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Abstract

Background: Cardiovascular diseases (CVD) remain the predominant global cause of mortality, with both low and high temperatures
increasing CVD-related mortalities. Climate change impacts human health directly through temperature fluctuations and indirectly via
factors like disease vectors. Elevated and reduced temperatures have been linked to increases in CVD-related hospitalizations and mor-
tality, with various studies worldwide confirming the significant health implications of temperature variations and air pollution on car-
diovascular outcomes. Methods: A database of daily Emergency Room admissions at the Giovanni XIII Polyclinic in Bari (Southern
Italy) was developed, spanning from 2013 to 2019, including weather and air quality data. A Random Forest (RF) supervised machine
learning model was used to simulate the trend of hospital admissions for CVD. The Seasonal and Trend decomposition using Loess
(STL) decomposition model separated the trend component, while cross-validation techniques were employed to prevent overfitting.
Model performance was assessed using specific metrics and error analysis. Additionally, the SHapley Additive exPlanations (SHAP)
method, a feature importance technique within the eXplainable Artificial Intelligence (XAI) framework, was used to identify the feature
importance. Results: An R2 of 0.97 and a Mean Absolute Error of 0.36 admissions were achieved by the model. Atmospheric pressure,
minimum temperature, and carbon monoxide were found to collectively contribute about 74% to the model’s predictive power, with
atmospheric pressure being the dominant factor at 37%. Conclusions: This research underscores the significant influence of weather-
climate variables on cardiovascular diseases. The identified key climate factors provide a practical framework for policymakers and
healthcare professionals to mitigate the adverse effects of climate change on CVD and devise preventive strategies.

Keywords: hospital admissions; cardiovascular diseases; climate; time series decomposition; random forest; XAI - eXplainable Artificial
Intelligence techniques; feature importance

1. Introduction
Cardiovascular diseases (CVD) are the leading cause

of global mortality, surpassing all other pathologies [1].
The Intergovernmental Panel on Climate Change (IPCC)
has indicated that climate change is likely to impact hu-
man health directly through temperature fluctuations and
indirectly through changes in disease vectors, such as
mosquitoes, and other factors [2]. Notably, the frequency
of both cold waves and heat waves has been observed to
increase due to climate change [3–5]. A comprehensive re-
view of the existing scientific literature has revealed that
temperature increases will most likely lead to increases
in morbidity and mortality related to weather conditions,
with a significant portion of deaths related to cardiovascular
events [6–8]. Many worldwide studies have confirmed ex-
treme temperatures raise mortality risk from CVD [9–13],
with heat waves accounting for cardiovascular-based mor-
tality rates between 13–90% [14].

In the United States, approximately 5600 heat-related
deaths occurred each year from 1997 to 2006 in 297 coun-
ties [15]. Similarly, studies conducted in 9 US cities found
a 1.8% rise in mortality associated with increases in appar-

ent temperature [16]. Additionally, in North America, for
every 4.7 °C increase in daily average temperature, there is
a corresponding 2.6% increase in cardiovascular mortality
[17]. Furthermore, in regions where the hottest months ex-
ceeds 30 °C, it has been reported that every degree increase
is associated with a 3% increase in mortality [18].

The risk ofmortality fromCVDs increases during both
hot and cold days [19]. Similar associations between tem-
perature and mortality have been observed in China, where
there is an increased risk of mortality both at low and high
temperatures [20]. For example, an analysis of the effects
of ambient temperatures on mortality and morbidity in the
elderly (>65 years old) showed that a 1 °C temperature in-
crease led to a 3.44% rise in cardiovascular mortality, while
a 1 °C temperature decrease resulted in a 1.66% increase in
cardiovascular mortality [21].

Overall, analyses of daily mortality rates have shown
that both low and high temperatures are associated with an
increase in mortality from CVDs [22]. Chronic exposure
to cold or heat can impair cardiovascular function leading
to a higher susceptibility to heart attack, malignant cardiac
arrhythmias, thromboembolic diseases, and heat-induced
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Table 1. Main symptoms entering the Emergency Room and identification code.
Code Main Problems/Symptomatology Code Main Problems/Symptomatology

1 Coma 18 Otorhino laryngeal symptoms or disorders
2 Acute neurological syndrome 19 Obstetric-gynecological symptoms or disorders
3 Other nervous system symptoms 20 Dermatological symptoms or disorders
4 Abdominal pain 21 Odontostomatological symptoms or disorders
5 Chest pain 22 Urological symptoms or disorders
6 Dyspnea 23 Other symptoms or disorders
7 Pre cordial pain 24 Legal-medical investigations
8 Shock 25 Social problem
9 Non-traumatic hemorrahage 26 Fall from high
10 Trauma 27 Scalding
11 Intoxication 28 Psychiatric
12 Fever 29 Pneumology-respiratory pathology
13 Allergic reaction 30 Violence from other
14 Changes in rhythm 31 Self-harm
15 Hypertension 98 Dehydration
16 Psychomotor agitation 99 Animal bite
17 Eye symptoms or disorders

Table 2. Admissions in the Emergency Room (ER) by gender from 2013 to 2021.
2013 2014 2015 2016 2017 2018 2019 2020 2021

