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Abstract: Indole alkaloids, a class of plant-derived nitrogen-containing compounds, have emerged as
promising candidates for osteoporosis treatment. Their favorable biocompatibility profile demon-
strated efficacy in preclinical models, and low reported toxicity make them attractive alternatives
to existing therapies. This review focuses on the therapeutic potential of specific indole alkaloids,
including vindoline, rutaecarpine, harmine, and its derivatives, in promoting bone health and
managing osteoporosis.
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1. Introduction

Osteoporosis is a skeletal disease characterized by low bone mass and the microarchi-
tectural deterioration of bone tissue, leading to increased bone fragility and susceptibility
to fracture [1]. Essentially, it is a condition where bones become weak and brittle, making
them more prone to breaking. This weakening occurs gradually over time and often goes
unnoticed until a fracture happens, usually from a minor fall or even just bending over. Os-
teoporosis is a significant global health issue affecting millions of people all over the world,
particularly postmenopausal women and the elderly. Its silent progression often leads to a
diagnosis only after a fracture, highlighting the urgent need for effective and well-tolerated
treatments [2,3]. While current therapies, such as anti-resorptive and anabolic agents,
are available, they can be associated with adverse effects like bisphosphonate-induced
esophagitis. Effective and better-tolerated treatments are therefore desirable. It is well
known that alkaloids are a wide class of nitrogen-containing phytochemicals found in
medicinal plants. Because of their biopotential, efficacy, and low toxicity, natural alkaloids
have been used in experimental studies as anti-osteoporosis drugs and some have subse-
quently been used clinically. Among the diverse alkaloid classes with anti-osteoporotic
properties (including isoquinoline, quinolizidine, piperidine, pyrrolizidine, and steroid
alkaloids), indole alkaloids have emerged as particularly promising candidates. This re-
view focuses on studies of natural indole alkaloids that are important in the treatment
of osteoporosis.

2. Osteoporosis

Osteoporosis is a disease characterized by a reduction in bone mass and a deterio-
ration in the microarchitecture of bone tissue, leading to increased bone fragility and an
increased risk of fracture. In other words, osteoporosis occurs when bone loss exceeds bone
formation. Several factors contribute to this imbalance such as aging, where as we age, our
bones naturally become thinner and weaker. Also, menopause in women and decreased
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testosterone in men can accelerate bone loss. Inadequate calcium and vitamin D intake,
lack of weight-bearing exercise, and smoking can increase the risk. Certain medications,
such as corticosteroids and some cancer treatments, can weaken bones. Conditions like
rheumatoid arthritis, hyperthyroidism, and celiac disease can contribute to osteoporosis.
Bone tissue, like muscle, skin, and blood, is not a static and inert structure, but a living
and highly metabolically active tissue that renews itself under physiological conditions
through a metabolic process called bone remodeling [1,2]. Unlike static tissues, bone is
a dynamic organ undergoing constant remodeling through a balanced process of bone
resorption and formation. A decrease in the size of the thoracic and abdominal cavities as
well as an increase in thoracic kyphosis can result from vertebral fractures, which can also
cause discomfort and postural abnormalities that can lower quality of life overall. Up until
a fracture occurs, the condition is clinically asymptomatic [3,4]. Osteoporosis is a health
and social problem; it affects in Italy 14% of men over 60 and 23% of women over 40. Its
frequency is rising, but the majority of cases are still undiagnosed and untreated [5]. Due
to a complex pathophysiology, resorption outweighs new production in the two stages of
bone remodeling, resulting in an imbalance [6]. The primary causes include a shortage of
calcium and vitamin D, loss of sex hormones, and neglect. The decrease in sex hormones is
exponentially correlated with bone loss. The typical loss of lumbar spine bone density in
the first year following menopause is 8%; this decreases to half in the subsequent years and
reaches a plateau approximately five years later. Postmenopausal bone loss occurs at such a
fast pace that it causes trabecular bone perforation and irreversible skeletal tissue loss [7,8].
The thinning and perforation of the trabeculae lead to a progressive loss of connectivity
between the trabeculae, which is the source of the change in skeletal microarchitecture
seen after menopause and during aging. The porotic bone has the characteristic ‘palisade’
radiographic look because the horizontal trabeculae, which are not under direct load, are
the first to weaken and disintegrate. An exponential rise in bone fragility occurs when the
horizontal trabeculae vanish [9–11].

