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Abstract

The present study focuses on particular properties of transonic flows through a planar channel featuring a circular bump
on the lower wall. The selected geometry is reminiscent of the region surrounding the trailing edge of an airfoil at zero
angle of attack and the resulting flow pattern is indeed similar to the fishtail shock-pattern that characterizes airfoils flying
at nearly sonic speed. Numerical simulations have been conducted by solving the inviscid Euler equations using both a
commercial and an in-house CFD code; discontinuities are modeled using shock-capturing in the former and shock-fitting in
the latter. Numerical experiments reveal different shock-patterns obtained by independently varying the inlet Mach number
and the outlet-to-inlet static pressure ratio. When shock-interactions occur, shock-polar analysis reveals that the branching
point can be modeled using either von Neumann’s three-shock-theory or Guderley’s four-wave-theory, depending on the inlet
Mach number. Furthermore, for certain pairs of boundary conditions, multiple solutions have been observed.
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1. Introduction

The transonic flow regime, which is characterized by the coexistence of subsonic and supersonic flow
regions, is a common occurrence in both external and internal aerodynamics and has therefore been the
subject of several theoretical, numerical and experimental studies [1–5]. Airfoil design in the transonic
regime aims at reducing shock-induced drag losses, which requires full understanding of the effect that
boundary conditions, such as the free-stream Mach number, M∞, angle of attack and airfoil shape, play
upon the flow structure.

In previous studies [6,7], the authors analyzed the so-called “fishtail” shock-pattern the characterizes
the transonic flow past a NACA0012 airfoil at zero incidence and for M∞ ranging between 0.91 to
0.95. Figure 1a, which is taken from the video-documentary “High Speed Flight: Part 2 - Transonic
Flight”, produced by the Shell Film Unit in 1959 [8] shows an experimental visualization of the fishtail
shock-pattern. It consists in two oblique shock waves that originate at the trailing edge (TE) of the
airfoil and a nearly normal shock standing behind the TE; the two oblique shocks and the normal shock
merge at two branching points (circled using a white solid line in Fig. 1a) which resemble the triple-
point that is observed in steady and un-steady Mach reflections. Mach reflections can be modeled using
von Neumann’s three-shock theory [9,10] (3ST) except when the two parameters that characterize the
interaction fall inside the so-called von Neumann region [11], in which case the experimental evidence
reveals a triple-point structure that the 3ST fails to predict. This inconsistency has been dubbed the “von
Neumann paradox” by Birkhoff [12] in the 1950s and has since been the subject of several theoretical,
experimental and numerical investigations, see e.g. [13,14]. One way to reconcile theory and experiments
under the “von Neumann paradox” conditions consists in postulating the existence of a fourth wave,
an expansion fan, also centred at the branching point. This four-wave theory (4WT) is known in the
literature as Guderley’s model [15]; according to [16], the 4WT solves the von Neumann paradox, at least
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in the limit of vanishing viscosity [17].

(a) Experimental visualization, re-printed from [8], with permis-
sion.

(b) Computed flow field around a NACA0012 airfoil at
M∞ = 0.95

Figure 1. Transonic flow past an airfoil and fishtail shock-structure

In recent work [6,7], we found that the conditions that prevail at the branching point of a fishtail
shock-pattern are similar to those encountered in Mach reflections under the “von Neumann paradox”
conditions. Indeed, making use of both shock-fitting and shock-capturing CFD simulations and classical
shock-polar analysis, we found, at least for the range of boundary conditions and the geometry we
examined, that the branching points observed in the fishtail shock-pattern cannot be analytically modeled
using the 3ST, but the 4WT should be used instead.

In the present paper, we study the transonic flow in a two-dimensional planar channel featuring a
lenticular bump on the lower wall. The geometry resembles the region close to the TE of an airfoil and
the shock-pattern that arises is indeed very similar to the fishtail shock-structure we have previously
described. One of the advantages in simulating an internal flow, as we do in this paper, is that it allows
to use a much smaller computational domain than that required to simulate the external flow past an
airfoil.

Numerical computations have been performed using two different CFD codes: the commercial shock-
capturing code CFD++ [18] and the in-house, open-source, shock-fitting code UnDiFi-2D, which has been
developed by the authors [19].

The present study is organized as follows. Section 2 recalls both von Neumann’s 3ST and Guderley’s
4WT and also introduces the (M1, σ12) plane which allows to parametrically define the domain of existence
of the 3ST and 4WT. Section 3 gives the definition of the test cases and analyses some interesting
properties of both the 3ST and 4WT making use of both shock-capturing and shock-fitting simulations.
Final considerations and remarks will be given in Section 4.