Total admissions in the ER 75,927 80,690 75,334 71,550 65,984 65,641 68,052 43,729 48,489
Male 40,265 42,554 40,091 38,007 35,130 34,798 36,034 24,517 26,904
Female 35,032 37,127 34,327 32,914 30,343 30,544 31,442 18,960 21,355
Undeclared gender 630 1009 916 629 511 299 576 252 230

sepsis such as shock [23]. Changes in ambient temper-
ature contribute to cardiovascular mortality by elevating
blood pressure, blood viscosity, and heart rate [23]. Most
deaths from heat waves occur in individuals with preexist-
ing chronic CVD [23]. Seasonal variations in CVDs pose
a significant health concern, with increases in hospitaliza-
tion and fatal events observed during certain periods of the
year, particularly in winter [24]. Counterintuitively, this
phenomenon may be more problematic in populations with
milder climates that are less adapted to extreme weather
changes through the year [24]. Seasonality significantly in-
fluences the incidence of almost all subtypes of CVD [24].
It has been consistently demonstrated that winter is associ-
ated with a substantial increase in cardiovascular anomalies
and cardiac deaths, particularly in the northern hemisphere
where temperatures are particularly cold [12,25]. Addition-
ally, daily rates of cardiovascular events rise as mean air
temperature decreases, with a 10 °C decrease associated
with a 19% increase in daily rates of cardiovascular events
for individuals over the age of 65 [26]. Notably, there is a
strong positive correlation between maximum temperature
and mortality (r = 0.83, p < 0.01), along with a weak but
significant negative association between minimum temper-
atures and mortality [1].

Climate change not only impacts temperatures but also
has adverse effects on other environmental conditions, par-
ticularly air pollution [27]. It was estimated that air pol-

lution was responsible for at least 9 million global deaths
in 2019 according to the Global Burden of Disease study
[28]. Alarmingly, World Health Organization (WHO) data
indicates that nearly the entire global population breathes
air that exceeds WHO guideline limits and contains high
levels of pollutants [29]. In urban areas, the impact is even
more significant, as climate change affects outdoor air pol-
lution due to its influence on the generation and dispersion
of pollutants, closely linked to local patterns of temperature,
wind, and precipitation [30]. These environmental changes
are already causing quantifiable and avoidable acute CVD
events and should be integrated into our efforts to prevent
and treat CVDs [31].

In recent research at Policlinico Giovanni XXIII in
Bari [32], artificial intelligence (AI) techniques demon-
strated their potential by using climatic data to simulate
CVD. Specifically, using feature importance techniques de-
rived from the Random Forest algorithm, meteorological
variables like mean temperature, maximum temperature,
apparent temperature, and relative humidity were identi-
fied as key predictors of CVD hospitalizations. These find-
ings highlight the potential for AI to model relationships
between climatic conditions and CVD occurrences.

The primary objective of this study was to investi-
gate the impact of climate variables on CVD and to use
the variables to develop a preventive intervention frame-
work to safeguard human health. To tackle this challenge,
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Fig. 1. Annual admissions in the Emergency Room by gender from 2013 to 2021. M, male; F, female; -, gender not declared.

we propose a prescribed scheme that leverages AI methods
to simulate and comprehend the relationship between cli-
matic conditions and occurrences of CVDs. The proposed
approach recognizes the multifaceted nature of this issue
and takes into consideration the most pertinent meteoro-
logical variables, including mean temperature, maximum
temperature, apparent temperature, and relative humidity.
By employing feature importance techniques based on the
Random Forest algorithm, our study identifies the crucial
climatic factors that contribute to hospitalizations due to
CVDs. This comprehensive understanding of the inter-
play between weather-climate variables and cardiovascu-
lar pathologies will enable us to identify vulnerable popula-
tions and formulate targeted preventive intervention strate-
gies. In essence, this new proposed approach offers a practi-
cal framework for policymakers and healthcare profession-
als to mitigate the detrimental effects of climate change on
cardiovascular health. Through the integration of AI meth-
ods and climate data, this study contributes to an enhanced
comprehension of the underlying mechanisms and facili-
tates the development of effective preventive measures.

2. Materials and Methods
2.1 Study Area and Data Collection

This study utilized clinical records from the daily
emergency department admissions of the Polyclinic hospi-
tal in the city of Bari during the reference period from 2013–
2021. The database of daily hospitalizations recorded un-
der the “main problem” field included patient cases related
to the presented pathology upon their arrival at the emer-
gency department. This database was compiled based on
33 codes, representing the specific pathologies as listed in
Table 1.