Because there is no physical foundation for new bone production, trabecular perfora-
tion causes irreversible bone loss. In other words, the resorbed bone cannot be replaced
by new bone. In actuality, the physiological function of osteoblasts is to fill the trabecular
pits that they create with the bone matrix, which will subsequently calcify. Even if the
osteoblastic activity is elevated, no bone is created because trabecular perforation leaves no
cavity for the osteoblasts to deposit the matrix on [12–22].

Bone growth, maintenance of skeletal mass, and subsequent bone loss occur as a
result of continuous resorption and new formation processes, known as bone remodeling
(Figure 1). This is the process in which old bone is replaced by new bone.

There are two main types of cells responsible for bone remodeling: osteoclasts, which
are responsible for bone resorption, and osteoblasts, which are responsible for bone for-
mation. Bone remodeling takes place in the trabecular, endosteal, and cortical parts of the
skeleton at well-defined anatomical structures called BMUs [23].

Mononuclear precursors of the monocytic–macrophage type, which are produced in
the bone marrow and freely circulate throughout the bloodstream to the location where
their activity is needed, fuse to generate osteoclasts. Numerous systemic and local cues
from the supporting stromal cells, which are intimately linked to the osteoblasts, lead to
the recruitment of osteoclastic precursors and their development into mature osteoclasts.
Numerous systemic and local variables that operate by regulating RANKL production or
osteoclast apoptosis might have a positive or negative impact on osteoclastic differentia-
tion [24–29]. In particular, OPG (osteoprotegerin)/RANK (receptor activator of nuclear
factor κ B)/RANKL (receptor activator of nuclear factor κ B ligand) is a cytokine net-
work important for the osteoclast differentiation and activation as a main regulator of
the equilibrium between bone formation (osteoblasts) and bone resorption (osteoclasts)
(Figure 2).
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Figure 1. Phases of bone remodeling. The process of bone remodeling takes place in cycles involving
the resorption of bone by osteoclasts and its remodeling by osteoblasts. Osteoclasts and osteoblasts
carrying out a remodeling cycle form a Bone Multicellular Unit (BMU). The process involves nu-
merous BMUs working in specific areas through a precise sequence of steps: activation, resorption,
reversal, ossification.
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Osteoblasts (OBs) originate from mesenchymal progenitors, and multiple local bone
growth factors, such as bone morphogenetic proteins (BMPs), certain insulin-like growth
factors (IGFs), and transforming growth factor beta (TGF beta), are necessary for their
development [24–29].

OBs have three possible outcomes: they can undergo apoptosis or develop into mes-
enchymal or osteocyte cells, both of which are crucial for skeletal metabolism. OB apoptosis
is suppressed by PTH and a few growth hormones, including TGF-beta and IL-6. The cycle
of bone remodeling requires the simultaneous existence of osteoblasts and osteoclasts, and
normally, bone creation only takes place at the locations where bone has been resorbed.

The close links between the vasculature and the areas of bone remodeling are high-
lighted by the fact that osteoclasts are derived from hematopoietic progenitor cells. Circu-
lating monocytic cells are signaled by endothelial cells at the extremities of capillaries close
to bone marrow units (BMUs) to exit the circulation and transform into adult osteoclasts.
The capillary network encircles the resorption gap, where osteoblasts must be recruited to
create new bone, as bone resorption advances [24–29].
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It is plausible that mesenchymal precursor cells initiate the process of osteoblastic
differentiation, propelled by biochemical cues of an endothelial origin. Young osteoclasts
with a high level of metabolic activity are seen at the deepest region of the bone remodeling
site. Less active osteoclasts and eventually apoptotic osteoclasts occupy the sidewalls of
the resorption chamber as one advances away from the apex of resorption. The osteoblasts
have a more specialized fate: between 20 and 50 percent develop into osteocytes or lining
cells, while the remaining 50 to 80 percent suffer apoptosis [24–29].