2. Generalities

2.1. Shock-interaction modelling: three-shock theory (3ST) and four-wave theory (4WT)

von Neumann’s 3ST is used to analytically model the triple-point that occurs in Mach reflections
(MR), see the sketch in Fig. 2a. The shock-pattern in the neighbourhood of the branching points of the
fishtail shock-structure of Fig. 1a can also be described by borrowing the nomenclature used for Mach
reflections. This is done in Fig. 2b, where the oblique shock emerging from the TE of the airfoil is the
I-shock, which can be thought of as being “reflected” from the far field, thus giving rise to the nearly
normal shocks (the R-shock). Beyond the branching point where the oblique and nearly normal shocks
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interact, the former bends into the M-shock and the dashed line represents the contact-discontinuity or
slip-stream (SS).

The non-linear algebraic equations governing the 3ST can be found in either [20, § 135] or [21, § 1.3.2]
and consist in the Rankine-Hugoniot jump relations for all three shocks, supplemented by the condition
of parallel streams and equal pressure across the contact discontinuity. The number of unknowns matches
that of the available equations once three parameters are given. We assign: i) the adiabatic index, γ, of
the gas (here always set equal to 1.4); ii) the Mach number, M1, ahead of the I-shock and iii) a measure
of the I-shock strength, which we here choose to be the I-shock angle, σ12.

Solutions to the 3ST can be graphically found by seeking intersections between the I- and R-shock
polar in the pressure-deflection (θ, ξ) plane, shown in the central frame of Figure 2; for given values of γ
and M1, an unique I-shock polar can be drawn.

(a) Mach reflection schematic and corresponding shocks poplars (b) 3ST sketch

Figure 2. von Neumann’s model (3ST)

Whenever the I- and R-shock polar do not intersect, as in Fig. 3a, von Neumann’s 3ST has no solution
and a different analytical model must be used. In [15,22] Guderley proposed the addition of a centred,
isentropic expansion fan (EF) or Prandtl-Meyer (PM) wave that accelerates the flow from sonic conditions
behind the R-shock to supersonic flow in region 5 of Fig. 3b. Guderley’s model is commonly known as the
four waves theory (4WT), the EF being the fourth wave; the 4WT was further modified by Khalghatgi
and Hunt [23] by including a slip-stream, shown using a dashed line in Fig. 3b. Kalghatgi and Hunt [23]
noticed that in region 4 of Fig. 3b, the flow can be either subsonic or supersonic; in the former case
the flow pattern is referred to by [21] as a Vasil’ev reflection (VR), whereas in the latter as a Guderley
reflection (GR).

The set of non-linear algebraic equations governing the 4WT is briefly recalled hereafter; the interested
reader is referred to [16] for a more in-depth discussion. Given the free-stream Mach number, M1 and
I-shock angle, σ12, which are the same two input parameters also used in the 3ST, the following quantities
behind the I-shock can be easily computed: the flow deflection, θ12, and pressure ratio, ξ21, across the
I-shock and the Mach number, M2, in the region bounded by the I- and R-shocks. Since the flow behind
the R-shock is sonic in the 4WT, i.e. M3 = 1 in Fig. 3b, the R-shock angle, σ23, can be computed
from [24, Eq. (167)] using the known value of M2. The pressure ratio across the R-shock, ξ32, follows
from [24, Eq. (128)] using the known values of M2 and σ23. The flow across the EF is isentropic, therefore:

p5
p3

=

[
1 + δM2

5

(γ + 1) /2

]− γ
γ−1

The two conditions that hold across the SS, i.e. equal flow direction and equal pressure, can be translated
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(a) Shock polar (b) 4WT sketch

Figure 3. Guderley’s model (4WT)

into the following two by two non-linear system of algebraic equations:

θ (M1, σ14)− ν (M5) = θ12 + θ23(1a)

ξ (M1, σ14)

[
1 + δM2

5

(γ + 1) /2

] γ
γ−1

= ξ32 ξ21(1b)

where terms in the r.h.s. are known and the only two unknowns appear on the l.h.s. These are: the
(supersonic) Mach number, M5, in the region bounded by the tail of the EF and the SS and the M-shock
angle, σ14. In Eqs. (1) θ and ξ are the flow deflection and pressure ratio through an oblique shock, which
can be computed using [24, Eq. (138)] and [24, Eq. (128)], respectively; ν (M) is the Prandtl-Meyer
function [24, Eq. (171c)].