The first phase of data processing and reorganization
was carried out by dividing the incoming information by
the various examined years. The statistics presented be-
low refer to the years 2013, 2014, 2015, 2016, 2017, 2018,
2019, 2020, and 2021. In particular, for the year 2013,
there were 75,927 emergency department admissions, in-
cluding 40,265 male patients, 35,032 female patients, and

630 cases of missing data regarding sex. For the year 2014,
there were 80,690 total admissions, including 42,554 male
patients, 37,127 female patients, and 1009 cases of miss-
ing data regarding sex. For 2015, there were 75,334 total
admissions, including 40,091 male patients, 34,327 female
patients, and 916 cases of missing data regarding sex. For
the year 2016, therewere 71,550 total admissions, including
38,007 male patients, 32,914 female patients, and 629 cases
of missing data regarding sex. For 2017, there were 65,984
total admissions, including 35,130male patients, 30,343 fe-
male patients, and 511 cases of missing data regarding sex.
For 2018, there were 65,641 total emergency department
admissions, including 34,798 male patients, 30,544 female
patients, and 299 cases of missing data regarding sex. For
2019, there were 68,052 total admissions, including 36,034
male patients, 31,442 female patients, and 576 cases of
missing data regarding sex. For 2020, there were 43,729
total admissions, including 24,517male patients, 18,960 fe-
male patients, and 252 cases of missing data regarding sex.
In 2021, the total number of Emergency Room (ER) admis-
sions amounted to 48,489, including 26,904 male patients,
21,355 female patients, and 230 cases of missing data re-
garding sex (Table 2, Fig. 1).

For the purpose of this study, only data and statistics
both related to cardiovascular pathologies and are strongly
correlated with meteorological factors (Table 3).

Table 3. Classification of the specific problems entering in
ER into main diseases.

Code Specific Problem Classification

5 Chest pain
Cardiovascular

diseases
7 Precordial pain
14 Changes in rhythm
15 Hypertension
ER, Emergency Room.

Analysis of the effects of hot and cold ambient temper-
atures on mortality and morbidity in the elderly (>65 years
old) showed that a 1 °C increase in temperature increased
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Fig. 2. Annual admission in ER for CVD, 2013–2021. CVD, cardiovascular diseases; ER, Emergency Room.

Fig. 3. Admissions in ER for CVD classified by gender, 2013 to 2021. CVD, cardiovascular diseases; ER, Emergency Room; M,
male; F, female.

cardiovascular mortality (3.44%), while a 1 °C decrease
in temperature increased cardiovascular mortality (1.66%)
[23]. Therefore, out of the 33 types of pathologies described

in Table 1, only those related to CVDs were selected ac-
cording to the grouping scheme reported in Table 3 and an-
alyzed for the various years examined, as shown in Fig. 2.
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Fig. 4. Admissions in ER for CVD by age, 2013 to 2021. ER, Emergency Room; CVD, cardiovascular diseases.

Table 4. Admissions in ER for CVD classified by gender, 2013 to 2021.
2013 2014 2015 2016 2017 2018 2019 2020 2021

Cardiovascular
diseases

Admissions in the ER 6854 6252 5728 5319 4284 4558 4615 2268 2040
Male 3762 6422 3143 2893 2396 2586 2548 1353 1256
Female 3040 2781 2540 2393 1873 1955 2050 908 778

Undeclared gender 52 49 45 33 15 17 17 7 6
ER, Emergency Room; CVD, cardiovascular diseases.

The effects of climate variations may have different effects
on each individual. A first step in identifying whether there
are substantial differences among different types of individ-
uals is gender analysis. Table 4 and Fig. 3 show the annual
Emergency Room admissions for cardiovascular patholo-
gies by gender from 2013 to 2021. A further and important
distinction is made according to the age of the patient. The
distribution of cardiovascular admissions in the emergency
department is shown in Tables 5a,5b and in Fig. 4 as a per-
centage of total admissions.

As shown in Fig. 4, for cardiovascular diseases, the
age group between 40 and 54 years has the highest number
of hospitalizations.

2.2 Meteo-Climatic Parameters

The meteo-climatic parameters considered in this
study include: daily mean minimum temperature (Tmin),

daily mean temperature (Tmean), daily mean maximum
temperature (Tmax), daily mean dew point temperature
(Tdewp), daily mean apparent temperature (Tapp), daily
mean atmospheric pressure (Patm), and daily mean rela-
tive humidity (RH). Air quality parameters considered in-
clude CO (carbon monoxide), O3 (ozone), PM10 (particu-
late matter), SO2 (sulfur dioxide), and NO2 (nitrogen diox-
ide) (Table 6). The meteorological data for the city of Bari
for the reference period 2013–2021 were obtained from the
Arpa Puglia website and the Meteonetwork measurement
network. Arpa Puglia manages two networks for monitor-
ing activities:

• A dedicated network: 5 automatic stations located
at its provincial offices (Bari, Brindisi, Foggia, Lecce, and
Taranto).

• Ameteorological network supporting the air quality
monitoring network currently consisting of 19 stations.

5
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Table 5a. Admissions in ER for CVD classified by age range (Absolute numbers).
Admissions in Emergency Room for cardiovascular diseases

Year under 20 20–29 30–39 40–54 55–64 65–75 over 75 tot tot admission

2013 92 447 688 1617 1236 1440 1326 6846 75,927
2014 95 401 597 1532 1122 1251 1250 6248 80,690
2015 71 348 545 1456 1035 1218 1053 5726 75,334
2016 88 338 464 1320 1020 1073 1016 5319 71,550
2017 35 238 388 994 865 819 894 4233 65,985
2018 63 288 394 1232 905 895 778 4555 65,641
2019 86 307 379 1183 942 918 797 4612 68,052
2020 31 129 165 589 470 469 413 2266 43,729
2021 32 161 178 482 467 381 338 2040 48,489
ER, Emergency Room; CVD, cardiovascular diseases.