3. Diagnosis

The BMD (bone mineral density) test is used to determine the quantity of minerals
in one square centimeter of bone, or bone mineral density. The findings are contrasted
with the bone mineral density of a reference value that has been established, namely the
bone mineral density of a young adult in good health, between the ages of 25 and 30, who
has attained a bone mass, to which a T-score is awarded. A 1994 technical study from
the World Health Organization (WHO) determined the T-score values of BMD within
which an individual can be classified as normal, with reduced bone mass (osteopenia), or
with osteoporosis. The WHO established the subsequent diagnostic standards based on
comparisons with the average peak bone mass in young adults:

- Normal bone mineral density: BMD within 1 standard deviation (SD) of the average
peak bone mass in young adults.

- Osteopenia: BMD between −1 and −2.5 SD below the average peak bone mass in
young adults.

- Osteoporosis: BMD more than 2.5 SD below the average peak bone mass in young adults.
- Severe osteoporosis: BMD more than 2.5 SD below the average peak bone mass in

young adults, along with one or more fragility fractures.

These standards, which pertain to postmenopausal women, were established by
utilizing dual-energy X-ray absorptiometry (DXA) data from bone density assessments. It
is estimated that at least 30% of postmenopausal Caucasian women have osteoporosis at
risk of fracture using a cut-off of −2.5 SD of bone mass [3,7,30–34].

4. Treatment

The main goal of osteoporosis treatment is to prevent fractures. Some common
medication classes are the following:

Anti-resorptive agents: They inhibit bone loss by reducing osteoclast activity and
they include

- Bisphosphonates: These are the most commonly prescribed medications for osteoporo-
sis. They slow bone loss and increase bone density. Examples include alendronate (1),
ibandronate (2), risedronate (3), and zoledronic acid (4) (Figure 3).

- Monoclonal antibodies such as the RANK-L inhibitor (denosumab) and the sclerostin
inhibitor (romozumab) [35,36].

- Parathyroid hormone (PTH) analogs: These medications stimulate new bone forma-
tion. Examples include abaloparatide, and teriparatide (teriparatide is a recombinant
protein consisting of the first 34 amino acids of the parathyroid hormone).

- Selective estrogen receptor modulators (SERMs): These medications mimic some of
the effects of estrogen on bone. Raloxifene (5) is a common example.

- Drugs with dual mechanisms of action (anti-resorptive and anabolic), such as stron-
tium ranelate (6).

- Calcitonin: This medication slows bone loss but is less commonly used.

These treatments are systemic and have a lot of negative effects. Specifically, the
most frequent adverse effects linked to bisphosphonates are a fever, gastrointestinal issues,
discomfort in the muscles and bones, and necrosis of the jaw. For instance, osteonecrosis
and atypical fractures can be brought on by denosumab and bisphosphonates. However,
romosozumab can also result in joint pain and swelling, as well as a heart attack or stroke



Appl. Sci. 2024, 14, 8124 5 of 15

in those who are more susceptible [37–39]. After the first year of treatment, 50% of patients
elect to discontinue, primarily due to the adverse effects that outweigh the benefits of the
medications. This is the reason why a lot of individuals are searching for a medication-free
approach to treat the illness. Indole alkaloids may be a potential treatment.
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The mechanism of action, limitations, and adverse effects of the main drugs used in
conventional therapies are shown in Table 1 [22,24,32,35,37–39].

Table 1. The mechanism of action, limitations, and adverse effects of the main drugs used in
conventional therapies.

Drugs Mechanism Of Action Limitations Adverse Effects

Bisphosphonates Inhibit bone resorption by
targeting osteoclasts.

Highly effective in reducing
fracture risk but primarily
prevent bone loss rather than
building new bone.
Long-term use can lead to
medication-related
osteonecrosis of the jaw
(MRONJ) and atypical
femoral fractures.

Gastrointestinal upset,
esophagitis, and in rare cases,
bone pain.

Denosumab
Monoclonal antibody that
inhibits osteoclast formation
and function.

Effective in reducing fracture
risk but similar to
bisphosphonates, it primarily
prevents bone loss. Long-term
safety data are limited.

Increased risk of osteonecrosis
of the jaw, atypical femoral
fractures, and potentially
increased risk of infections.

Teriparatide
Synthetic form of parathyroid
hormone that stimulates bone
formation.

Effective in increasing bone
mass and reducing fracture
risk but its use is limited to
two years due to the risk of
bone cancer. Expensive.

