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Abstract—The research conducted within the audio signal
processing field is increasingly focusing on environmental sound
classification. This paper presents a low-complexity Fully Con-
volutional Network composed of two parallel branches. These
branches are responsible for extracting features from the Ca-
dence Frequency Diagram representation and the Chebychev
moments, respectively. By utilizing both domains of machine-
and deep-learning, the proposed pipeline takes advantage of
the unique characteristics of each. The key strength of this
architecture lies in its reduced number of layers and param-
eters, as well as its ability to efficiently compute the Cadence
Frequency Diagram and Chebychev moments. The effectiveness
of the proposed pipeline is demonstrated through various tests
conducted on two audio datasets, namely UrbanSound8K and
ESC-50.

Index Terms—Environmental Sound Classification, Deep
Learning, Chebychev Moments, Audio Processing, Cadence Fre-
quency Diagram

I. INTRODUCTION

Environmental sound classification has gained significant
attention in recent years due to its wide range of applications,
which include audio anomaly detection and classification
systems [1], audio and music tagging [2]–[4], as well as
emotion classification [5]. In such contexts, a plethora of
works aimed at classifying different audio patterns are de-
signed. This mission is generally performed following two
competing strategies which are referred to as machine- and
deep-learning. All the methodologies that try to exploit hand-
crafted features belong to the former group, e.g., [6]–[9].
Differently, the frameworks categorized in the latter category
utilize more sophisticated structures that elaborate on the
incoming signal to automatically set the parameters in a deep
neural network (DNN) which extracts features used in the
classification process, e.g., [10]–[14]. Even though machine-
learning model provide complete control of the extracted
features and a limited computational complexity, each specific
procedure requires strong theoretical expertise and difficulties
in generalizing the developed methods. Conversely, deep-
learning has the advantage of being more generally applicable
with also higher classification performance. These results are

however often paid in terms of a higher computational burden
and the need for the availability of many data to train the
network.

In this contribution, the main features of these two compet-
ing strategies are exploited to take advantage of the strengths
of both and limit their weaknesses. To this aim, a fully
convolutional network (FCN) is designed which encompasses
two convolutional branches for extracting features from the
cadence frequency diagram (CFD) representation and the
Chebychev moments coefficients, respectively. Hence, the pro-
posed pipeline’s first branch consists of a few convolutional
layers alternating with max-pooling layers that apply a proper
transformation of the input CFD.

The CFD, known as cadence velocity diagram (CVD) in the
radar context, was introduced in [15], [16] to improve micro-
Doppler classification from radar signals. Its application to
audio context has also shown interesting results in distinguish-
ing audio sources as reported in [9]. Differently, the second
branch (with only a reduced number of convolutional layers)
directly operates on the Chebychev moments. More precisely,
following the line of reasoning of [9], Chebychev moments
are extracted starting from the incoming audio signals to
form the feature vector. However, differently from [9] where
Chebychev moments were concatenated to the Mel-frequency
cepstrum coefficients (MFCC), here they are exploited alone
and used as the input to the machine-learning-based branch
of the developed network. Going into details, Chebychev
moments [17] are computed projecting the CFD, in turn,
derived from the Mel-spectrogram of the audio signals, into
their related polynomials. The orthogonality properties of the
Chebychev moments, together with the fact that they are de-
fined in a discrete set, allow us to summarize in a feature vector
the relevant information embedded in the CFD. As a matter
of fact, they have already been widely used for classification
purposes, like image or radar hand-gesture classification [18],
[19]. The extracted image moments are then organized in a
matrix form and used as input to the second branch of the
designed FCN.

The main advantage of the proposed framework lies in its
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limited computational complexity. In fact, the processing is
performed on the reduced size CFD (efficiently obtained by
means of the fast Fourier transform (FFT)) rather than the
wider Mel-spectrogram. Additionally, the Chebychev polyno-
mials can be a priori computed and stored since they only
depend on the polynomial order and the CFD size. Beyond,
the above attentions, the developed 2D FCN is characterized
by few layers with also a very low number of parameters, if
compared with state of the art (SOTA) architectures.

