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Abstract

Melanoma is the deadliest form of skin cancer. Early diagnosis of malignant

lesions is crucial for reducing mortality. The use of deep learning techniques on

dermoscopic images can help in keeping track of the change over time in the

appearance of the lesion, which is an important factor for detecting malignant

lesions. In this paper, we present a deep learning architecture called Attention

Squeeze U-Net for skin lesion area segmentation specifically designed for em-

bedded devices. The goal is to increase the patient empowerment through the

adoption of deep learning algorithms that can run locally on smartphones to

protect the privacy of the users. Quantitative results on publicly available data

demonstrate that is possible to achieve good segmentation results even with a

compact model.
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1. Introduction

Melanoma is an extremely aggressive and lethal skin tumor. It takes one life

in every 54 minutes in US and one person dies every five hours from melanoma

in Australia (Bisla et al., 2019). In Europe, over 100,000 new melanoma cases

and 22,000 melanoma related deaths are reported annually (Celebi et al., 2019).5

Early detection is crucial for survival, since melanoma is capable of spreading

quickly and thus needs to be treated urgently.

Dermoscopy is a non-invasive and cost-effective technique for detecting early-

stage skin cancer by helping dermatologists in individuating visual lesion fea-

tures that are not discernable by examination with the naked eye. Dermoscopic10

images are generated by combining a low angle-of-incidence lighting with optical

magnification obtained using either liquid immersion or cross-polarized light-

ing. Structure information inferred from dermoscopic images are used to apply

the ABCDE (Asymmetry, Border, Color, Diameter, Evolution) rule, which is

based on the assumptions that most early melanomas are asymmetrical (A),15

melanomas usually present uneven borders (B), melanoma has a variety of col-

ors while most benign pigments have one color (C), in most cases, melanomas

have a diameter larger than 6 mm (D), unlike the majority of benign lesions,

melanoma tends to evolve or change over time (E).

Dermoscopy has two main drawbacks:20

1. It requires a specific training.

2. Even with sufficient training, visual analysis remains subjective.

To overcome the above listed limitations, a number of Computer Aided Diagno-

sis (CAD) systems have been proposed. In particular, deep learning (DL) based

methods for dermoscopy image analysis (DIA) have the potential to improve25

skin cancer detection rates, since they proved to be superior to dermatologists

in melanoma image classification (Brinker et al., 2019). Even though DL meth-

ods are not replacement solutions for medical doctors, melanoma screening using

DL techniques is a promising solution to improve management and prognosis of

skin cancer by promoting earlier diagnosis (Fourcade and Khonsari, 2019). In30
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Figure 1: Lesion area segmentation. Left: Dermoscopic image in input. Right: Binary mask

in output, where white pixels belongs to the lesion area and black pixels are extraneous to it.

[Images from ISIC 2017].

fact, DL algorithms can potentially run on embedded systems (including smart-

phones) and be used to improve patients’ empowerment by directly involving

the patients themselves in monitoring over time their lesions.

Local execution of skin lesion detection tools has three advantages with

respect to sending images to web servers for processing (Samsung, 2019):35

1. Storing images on the local memory of the embedded system (instead of

sending them over the Internet) allows to better preserve the patient’s

privacy.

2. Computational power on embedded systems has generally a much lower

cost and lower power consumption than on general purpose PCs.40

3. On-Device computation on embedded systems leads to low-latency appli-

cations since the device can compute and process data locally.

DL methods can be applied to address three primary tasks, namely i) lesion

area segmentation, ii) lesion attribute detection, and iii) disease classification.

The goal of the lesion area segmentation task is to create a binary mask45

from a dermoscopic image that provides an accurate separation between the le-

sion area and the surrounding healthy skin (see Fig. 1). Attribute detection

aims at localizing clinical dermoscopic criteria that have been found to be cor-

related with disease states, such as pigment network, negative network, streaks,
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Figure 2: Dermoscopic attribute detection (left) and lesion classification (right). [Images from

ISIC 2017].

milia-like cysts, and globules (see the left side of Fig. 2). In classification, the50

images in input are labelled according to different diagnostic classes. Beyond

the typical categorization into benign and melanoma, it is possible to group

dermoscopic images into more than two classes. This provides a better discrim-

ination between melanoma, other types of skin cancer that are less aggressive

than melanoma, and benign lesions. For example, Celebi et al. (2019) propose55

a classification based on seven classes, including melanoma, melanocytic nevus,

basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, and

vascular lesion (see the right side of Fig. 2).