Nausea, leg cramps, and
increased calcium levels.

Selective Estrogen Receptor
Modulators (SERMs)

Mimic estrogen’s effects on
bone but without affecting the
uterus.

Less effective than other
options in preventing
fractures.

Hot flashes, blood clots, and
increased risk of uterine
cancer.

Calcitonin Reduces bone resorption by
inhibiting osteoclast activity.

Less effective than other
options in preventing
fractures.

Nasal irritation (nasal spray),
flushing, and increased risk of
bone pain.
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Thus, the target of most conventional medications is primarily preventing bone loss
rather than stimulating bone formation. Many medications are associated with serious
side effects, limiting their long-term use. In fact, some therapies, such as teriparatide,
have restricted treatment periods due to safety concerns [40]. Moreover, the high cost of
certain medications, especially newer biologics, poses a significant barrier to treatment.
These limitations and the adverse effects associated with current osteoporosis therapies
underscore the need for innovative approaches. Research is focused on developing drugs
that stimulate bone formation, have a reduced risk of adverse effects, can be used long-term,
and are more cost-effective.

Natural alkaloids have been studied for osteoporosis treatment. Natural alkaloids are
nitrogen-containing, polycyclic compounds that are derived from plants. Isoquinoline (7),
quinolizidine (8), pyrrolizidine (9), steroidal (10), piperidine (11), and indole (12) (Figure 4)
are structural variation examples of anti-osteoporosis alkaloids [41].
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These natural agents have generated a great deal of interest because of their diverse
biological and pharmacological effects. They enhance osteoblast proliferation, encourage
osteoblast autophagy, inhibit osteoclast formation, and support mesenchymal stem cell
differentiation. The wingless and int-1 pathway in mesenchymal stem cells, the p38
mitogen-activated protein kinase pathway in osteoblasts, the inhibition of the nuclear
factor kappa B pathway in osteoclasts, and the disruption of the tumor necrosis factor
receptor-associated factor 6-receptor activator of nuclear factor kappa B interaction are just
a few of the signaling pathways that these naturally occurring alkaloids can regulate.

This review offers proof and backing for new medications and the therapeutic use of
indole natural alkaloids to treat osteoporosis [42,43].

5. Indole Alkaloids

Indole alkaloids are nitrogen-containing heterocycles present in the families Apocy-
naceae, Loganiaceae, Rubiaceae, and Nyssaceae. Among them are significant bioactive sub-
stances, including ellipticine, which was extracted from Ochrosia elliptica Labill’s
leaves [44–50]. The pharmacological actions of indole derivatives are diverse and in-
clude antiviral, antioxidant, anticancer, anti-inflammatory, antihistaminic, antibiotic, and
anti-Alzheimer properties [51–54].

Indole alkaloids primarily exert their effects by interacting with specific molecular
targets, often proteins, within cells [55]. These interactions can lead to a variety of cellular
responses, including:

• Modulation of receptor activity: indole alkaloids can act as agonists or antago-
nists of various receptors, including G protein-coupled receptors, ion channels, and
nuclear receptors.

• Enzyme inhibition or activation: some indole alkaloids inhibit or activate specific
enzymes involved in metabolic pathways or signaling cascades.

• Interaction with DNA: certain indole alkaloids can bind to DNA, affecting gene expression.
• Antioxidant activity: many indole alkaloids possess antioxidant properties, protecting

cells from oxidative damage.
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While the specific mechanisms vary widely among different indole alkaloids, some
common pathways have been implicated in their actions:

1. Neurotransmitter Systems

• Serotonin: some indole alkaloids, such as those found in ergot alkaloids, interact with
serotonin receptors, leading to effects on mood, sleep, and cognition.

• Dopamine: certain indole alkaloids can influence dopamine signaling, contributing to
their potential therapeutic applications in conditions like Parkinson’s disease.

• Acetylcholine: some indole alkaloids have been shown to modulate acetylcholine
receptors, affecting neuromuscular transmission and cognitive function.

2. Signal Transduction Pathways

• MAPK pathway: several indole alkaloids have been shown to activate or inhibit
mitogen-activated protein kinase (MAPK) pathways, which are involved in cell prolif-
eration, differentiation, and apoptosis.