Performances have been assessed in terms of the average
accuracy of performing cross-validation on two widely in-
vestigated datasets, viz. UrbanSound8K and ESC-50. Results
show the effectiveness of the proposed approach in comparison
with other existing machine learning approaches with higher
computational complexity.

II. PROPOSED METHOD

This section provides a description of each component of
the proposed approach. First, the audio preprocessing step
is illustrated in detail. Thereafter, an introduction on how
the CFD and the Chebychev moments are computed from
a generic image is given. Then, starting from the CFD and
the extracted Chebychev moments from a time-frequency
representation, a 2D FCN is designed for the classification of
audio samples. Specifically, the neural network encompasses
two branches, fCFD(·) and fCheb(·), that are responsible for
extracting features from the CFD representations and the
Chebychev moments, respectively.

A. Audio preprocessing

Let x[n] ∈ R1×L be a single-channel audio with L sam-
ples. A preprocessing step is applied to x[n] to obtain the
complex short-time Fourier transform (STFT). The transform
is computed with a Hanning window of length 32 ms and
50% overlap. Then, the Mel-Spectrogram Ψ ∈ RT×NDFT is
computed by means of the Mel-filterbank on the squared
magnitude of the STFT, where T and NDFT are the time and
frequency mel-bins, respectively.

B. Cadence Frequency Diagram

The CFD is devised in [15], [16] as an enhanced tool al-
lowing to better distinguish micro-Doppler-based radar signals
with respect to the use of the classic spectrogram. It consists of
a discrete Fourier transform (DFT) applied to pass from a time-
frequency to a cadence-frequency domain. In fact, performing
a DFT of the spectrogram for each frequency bin allows to
obtain the cadence information, that is the repetition cycle of
each frequency involved in the original signal. As in [9], the
CFD is computed from the Mel-spectrogram modulus used in
place of the spectrogram in [15], [16], that is

∆(ξ,m) =

NCFD−1∑
k=0

|Ψ(k,m)| e−j2πkξ/NCFD ,

m = 0, . . . , NDFT,

(1)

where | · | denotes the modulus of its complex argument, ξ is
the cadence frequency, NCFD is the number of frequency bins
used in the CFD computation, and NDFT is the number of
frequency bin involved in the Mel-spectrogram computation.

The extraction of the Chebychev moments occurs through
the projection of the CFD into the orthogonal Chebychev
polynomials that will be described in Subsection II-C by
means of

Cl,h =
1

ρ̄(l, NCFD)ρ̄(h,NDFT)
· · ·

NDFT−1∑
x=0

NCFD−1∑
y=0

c̄l(x)c̄h(y)|∆(y, x)|,
(2)

with ρ̄ the normalized amplitude factor, c̄l(·) and c̄h(·) the
Chebychev polynomial of order l and h. Finally, ∆(·, ·) is the
CFD normalized to be in the interval [0, 1].

C. Chebychev Polynomials and Moments

Let f(x, y) be a non-negative real-defined image of size
L × H . The moments of order l + h of f(x, y) are defined
as its projection on the monomials xlyh, by means of the
following integral [20]:

Ml,h =

∫∫
R2

xlyhf(x, y) dx dy. (3)

In this work, Chebyshev polynomials are used as generating
monomials {xlyh} due to their orthogonality proprieties [17].
More specifically, Chebychev moments can be derived as the
projection of the image f(x, y) on the related polynomials (3)
to a discrete polynomial set, that is:

Cl,h =
1

ρ̄(l, L)ρ̄(h,H)

L−1∑
x=0

H−1∑
y=0

cl(x)ch(y)f(x, y), (4)

being cl(x) the Chebychev polynomial of order l that can be
written as

L−1∑
x=0

cl(x)ch(x) = ρ(l, L)δl,h, (5)

with 0 ≤ l ≤ L− 1, 0 ≤ h ≤ H − 1, and δl,h the Kronecker
delta function that is equal to 1 when l = h and 0 otherwise.
Moreover, ρ̄ is the normalized amplitude factor given by:

ρ̄(l, L) =
ρ(l, L)

L2l
= (2l)!