We focus here on the lesion area segmentation task using a deep convolu-

tional pixel-wise method. Accurately segmenting the lesion area is extremely60

important for performing a temporal analysis of its visual features on a quan-

titative basis. In fact, a melanocytic naevus usually does not change its size,

shape, and colour, whereas the visual appearance of a melanoma can change

over time. The main challenges to deal with when lesion area segmentation

methods are used on dermoscopic images are:65

• The multiple lesion shapes, size, colors, skin types, textures, and the even-

tual presence of artifacts.

• The limitations of large and annotated publicly available data bases, which

are small, heavily imbalanced, and contain images with occlusions (Bisla

et al., 2019).70
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Figure 3: Typical artifacts in dermoscopic images. Top left: Pen marks around the lesion.

Top right: Hairs over the lesion. Bottom left: Presence of specular reflections. Bottom right:

Air/oil bubbles due to the use of an interface fluid. [Images from ISIC 2017].

Early work in dermoscopy image segmentation used handcrafted feature-

based methods, such as thresholding, clustering, and graph partitioning, to

obtain the binary mask of the lesion (Pennisi et al., 2016). Despite the positive

results, methods based on hand-crafted features are strictly dependent on the

choice of the features. This limits their generalization capabilities especially75

when dealing with the great variety of lesion types in input (see Fig. 3).

To overcome the inflexibility and limitations in terms of expressiveness of

handcrafted vision pipelines, dermoscopy image segmentation systems moved

toward an end-to-end approach based on DL methods, such as Convolutional

Neural Networks (CNNs). These data-driven methods allow to train powerful80

visual classifiers that report high classification performance. However, their

results strongly depends on the size and variety of the training dataset (Xie

et al., 2016).

The problem of lack of data has been addressed by setting up collaborations
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between academia and industry to improve melanoma diagnosis. From 2016,85

the International Skin Imaging Collaboration (ISIC) organizes an annual open

challenge on a public archive of clinical and dermoscopic images of skin lesions.

In particular, ISIC Challenge 2017 and 2018 provided a specific task about

lesion segmentation, with a considerable number of 2,594 training images (plus

corresponding ground truth segmentation masks) for the 2018 challenge (Codella90

et al., 2019). The first place for Task 1 - Lesion Boundary Segmentation at ISIC

Challenge 2017 was achieved by a submission using a deep fully convolutional-

deconvolutional neural network (Long et al., 2015) with 29 layers (Yuan et al.,

2017). The 2017 second ranked submission used U-Net (Ronneberger et al.,

2015) with input images resized down to 192×192 pixels (Berseth, 2017). ResNet95

(He et al., 2016) was used by the third placed submission (Bi et al., 2017). In

2018, the winning submission used a two-stage pipeline (Qian et al., 2018). The

first step was a detection process based on MaskRCNN to find a bounding box

of the lesion in each of the input images in order to crop them. In the second

step, the cropped images were segmented using an encoder-decoder architecture100

based on DeepLab and PSPNet. The 2018 second placed submission (Du et al.,

2018) also was based on the DeepLab model with a transfer learning taking

pre-trained weight on VOC PASCAL 2012. The third place went to a U-Net

based model (Ji et al., 2018), where information about low-level features are

preserved thanks to the addition of multiplications between feature maps before105

each connection in the encoder part of the net.

In this work, we propose the use of an Attention Squeeze U-Net architecture

for pixel-wise segmentation on dermoscopic images. The aim is to design and

test a compact network architecture that can run on embedded devices with

similar performance of larger architectures that need powerful GPUs to run.110

We believe that the development of robust DL segmentation methods that can

run on smartphones is the first step towards the adoption of a patient-centered

paradigm for the early detection of melanoma.

The contribution of this work is threefold. First, we describe a compact

architecture for dermoscopic image segmentation, called Attention Squeeze U-115

6



Net. Second, we compare different network architectures on publicly available

data using different datasets for the training and the test phases, in order to

evaluate their generalization capability. Third, we provide a per-lesion-class

analysis of the segmentation results.

