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Abstract— This letter exploits the intrinsic selectivity prop-
erties of the median to enhance the covariance symmetry
classification in polarimetric synthetic aperture radar (PolSAR)
images. More in detail, the median matrices are utilized to
properly detect and remove outliers in the data belonging to
a reference window, in turn used to estimate the covariance
structure of the pixel under test. Hence, the scene is classified in
terms of the structures assumed by the covariance under specific
symmetric scattering mechanisms. To do this, for each pixel
under test, the data in a reference window are filtered through the
application of a generalized inner product (GIP)-based procedure
involving the median matrix in its computation. The filtered data
are then used as input to a model order selection (MOS)-based
procedure for the final scene classification. Tests conducted on
L-band real-recorded SAR data show the effectiveness of the
devised framework.

Index Terms— Covariance matrix, information geometry,
median matrices, outlier cancellation, polarimetry.

I. INTRODUCTION

RECENT years have seen an ever wide growth in the
implementation of polarimetric synthetic aperture radar

(PolSAR) platforms, followed by a strong increment in the
availability of fully polarimetric data. These achievements
have led to the developments of many research topics based
on the exploitation of PolSAR, especially in terms of scene
segmentation and/or land-cover classification, e.g., [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12] and references therein.
In this context, the main utilized tools are the polarimetric
covariance, coherence, and Muller matrix [3], [4], [5], [13]
that allow to fully exploit the polarimetric information. These
matrices are the basis in many processes aimed at describing
the scattering mechanisms characterizing the observed scene.
Moreover, as shown in [2], the covariance assumes particular
forms when some symmetric structures in the target char-
acterize the polarimetric returns. This structure, if properly
revealed, can be exploited to obtain more accurate covariance
estimates to be used in place of the sample one to improve
the final scene classification.

To properly detect the specific structure assumed by the
covariance (as well as the coherence), a methodology exploit-
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ing the model order selection (MOS) has been designed in [6].
In fact, the MOS rules [14], [15] were introduced since the
resulting problem was designed as a multiple hypothesis test
with nested instances. Hence, the method in [6], for each
pixel under test, assuming homogeneity, extracts a set of pixels
through a sliding window to be used in the next inferences.
However, homogeneity assumption often fails due to the
presence of outliers in the set of data. Sources for outliers are
point-like targets in the reference data, strong speckle, power
variations, or discontinuities in the scene. This drawback
has been dealt in [16], where pixels in the reference window
are filtered before the computation of the MOS detectors
exploiting a generalized inner product (GIP)-based scheme
involving geometric barycenters. However, thanks to the intrin-
sic selectivity properties of the median [17], [18], in this
letter, following the lead of [16], a more robust algorithm
for symmetry classification in the presence of outliers is
proposed. As a matter of fact, it exploits the median matrices
of elementary covariances related to the pixels in the reference
window to perform the outlier cancellation in the extracted
data. The performances of the proposed method are assessed
on the fully polarimetric L-band ElectroMagnetic Institute
SAR (EMISAR) data in comparison with its homogeneous
counterpart not performing any data screening.

II. PROBLEM FORMULATION AND ALGORITHM
DESCRIPTION

The proposed method exploits the intrinsic robustness of
the median to outliers in the data spatially close to the pixel
under test to improve the covariance symmetry classification
capabilities. The proposed scheme depicted in Fig. 1 starts
with the acquisition of the fully PolSAR image. Then, for each
pixel under test, a neighbor window is extracted to perform
inference. Hence, data in the selected window are filtered using
a GIP-based outlier cancellation procedure that makes use
of the estimated median matrices [18]. The filtered data are
finally used to classify the covariance symmetry as described
in [6] for the homogeneous environment.