(
L+ l

2l + 1

)
1

L2l
. (6)

In addition, the generalized hypergeometric function [21] of
order (3, 2) is introduced, that is

3F2 (a1, a2, a3; b1, b2; z) =

+∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k

zk

k
, (7)

with (a)l denoting the Pochhammer symbol [21] given by
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Fig. 1. Examples of Mel-spectrogram, CFD with NCVD = 32, and Chebyshev moments with l = 10 from two audios of the ESC-50 dataset.

(a)l = a(a+ 1) · · · (a+ l − 1) =
Γ(a+ l)

Γ(a)
. (8)

Finally, the Chebychev polynomials [17] can be expressed
by means of the following equation

cl(x) = (1− L)l 3F2 (−l,−x, 1 + l, ; 1, 1− L; 1) , (9)

where x = 0, 1, 2, . . . , L− 1.
Figure 1 depicts some examples of the Mel spectrogram, the

CFD, and the Chebychev moments used for feature extraction
and classification.

D. Fully Convolutional Network
Let f(·) : RNCFD×NCFD → RNclasses be the FCN that

processes the CFD representation obtained from (1) and
predicts the class-wise probabilities, also denoted as class
logits, ŷ ∈ RNclasses . Specifically, f(·) encompasses two neural
branches (fCFD and fCheb) that are responsible for processing
the CFD and the Chebychev moments, respectively.

In more detail, the branch fCFD(·) : RNCFD×NCFD →
RNclasses consists of three convolutional blocks, labeled as
ConvBlock(Ci), where Ci represents the number of output
channels. These blocks are used for extracting spatial features
from the 2D representation. Each block performs a 2D convo-
lution with 3×3 kernels, followed by batch normalization [22]
and the activation function called exponential linear unit
(ELU) [23], which is defined as

ELU(x) =

{
x, x ≥ 0

α(ex − 1), x < 0
(10)

where α is set to 1 to avoid negative values saturation.
After the first two blocks, an image downsampling process is
performed using the MaxPool(2, 2) function. Then, a linear
projection layer is employed to transform the output of the
final convolutional block into a feature tensor with a number
of channels equal to the number of classes Nclasses. The
idea is to have a feature map for each class. To this aim,
a 1 × 1 convolutional layer is utilized. Finally, class logits
ŷCFD ∈ RNclasses are obtained by means of the global average
pooling (GAP) operator.

In parallel, the branch fCheb(·) : RNCFD×NCFD → RNclasses

extracts the Chebychev moments from the normalized CFD
and provides the class logits ŷCheb ∈ RNclasses . First, Cheby-
chev moments are extracted from the CFD following the
procedure detailed in Sec II-C. Then, the coefficients are
arranged in a squared matrix of size (l + 1) × (l + 1) to be
processed by the network fCheb(·).

Regarding the architecture of the Chebychev branch, it is
composed of 2 consecutive ConvBlock with 32 and 64 filters
with size 3×3. Similarly to fCFD(·), a linear projection layer
reduces the number of features maps to the number of classes,
and the GAP layer maps to class logits.

Finally, the prediction of the approach ŷ ∈ RNclasses

is computed by element-wise multiplication, denoted as ⊗,
between the two branch estimations as a soft-voting strategy

ŷ = ŷCFD ⊗ ŷCheb. (11)

This training procedure has been applied to provide coherence
between the two proposed audio representations. The architec-



TABLE I
DESCRIPTION OF THE PROPOSED 2D FCN.