The remainder of the paper is organized as follows. Section 2 presents the120

details of the proposed approach. Qualitative and quantitative experimental

results are shown in Section 3. A discussion of the results per lesion class is

given in Section 4. Finally, conclusions are drawn in Section 5.

2. Material and Methods

The proposed model for lesion area segmentation is called Attention Squeeze125

U-Net and is inspired by the following architectures:

• U-Net (Ronneberger et al., 2015)

• Squeeze U-Net (Beheshti and Johnsson, 2020)

• Attention U-Net (Oktay et al., 2018)

2.1. U-Net Architecture130

U-Net is an encoder-decoder model developed for medical and biomedical

applications. Its symmetrical architecture, which looks like a ‘U’, makes it

particularly suited for image segmentation for the following reasons. To solve

classification problems, DL approaches create a feature map of an image and

convert it into a vector, which is then used for classification. In image segmen-135

tation, DL methods also convert the feature map of an image into a vector, but

also generate a mask image from that vector. Due to the loss of information

in the encoding stage, converting the feature vector into an image can generate

distortions. The idea in U-Net is to store information about the transformation

applied at each encoding stage in order to use it in the decoding stage, thus facil-140

itating the generation of the mask image from the feature vector, by preserving

its structural integrity. However, U-Net has more than 30 million trainable pa-

rameters, which is a considerable number when dealing with embedded devices,
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Figure 4: Fire Blocks. (a) Convolutional fire block in the contraction path. (b) Transposed

convolutional fire block in the expansion path.

where the amount of memory is limited as well as the computational power.

The need of computing millions of parameters slows down the inference process145

and can lead to errors related to exhausted resources.

2.2. Squeeze U-Net Architecture

Modifications of U-Net have been proposed to reduce the model size. In

particular, Squeeze U-Net (Beheshti and Johnsson, 2020) is a memory and en-

ergy efficient model inspired by U-Net, where the down and up sampling layers150

are replaced by fire modules. A fire module, introduced in SqueezeNet (Iandola

et al., 2016), uses fire point-wise convolutions together with an inception stage

(Szegedy et al., 2014), which are then concatenated to form the output. In such

a way, the Squeeze U-Net model needs only 2.5 millions parameters, more than

ten times less than U-Net.155

Fig. 4 shows the structures of the fire blocks for encoding and decoding. In

the contraction path, each fire module (see Fig. 4a) is made of a 1×1 convolu-

tional layer with CS (squeeze) channels followed by an inception block with 2

convolutions of 3×3 and 1×1, respectively, with CO/2 channels. The resulting
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Figure 5: Attention block.

CO channels are concatenated in order to get the desired output, which is then160

passed to the next layer and to the skip connection of the network.

In the expansive path, the main component is the upsampling block (see

Fig. 4b). In each block, the transposed fire module is made of a 1×1 transposed

convolutional layer, followed by an inception block consisting of 2 parallel 1×1

and 2×2 convolutional layes that are concatenated for obtaining the output. The165

upsampling blocks are then used with the skip connection in order to merge the

high resolution features of the contraction path with the low resolution features

of the expansive path.

2.3. Attention U-Net Architecture

Squeeze U-Net is successful in reducing the number of parameters to learn170

from the 30 million in U-Net to only 2.5 million. However, the concatenation

mechanism in Squeeze U-Net is not well-suited for medical images, since all the

high level features are concatenated with all the low level features with the risk

of loosing many useful information. For solving this problem, we introduced an

attention method proposed by Oktay et al. (2018) into the upsampling block.175

In particular, the attention mechanism is integrated into the skip connections.

An attention block (see Fig. 5) takes two inputs: g, coming from the previous

block, and x, coming from the skip connection. It is worth noticing that g has

smaller size (but better feature representation) than x, thus it needs to be

processed by an upsampling layer before the attention block in order to achieve180

the same size of x. Both x and g are fed into 1×1 convolutions, in order to have

the same number of channels without changing the size of the layers. Then,
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Figure 6: Upsampling Block

g and x are summed and the resultant vector goes through a ReLU activation

layer and a 1×1 convolution that collapses the dimensions to a 1×H×W vector.

