡2, (27)

𝑟 = 1
𝜋
, 𝜑(𝑦− 𝑥) = 𝑒−(𝑦−𝑥), 𝑚(𝑥) = log(𝑥2 + 1),

𝑢(𝒙,0) = (𝑥0,… , 𝑥𝑛), 𝑢(−𝑎, 𝑡) = −𝑎+ 𝑡2, 𝑢(𝑎, 𝑡) = 𝑎+ 𝑡2.

Example 6.3.

𝑢(𝑥, 𝑡) = 𝑒
𝑥+ 𝑡

5 , (28)

𝑟 = 1
3
, 𝜑(𝑦− 𝑥) = cos2(𝑦− 𝑥), 𝑚(𝑥) = −𝑥2

2
+ 4,

𝑢(𝒙,0) = (𝑒𝑥0 ,… , 𝑒𝑥𝑛 ), 𝑢(−𝑎, 𝑡) = 𝑒
−𝑎+ 𝑡

5 , 𝑢(𝑎, 𝑡) = 𝑒
𝑎+ 𝑡

5 .

6.2. Numerical simulations in the context of population theory

After testing the reliability of the proposed numerical schemes, in the next examples we perform further simulations for cases in 
which the analytical solution 𝑢(𝑥, 𝑡) is not known, but investigating the results behaviour as function of the model parameters and 
functions. Namely, the reproduction rate 𝑟, the integral (𝑢, 𝑥, 𝑡), the mortality function 𝑚(𝑥) and the initial and Dirichlet boundary 
conditions 𝑘(𝑥) and 𝑏±(𝑡) respectively. In this context, we assume that 𝑢(𝑥, 𝑡) and 𝜑(𝑦 − 𝑥) are non-negative functions. In particular, 
the former in this context represents population values.

Example 6.4.

𝑟 = 1
7
, 𝜑(𝑦− 𝑥) = 2 + sin(𝑦− 𝑥), 𝑚(𝑥) = log(𝑥+ 3), (29)

𝑢(𝒙,0) = (0,… ,0), 𝑢(−𝑎, 𝑡) = 𝑢(𝑎, 𝑡) = 𝑎2𝑡.

Let us consider Example 6.4. In this case the reproduction rate 𝑟 is equal to 17 , while the mortality function 𝑚(𝑥) has a logarithmic 
behaviour with a minimum at the endpoint 𝑥 =−𝑎 and a maximum at 𝑥 = 𝑎. Finally, the Dirichlet boundary conditions are the same, 
both linear in time. The numerical solution 𝑢̂(𝑥, 𝑡) for this reference problem (29) is displayed in Fig. 1 (a).

We now investigate how the solution is influenced by a change in the initial conditions and the Dirichlet boundary conditions. In √
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Fig. 1 (b) we note that for 𝑢(𝒙, 0) = (3, … , 3) and 𝑏±(𝑡) = 3𝑒 𝑡, there is an exponential increase of the population at the endpoints. 
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Moreover, in the first half of the space interval, the population is more prolific than the one of the reference problem, while in the 
other half, we witness higher mortality, in line with the chosen mortality function. Fig. 1 (c) displays a reduction of the population, 
due to a lower value of its reproduction rate 𝑟, which is in this case equal to 1

25 . The opposite situation is highlighted by Fig. 1 (d), 
where 𝑟 = 1

5 and the population has a peak of growth in the interval [−2, 0], while in the other half of the interval has a weaker 
increase due to the mortality 𝑚(𝑥) = log(𝑥 + 3). Hence, we proceed to consider different mortality functions in the last two plots of 
Fig. 1. In (e) the chosen function is 𝑚(𝑥) = − 𝑥2

2 + 4, which has a peak at 𝑥 = 0. This behaviour leads to a general decrease in the 

population, in particular around that point. We note a different situation in Fig. 1 (f) where 𝑚(𝑥) = 𝑥2

2 + 1. In this case, the mortality 
is higher at the endpoints and lower in the middle of the space interval. Hence, the increase of the population in the neighbourhood 
of the endpoints can only be ascribed to the boundary conditions 𝑢(−𝑎, 𝑡) = 𝑢(𝑎, 𝑡) = 𝑎2𝑡.

Example 6.5.

𝑟 = 1
4
, 𝜑(𝑦− 𝑥) = 1 + sin(25(𝑦− 𝑥)), 𝑚(𝑥) = log3(𝑥+ 3), (30)

𝑢(𝒙,0) = (1,… ,1), 𝑢(−𝑎, 𝑡) = 𝑢(𝑎, 𝑡) = 𝑒
√
𝑡.