Input: normalized CFD ∆ ∈ RNCFD×NCFD

CVD branch fCVD(·) Moments branch fCheb(·)
ConvBlock(128) Chebychev moments extraction of order NCheb

MaxPool(2, 2) ConvBlock(16)
ConvBlock(128) ConvBlock(64)
MaxPool(2, 2) Projection to Nclasses channels
ConvBlock(128) GAP(·)

Projection to Nclasses channels -
GAP(·) -

Output: class logits ŷCFD Output: class logits ŷCheb

ture is trained by means of the Cross-Entropy loss between the
predicted and the ground truth labels.

Table I provides a comprehensive overview of the archi-
tecture of the FCN. The whole neural network configuration
has been tuned by exploiting a hyperparameters grid search
optimization.

III. EXPERIMENTAL RESULTS

A. Dataset

To assess the performance of the proposed framework, a
10-fold and 5-fold cross-validation is applied to the Urban-
Sound8K [4] and ESC-50 [3] datasets, respectively. In partic-
ular, the UrbanSound8K dataset comprises 8732 audio files of
at most 4 seconds of duration and divided into Nclasses = 10
classes. Differently, ESC-50 dataset contains 2000 short clips
recorded at a sampling frequency of 44.1 kHz grouped into
Nclasses = 50 classes.

The performance on these datasets is assessed by means of
the accuracy metric, evaluating the number of perfect matches
between predicted and ground truth labels.

B. Results varying the order of Chebychev moments L

Performance of the proposed approach on UrbanSound8K
and ESC50 is depicted in Table II and Table III, respectively.
The best results, which outperform the baselines, are obtained
when the CFD is computed from the spectrogram with 32 mel
bins. Moreover, it is notable that the best order of Chebychev
moments depends on the scenario and on the amount of
available data. In fact, with a smaller dataset, i.e., ESC50,
the best performance is observed with a greater number of
Chebychev coefficients than in the case of a larger dataset,
i.e., UrbanSound8k.

Moreover, it is worth highlighting that the experiments have
been carried out only with the Mel-spectrogram. Even though
the approach is agnostic with respect to the audio representa-
tion, tests conducted on other time-frequency analyses, such as
STFT and MFCC, yielded not converging training procedures.

C. Comparison with state of the art approaches

Table IV depicts the performance and the computational
complexity (with respect to the number of learnable param-
eters) of well-known deep learning strategies, e.g., convo-
lutional neural networks (CNNs) [1], [24] and Transform-
ers [25], for audio classification without the use of additional

TABLE II
MEAN CLASSIFICATION ACCURACY WITH 95% CONFIDENCE INTERVAL ON
THE URBANSOUND8K DATASET USING THE 10-FOLD CROSS-VALIDATION.

UrbanSound8K [4]
Accuracy

Baseline 66.00
CFD Mel16 + order 10 0.72± 0.05
CFD Mel16 + order 15 0.73± 0.07
CFD Mel16 + order 20 0.67± 0.11
CFD Mel32 + order 10 0.72± 0.06

CFD Mel32 + order 15 0.73± 0.05
CFD Mel32 + order 20 0.67± 0.09
CFD Mel64 + order 10 0.73± 0.06
CFD Mel64 + order 15 0.72± 0.06
CFD Mel64 + order 20 0.71± 0.06

TABLE III
MEAN CLASSIFICATION ACCURACY WITH 95% CONFIDENCE INTERVAL ON

THE ESC50 DATASET USING THE 5-FOLD CROSS-VALIDATION.

ESC50 [3]
Accuracy

Baseline 44.30
CFD Mel16 + order 10 0.59± 0.05
CFD Mel16 + order 15 0.58± 0.02
CFD Mel16 + order 20 0.60± 0.03
CFD Mel32 + order 10 0.57± 0.04
CFD Mel32 + order 15 0.59± 0.06

CFD Mel32 + order 20 0.62± 0.05
CFD Mel64 + order 10 0.58± 0.04
CFD Mel64 + order 15 0.60± 0.04
CFD Mel64 + order 20 0.57± 0.02

training data such as AudioSet [2]. It is notable how the pro-
posed approach is three orders of magnitude lower than well-
known state-of-the-art models for sound recognition. Since the
Chebychev polynomials only depend on the polynomial order
as well as on NCVD, they can be a priori computed. This is
compliant with real-time applications of the proposed pipeline.