Table 5b. Admissions in ER for CVD classified by age range (Percentages).
Emergency Room admissions (%) for cardiovascular diseases

Year under 20 20–29 30–39 40–54 55–64 65–75 over 75 tot

2013 1.34 6.53 10.05 23.62 18.05 21.03 19.37 9.02
2014 1.52 6.42 9.56 24.52 17.96 20.02 20.01 7.74
2015 1.24 6.08 9.52 25.43 18.08 21.27 18.39 7.60
2016 1.65 6.35 8.72 24.82 19.18 20.17 19.10 7.43
2017 0.83 5.62 9.17 23.48 20.43 19.35 21.12 6.42
2018 1.38 6.32 8.65 27.05 19.87 19.65 17.08 6.94
2019 1.86 6.66 8.22 25.65 20.42 19.90 17.28 6.78
2020 1.37 5.69 7.28 25.99 20.74 20.70 18.23 5.18
2021 1.57 7.89 8.73 23.63 22.89 18.68 16.57 4.21
ER, Emergency Room; CVD, cardiovascular diseases.

The dedicated Bari station also monitors ultraviolet
radiation [33]. Air quality data for the city of Bari from
2013 to 2021 was obtained from the Arpa Puglia web-
site, through the Bari-Caldarola, Bari-CUS, Bari-Kennedy,
Bari-Carbonara monitoring stations, and the mobile labora-
tory. Meteorological data are recorded with a half-hourly
frequency for the Arpa Puglia weather stations and with a
daily frequency of five minutes and one hour for the Me-
teonetwork measurement network. The hourly frequency
concerns only the years 2020 and 2021. Air quality data
were recorded on a daily basis. The apparent temperature
and SO2 (sulfur dioxide) were excluded from the meteo-
rological and air quality parameters, respectively, due to a
lack of representative data, which is insufficient for a com-
plete and accurate elaboration of the same.

2.3 Methodology
The primary objective of the study was to determine

which meteorological and air quality variables have the
greatest impact on emergency department admissions for
CVDs. The methodology adopted from Telesca et al. [32]
(Fig. 5). The first step was to find correlations between
meteorological variables and emergency department ad-
missions for CVDs through correlation analysis (see Sec-
tion 4.2), calculating the Pearson coefficient “r” and p-
value. Subsequently, the Random Forest model was ap-

plied along with its corresponding metrics to evaluate the
model’s performance. If the analysis produced acceptable
results (Mean Absolute Error [MAE], coefficient of deter-
mination R2, and error analysis) further analysis was per-
formed to determine the most significant meteorological
variables (see Section 4.4). If the results were not accept-
able, a data decomposition model (Seasonal and Trend de-
composition using Loess (STL) - see Section 4.3) is applied
to extract the trend component from the data series. Then,
the correlation analysis is repeated. This iterative process
eventually leads to the most significant variables for the fi-
nal correlation.

2.4 Theoretical Aspects of Random Forest Techniques
Random Forest, a powerful ensemble learning

method, is built upon decision trees, which are hierar-
chical structures used for making sequential decisions in
assigning data points to classes or predicting continuous
values in regression tasks. By combining the predictions
of multiple models, Random Forest achieves accurate
regression predictions. Each model in the ensemble
represents a decision tree, and together, they leverage
collective knowledge to enhance the overall predictive
capability. To construct decision trees, the algorithm em-
ploys bootstrap aggregating, also known as bagging. This
technique involves creating multiple bootstrap samples
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Table 6. Descriptive data statistics.
Tmin Tmean Tmax Tdewp Tapp P_atm RH CO O3 PM10 SO2 NO2 CVD

min –0.17 –0.11 –0.04 –6.38 2.96 976.60 25.49 0.10 13.00 1.00 0.00 5.00 0
avg 17.08 17.78 18.51 11.92 23.32 1010.93 70.22 0.77 83.51 22.54 17.41 52.96 12.9
max 32.86 33.59 41.60 26.00 52.78 1039.35 99.0 3.00 154.0 117.00 104.0 157.0 37
std 6.40 6.40 6.70 5.52 8.74 8.25 10.89 0.41 21.09 11.30 21.41 25.65 6.3
75th 22.50 23.34 23.92 16.49 30.25 1016.38 78.0 1.00 99.00 27.00 26.90 69.00 17
50th 16.65 17.20 17.90 12.00 22.19 1011.55 71.0 0.70 83.00 21.00 6.90 50.00 13
25th 11.80 12.40 13.12 7.82 15.80 1005.30 62.95 0.50 68.00 15.00 3.10 33.00 8
Legend: Tmin, minimum temperature; Tmean, mean temperature; Tmax, maximum temperature; Tdewp, dew point; Tapp, appar-
ent temperature; P_atm, atmospheric pressure; RH, relative humidity; CO, carbon monoxide; O3, ozone; PM10, Particulate Matter
smaller than about 10 micrometers; SO2, sulfur dioxide; NO2, nitrogen dioxide; CVD, cardiovascular diseases; avg, average; std,
standard deviation; min, minimum; max, maximum; 25% 50% and 75% 25th 50th and 75th percentile respectively, min–max =
range.