2.2. The (M1, σ12) plane

A powerful graphical tool for looking at the existence and features of the solutions to both von
Neumann’s and Guderley’s models consists in using a plane where the Mach number, M1, upstream of
the I-shock is on the x-axis and the I-shock local slope, σ12, on the y-axis. The (M1, σ12) plane is drawn
in Fig. 4, where we restrict the abscissas to the M1-range that is relevant to the applications in § 3 and
we only plot the curves which will be referred to throughout the paper. Using the same labeling as in [11],
we draw:

� Line 1: where the incident shock (IS) is a Mach wave;
� Line 2: where the flow is sonic behind I-shock;
� Line 7a: marks the transition between the 3ST and 4WT and is characterized by sonic flow behind
the R-shock in the 3ST;

� VR ⇔ GR: marks the transition between the VR and GR and corresponds to sonic flow behind
the M-shock in the 4WT.

The equations required to draw the aforementioned curves can be found in [6]. However, this is only
a small subset of the numerous lines that bound regions of the (M1, σ12) plane where different shock-
interaction patterns are observed. The interested reader is referred to [11,25–27] for a far more extensive
discussion.
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Figure 4. The (M1, σ12) plane

2.3. CFD solvers

The numerical simulations presented in this study have been carried out using two different CFD
solvers. One is the commercial, shock-capturing code CFD++ [18], which is widely used for simulating
flows of aeronautical interest [28,29] on both structured and unstructured grids. The other is the in-
house, shock-fitting code UnDiFi-2D which was developed by the authors [19] and is publicly accessible
on the GitHub repository https://github.com/UnDiFi/UnDiFi-2D. UnDiFi-2D is capable of simulating
shock/shock and shock/wall interactions in both steady and unsteady flows using 2D unstructured trian-
gular grids; references [30–33] give examples of inviscid and viscous flow computations performed using
UnDiFi-2D which highlight the main features of this shock-fitting technique as well as the advantages it
offers over state-of-the-art shock-capturing codes when computing high-speed shocked-flows. In all nu-
merical simulations performed using UnDiFi-2D in § 3 all shocks and slip-streams are fitted, i.e. treated as
true mathematical discontinuities of zero thickness that bound regions of the flow field where a smooth
solution to the governing PDEs exists; see [19,34,35] for algorithmic details. In addition, also those
branching points where different discontinuities meet are treated as geometrical points (0-dimensional)
and modeled as described in [30,36]. The available interaction models include the 3ST and 4WT, the
latter being recently used to model the fishtail shock-pattern around the NACA0012 airfoil [6].

All numerical simulations included in this paper, performed either using CFD++ or UnDiFi-2D, rely
on second-order-accurate spatial discretization schemes. Whether the nominal order of accuracy of a
numerical scheme can be preserved when shock waves are captured, will be discussed in § 3.1.

3. Test case definition

To investigate the properties of the fishtail shock-structure, we simulated the inviscid flow through the
channel shown in Fig. 5a. The present test case has been carefully designed so as to allow the analytical
or semi-analytical calculation of certain local and integral quantities. A uniform and weakly supersonic
flow is prescribed along the inlet section of the duct, whereas a subsonic flow with a prescribed static
pressure, Pex, is set along the outflow section. The lower wall of the channel has the shape of a circular arc
of radius R = 10 which subtends an angle α = 10◦, see Fig. 5a. A discontinuity in the slope of the lower
wall is located at (x, y)TE = R (sinα, cosα− 1) where the circular arc joins the straight horizontal wall
of the wider section of the channel. We shall hereafter refer to the aforementioned point as the trailing
edge (TE) of the bump.

Table 1a gives an overview of the various flow configurations analyzed in this study: two groups of
test cases (TC1 and TC2) have been defined according to the different inlet Mach number, Min, whereas
the lowercase letter identifies the prescribed exit-to-inlet static pressure ratio, Pex/Pin.
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(a) Computational domain and boundary conditions

(b) Structured quadrilateral grids. (c) Unstructured triangular grids.

Figure 5. Computational domain, boundary conditions and grids

Table 1. Boundary conditions defining the various test cases and global and local analytically computed
quantities

(a) Labeling of the test cases

test case label Min Pex/Pin

TC1a 1.30 1.820
TC1b 1.30 1.819
TC1c 1.30 1.818
TC1d 1.30 1.817
TC1e 1.30 1.816
TC1f 1.30 1.815

TC2a 1.05 1.266
TC2b 1.05 1.265
TC2c 1.05 1.264

(b) Analytically computed quantities

CD M1 M2 σ12

TC1 0.0534 1.6443
1.2890 49.23◦

0.7052 80.00◦

TC2 0.0786 1.4517
1.0351 60.86◦

0.8343 73.14◦

The incoming supersonic flow expands and accelerates through the diverging part of the duct up to the
TE where the slope discontinuity gives rise to an oblique shock wave, which can be either weak or strong,
depending on the prescribed outflow pressure. A useful feature of the present testcase is highlighted in
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Structured grids Unstructured grids
Grid level Nodes Cells Nodes Cells