Moreover, regarding the computational complexity of deep
neural networks, as explained in [26], having a smaller number
of learnable parameters can help mitigate the risk of overfit-
ting, especially when dealing with small datasets. Overfitting
occurs when the model becomes too complex and starts to
memorize noise or outliers in the training data. A simpler
model with fewer parameters is less prone to overfitting. Ad-
ditionally, with fewer parameters to update, the optimization
process requires less computational resources and time. This



TABLE IV
STUDY ON THE COMPUTATIONAL COMPLEXITY AND PERFORMANCE OF
THE PROPOSED APPROACH WITH CFD ON 32-BINS MEL-SPECTROGRAM

IN COMPARISON WITH STATE-OF-THE-ART ARCHITECTURES. WE DENOTE
WITH ↑ WHEN THE PERFORMANCE IS BETTER WHEN THE METRIC IS HIGH

AND ↓ OTHERWISE. DASH SYMBOL - MEANS NO EXPERIMENTS HAVE
BEEN PROVIDED BY THE AUTHORS.

Model Params (M) ↓ Acc ESC50 ↑ Acc USK8 ↑
CNN-based

CNN14-PANN [1] 81.06 0.83 0.79
AemNet [24] 14.40 0.77 0.77

Transformer-based
AST [25] 88.10 0.87 -

Proposed FCN 0.32 0.62 0.73

can be advantageous when working with limited computational
capabilities or large datasets [26].

In addition, thanks to the CFD computation, the size of
the input feature is lower than canonical time-frequency rep-
resentations such as STFT and Mel-spectrogram. In fact, the
configuration of the proposed approach that yields the best
results encompasses a CFD of size 32× 32. Instead, without
this domain shift, a canonical time-frequency analysis that
computes the same preprocessing yields a 32×64 spectrogram,
increasing the overall forward step of neural networks.

However, a drawback of this approach is the loss of the time
information. In fact, performing a DFT, for each frequency bin
in the Mel-spectrogram, produces a new frequency-cadence
domain, in which the cadence provides information about the
amount of repetition of each frequency within the observed
signal for all the observation time. Therefore, the original time
information is integrated and hence somehow lost when the
second DFT is applied.

IV. CONCLUSION

In this work, a new architecture that employs the CFD and
the Chebychev moments for the classification of environmental
sound is presented. Specifically, a low-complexity learning-
based approach is designed for extracting features and classi-
fying audio from a novel feature set. However, as mentioned
in the discussion, the employed representation losses time
information, making the architecture not suitable for tasks
where time-wise classification is required such as sound event
detection (SED) [14]. A possible improvement is to compute
the CFD and Chebychev pipelines on sliding windows of
the starting time-frequency representation. By doing so, it is
possible to evaluate the features in a time-aware fashion. In
conjunction, the employment of more advanced architecture
attention-based, such as ViT [27], [28], and large-scale audio
datasets, such as AudioSet [2], could improve the effectiveness
of the proposed approach while always keeping an eye on the
computational cost.
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[23] C. Djork-Arné, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” in
International Conference on Learning Representations (ICLR), 2016.

[24] P. Lopez-Meyer, J. A. del Hoyo Ontiveros, H. Lu, and G. Stemmer,
“Efficient End-to-End Audio Embeddings Generation for Audio Classi-
fication on Target Applications,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021.

[25] Y. Gong, Y. Chung, and J. Glass, “AST: Audio Spectrogram Trans-
former,” in Interspeech, 2021.

[26] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[28] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao,
C. Xu, Y. Xu, Z. Yang, Y. Zhang, and D. Tao, “A Survey on Vision
Transformer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 1, pp. 87–110, 2023.