from the original training data. Each sample is obtained by
randomly selecting data points with replacement, forming
subsets used to train individual decision trees. In addition
to bagging, Random Forest introduces randomness in
feature selection during decision tree construction. Instead
of considering all features at each node, a random subset
of features is chosen for splitting. This approach ensures
that each decision tree in the ensemble learns and makes
predictions based on different aspects of the data, leading
to a diverse and robust ensemble. When generating
predictions with a Random Forest regression model, the
ensemble combines the individual decision tree predic-
tions. A commonly employed approach is to compute
the average of the predicted values across all trees. This
averaging technique helps mitigate the impact of outliers
and noise, yielding more reliable predictions. Random
Forest provides a convenient mechanism for estimating
the model’s performance without requiring a separate
validation set. This mechanism relies on out-of-bag (OOB)
samples, which are data points that were left out in each
bootstrap sample. By comparing the predictions of these
OOB samples with their actual target values, one can
evaluate the model’s accuracy. Moreover, Random Forest
offers insights into the relative importance of different
features in the regression task. By analyzing the impact
of feature splits across the ensemble of decision trees, the
model calculates variable importance scores. These scores
indicate which features contribute the most to the model’s
predictive power, providing interpretability and under-
standing of the underlying data relationships. In brief, there
are various theoretical advantages associated with using
Random Forest techniques for regression models. These
include ensemble learning using decision trees, bagging for
robust tree construction, random feature selection to ensure
diversity, and the ability to estimate model performance
and assess variable importance. Collectively, these aspects
contribute to the overall effectiveness, accuracy, and
interpretability of Random Forest as a powerful regression
modeling technique.

2.5 Preprocessing of Data

The initial step of the process involved removing
records with missing data from the database to ensure data
integrity. This was followed by searching for the trends
in hospital admissions between 2013 to 2021 to account for
possible interference caused by anomalous variations in ER
visits during the pandemic years of 2020 and 2021. The
exclusion of data from 2020 and 2021 was based on the
analysis showing distinct differences in ER visits during
those years, as depicted in Fig. 6, which presents the 7-day
moving averages normalized with the minimum/maximum
(min/max) method to ensure comparability across different
years. Thus, only data from the years 2013 to 2019 were
considered for further analysis.

3. Data Modeling
3.1 Correlation Analysis

Correlation analysis is a bivariate statistical technique
that measures the strength of a linear relationship between
two variables and calculates this relationship. In order to
express quantitatively the intensity of the link between two
variables, it is necessary to calculate a correlation coeffi-
cient [34]. There are various types of correlation coeffi-
cients, but all have some common features such as the value
that oscillates between –1 and +1, representing a perfect re-
lationship between variables. While a value of 0 indicates
the absence of a relationship [35]. To conduct this analy-
sis, a correlation matrix was used. The correlation matrix
is a table in which each cell shows the correlation between
two variables. The matrix calculates the Pearson correla-
tion coefficient “r”, one of the most widely used correlation
coefficients, for each pair of characteristics.

Correlation analysis was conducted utilizing the p-
value as a tool for significance testing of the null hypoth-
esis. The p-value represents the probability of obtaining a
specific set of observed values assuming the null hypothe-
sis is true, indicating the correctness of our assertion with
minimal error. A significantly small p-value indicates that
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Fig. 5. Methodology. ER, Emergency Room; r, Pearson correlation coefficient; SHAP, SHapley Additive exPlanations; STL, Seasonal
and Trend decomposition using Loess.

an extreme observed result would be highly improbable un-
der the null hypothesis. This statistical measure establishes
the reliability of the correlation values obtained. Accept-
able hypotheses for the input variable set were defined as
having p-values less than 0.01 and r-values greater than or
equal to 0.45 [36]. In the context considered, none of the
input variables of the model meet the above conditions, as
evidenced by the correlation matrix (Fig. 7). Therefore, the
decomposition model will be used.

3.2 Decomposition Model

Many forecasting methods are based on the idea that
if there is a systematic pattern, it can be identified and sep-

arated from any random fluctuations by smoothing meth-
ods of the historical series data. The smoothing effect is
the removal of random disturbances, once the pattern is
known, in order to project it into the future for forecast-
ing purposes. Decomposition models are mainly divided
into additive time series models and multiplicative time se-
ries models. The additive model assumes that the effects
of each component are independent of each other and that
each component is expressed in absolute terms. An additive
model is appropriate when the amplitude of the seasonal os-
cillation does not vary with the level of the series. The error
can take positive or negative values, while the neutral value
is expressed with the value 0, meaning it does not affect the
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Fig. 6. Year-to-year 7-day moving averages in Emergency Room admissions, 2013 to 2021.

series. The multiplicative model assumes that the effects
of each component on the evolution of the phenomenon are
interrelated based on the absolute magnitude of the trend
component and that the other components are expressed
proportionally. A multiplicative model is suitable when the
seasonal fluctuation varies, increases, or decreases propor-
tionally with the variation of the series level. The error can
only take non-negative values and has a neutral value of 1.
STL is a statistical method that allows the decomposition of
time series data into three components: trend, seasonality,
and residual. The trend component reflects the long-term
variation of the series. A trend exists when there is a per-
sistent increasing or decreasing direction in the data. The
seasonal component reflects seasonality, i.e., the variation
of data that occurs at specific regular intervals of one year
or less. The residual component describes casual or irregu-
lar influences. It represents the residuals of the series after
the other components have been removed [37].