Fig. 2 depicts the results for Example 6.5. The reference problem (30) is displayed in frame (a). It describes a population with 
higher mortality at the centre of the space interval and an exponential increase at the endpoints of the interval. This time the 
reproduction rate is equal to 14 , the mortality function is 𝑚(𝑥) = log3(𝑥 + 3) and the kernel 𝜑(𝑦 − 𝑥) is highly oscillating. Fig. 2 (b) 
considers the case in which the Dirichlet boundary conditions are again the same and both impose an exponential decrease in the 
population at the endpoints of the space interval. This assumption leads to the extinction of the population, although at the beginning 
of the time interval there is a slight increase due to the contribution of the oscillating kernel 𝜑 in (𝑢, 𝑥, 𝑡). We point out that the scale 
used for the z-axis of this plot is different from the other ones in Fig. 2 only to allow the reader to observe easily the behaviour of the 
population in this context. This remark applies also to the Figs. 3 (b) and 4 (b) of the next two examples. In Fig. 2 (c) and Fig. 2 (d) 
we consider an increase and a decrease in the reproduction rate respectively. In the first case the reproduction rate is 𝑟 = 1

3 , leading 
the population to reduce its mortality in the interval [0, 2] and to have a significant increase in [−2, 0] with respect to the reference 
problem. The second case shows how the reproduction rate is so low that the mortality is higher essentially everywhere, with the 
clear exception of the neighbourhood of the points 𝑥 = −𝑎, 𝑎 due to the imposed boundary conditions. Figs. 2 (e) and (f) show the 
reaction of the population 𝑢(𝑥, 𝑡) to two different mortality functions 𝑚(𝑥). In both cases we have a decrease of the population with 
respect to the reference problem, with a higher mortality in (e) caused by a peak of the function 𝑚(𝑥) = 𝑒−𝑥

2+2 in 𝑥 = 0, except for 
the endpoints where the mortality almost vanishes.

Example 6.6.

𝑟 = 1
10

, 𝜑(𝑦− 𝑥) = 𝑒−(𝑦−𝑥), 𝑚(𝑥) = 𝑒−
𝑥
2 , (31)

𝑢(𝒙,0) = (1,… ,1), 𝑢(−𝑎, 𝑡) = 𝑢(𝑎, 𝑡) = 𝑡2

2
+ 1.

We focus now on Example 6.6. This time the reproduction rate is 𝑟 = 1
10 , the kernel 𝜑(𝑦 − 𝑥) = 𝑒−(𝑦−𝑥) and the mortality 𝑚(𝑥) =

𝑒−
𝑥
2 have exponential decay, while the Dirichlet boundary conditions are 𝑏±(𝑡) =

𝑡2

2 + 1, in agreement with the initial conditions 
𝑢(𝒙, 0) = (1, … , 1). The growth of the population among the time interval [0, 25] in this reference problem (31) is displayed by Fig. 3
(a). We observe a significant increase in the population in the interval [1, 2], while around the point 𝑥 = −1 a slower growth is 
observed. This is not surprising, since the mortality is higher in the first half of the space interval, decreasing exponentially in space. 
The only factor that ensures a stronger growth at 𝑥 = −2 is the boundary condition 𝑏−(𝑡), essentially prevailing on the contribution 
of 𝑚(𝑥) there. Fig. 3 (b) considers the case in which the boundary condition is oscillating, i.e. 𝑏±(𝑡) = sin2

(
𝑡

5

)
. In this context, we 

note a behaviour of the population growth similar to the one of the reference problem in the space interval, but reiterated in time 
due to the nature of the functions 𝑏±(𝑡). The peak we observed in (a) is even higher in Fig. 3 (c) when the reproduction rate 𝑟 is 
increased to 18 . We have a similar situation, but with a slower growth rate in Fig. 3 (d), where 𝑟 = 1

15 . This occurrence can easily be 
explained by the nature of the mortality function 𝑚(𝑥). Indeed, the consideration of a different one, as in the case of Fig. 3 (e), where 

𝑚(𝑥) = 𝑒−
𝑥2
2 + 2, leads to a drastic change where the peaks of growth are guaranteed only by the boundary conditions 𝑏±(𝑡), while 

the mortality gives a significant slowdown to the population growth at the centre of the space interval. Finally, Fig. 3 (f) displays a 
behaviour analogous to the one we just described, with an even stronger decrease in the population near the spatial endpoints.

Example 6.7.