This last vector is given to a sigmoid layer, which scales the vector in the range185

[0, 1], thus producing an attention map (weights), where each value close to 1

indicates a relevant feature. Finally, the attention map is multiplied by the skip

input to produce the final output of the attention block.

As stated above, the idea behind U-Net is to let the features from the con-

traction path guide the features of the expansion path by concatenating them.190

Applying an attention block before the concatenation allows the network to

understand which features from the skip connection are more relevant and to

weight them more. Thus, by multiplying the skip connection and the attention

distribution, the network can focus on a particular part of the input, rather

than feeding in every feature.195

2.4. Attention Squeeze U-Net Architecture

We propose a novel upsampling block (see Fig. 6) as part of our network

called Attention Squeeze U-Net. The upsampling block takes as input the previ-
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Figure 7: Attention Squeeze U-Net

ous output of network g and the skip connection x. A transposed convolutional

operation is applied to g in order to obtain ĝ, which is sent as input to an atten-200

tion block together with x. The output of the attention block is concatenated

with ĝ and given as input to a fire block. The above described modification of

the upsampling block allows:

1. To maintain the model lightweight, as in Squeeze U-Net.

2. To add the attention mechanism to Squeeze U-Net obtaining better seg-205

mentation results.

The architecture of our Attention Squeeze U-Net is shown in Fig. 7. The

contractive path of the network is made of a convolutional layer with a stride

of 2×2, followed by a set of fire blocks and max pooling operations. While,

the expansive path includes four upsampling blocks, two convolutional layers210

and two upsampling blocks based on the nearest neighbour approximation. The

number of parameters in Attention Squeeze U-Net is only ≈ 100k more than

Squeeze U-Net, thus allowing for real-time performance on embedded devices.
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2.5. Training Data

Our training set is made of dermoscopic images and corresponding ground215

truth annotations coming from the ISIC 2017 dataset (Codella et al., 2018). In

particular, we use the following data from ISIC 2017 as training and validation

sets:

1. All the 2,000 dermoscopic images from the training data folder in JPEG

format.220

2. The corresponding 2,000 binary mask images in PNG format from the

training ground truth data folder.

3. All the 150 dermoscopic images from the validation data folder in JPEG

format.

4. The corresponding 150 binary mask images in PNG format from the val-225

idation ground truth data folder.

The above described training and validation data have been downloaded from

the following URL: https://challenge.isic-archive.com/data#2017

It is worth noticing that:

1. A considerable number of images contain artifacts such as air/oil bubbles,230

body hairs, and colored band-aids.

2. The labelling of the skin lesions does not follow a predefined pattern, since

the annotations may have been done by different experts or with the help

of semi-automated algorithms.

For the above listed reasons, we consider the background (i.e., the black pixels)235

in the ground truth masks as a class, thus treating the lesion segmentation task

as a multi-class classification problem.

A data augmentation technique has been used to increase the number of the

training samples. In particular, we used three transformation for each origi-

nal image: vertical flipping, horizontal flipping, and both. The augmentation240

procedure increases the number of training samples to 8,000 images.
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2.6. Loss Function

DL image segmentation networks are usually trained using a (weighted)

cross-entropy loss. However, the evaluation of the segmentation results in med-

ical imaging is commonly based on the Dice score and the Jaccard index (see245

Section 3.1 for details) to deal with the problem of class imbalanced datasets,

which is frequent in the medical domain. The use of a learning optimization

objective (the so called loss) function different from the evaluation metric used

for the test data introduces an adverse discrepancy (Bertels et al., 2019). In

fact, cross-entropy and its weighted version are inferior to metric-sensitive loss250

functions (such as soft-Dice and soft Jaccard) when evaluated on the Dice score

and the Jaccard index.

In order to avoid the above discussed discrepancy between the loss function

used during the training phase and the metrics considered for evaluating the

results, we have decided to use the Focal Tversky loss (FTL) as the loss function255

to train our Attention Squeeze U-Net network. FTL (Abraham and Khan, 2018)

is a generalization of the Tversky index (described in Section 3.1), which in turn

generalizes the Dice coefficient and the Jaccard index.