A. PolSAR Datacube

The pipeline proposed in this letter uses three polarimetric
channels, say SHH, SHV,1 and SVV, with channel SVH involved

1Note that, in a practical implementation, if reciprocity arises [19], [20],
SHV can be substituted by the coherent average of the two cross-polarized
channels [5].
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Fig. 1. Proposed pipeline for covariance symmetry classification with outlier cancellation based on the use of median matrices.

in the noise estimation process. Hence, for each pixel, N =

3 complex polarimetric returns are stored in xl,m , l = 1, . . . , L
and m = 1, . . . , M to obtain an L × M × N datacube
X (with L and M the azimuth/range sizes). Then, for each
pixel under test, a window B of size K = W1 × W2 ≥ N is
extracted and its pixels are organized in the random matrix,
R, whose columns, r1, . . . , r K , are modeled as independent
and identically distributed (i.i.d.) zero-mean circular complex
Gaussian random vectors with covariance M.

B. Median Matrices

In this section, the covariance is estimated as the median
matrix related to a distance defined in the space of positive
definite matrices. The median is derived from a set of elemen-
tary covariance estimates Mk , k = 1, . . . , K , that is

M̂d = arg min
M≻0

K∑
k=1

d(Mk, M) (1)

where d(·, ·) : A ≻ 0, B ≻ 0 → [0, +∞) is a specific
distance defined in the space of positive definite matrices, with
A ≻ 0 (resp. ⪰) denoting that A is positive definite (resp.
semidefinite).

The elementary covariance estimates Mk , k = 1, . . . , K ,
are computed from the data rk in the reference window [18],
[21], [22], that is

Mk = Uk3kU H
k (2)

with 3k = diag ([max (σ 2
0 , ∥rk∥

2), σ 2
0 , . . . , σ 2

0 ]), Uk the
unitary matrix of the eigenvectors of rk r H

k with the first eigen-
vector corresponding to the eigenvalue ∥rk∥

2, and σ 2
0 denoting

the thermal noise power. Moreover, diag (·) is the diagonal
matrix whose diagonal is the entry vector, the symbol (·)H

denotes the conjugate transpose operator, and ∥·∥ is the
Frobenius norm. The procedure for noise power estimation
has been derived in [16] and exploits the residual mismatches
between the cross-polarization channels, SHV and SVH, due to
thermal noise variations only, that is

σ̂ 2
0 =

1
M L

L∑
l=1

M∑
m=1

|SHV(l, m) − SVH(l, m)|2 (3)

with |·| representing the modulus of its complex argument.

As proved in [18], the optimal solution to the optimization
problem (1) can be found solving the following equivalent
convex optimization semidefinite programming (SDP) problem

min
t1,...,tK ,M

K∑
k=1

tk

s.t.

(
tk (vec(M − Mk))

H

vec(M − Mk) tk I

)
⪰ 0

k = 1, . . . , K
M ∈ HN

(4)

with vec(·) the column vector obtained lining-up the columns
of its matrix argument, and C the set of Complex vectors of
size N 2.

In this letter, we refer to the Log-Euclidean distance
between two positive definite Hermitian matrices A and B,
that have shown the best selective capabilities,2 i.e.,

d(A, B) =

√
tr
{
(log A − log B)(log A − log B)H

}
(5)

with tr {·} the trace of its matrix argument.3 Therefore, with
distance (5), substituting Mk with log Mk and M with log M,
and denoting by M̂ the corresponding optimal solution to (4),
the Log-Euclidean median estimator is

M̂d = exp
{

M̂
}
. (6)

Before concluding this Section, it is worth to recall
that the computational complexity for solving the SDP is
O(N 3.5 log(1/η)), with η a desired accuracy [23].

C. Filtering Data in the Reference Window for Outlier
Removal

The filtering operation for outlier removal consists in eval-
uating the GIPs for each pixel in the reference window, so as
to remove those sharing the highest κ0 values [24], [25].
Following the lead of [18], the GIP is computed with the
above-described median matrices in place of the classic sample
covariance matrix (SCM). More in detail, the method consists

2The interested readers can refer to [18] for details on the other median-
based estimators.