Let Yv , Tv , Sve Rv , for v = 1 to n, represent the data,
trend component, seasonal component, and residual com-
ponent, respectively (Eqn. 1).

Yv = Tv + Sv +Rv (1)

The STL consists of a sequence of smoothing opera-
tions, each of which, with one exception, employs the same

smoother: locally weighted regression, or locally estimated
scatterplot smoothing (Loess). Local regression or Loess
involves determining, for each point in the initial data set,
the coefficients of a low-degree polynomial to perform re-
gression on a subset of data and calculate the value of this
polynomial for the given point. The coefficients of the poly-
nomial are computed using weighted least squares, which
gives more weight to points near the point whose response
is being estimated and less weight to more distant points.
This method is used to fit the entire curve and accurately
decompose the time series [38]. Fig. 8 shows an example
of the decomposition, using the STL model, of the daily
average temperature from 2013 to 2021 examined in this
thesis. Four graphs are shown:

• The first is the original series;
• The second is the trend;
• The third is the seasonality;
• The fourth is the residual.
As for our study, the STL decomposition model was

applied to the original data after verifying the stationarity
of the series using the Dickey-Fuller method [39]. The
Dickey-Fuller test is a statistical method used to check
whether a time series is stationary or not, i.e., if its statistical
properties do not change over time. Thus, a modified series
was obtained, represented by the trend values of the origi-
nal data. Then, by recalculating the correlation matrix, sig-
nificantly higher Pearson coefficient values were obtained
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Fig. 7. Correlation between features and CVD. Tmin, minimum temperature; Tmean, mean temperature; Tmax, maximum temper-
ature; Tdewp, dew point; P_atm, atmospheric pressure; RH, relative humidity; CO, carbon monoxide; O3, ozone; PM10, Particulate
Matter smaller than about 10 micrometers; NO2, nitrogen dioxide; CVD, cardiovascular diseases.

Fig. 8. Example of a decomposition of mean daily temperature
from 2013 to 2021 into the three components: trend, seasonal,
and residual.

compared to the original data series (Fig. 9). These results
allow the application of machine learning models to pro-
duce an effective simulation model of the trend of hospital
admissions over time.

3.3 Application of the Machine Learning Model

Random Forest is the AI model used to simulate the
trend of emergency department visits for the two considered
pathologies, andwas also estimated themost influential me-
teorological variables. The Random Forest is a supervised
machine learning algorithm, a special classifier consisting
of a set of simple classifiers, called decision trees, repre-
sented as independent and identically distributed random
vectors. Decision trees are common supervised learning al-
gorithms. Decision trees start with a basic question to deter-
mine an answer, and these questions make up the decision
nodes of the tree that serve to divide the data. Each ques-
tion helps to make a final decision, which is indicated by the
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Fig. 9. Correlation between features and CVD after decomposition model application. Tmin, minimum temperature; Tmean, mean
temperature; Tmax, maximum temperature; Tdewp, dew point; P_atm, atmospheric pressure; RH, relative humidity; CO, carbon monox-
ide; O3, ozone; PM10, Particulate Matter smaller than about 10 micrometers; NO2, nitrogen dioxide; CVD, cardiovascular diseases.

leaf node. When multiple decision trees form an ensemble
in the Random Forest algorithm, they predict more accurate
results, particularly when the individual trees are not corre-
lated with each other. An ensemble refers to a set of deci-
sion trees, and their predictions are aggregated to identify
the most popular result [40]. The Random Forest combines
the results of all these decision trees to obtain a single re-
sult. Each decision tree is composed of a data sample drawn
from a training set with replacement, which means that in-
dividual data points can be chosen more than once. From
this training sample, one-third is set aside as test data, also
known as an OOB sample. Another instance of randomness
is injected through feature begging or the random subspace
method, adding greater diversity to the data set and reducing
the correlation between decision trees. Depending on the
type of problem, the determination of the forecast varies.
For a regression task, the individual decision trees will be
averaged, while for a classification task, the majority vote
will give the prediction class. Finally, the test sample is
used for cross-validation, finalizing the prediction. Cross-

validation is a statistical technique that allows the use of
both training and test data alternately. There are several
cross-validation methods, and the K-fold was used in this
paper. K-fold divides the data into k different subsets and
k-1 are used for the training phase and the last, remaining
subset, for the test phase. The error is then calculated on
the observations of the subsets kept out. This procedure is
repeated k times by choosing a different subset and obtain-
ing k estimates of the test error. The final estimate will be
an average of these values [41].

3.4 Model Performance Analysis

Table 7 reports the values of the MAE and R2 metrics
for the sample extracted during training and testing phases,
as well as the samemetrics in the average value of the cross-
validation subsets.

The values obtained through cross-validation are anal-
ogous to those determined for the random sample, high-
lighting the model’s ability to avoid overfitting phenomena,
demonstrating the accuracy of the model. Subsequently, in
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Table 7. Values of the MAE and R2 metrics (sample extracted and cross validation).
R2 train R2 test MAE train MAE test

CVD with STL 0.996 0.969 0.13 0.36
Cross validation (mean values) 0.996 0.973 0.12 0.33
Legend: MAE, mean absolute error; STL, Seasonal and Trend decomposition
using Loess; CVD, cardiovascular diseases.