• Phosphoinositide 3-kinase (PI3K)/AKT pathway: this pathway is crucial for cell
survival and growth, and some indole alkaloids have been reported to modulate
its activity.

• NF-κB pathway: indole alkaloids can influence the nuclear factor kappa B (NF-κB)
pathway, which regulates inflammatory responses and immune function.

3. Cell Cycle Regulation

• Some indole alkaloids can arrest the cell cycle at specific phases, leading to apoptosis
or senescence. This mechanism underlies their potential anticancer activity.

4. Oxidative Stress and Inflammation

• Many indole alkaloids possess antioxidant properties, scavenging free radicals and
protecting cells from oxidative damage.

• They can also modulate inflammatory responses by inhibiting the production of pro-
inflammatory cytokines.

Indole alkaloids as a class have a reputation for being potent compounds with potential
toxicity. Their safety profile varies widely depending on the specific alkaloid and the dosage.
Common side effects include gastrointestinal disturbances; neurological symptoms; bone
marrow suppression; and cardiovascular effects. It is essential to weigh the potential
benefits of indole alkaloid therapy against the risks for each individual patient.

They have been used for centuries in traditional medicine and have gained signifi-
cant attention in modern drug discovery; for example, vincristine and vinblastine have
gained FDA approval for anti-tumor activity; ajmaline for anti-arrhythmic activity; and
physostigmine for glaucoma and Alzheimer’s disease.

Some indole derivatives that possess anti-osteoclastogenic and/or anti-resorptive
qualities have emerged in recent years as possible treatments for osteoporosis. Specifically,
research has been performed on naturally occurring indole chemicals such as vindoline (13),
rutaecarpine (14), harmine (15), and its derivatives (16–19) [41,56] and also on vinblastine,
vincristine, yohimbine, and strychnine, but this research is limited and their effects on bone
health are unclear.

This mini-review presents intriguing findings about the management of osteoporosis
and the pathways connected with the mechanisms of action of the examined compounds.

5.1. Mechanisms of Action of Indole Alkaloids in Osteoporosis

While research is still ongoing, several potential mechanisms have been proposed for
the anti-osteoporotic effects of indole alkaloids:

1. Modulation of bone turnover [57]

• Influence on osteoblast activity:

# Indole alkaloids can stimulate osteoblast proliferation and differentiation, lead-
ing to increased bone formation.
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# They might regulate the expression of bone-specific genes involved in matrix
synthesis and mineralization.

• Inhibition of osteoclast activity:

# Some indole alkaloids can suppress osteoclast differentiation and function,
reducing bone resorption.

# They may interfere with osteoclast-mediated bone resorption by inhibiting key
enzymes or signaling pathways.

2. Anti-inflammatory effects [58]

• Reduction in inflammatory cytokines:

# Chronic inflammation is linked to bone loss. Indole alkaloids can downregulate
the production of pro-inflammatory cytokines, such as tumor necrosis factor
alpha (TNF-α) and interleukin-1 (IL-1), which contribute to osteoclastogenesis.

• Inhibition of NF-κB Pathway:

# Indole alkaloids may inhibit the NF-κB signaling pathway, a key regulator of
inflammation and bone resorption.

3. Antioxidant properties [42]

• Protection against oxidative stress:

# Oxidative stress contributes to bone loss by damaging bone cells. Indole
alkaloids with antioxidant properties can neutralize reactive oxygen species,
protecting bone tissue.

4. Hormonal modulation [41]

• Estrogen-like effects:

# Some indole alkaloids exhibit estrogenic activity, which can be beneficial in
postmenopausal osteoporosis, as estrogen deficiency is a major risk factor.

• Vitamin D-like effects:

# Certain indole alkaloids may influence vitamin D metabolism or receptor
signaling, contributing to bone health.

5. Other potential mechanisms [41]

• Regulation of bone-related signaling pathways:

# Indole alkaloids might interact with various signaling pathways involved in
bone metabolism, such as Wnt, BMP, and Notch pathways.