𝑟 = 1
5
, 𝜑(𝑦− 𝑥) = cos2(𝑦− 𝑥), 𝑚(𝑥) = 𝑒

− 𝑥
3 , (32)

𝑡 𝑡
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𝑢(𝒙,0) = (3,… ,3), 𝑢(−𝑎, 𝑡) = 𝑒
−
𝑎2 + 2, 𝑢(𝑎, 𝑡) = 𝑒 𝑎2 + 2.
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Fig. 1. Example 6.4.
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Fig. 2. Example 6.5.
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Fig. 3. Example 6.6.
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Table 4

Example 6.4, model (29) - Em-
pirical order of convergence.

𝑛 𝑒𝑛(𝑢) EOC𝑛

8 4.53e-03
16 3.78e-04 3.58
32 2.35e-05 4.01
64 1.15e-06 4.35
128 3.59e-07 4.09
256 2.08e-08 4.11
EOCmean 4.03

We conclude our numerical simulations for the model with Example 6.7, whose plots are shown in Fig. 4. In this last example, 
we are dealing with the case of different Dirichlet boundary conditions, namely 𝑏−(𝑡) = 𝑒

− 𝑡

𝑎2 + 2 and 𝑏+(𝑡) = 𝑒
𝑡

𝑎2 + 2 respectively. 
Moreover, we consider the space interval [−3, 3] and the time interval [0, 15] and set our reference problem (32) with the reproduction 
rate 𝑟 = 1

5 , the kernel function 𝜑(𝑦 − 𝑥) = cos2(𝑦 − 𝑥) and the mortality 𝑚(𝑥) = 𝑒
− 𝑥

3 . In Fig. 4 (a) we note a peak at the endpoint 𝑥 = 3
due to the boundary condition 𝑏+(𝑡) and to the mortality almost vanishing at that boundary. The situation is totally reversed in the 
first half of the space interval, causing a reduction of the population due to the higher mortality. Also in this example, we replace the 
reference boundary conditions with two identical oscillating functions, namely 𝑏±(𝑡) = 3 cos2

(
𝑡

2

)
. As in the previous example, Fig. 4

(b) shows a behaviour that is similar to the one shown in the reference problem, with the exception that in this case this pattern is 
iterated following the behaviour of the new boundary conditions. Fig. 4 (c) displays the case in which the reproduction rate 𝑟 = 1

𝜋
is 

higher than the one in (a), leading to a general reduction of the mortality in the whole space interval. The situation is reversed in 
Fig. 4 (d) where the reproduction rate decreases to 1

15 , so that the mortality in the first half of the interval prevails with respect to 

the situation depicted in (a). The same considerations hold for Fig. 4 (e) where the mortality function is 𝑚(𝑥) = − 𝑥2

3 + 3 and hence 
the population is preserved from disappearing at the endpoints 𝑥 = ±3. Finally, Fig. 4 (f) assumes that the mortality is given by 
𝑚(𝑥) = 𝑥2

3 . This implies that the population does not vanish near the centre of the space interval, leading to its significant growth 
as time flows. We have the opposite situation near the endpoints, where at 𝑥 = 3 the population is reduced due to the Dirichlet 
boundary condition 𝑏+(𝑡).

Note that in all examples of this subsection the analytic solution is not known. However, we can try to give an estimate of the 
order of convergence using the following scheme.

To evaluate MEOC in this context we compute the following relative error

𝜖𝑛(𝑢) = sup
𝑡∈[0,𝑇 ]

max
𝑥∈[−𝑎,𝑎]

|𝑢̂2𝑛(𝑥, 𝑡) − 𝑢̂𝑛(𝑥, 𝑡)||𝑢̂2𝑛(𝑥, 𝑡)| ,

EOC𝑛 =
log

(
𝜖𝑛∕2(𝑢)
𝜖𝑛(𝑢)

)
log2

, EOCmean =
1

𝑃 − 2

𝑃∑
𝑘=3

EOC2𝑘 .

Applying these formulae, for instance, to Example 6.4, we obtain the numerical results shown in Table 4. Also in this case the 
theoretical expectations are confirmed, and the Mean Empirical Order of Convergence is once again around 4.

7. Conclusions

In this paper, we provided a method for the integration of a nonlinear reaction-diffusion equation in a biological context arising 
in population theory. We investigated its convergence, obtaining as main result that it is of the fourth order. The theoretical findings 
were confirmed by several numerical examples. Motivated by the good (preliminary) results achieved in this one-dimensional case, 
our future goal is to extend this method to the case of more realistic two- and three-dimensional models, that respectively describe 
the long distance intraspecific competition for food supplies. The former case concerns biological populations that live on the ground, 
the latter instead considers the aquatic or aereal environments, i.e. shoals of fish and flocks of birds.
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