Coarse 6100 5940 7137 13954
Fine 24079 23760 28227 55816

Table 2. Features of the grids used

Fig. 6, where the Mach number distribution numerically calculated by solving the Euler equations is
compared against the analytical, simple wave solution, of the flow past the lower wall of the channel.
The comparison is limited to the trapezoidal region bounded in red, where the analytical solution is
shown using red dashed iso-contour lines and the numerical one using black solid contour-lines. Excellent
agreement between the two is observed close the lower wall, whereas the numerical solution deviates
from the simple wave solution in regions where the two families of characteristic curves coexists. This is
the case, for instance, close to the upper wall, where reflection of the incoming expansion wave occurs.
Due to the higher inflow Mach number, the simple wave region covers a wider area for the TC1 inflow
condition: compare Figs. 6a with 6b. For both sets of inflow conditions, however, the circular bump falls
inside the simple wave region so that the Mach number distribution, M(θ), along the wall and up to the
TE can be computed analytically using the Prandtl-Meyer function [24, Eq. (171)]. This, in turn, allows
to compute the drag force by integrating along the circular arc the horizontal component of the pressure
force exerted by the fluid on the wall:

(2a) D = R

∫ α

0
P (θ) sin θ dθ N/m

or, in dimensionless form, as:

(2b) CD =
D

1
2ρin u

2
in αR

=
2

γM2
in α

∫ α

0

P (θ)

Pin
sin θ dθ

In Eqs. (2) θ is the angular coordinate of a cylindrical reference frame with the origin at the center of
the circle in Fig. 5a and the static pressure distribution along the circular arc follows from the isentropic
flow condition:

(3)
P (θ)

Pin
=

(
1 + δM2

in

1 + δM(θ)2

) γ
γ−1

Even though the analytical value of static pressure can be computed using Eq. (3) all along the circular
arc, the integral in Eqs. (2) must be numerically approximated. This has been accomplished using the
DGAUS8 routine from the SLATEC mathematical library [37] which guarantees an approximation error close
to machine zero and therefore orders of magnitudes smaller than the discretization error incurred by
second-order-accurate schemes, such as those employed here to discretize the governing PDEs. Therefore,
the values so obtained from (2) can be regarded as “exact”. Moreover, using the analytically computed
Mach number at the TE, M(α) = M1, and the known flow deflection, α, through the oblique shock, it is
possible to determine the shock slope at the TE using the oblique-shock relations. All the aforementioned
analytically computed values are summarized in Tab. 1b where subscripts 1 and 2 refer to the shock-
upstream, resp. downstream values at the TE. It is worth underlining that, as long as the oblique shock
is attached to the TE of the bump, the flow along the bump is not affected by the prescribed outflow
static pressure value, hence the drag and shock-upstream Mach number, M1, in Tab. 1b take a unique
value, regardless of the exit-to-inlet static pressure ratio. However, depending on the prescribed value
of the outlet static pressure, the oblique shock at the TE can be strong or weak. In the former case,
the shock-downstream flow is subsonic not only at the TE, but all along the curved shock wave which
runs from the TE to the upper wall, see the TC1a flowfield in Fig. 8. When the outflow static pressure
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is lowered, the oblique shock at the TE becomes weak, the downstream flow becomes supersonic and
a shock-interaction resembling a λ-shock or fishtail shock-pattern appears. As the outflow pressure is
further reduced, the interaction (or branching) point moves along the oblique shock towards the outflow
section, see test cases TC1b to TC1f in Fig. 8.

TC

(a) TC1

TC

(b) TC2

Figure 6. Comparison between the numerically computed Mach number distribution and the analytical
simple wave solution.

Finally, since we are dealing with weak shocks of moderate intensity, it is possible to compute the
shock shape using the semi-analytical, albeit approximate, approach described in [20, § 139]. The solid
cyan lines drawn in Fig. 6 are the shock shapes computed by solving the ODE [20, Eq. (139.02)] using
the DDEABM routine from SLATEC [37]: for both sets of test cases the agreement between the numerical
and semi-analytical shock-shapes, starting at the TE and up to the branching point, is remarkably good.
We will make use of the semi-analytical shock shape in Sects. 3.2 and 3.3 as an aid to assess whether the
3ST or 4WT applies at the branching point of the shock interaction.