• Influence on bone microenvironment:

# These compounds could affect the composition and function of bone cells and
the extracellular matrix.

5.2. Vindoline

The indole alkaloid called vindoline (methyl 3β,4β-dihydroxy-16-methoxy-1-methyl-
6,7-didehydro-2β,5α,12β,19α-aspirosepsin-3α-carboxylate) (13) (Figure 5) was isolated
from the medicinal plant Catharanthus roseus and has been shown to have anti-tumor,
antidiabetic, antioxidant, and anti-inflammatory properties [59,60]. Vindoline can decrease
osteoclast development from bone marrow macrophage (BMM) progenitor cells as well as
mature osteoclastic bone resorption, as Zhan et al. [61] were the first to demonstrate.
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Additionally, they have shown that the molecular mechanism of action of vindoline is
based on its inhibitory effect against the production of intracellular reactive oxygen species
(ROS) and the activation of MAPK, including p38, JNK, and ERK. This effect suppresses the
induction of c-Fos and NFATc1, which in turn downregulates the expression of the genes
required for the formation of osteoclasts and bone resorption.

Also, their in vivo investigation on vindoline-treated mice revealed protection against
trabecular bone degradation and bone loss brought on by ovariectomies (OVXs). Accord-
ing to their research, vindoline reduced the in vitro bone resorption capacity of mature
osteoclasts and the generation of osteoclasts derived from BMM [61]. Vindoline specifically
inhibits the activation of all three MAPK signaling pathways as well as the generation of
intracellular ROS, which in turn decreases the expression of c-Fos and NFATc1.

Moreover, they found that the increase in NFATc1 expression was postponed dur-
ing the differentiation of osteoclasts, which led to the downregulation of several NFAT-
responsive genes implicated in the fusion of osteoclasts, such as CTSK, MMP9, and TRAP.
The same scientists then looked at the possible advantages of vindoline treatment in OVX
mice model-induced bone loss in vivo, and they found that vindoline treatment decreased
the quantity of TRAP-positive osteoclasts in bone. They demonstrated that vindoline
has anti-osteoclastogenic and anti-resorptive qualities that can be used to treat or control
osteoporosis and other osteoclast-mediated osteolytic disorders.

5.3. Rutaecarpine

Rutaecarpine (8,13-hydroindolo [2′,3′:3,4]pyrido[2,1-b]quinazolin-5(7H)-one) (14)
(Figure 6) [62] is a bioactive alkaloid that was isolated from the adaptable medicinal
herb Evodia rutaecarpa. In China, this herb is used clinically to treat amenorrhea, headache,
stomach pain, diarrhea, and postpartum hemorrhage.
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Rutaecarpine, one of Evodia rutaecarpa’s most characteristic indolopyridoquinazoline
alkaloids, has a wide range of pharmacological applications in the treatment of metabolic,
cerebrovascular, and cardiovascular illnesses.

In 2024 [63], Ali et al. reported on the effects of rutaecarpine on promoting osteoblast
development in hBMSCs. Specifically, rutaecarpine induced the expression of genes linked
to osteogenesis, including ALP, OC, ON, and RUNX2, which are crucial for the maturation
of osteogenic processes, matrix mineralization, and the control of transcription factors
that are essential for the development of bones and osteogenesis [64]. Their rutaecarpine
therapies resulted in an upregulation of COMP, another osteogenic gene marker. Through
the activation of BMP2 and ALP activity, COMP has been demonstrated in an ectopic bone
formation rat model to improve osteogenesis [65].

The activation of the FAK pathway by rutaecarpine is essential for the stimulation
of osteogenesis and bone formation. Another route that is increased when rutaecarpine
is exposed to hBMSCs is TGFβ. Through the SMAD signaling pathway, TGFβ recruits
stromal stem cells to the bone resorption process and controls the maintenance of postnatal
bone and cartilage. Osteoblasts’ production of new bone and osteoclastogenesis’s induction
of bone degradation are linked by TGFβ [66].

A key signaling role for TGFb isoforms and their receptors, such as TGFβR2, is played
in the development of bones. In their investigation, the downregulation of rutaecarpine’s
osteogenic induction effects was caused by the inhibition of the TGFβ pathway. Rutae-
carpine was found to also upregulate the Toll-like receptor signaling pathway. Following
rutaecarpine treatments, oxidative stress and selenium pathways are also activated in
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hBMSCs, suggesting rutaecarpine’s preventive antioxidant effect against age-related bone
loss. These findings suggest that rutaecarpine may have a therapeutic benefit by lowering
senescent cells and preventing age-related bone loss.