Fig. 10. Real and simulated data from the model for CVD. CVD, cardiovascular disease.

Fig. 10, it is shown in the left graph how the trend of the
data concerning cardiovascular pathologies predicted by the
Random Forest model, described in blue, has an identical
trend to the actual data.

The accuracy of the model is highlighted in Fig. 10.
The blue points represent both the real and simulated data,
and for the most part, they fall within the error bands
(Fig. 11). Most data points fall within ± 10% of the er-
ror bands and only a few values fall within ± 20% of the
error bands. In particular, 2443 out of 2542 data points (to-
tal number of data points, 96.10% of the total number of ER
admissions), fall within the ± 5% error band (Table 8).

3.5 Feature Importance

Since the Machine Learning simulation model has
been shown to provide accurate results, we can proceed
with the use of Feature Importance techniques through the
SHapley Additive exPlanations (SHAP) method to identify
the most influential characteristics in determining the trend

Table 8. Data number between error bands.
Error X (%) Data numbers and relative %

X <–20 1 (0.04)
–20 < X < –15 3 (0.12)
–15 < X < –10 7 (0.28)
–10 < X < –5 34 (1.34)
–5 < X < 0 1189 (46.77)
0 < X < +5 1254 (49.33)
+5 < X < +10 48 (1.89)
+10 < X < +15 5 (0.20)
+15 < X < +20 1 (0.04)
X >+20 0

of daily hospital admissions for CVDs, according to the
block diagram of the methodology (Fig. 5). Feature Im-
portance shows how the most characteristic variables for
CVDs, Fig. 12, are atmospheric pressure with a percent-
age of 37%, minimum temperature with 19%, and carbon
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Fig. 11. Real and simulated data with error bands from the model.

monoxide (CO) with a percentage of 18%. These three
variables represent about 74% of the model’s predictabil-
ity, with atmospheric pressure being predominant.

4. Results
SHAP Feature Importance

The SHAP model integrated and analyzed cumulative
datasets derived from the previous models in this study.
This data was visualized using bee swarm plot diagrams,
as illustrated in Fig. 13. While the features are ranked by
their contributed weight to the prediction, with considera-
tion given to the range and value (i.e., ±) in the model.

The SHAP method provides insights into both the
global and local contributions of each variable, with the re-
sults presented through an importance ranking visualized
through a bee swarm scatter plot. Within this representa-
tion, the horizontal axis signifies the SHAP value, while
the color of the point indicates the intensity of the values
(blue for low values, red for high values) of each variable.

The SHAP model identified the variables i with the
most pronounced impact on hospital admissions. These
variables are arranged in descending order of importance
as follows: Atmospheric Pressure (P_atm), Minimum Tem-
perature (Tmin), and Carbon Monoxide (CO) concen-
tration. In Fig. 13, the correlation between low val-

ues of P_atm and Tmin and their correspondence to ele-
vated SHAP values (indicating significance) is readily dis-
cernible. This graphical representation underscores their
substantial role in enhancing the effectiveness of the sim-
ulation model. Conversely, the behavior of CO exhibits the
opposite pattern, increasing in importance for higher val-
ues.

The remaining variables were found to exhibit less
significance. These include: Dew Point (Tdewp), Rela-
tive Humidity (RH), Ozone (O3), and Mean Temperature
(Tmean). On the other hand, Tmax provides a nearly neg-
ligible contribution, regardless of its values. This compre-
hensive analysis allows for a nuanced understanding of the
varying impacts of these variables on hospital admissions.

5. Discussion
The aim of this study was to explore the correla-

tions between weather and air quality factors with Emer-
gency Room admissions for CVDs. To accomplish this
goal, the Random Forest AI model, model, was used to
highlight the most important characteristics. The initial
data obtained from the correlation matrices, yielded un-
satisfactory results. Consequently, an STL decomposition
model was used to reduce the error in predicting charac-
teristic variables. The utilization of this model signifi-
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Fig. 12. Feature importance selected for CVD. CVD, cardiovascular diseases; P_atm, atmospheric pressure; Tmin, minimum tem-
perature; CO, carbon monoxide; Tdewp, dew point; RH, relative humidity; O3, ozone; Tmean, mean temperature; Tmax, maximum
temperature.

cantly improved the results when the data underwent fur-
ther analysis via the Random Forest model. We deter-
mined that both real and predicted error band data predom-
inantly fell within the range of ±10%, with the exception
of a few values that slightly exceeded the ±20% margin.
The latter values, analyzed through the subsequent proce-
dure, exhibited remarkably high accuracy, thus underscor-
ing the importance of specific variables in generating pre-
dictions. These latter values, analyzed through the subse-
quent procedure, exhibited remarkable accuracy, thus un-
derscoring the importance of specific variables in generat-
ing predictions. The most significant variables for CVDs
were identified as atmospheric pressure (contributing over
37%), minimum temperature (19%), and carbon monoxide
(CO) (18%). These three variables collectively accounted
for 74% of the model’s predictability, with atmospheric
pressure playing a prominent role.