As already mentioned, the flow patterns of Fig. 6 resemble the fishtail shock-pattern in the TE
region of a profile flying at transonic speed and zero angle of attack: compare Figs. 1b and 6. However,
compared to the external flow past the NACA0012 profile which we studied in [6], the chosen test case
offers a twofold advantage. First of all, the possibility of varying both the inlet Mach number (Min) and
the pressure ratio between the exit and inlet sections, Pex/Pin, allows to obtain a wide range of possible
shock-interaction patterns. Secondly, numerical simulations of transonic external flows require a large
computational domain owing to the relatively large size of the supersonic bubbles, see Fig. 1b, but also
because the distance (Xs in Fig. 1b) between the nearly normal shock and the TE is very sensitive to the
location of the far-field boundary [38]. The chosen internal flow test case can instead be computed using a
small domain, thus reducing the computational cost. Despite this obvious advantage, the sensitivity of the
computed shock-pattern to the boundary conditions was also observed in the proposed internal flow: tiny
changes in the exit-to-inlet static pressure ratio give rise to major displacements of the shock-structure or
even change the shock-topology. This feature makes code-to-code comparisons for the selected test case
very difficult, because differences in the implementation of the constant pressure boundary condition in
different codes turn out to be equivalent to tiny changes in the prescribed downstream pressure. This
particular issue will be further addressed in § 3.1.

Both structured and unstructured grids, respectively shown in Fig. 5b and 5c, have been used to
discretize the computational domain of Fig. 5a.

To evaluate the solution grid-independence, each test case was computed on two nested mesh levels,
details of which are listed in Tab. 2. It is worth noting that, even if the structured and unstructured grids
are characterized by a different number of nodes and cells, they share the same number and geometrical
location of the gridpoints along the domain boundaries. The finest grid level was generated by recursively
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subdividing each parent cell into four nested cells, as shown in the smaller frames of Figs. 5b and 5c.

3.1. Grid convergence analysis

Before analyzing the numerical solutions obtained using the two different CFD solvers, a grid-
convergence analysis was performed. To do so, we use the TC1f case, which is characterized by a von
Neumann interaction, as will be clarified in § 3.2. Figure 7a shows a sketch of the shock-pattern where
the subsonic flow regions have been highlighted in gray.

Numerical simulations were computed using i) the CFD++ code and the two nested structured grids
shown in Fig. 5b and ii) the UnDiFi-2D code and the two unstructured grids shown in Fig. 5c. As
mentioned earlier, code-to-code comparisons for the selected test case proved very difficult, because the
two CFD codes return shock-patterns characterized by a different location of the branching point even
when the same boundary conditions are prescribed. We argue that these differences are rooted in details
of the implementation of the constant-pressure outflow boundary condition which are exacerbated by the
extreme sensitivity of the computed shock-pattern to the prescribed outflow static pressure. Indeed, as
will be shown in more details in § 3.2 and 3.3, even when using the same CFD code, changes as small
as one-thousandth in the exit-to-inlet static pressure ratio cause a significant spatial displacement of the
shock-pattern, or may even lead to a different shock-pattern. Therefore, when running the UnDiFi-2D

shock-fitting calculations, instead of prescribing the same outflow pressure used in the CFD++ calculation,
we iteratively adjusted the outflow pressure to approximately obtain the same shock-location returned
by CFD++. This is clearly a painful and time-consuming procedurea, which explains why we have only run
one shock-fitting calculation for each of the TC1 and TC2 sets of test cases.

Figures 7b and 7c compare the Mach iso-lines computed for the TC1f test case on both grids levels
by CFD++ and UnDiFi-2D, respectively. In the former case, the shock-capturing solutions obtained on the
two mesh levels are in fair agreement, whereas an even better agreement can be seen for the UnDiFi-2D
shock-fitting computations.

To quantitatively analyze the grid-convergence properties of the two different shock-modeling options,
we need to compute the discretization error, i.e. the difference between the numerical and exact solution.

By reference to Fig. 7a, using the momentum conservation principle, it is easy to show that the drag
coefficient, CD, see Eq. (2b), can alternatively be computed as follows:

(4) CDCFD
=

DCFD
1
2ρinu

2
inαR

=
1

1
2ρinu

2
inαR

[∫ L1

0

(
pin + ρinu

2
in

)
dy −

∫ L1

R(cosα−1)

(
pex + ρexu

2
ex

)
dy

]

where L1 = L2 −R (1− cosα) and L2 in Fig. 7a denote the height of the inlet and outlet sections of the
channel. The first integral in Eq. (4) can be computed exactly, because it only depends on the uniform
inlet conditions. The second integral is computed by numerically integrating the CFD solution along the
exit section. By comparing CD, computed using Eq. (2b) with the drag coefficient, CDCFD

, computed
using Eq. (4) and the CFD++ and UnDiFi-2D numerical solutions on both grid levels, we can assess the
grid-convergence-rate of the numerical solutions. Table 3 summarizes the results obtained from both
codes using the two nested grid-levels; the relative percentage error:

(5) ϵ =
CDCFD

− CD

CD
· 100%

is also shown. The relative error obtained from the UnDiFi-2D shock-fitting solution, ϵSF , is always lower
than the error, ϵSC , obtained from the CFD++ shock-capturing calculation; for example, ϵSF on the coarser
mesh is lower than ϵSC on the finer mesh. We have also computed the measured order of accuracy, ñ,
using the formulae given in [31,39], and found that ñ is close to design order, n = 2, for the shock-fitting
calculation, whereas it reduces below first order for the shock-capturing one. This observation points to

aIt is even more so, because convergence to steady-state requires a huge number of iterations, regardless of the CFD code
and pseudo-time integration strategy being used
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(a) Flow topology: gray regions denote subsonic flow

(b) CFD++ solutions on nested structured grids. (c) UnDiFi-2D solutions on nested unstructured grids

Figure 7. Test case TC1f: flow topology and comparison between the Mach iso-contour lines computed
using CFD++ and UnDiFi-2D on both the coarse and fine meshes.

a well-known advantage of shock-fitting techniques over shock-capturing ones, namely the capability to
retain the design order of accuracy also in the smooth flow regions located downstream of a discontinuity,
see e.g. [31,33,40,41].

Both the qualitative and quantitative results presented so far point to the fact that the numerical
solutions computed by both codes on the coarsest grid level are nearly grid-independent, the relative
error on CD being of the order of 1%.

shock-fitting shock-capturing
Grid level CDCFD

ϵSF (%) CDCFD
ϵSC(%)

Coarse 0.0529 -0.936 0.0527 -1.311
Fine 0.0533 -0.187 0.0529 -0.936

ñ 2.32 0.49

Table 3. Drag estimate for TC1f case: comparison between the CFD++ and UnDiFi-2D results.

3.2. TC1 test cases

In this paragraph we examine the six TC1 test cases, which share the same inlet Mach number, Min

= 1.3, whereas the exit-to-inlet static pressure ratio ranges between 1.820 and 1.815, see Tab. 1a. Figure 8
collects the Mach number contours computed for all six test cases using CFD++ on the finest structured
grid. The TC1f test case, which corresponds to Pex/Pin = 1.815, was computed first. Then, the exit-to-
inlet static pressure ratio was increased up to the value of the TC1e test case and the calculation was
re-started from the TC1f solution and iterated until convergence to obtain the steady state solution of the
TC1e case. This procedure was repeated to obtain the solutions of the remaining four test cases: TC1d was
obtained using TC1e as initial condition and so on. We found by numerical experiments that the use of a
different pseudo-transient approach for computing the various test cases may eventually lead to multiple
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solutions for a given pair Min,Pex/Pin; this statement will be made more precise later on. The sequence
of frames in Fig. 8 shows the solutions computed with the aforementioned procedure and highlights how
tiny variations in the pressure ratio, of the order of one thousandth, cause important changes in the flow
topology. For example, the TC1a solution features a single strong curved shock originating at the TE,
whereas all other test cases exhibit the fishtail shock-pattern. When gradually increasing the pressure
ratio from TC1f to TC1b, the shock interaction moves upstream.

To determine which kind of interaction, whether a 3ST or a 4WT solution, characterizes each test
case, we analyzed the numerical solutions and also made use of the semi-analytical shock-shape computed
as described in § 3.

As far as the numerical approach is concerned, we extracted from the CFD++ calculations the (M1, σ12)
pairs close to the branching point and plotted them in the (M1, σ12) plane. More precisely, the Mach
number, M1, ahead of the I-shock is extracted directly from the CFD solutions, whereas the I-shock
local slope, σ12, is obtained from the computed pressure ratio across the I-shock. The points where data
have been probed for each test case are marked in Fig. 8 using different symbols; there clearly is some
ambiguity in the geometrical location of these points because in the shock-capturing calculation the
branching point is not a geometrical point, but rather a region whose size is of the order of the numerical
shock width. The TC1a test case has not been included in the analysis because for Pex/Pin = 1.820 the
oblique shock at the TE is a strong shock featuring subsonic shock-downstream flow and, therefore, no
interaction takes place.