FTL can be defined as:

FTL = (1− TI)
γ

(1)

where TI is the Tversky index, while γ is a parameter that controls the non-260

linearity of the loss. When γ tends to +∞, the gradient of the loss tends to

∞, while TI tends to 1. If γ tends to 0, the gradient of the loss tends to 0 and

TI tends to 1. Thus, when training samples presents a value for γ < 1, the

gradient of the loss is higher, thus forcing the model to focus on such samples.

This property is particularly useful in the final stage of the training process,265

since the model is encouraged to continue to learn even though TI is nearing

convergence.

FTL is particularly suited in the case of datasets affected by class imbalance:

In fact, when γ > 1, the model is forced to focus on “hard” samples, i.e., images

with a small foreground region, where usually the TI has a low score. Moreover,270
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Figure 8: Predicted and ground truth masks are compared in terms of the number of true

positive (green pixels in the comparison image), false positive (red), false negative (blue), and

true negative (black) pixels. [The two leftmost images are from ISIC 2017].

the non-linear nature of FTL permits to control how the loss behaves at different

values of the Tversky index obtained.

3. Experimental Results

In this section, firstly we provide a description about different performance

metrics with a discussion about their usage. Then, we describe the two test275

sets, i.e., ISIC 2017 and PH2. Finally, we show the quantitative results of the

comparison between our approach and other three well-known models on the

two test sets.

3.1. Performance Metrics

We have two sets to compare:280

1. The predictions set, which is made of the segmentation masks generated

by the trained model.

2. The ground truth masks set, which represents our goal.

By comparing the predictions set and the ground truth set, we can get a

measure of how good is our model. The quantitative comparison can be carried285

out in terms of true positive (TP), false positive (FP), true negative (TN), and

false negative (FN) sets. Fig. 8 shows how TP, FP, TN, and FN can be defined

in the skin lesion area segmentation scenario.

(Pixel-wise) accuracy is the percent of pixels in the prediction image that

are labelled correctly and can be defined as:290
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Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Although Accuracy is easy to calculate and understand, it is not useful when

the lesion and background classes are extremely imbalanced, i.e., when a class

dominates the image and the other covers only a small portion of the image,

which is rather frequent in dermoscopic images.

Better metrics for dealing with the class imbalance issue are:295

1. The Dice Similarity Coefficient.

2. The Jaccard Similarity Index (and its threshold variant).

3. The Tversky Index.

The Dice Similarity Coefficient (Dice) measures set agreement by cal-

culating the size of the union of two sets divided by the average of their size. In300

terms of TP, FP, and FN counts, Dice can be written as:

Dice =
TP + TP

(FP + TP ) + (TP + FN)
=

2TP

2TP + FP + FN)
(3)

In the case of image segmentation, a higher Dice coefficient indicates that

the result matches the ground truth better than results that produce lower Dice

coefficients. The Dice score reflects both size and localization agreement, more

in line with perceptual quality compared to pixel-wise accuracy (Bertels et al.,305

2019).

The Jaccard Similarity Index (JSI) measures the overlap of two sets.

The Jaccard index is 0 if the two sets are disjoint, i.e., they have no common

members, and is 1 if they are identical. Our goal is to get as close to 1 as

possible. JSI can be expressed in terms of TP, FP, and FN counts as:310

JSI =
TP

TP + FP + FN
(4)

The Threshold Jaccard Index metric is a variant of JSI that is meant

to penalize results where the percentage of FP and FN errors is above a certain

threshold. For the skin lesion area segmentation task, the Threshold Jaccard

Index is computed according to the following rule:
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- Threshold Jaccard = 0, if JSI < 0.65;315

- Threshold Jaccard = JSI, otherwise

where the threshold value equal to 0.65 has been proposed in the ISIC Challenge

2018. The choice of the Threshold Jaccard index metric in place of JSI is based

on the observation that the latter does not accurately reflect the number of im-

ages in which automated segmentation fails, or falls outside expert interobserver320

variability, i.e., JSI is overly optimistic.

The Tversky Index (TI) is an asymmetric similarity measure that gen-

eralizes the Dice coefficient and the Jaccard index. It is defined as:

TI =
TP

TP + αFN + βFP
(5)

TI has two parameters, α and β, with α + β = 1. When, α = β = 0.5, TI

corresponds to the Dice coefficient, while, when α = β = 1, TI corresponds to325

the Jaccard index.