3In (5), log A = Udiag (logλλλ )U H with logλλλ = [log(λ1), . . . , log(λN )],
exp A = Udiag (expλλλ )U H , with expλλλ = [exp(λ1), . . . , exp(λN )], having
indicated with U and λλλ = [λ1, . . . , λN ] the unitary matrix of the eigenvectors
and the vector of the eigenvalues of A, respectively.
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in evaluating the following quadratic form for each single data,
r1, . . . , r K , contained in the window under analysis, that is

ρ
(d)
k = r H

k M̂−1
d rk, k = 1, . . . , K . (7)

After the computation of ρ
(d)
k , k = 1, . . . , K , the κ0 data

sharing the highest GIP values are removed. Obviously, κ0 is a
tuning parameter that allows to rule the trade-off between the
amount of data to excise to ensure homogeneity and that for
the next covariance estimations. Setting a high κ0 value leads
to a strong screening of the data, but this in turn reduces the
number of available data for the sample estimate (recall that it
should be K − κ0 ≥ N to guarantee that the sample matrix is
a good covariance estimate [26]). In this letter, κ0 is set with
the adaptive selection procedure devised in [16]. It consists in
choosing it as the value to which the corresponding ordered
GIP values contain a preassigned percentage of the whole
energy (that is set to the 20% in the tests of Section III to be
conservative with respect to the amount of data cancellation).

D. Classification of Dominant Covariance Symmetry
Structures

The classification of the dominant covariance symmetry
structure (derived from a symmetry property in the polari-
metric returns [2]) for each pixel of the considered synthetic
aperture radar (SAR) image is performed through the adaptive
approach designed in [6]. In particular, due to the fact that the
methodology in [6] assumes that data in the reference window
are homogeneous, herein they are substituted by the data fil-
tered through the median-matrix-based approach as described
above. As to the classification process, in what follows four
different covariance symmetries [2] are considered, and hence
the resulting problem is formulated as a multiple hypothesis
test comprising both nested and not nested hypotheses, that is

H1 : no symmetry
H2 : reflection symmetry
H3 : rotation symmetry
H4 : azimuth symmetry.

(8)

It worth recalling that the above-mentioned covariance
structures can be found in several practical situations. As an
example, reflection symmetry with respect to a vertical plane
can be observed on forest, snow, etc. [2]. Rotation symmetry
can be seen in medium like the Earth’s ionosphere [2].
Conversely, azimuth symmetry can be experienced in the
presence of vertical tree trunks when signals are scattered from
a randomly oriented distribution of dipoles, e.g., randomly
oriented branches [2], [27].

Due to the presence of nested hypotheses4 in (8), in [6],
a modified version of generalized maximum likelihood (GML)
based on the use of the MOS rules [14], [15] is introduced to
efficiently solve the detection problem. Hence, the considered

4It is worth noticing that, the covariance under H1 hypothesis incorporates
all the others as special case. Moreover, being the azimuth obtained as
combination of reflection and rotation symmetry, its covariance is embedded
into those under the other two symmetries.

TABLE I
NUMBER OF PIXELS (IN PERCENTAGE) SHARING A SPECIFIC SYMMETRY

Fig. 2. Span of the PolSAR image of the analyzed scene.

decision statistic is

MOS(h) = −2 log
(

f
(

R̄|M̂(n(h))
))

+ n(h) η(n(h), K − κ0), h = 1, . . . , 4 (9)

with M̂(n(h)) the ML estimate of M comprising n(h) param-
eters, viz., n(1) = 9, n(2) = 5, n(3) = 3, and n(4) = 2 [6].
Moreover, fR̄(R̄|M) is the complex multivariate probability
density function (pdf) of the filtered observable matrix R̄,
whose columns are modeled as zero-mean complex circularly
symmetric Gaussian vectors [6].

More in detail, (9) is evaluated under each hypothesis, h =

1, . . . , 4, and the order corresponding to the minimum between
the four statistics is selected, that is

ĥ = arg min
h

MOS(h). (10)

In other words, for each pixel under test, the selected
structure is the one associated with Hĥ . Note that, the term
n(h) η(n(h), K − κ0) is the penalty coefficient that is aimed
at penalizing overfitting [14], that depends on the specific
MOS. In the tests conducted in this letter, we analyze and
compare the Bayesian information criterion (BIC) [14], [15]
and Hannan-Quinn information criterion (HQC) [28], for
which the term η(n(h), K − κ0) becomes log(K − κ0) and
2 log(log(K − κ0)), respectively.