When using the semi-analytical approach, all (M1,σ12) pairs along the shock, i.e. the cyan line in
Fig. 6a, are available, starting at the TE and moving away from the wall. The results are summarized
in Fig. 9a were symbols have been used for the (M1, σ12) pairs extracted from the simulations and a
solid line for the values obtained using the semi-analytical approach. The agreement between the two
sets of results is extremely good for the largest values of the exit-to-inlet static pressure ratio, i.e. test
cases TC1b-TC1d, but deteriorates when Pex/Pin is lowered. This is because when the exit pressure is
higher, see Fig. 8, the branching point is close to the TE and therefore inside the simple wave region.
When the exit pressure decreases, the branching point moves along the oblique shock away from the TE,
leaving the simple wave region, see Fig. 6a. The discrepancy arises from the fact that the semi-analytical
model [20, § 139] is built upon the hypothesis that the shock-upstream flow is a simple wave. To further
support our explanation, we have plot in Fig. 9b not only the (M1,σ12) pair at the branching point, but
all pairs along the numerically simulated shock, starting at the TE and up to the triple point. It can be
clearly seen that there is a perfect match with the semi-analytical solution close to the TE, whereas the
numerical results deviate from the semi-analytical ones when the triple point is approached. The results
shown in Fig. 9b refer to the TC1f test case, because it features a branching point that falls outside the
simple wave region, see Figs. 7, 8 or 10.

Regardless of the approach used to characterize the interaction, Fig. 9a clearly reveals that all pairs
of (M1,σ12) values fall in the region of the plane where von Neumann’s 3ST has a valid solution. We
therefore conclude that a von Neumann type interaction takes place in all five test cases TC1b to TC1f.

Once we have ascertained that in all five test cases featuring a fishtail shock-pattern the branching
point should be modeled using von Neumann’s 3ST, we have run a fully-fitted UnDiFi-2D simulation
equipped with the 3ST to model the branching point; algorithmic details can be found in [36]. Figure 10
allows to compare the Mach number contours of the TC1f test case obtained using the two different shock-
modeling options: shock-capturing in CFD++ and shock-fitting in UnDiFi-2D on the finest grid level. Frames
on the bottom row of Fig. 10 show a zoom centred around the branching point: the fitted discontinuities,
all three shocks and the slip-stream, are marked using white solid lines. Both shock-modeling options are
seen to be capable of identifying the three-shock confluence that characterizes von Neumann’s model,
sketched in Fig. 2b. The superior quality of the shock-fitting solution is however evident and it is due
to the fact that all three shocks and the slip-stream are modeled as true mathematical discontinuities of
zero thickness.

The availability of the flow variables on the two sides of the gas-dynamic discontinuities is yet another
reason for using the shock-fitting technique to study these peculiar shock-patterns. Indeed, the shock-
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Figure 8. TC1 test cases (Min = 1.3): evolution of the flow topology while increasing the exit-to-inlet
static pressure ratio. CFD++ computations on the finest level of the structured grids.

(a) TC1b-f test cases (b) TC1f test case

Figure 9. TC1 test cases (Min = 1.3): comparison between the numerical and semi-analytical results in
the (M1, σ12) plane

fitting approach not only allows to know precisely the shock-upstream and downstream state, but also
further information, such as the shock-shape, which is not immediately available in a shock-capturing
solution. When comparing the data extracted from the shock-capturing and the shock-fitting solutions
of the TC1f case, as we do in Fig. 9a, good agreement is found.

Figure 11 points to another interesting feature of these kind of flows. Let us consider the TC1d case
(Pex/Pin = 1.817), which is characterized by a von Neumann interaction, as shown in Fig. 8. If we use
the TC1d solution as initial condition and reset the exit-to-inlet static pressure ratio to that of the TC1a
test case, the simulation converges to the TC1a flow field shown in Fig. 8. However, if we now use the
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Figure 10. TC1f case: comparison between the Mach contours computed using CFD++ and UnDiFi-2D

on the finest grid level. Fitted discontinuities are shown using white solid lines.

TC1a solution as initial condition and restore the pressure boundary condition of the TC1d test case,
i.e. Pex/Pin = 1.817, the simulation converges to a topologically different steady-state, featuring a single
strong curved shock and subsonic shock-downstream flow. This is illustrated in Fig. 11. In other words,
the TC1d configuration admits two weak solutions of the Euler equations: depending on the transient,
the flow field can be characterized by either a single strong shock wave originating at the TE or by a von
Neumann interaction. The existence of multiple solutions was revealed also for TC1b and TC1d cases,
corresponding to Pex/Pin = 1.819 and Pex/Pin = 1.818, respectively.

This phenomenon is similar to the hysteresis observed in the transition from Mach to regular reflection
in steady flows that has been studied, both experimentally and numerically, by Ivanov and co-workers [42,
43]. More specifically, the transition from Mach to regular reflection in an over-expanded supersonic jet
subjected to a varying pressure ratio exhibits a very similar behavior [44].