By setting a value of α greater than β, the FN are penalized more. This is

very useful in highly imbalanced data sets where the additional level of control

over the loss function yields better small scale segmentation than the normal

dice coefficient. Moreover, since TI is a small modification of the Dice coefficient,330

it is very useful for the cases where a finer level of control is needed, such as in

medical imaging.

3.2. Test Data

In order to evaluate the performance of our approach, we consider two dif-

ferent publicly available datasets, namely ISIC 2017 and PH2. The choice of335

ISIC 2017 is due to the availability of a large annotated test set, since more

recent versions of the ISIC dataset do not provide direct access to the test set

annotations. In our experiments, we use all the 600 dermoscopic JPEG images

from the test data folder and the corresponding 600 binary mask images in PNG

format from the test ground truth data folder.340

In addition to ISIC 2017 data, we use a second dataset of dermoscopic im-

ages, called PH2. The PH2 dataset (Mendonça et al., 2013) has been realized
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Table 1: The results of the networks on the ISIC 2017 test set (600 images).

Network Dice Threshold Jaccard

U-Net 0.8965 0.7591

Attention U-Net 0.8766 0.7043

Squeeze U-Net 0.8987 0.7597

Attention Squeeze U-Net 0.9035 0.7758

by the Universidade do Porto, Tecnico Lisboa in collaboration with the Hospi-

tal Pedro Hispano in Matosinhos, Portugal. The data set is composed of 200

RGB dermoscopic images, with a resolution of 768×574 pixels and a magnifi-345

cation of 20×, annotated with ground truth data. The 200 images are divided

into benign lesions (80 common and 80 dysplastic nevi) and malignant lesions

(40 melanomas). PH2 images are accompanied by ground truth data consist-

ing in binary masks generated via manual segmentation performed by expert

dermatologists. Experiments on PH2 are intended to measure the generaliza-350

tion capability of the considered networks on being trained on a dataset A and

evaluated on a dataset B, where A and B are from different sources.

3.3. Quantitative Results

We have compared our Attention Squeeze U-Net with other three networks,

namely U-Net, Attention U-Net, and Squeeze U-Net. For all the networks, we355

carried out a training of 100 epochs and we considered for comparison the model

that obtained the best results on the ISIC 2017 test set. The complete source

code for all the four networks, written using Tensorflow 2 and Python 3, is

publicly available at: https://github.com/apennisi/att_squeeze_unet

Table 1 shows the segmentation results obtained on the ISIC 2017 test set360

by using the Dice Similarity Coefficient and the Threshold Jaccard Index as

quality metrics. Attention Squeeze U-Net performs slightly better than the

other models, achieving a Dice score of 0.9035 and a Threshold Jaccard score of

0.7758. It is worth noting that, the winner submission for the ISIC 2017 lesion

17
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Table 2: Segmentation results on the PH2 data set (200 images).

Network Dice Threshold Jaccard

U-Net 0.9083 0.7942

Attention U-Net 0.8984 0.7879

Squeeze U-Net 0.9231 0.8753

Attention Squeeze U-Net 0.9301 0.8533

segmentation task achieved a Dice coefficient of 0.849 and an average Jaccard365

Index of 0.765 (Codella et al., 2018).

The segmentation results on the PH2 dataset are shown in Table 2. As stated

above, the aim of using a second test set that is (partially) independent from

the training data is to evaluate the generalization capability of the considered

models. The analysis of the results indicates that the two models with a smaller370

size (i.e., Squeeze U-Net and Attention Squeeze U-Net) perform better than

the two larger models (i.e., U-Net and Attention U-Net) in terms of both Dice

and Threshold Jaccard scores. This is in line with the principle that limiting

the model complexity (in terms of the number of parameters) can help the

generalization property of the model.375

3.4. Model Deployment on Embedded Systems

To test the capability of the Attention Squeeze U-Net model described in this

work on embedded devices, we used an Android smartphone (equipped with an

Exynos 9825 processor) and the open source framework NCNN (Tencent, 2021),

which is a high-performance neural network inference computing framework380

strongly optimized for mobile platforms. NCNN supports acceleration through

ARM NEON vectorization and provides NEON assembly implementation for

most computationally intensive convolution kernels of CNNs.