Furthermore, ex vivo organotypic cultures of embryonic chick femurs treated with
rutaecarpine demonstrated the beneficial effects of this chemical on metrics related to bone,
such as cortical thickness and BV/TV. The potential of rutaecarpine to shield rats against
OVX-induced bone loss has also been studied. Rutaecarpine treatments of OVX mice for
three months resulted in improved bone density, probably as a result of mechanisms related
to osteoprotegerin induction [67].

Anti-osteoporotic medication use may raise the risk of cardiovascular illnesses, my-
ocardial infarction, and stroke [68]. Both men and women with cardiovascular disorders
typically have lower bone mass densities. Rutaecarpine has been studied previously for its
beneficial effects as an antioxidant and an inflammatory modulator that lower the risk of
heart disorders [69]. In conclusion, their research shows that rutaecarpine plays protective
roles in promoting bone formation by raising the osteoblast differentiation potential of
hBMSCs and lowering oxidative stress and senescent cell load.

5.4. Harmine

As an alkaloid of β-carbolines with a tricyclic pyrido[3,4-b] indole structure, harmine
(7-methoxy-1-methyl-9H-pyrido[3,4-b]indole) (15) (Figure 7) has been shown to have a
variety of pharmacological effects in vitro and in vivo, including vasorelaxant and an-
tidepressant effects as well as improved insulin sensitivity [70,71]. Harmine has several
traditional medicinal uses and pharmacological activities such as anti-inflammatory, anti-
parasitic, anti-tumor, and anti-diabetes properties. Uygur medicine in China uses different
preparations of harmine to treat rheumatoid arthritis [72].
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A mini library of indole derivatives was the focus of research by Yonezawa et al.
(2011) [73]. These derivatives included harmine (15), harmol (1-methyl-2,9-dihydropyrido
[3,4-b]indol-7-one) (13), harmane (1-methyl-9H-pyrido[3,4-b]indole) (14), harmaline (7-
methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole) (15), and harmalol (1-methyl-4,9-
dihydro-3H-pyrido[4,3-b]indol-7-ol) (16), among others.

Researchers have looked at how harmine and its derivatives (Figure 7) affect osteo-
clastogenesis in order to evaluate the relationship between the chemical structure and
action of harmine. They found that harmol has similar effects to harmine in inhibiting
RANKL-induced TRAP activity. After analyzing harmine and its derivatives, researchers
found that harmine reduces osteoclastogenesis in RAW264.7 murine macrophage-like cells
(Figure 7). According to these researchers, harmine prevented osteoclast differentiation in
RAW 264.7 cells while preserving cell viability. It also prevented progenitor cells from differ-
entiating into mononuclear osteoclasts and from fusing into multinucleated osteoclasts. The
study employed primary BMMs and co-culture systems to confirm the inhibitory effects of
harmine on osteoclastogenesis. Given that harmine was able to decrease osteoclastogenesis
in single cultures of RAW264.7 cells and BMMs without osteoblasts, their findings imply
that harmine primarily works on osteoclast precursors rather than osteoblasts. Using both
in vitro and ex vivo models, harmine was demonstrated to decrease bone resorption in
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investigations. An analysis of mice with ovariectomies revealed that harmine inhibits
bone loss in vivo in models of osteoporosis. An analysis of harmine and its derivatives’
structure–activity relationship (SAR) on osteoclastogenesis revealed that a double bond
between C3 and C4 and a methoxy or hydroxy group at position 7 in β-carboline structures
are critical. Therefore, harmine inhibits the mRNA and protein expressions of c-Fos and
NFATc1, crucial transcription factors for osteoclastogenesis, that are increased by RANKL.
Specifically, TRAP, c-Src, Atp6v0d2, and cathepsin K are among the osteoclast-specific
genes whose expressions are regulated by NFATc1 and which modulate osteoclast fusion,
activation, and function [74].