5.1 Role of Temperature, Atmospheric Pressure and
Carbon Monoxide Concentration in Simulating CVD
Admissions

The results of this study provide valuable insights into
the relationship between environmental factors and car-
diovascular health. Our findings suggest that atmospheric
pressure, minimum temperature, and carbon monoxide are
the most important factors in predicting the number of hos-
pital admissions for CVD. These results are consistent with
previous studies that have identified these factors as risk
factors for CVD [6–14,16,20]. Previous studies have con-
sistently shown that extreme temperatures increase mortal-
ity from CVD [9–13]. This association between tempera-
ture and CVD mortality is observed for both low and high
temperatures [22]. Chronic exposure to cold or heat can
impair cardiovascular function, consequently increasing the
risk of heart attack, arrhythmias, thromboembolic diseases,
and heat-induced sepsis [23]. Furthermore, changes in am-
bient temperature have been shown to contribute to car-
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Fig. 13. Feature importance (SHAP model). Legend: SHAP, SHapley Additive exPlanations; P_atm, atmospheric pressure; Tmin,
minimum temperature; CO, carbon monoxide; Tdewp, dew point; RH, relative humidity; O3, ozone; Tmean, mean temperature; Tmax,
maximum temperature.

diovascular mortality by causing increased blood pressure,
blood viscosity, and heart rate [23]. Seasonal variations in
CVD pose a significant health challenge [24], particularly
for populations residing inmilder climates, whomay be less
adapted or prepared for extreme climate changes. A ma-
jority of studies have reported a winter increase in cardio-
vascular anomalies and cardiac death in the northern hemi-
sphere, where temperatures are exceedingly cold [12,25].
In light of this evidence, it is evident that temperature plays
a crucial role in the prevalence of CVDs and should be con-
sidered a vital parameter when developing predictive mod-
els for hospital admissions related to these conditions.

Our results not only emphasize the importance of tem-
perature but also highlight the significance of atmospheric
pressure and carbon monoxide concentration in predicting
hospital admissions for CVDs. These findings are consis-
tent with existing literature. A connection between small
changes in low levels of ambient carbon monoxide con-
centrations and cardiovascular hospitalizations has been
demonstrated [42]. Exposure to carbon monoxide at con-
centrations found in heavy tobacco smokers or individuals
with significant occupational exposure has been shown to
play a role in the pathogenesis of CVD [43]. Short-term
exposure to ambient carbon monoxide has been associated
with an increased risk of CVD hospitalizations [42], as well
as increased rates of cardiovascular and coronary heart dis-

eases in major Chinese cities [44]. Ambient carbon monox-
ide levels have also been positively correlated with hospital
admissions for CVDs [45]. Moreover, carbon monoxide
exposure has been shown to have detrimental effects on ex-
ercise performance in subjects with coronary artery disease,
further demonstrating its impact on myocardial ischemia
[46]. In addition to carbon monoxide, high atmospheric
pressures have been associated with an increased number
of cardiac arrest admissions [47]. This evidence suggests
that both atmospheric pressure and carbon monoxide con-
centration are crucial factors to consider when developing
predictive models for hospital admissions related to CVDs.
Given the growing body of research, it is crucial to incorpo-
rate temperature, atmospheric pressure, and carbon monox-
ide concentration into predictive models for hospital admis-
sions due to CVDs, as these factors play a significant role
in the onset and exacerbation of cardiovascular conditions.

5.2 A Personalized Healthcare Service Recommendation
Framework for CVD Based on Meteorological
Condi-tions and Air

Recent research has provided significant contributions
to understanding and addressing the negative impacts of
climate change on CVD. One such study [48] proposes a
healthcare service recommendation framework based on an
embedded user profile model. This personalized approach
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could be extended to the domain of CVD, enabling tar-
geted healthcare service suggestions based on meteorolog-
ical conditions and air quality. An innovative approach,
presented in [49] and [50], utilizes deep learning through
convolutional neural networks or ResNet-based classifica-
tion models to identify the presence of diseases, such as
COVID-19, from radiological images. This methodology
could also be adapted for early diagnosis of CVD, correlat-
ing specific radiological signs.

Furthermore, Yu and colleagues [51] have devised an
approach that aims to acquire insights into the causality of
diseases and foster a more comprehensive understanding
of the interconnections between symptoms and diseases.
This framework shows potential in revealing causal con-
nections between meteorological factors, air quality, and
CVDs. Collectively, these studies collectively contribute
to enhancing our understanding of the complex relation-
ships between environmental variables and cardiovascular
health.

Future studies should prioritize establishing alert
thresholds based on these parameters, with additional ef-
forts dedicated to expanding the scope of the model to en-
compass a wider array of diseases and other geographical
regions. To enhance the model’s predictive prowess, vali-
dation procedures and potential refinements will be inves-
tigated. This could involve integrating data sourced from
multiple hospitals situated across different geographical ar-
eas and climates. The ultimate goal is to gain access to the
comprehensive regional database of Puglia hospitals to val-
idate the model’s generalizability. This step will serve to
reinforce its reliability and broaden its applicability.

In conclusion, there is a strong relationship between
daily Emergency Room admissions and the variation of
some weather and air quality parameters. Future studies
should be directed toward pinpointing and defining alert
thresholds rooted in these parameters.
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