3.3. TC2 test cases

In this paragraph we analyze the TC2 cases which are characterized by a lower inlet Mach number,
Min = 1.05, than the TC1 test cases of § 3.2. Three different values of the exit-to-inlet static pressure
ratio, see Tab. 1a, have been investigated using CFD++ on the finest structured grid. The three frames
of Fig. 12 show the numerical solutions obtained by increasing the pressure ratio from 1.264 to 1.266
and using the same procedure described in § 3.2. Figure 12 clearly highlights how tiny changes in the
exit-to-inlet static pressure ratio significantly affect the overall flow field, eventually leading to a different
shock-pattern. In all three cases a curved shock is attached to the TE of the bump. However, in the
TC2a test case the shock is a strong shock with subsonic shock-downstream flow all the way from the
TE to the upper wall of the channel, whereas in the other two test cases the curved shock starts at the
TE as a weak oblique shock gradually becoming a normal shock as it reaches the upper wall. Therefore,
shock interactions are only possible for the boundary conditions TC2b and TC2c. To identify the kind
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Figure 11. TC1d case: existence of multiple solutions for the same set of boundary conditions

of interaction that takes place in these two test cases, we plotted in Fig. 13b the two (M1, σ12) pairs
probed from the CFD++ shock-capturing calculation and also those available along the semi-analytical
shock of Fig. 6b. These latter are shown using a solid line in Fig. 13b, whereas the results extracted from
the simulations are shown using symbols. For the TC2 test cases, the agreement between the numerical
and semi-analytical results is rather poor; this is because the flow ahead of the shock matches the simple
wave solution only very close to the TE, see Fig. 6b, thus making the comparison with the semi-analytical
solution of little use. Nonetheless, Fig. 13b shows that the two points representative of the TC2b and
TC2c conditions fall inside the GR region, thus indicating that the branching point must be modeled
according to the 4WT.

Figure 12. TC2 cases (Min = 1.05): changes in flow topology while increasing the pressure ratio

A fully-fitted simulation of the TC2b test case, computed using UnDiFi-2D equipped with the 4WT
model, is displayed in Fig. 13a. The fully-fitted simulation confirms that the branching point must be
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modeled using the 4WT and allows to draw a more precise conclusion about the type of shock-interaction,
whether a VR or GR, that takes place in the TC2b test case. The filled circle in Fig. 13b has been draw
using the (M1, σ12) values at the branching point (QP in Fig. 14) of the fully-fitted simulation and confirms
that the TC2b test case is characterized by a GR, featuring supersonic flow behind the M-shock.

Figure 14 shows a zoom centered around the branching point for both the shock-capturing (left) and
shock-fitting (right) simulations. The latter closely matches the four-waves model sketched in Fig. 3b,
whereas the shock-capturing calculation reveals a three-shocks confluence, but does not allow to identify
the weak expansion fan that characterizes the GR. As shown in [45], a much finer grid resolution would
be required, using shock-capturing, to identify the expansion fan.

(a) Fully fitted computation: Mach flow field
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Figure 13. TC2b case: fully fitted solution and analysis in the (M1, σ12) plane
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Figure 14. TC2b case: zoom centred at the branching point and comparison between the shock-capturing
and fully fitted solutions

Finally, multiple solutions have also been found for the TC2 group of test cases, when using the same
pseudo-time-stepping procedure described in § 3.2 for the TC1 test cases. In particular, Fig. 15 shows
how the shock-topology changes when the outlet-to-inlet static pressure ratio, initially set to Pex/Pin =
1.264, is first increased to Pex/Pin = 1.266 (TC2a case) and then reset to its initial value.
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Figure 15. TC2c case: existence of multiple solutions for the same set of boundary conditions

4. Conclusions

In this work we studied the properties of the transonic flow in a planar channel featuring a lenticular
bump on the lower wall. The chosen geometry, which closely resembles the region surrounding the TE of
an airfoil at zero angle of attack, allows to investigate a wide range of shock-patterns by independently
changing two boundary conditions: the inlet Mach number and the outlet-to-inlet static pressure ratio.

Numerical experiments have been conducted by solving the inviscid Euler equations using both a
commercial and an in-house CFD code; discontinuities are modeled using the shock-capturing approach
in the former and shock-fitting in the latter.

Depending on the selected pair of boundary conditions, we observed either a single curved shock
attached to the geometrical discontinuity of the lower wall of the channel or a shock interaction that is
reminiscent of the fishtail shock-pattern observed downstream of the TE of an airfoil flying at nearly sonic
speed. Combining numerical simulations and shock-polar analysis, we conclude that when the inlet Mach
number is only slightly above one, the branching point of the fishtail shock-pattern should be modeled
using Guderley’s four wave model, whereas for larger values of the inflow Mach number, von Neumann’s
three shock theory is applicable.

We have also observed that for some combinations of boundary conditions, two different steady-state
shock topologies are observed, depending of the pseudo-transient evolution of the numerical simulation.
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