In 2018, Huang et al. [75] created an oil-in-water harmine emulsion and found that the
oral administration of harmine in an emulsion form reduced harmine accumulation in the
mouse brain and that the intragastric administration of a harmine emulsion provoked bone-
sparing effects in OVX-induced osteoporotic mice. These findings were made in the light
of harmine’s low bioavailability and potential side effects (an intraperitoneal injection of
harmine can cause side effects in the central nervous system) [76–78]. Moreover, quantities
of harmine were found in mouse bone marrow following oral treatment, which may account
for the bone-protective effects observed in OVX mice. Consequently, their research validates
that the intragastric delivery of a harmine emulsion promotes the development of type H
blood vessels and bone in osteoporotic mice while inhibiting the creation of osteoclasts
and enhancing preosteoclast PDGF-BB-induced angiogenesis. Harmine may be a viable
medication for the treatment and prevention of osteoporosis, according to their research.

The same researchers [79] reported in 2021 that activator protein-1 (AP-1) and inhibitor
of DNA binding-2 (Id2) are involved in harmine-enhanced preosteoclast PDGF-BB pro-
duction. Primary murine bone marrow macrophages (BMMs) were obtained from the
tibiae and femora of 6-week-old male mice. Specifically, harmine-upregulated Id2 inhibited
preosteoclasts’ ability to fuse into multinucleated osteoclasts, and harmine’s effects were
reversed by Id2 knockdown. The dimeric transcription factor AP-1, which is made up of
the proteins Jun and Fos, is an important positive regulator of osteoclast development that
is first triggered by the RANKL signal [80]. This study indicated that in RANKL-induced
BMMs, harmine significantly increases the expression of the AP-1 factors, c-Fos and c-Jun.
The study conducted by the authors provides mechanistic insight into the regulation of
PDGF-BB synthesis during osteoclast formation. Additionally, the study has enabled the
discovery of a novel therapeutic target for the management and prevention of metabolic
bone disorders. In 2011, Egusa et al. [81] demonstrated that harmine also had an impact on
DC-STAMP expression, which is necessary for cell–cell fusion in osteoclasts [82].

5.5. Other Indole Derivatives That Influence Bone Metabolism

Other classes of indole alkaloids that influence bone metabolism are:

• Vinca alkaloids such as vinblastine and vincristine: Primarily known for anticancer
properties, these alkaloids also influence bone metabolism and they might have side
effects related to bone health [83].

• Yohimbine-type alkaloids: Some members of this class have shown potential for bone
health, though research is limited. Yohimbine, found in yohimbe bark, has been
studied for various conditions, including erectile dysfunction, but its effects on bone
health are unclear [84].

• Strychnine-type alkaloids: While primarily known for neurotoxicity, certain com-
pounds in this class such as strychnine might have unexpected effects on bone [85].

6. Conclusions

Osteoporosis, a silent disease characterized by bone weakening, presents a signifi-
cant health challenge. While conventional therapies form the cornerstone of osteoporosis
management, their limitations and adverse effects necessitate the exploration of novel
therapeutic strategies. Indole alkaloids, a diverse group of plant-derived compounds,
exhibit a broad spectrum of pharmacological activities. The complex structures of these



Appl. Sci. 2024, 14, 8124 12 of 15

compounds and their multifaceted interactions with biological targets hinder the eluci-
dation of their precise mechanisms of action. This review compiles studies on naturally
occurring indole compounds, including vindoline (13), rutaecarpine (14), harmine (15),
and its derivatives (16–19), with a particular emphasis on the potential and underlying
mechanisms of harmine (15).

The activation of the nuclear factor of activated T cells c1 (NFATc1) by the receptor
activator of the nuclear factor-κB ligand (RANKL) stimulates the production of osteoclasts.
This study examined the data indicating that harmine prevents RAW264.7 cells from be-
coming osteoclasts when stimulated by RANKL. It does this by inhibiting the expression of
NFATc1 and c-Fos. Furthermore, harmine stops bone loss in a mouse model of osteoporosis
that has been subjected to ovariectomy. It is observed to decrease osteoclast production and
increase preosteoclast formation in both ovariectomy-induced osteoporotic animals and
RANKL-stimulated RAW264.7 cells. This impact is probably caused by harmine-promoting
platelet-derived growth factor-BB-induced type H vessel development prior to osteoclast
formation [72].

Importantly, further studies, such as structure–activity relationship studies, are needed
to provide further evidence for the development of drugs for osteoporosis.
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