III. RESULTS AND DISCUSSION

In this section, the results of the application of the proposed
framework on measured data are analyzed and discussed.
To do this, the L-band (1.25 GHz) EMISAR coherent polari-
metric sample data5 are used. The image refers to a scene

5Data have been recorded on April 17th 1998 by the fully polari-
metric Danish airborne SAR system, and are available for download at
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.
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Fig. 3. Classified symmetries with the BIC- and HQC-based selectors: ■ no symmetry; ■ reflection symmetry; ■ rotation symmetry; and ■ azimuth
symmetry. (a) BIC [6]. (b) Median BIC. (c) Barycenter BIC [16]. (d) HQC [6]. (e) Median HQC. (f) Barycenter HQC [16].

Fig. 4. H-α classification of the considered PolSAR image. (a) H-α classifier. (b) Median BIC symmetric H-α classifier.

of Foulum Area (DK), containing buildings, vegetation, and
water. The conducted analyses concentrate on a portion of the
entire SAR image of size 401 × 401 pixels, whose span (i.e.,
the total power of the polarimetric image |SHH|

2
+ |SHV|

2
+

|SVH|
2
+ |SVV|

2) is shown in Fig. 2 as ground truth.
Results of the tests are shown in terms of classified sym-

metries in Fig. 3. More in detail, the proposed detectors based
on Bayesian information criterion (BIC) and HQC exploiting
the Log-Euclidean median in the outlier cancellation pro-
cess (shortly denoted as median BIC and median HQC) are
compared with their homogeneous counterparts [6] (indicated
as BIC, and HQC) as well as the classifiers based on the
exploitation of the competing barycenters [16]. Results are
obtained extracting for each pixel K = 25 data with a 5 ×

5 window. Moreover, for each pixel a specific color is assigned
to each symmetry as detailed in the legend of the figure.

Observing the colored maps, as expected, the vegetated
areas (essentially forests) show a dominant azimuth symmetry
due to the reflection of the tree trunks. Moreover, reflection

symmetry is observed over crops and bare fields, with some
rotations shown by man-made objects in urban areas. Finally,
the absence of symmetry is mainly present over the lake in
the lower left corner of the image, and on a cultivated field
in the bottom center, that probably contains a cultivation with
different structural characteristics than the others. Comparing
the subplots, it is also interesting to see that the proposed
median-based estimator tends to provide a sharper separation
of the different areas in the classified image that also share
more homogeneity with respect to the standard counterpart.
Moreover, the median and barycenter approaches share similar
classification capabilities as shown in Table I, even tough,
the median has a general strong selective capabilities. In fact,
pixels classified as having azimuth symmetry (that is the most
challenging case) are the 26.50% with the median and 26.02%
with the barycenter. Finally, for this specific scenario, the BIC
detectors works better than the HQC counterparts.

To demonstrate further the benefits of the proposed
approach, Fig. 4 shows a quantitative comparison between the
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H/α classification [3], [5] and the one exploiting our algorithm
as pre-processing stage.

More in detail, the coherence matrix used to perform
the H/α decomposition is that provided by the proposed
pipeline exploiting the median BIC selector in place of the
classic sample one. Comparing the two figures, it is evident
that the proposed pre-processing allows to better emphasize
areas representing the same scene with the boundaries that
appears sharpened. As an example, with the proposed pipeline
forests are mostly classified as class 2, representing random
anisotropic scatterer, whereas with the standard approach
forest pixels share a mixed classification among classes 2 and 5
(anisotropic particles). Additional, trees are classified with
class 4 (double reflection propagation effects), which is more
evident in Fig. 4(b).

IV. CONCLUSION

A polarimetric covariance symmetries classification pipeline
has been devised to properly account for the presence of
outliers in the data used during the adaptation process. The
method exploits the selectivity properties of median matrices
to reject outliers in the reference data. After that, the remaining
data are exploited in the MOS-based detector to classify
the covariance symmetry for each pixel under test. Results
have shown the effectiveness of the proposed framework on
measured L-band data, also in comparison with its counterpart
assuming homogeneity. Possible future studies could consider
the optimal selection of the reference window size, the esti-
mation of the pdf of κ0, and its adaptive selection.
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