To create an Android application able to make inference by using Attention

Squeeze U-Net, we converted the Tensorflow 2 model in an NCNN one. The385
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application has been developed by using Android NDK1 to use a native C code,

and Vulkan SDK2 to reduce CPU overhead. To deploy the application on the

Exynos 9825 processor, it has been compiled for an ARM architecture AArch64

and a minimum android API:android-24. The final size of the model on Android

is about 10 MB and the inference process is completed in ≈ 1.5 seconds.390

4. Discussion

In this section, we analyse the segmentation results of the four models on

the ISIC 2017 test images by separating them according to their lesion type.

4.1. Per-lesion Class Results

The expert dermatologists that are in the group of the authors of this paper395

performed a visual inspection of the 600 test images from the ISIC 2017 dataset

and grouped them in seven classes:

• Actinic Keratoses and Intraepithelial Carcinoma (AKIEC): common non-

invasive variants of squamous cell carcinomas. They are sometimes seen

as precursors that may progress to invasive squamous cell carcinoma.400

• Basal Cell Carcinoma (BCC): a common version of epithelial skin cancer

that rarely metastasizes, but it grows if it is not treated.

• Benign Keratosis (BKL): contains three subgroups, namely seborrheic

keratoses, solar lentigo, and lichen-planus like keratoses (LPLK). These

groups may look different, but they are biologically similar.405

• Dermatofibroma (DF): a benign skin lesion that is regarded as a benign

proliferation or an inflammatory reaction to minimal trauma.

• Melanoma (MEL): a malignant neoplasm that can appear in different vari-

ants. Melanomas are usually, but not always, chaotic, and some criteria

depend on the site location.410

1https://developer.android.com/ndk
2https://www.lunarg.com/vulkan-sdk/
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Figure 9: Qualitative results divided per-class on the ISIC 2017 test set obtained by Attention

Squeeze U-Net.

• Melanocytic Nevi (NV): these variants can differ significantly from a der-

matoscopic point of view but are usually symmetric in terms of distribu-

tion of color and structure.

• Vascular Lesions (VASC): generally categorized by a red or purple color

and solid, well-circumscribed structures known as red clods or lacunes.415

Fig. 9 shows some qualitative results of the segmentation divided per-class

obtained by Attention Squeeze U-Net, while Table 3 shows the quantitative
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Table 3: Per-lesion class segmentation results on ISIC 2017 test set.

Lesion U-Net Att. U-Net Squeeze U-Net Att. Squeeze U-Net

Type Dice Th.Jacc. Dice Th.Jacc. Dice Th.Jacc. Dice Th.Jacc.

AKIEC 0.7980 0.3531 0.7036 0.2348 0.7524 0.2756 0.7888 0.3780

BCC 0.8775 0.7522 0.8393 0.6227 0.8396 0.6228 0.8531 0.6792

BKL 0.8827 0.7372 0.8490 0.6219 0.8356 0.7705 0.8974 0.7847

DF 0.9333 0.8751 0.8829 0.7908 0.9275 0.8652 0.942 0.8909

MEL 0.8839 0.7274 0.8722 0.7155 0.8938 0.7771 0.9088 0.7955

NV 0.9403 0.8754 0.9228 0.8274 0.9389 0.8979 0.9535 0.8976

VL 0.8890 0.7769 0.8426 0.5985 0.8895 0.7871 0.8482 0.5578

results obtained by all the four models. Two clear aspects emerge from the

analysis of the results:

1. There is a high inter-class variability for the segmentation results.420

2. The four different network architectures produces covariant segmentation

results for each lesion class.

All the considered models obtains good results on benign keratosis (BKL),

melanoma (MEL), and melanocytic nevi (NV). Bad results are obtained on

Actinic Keratoses and Intraepithelial Carcinoma (AKIEC) by all the models. A425

deeper error analysis for our Attention Squeeze U-Net is provided below.

4.2. Attention Squeeze U-Net Error Analysis

Attention Squeeze U-Net generates 47 samples (over 600) of the ISIC 2017

test set where the segmentation can be considered unusable, i.e., the Threshold

Jaccard Index is < 0.65 (Codella et al., 2019).430

For the AKIEC category, FN errors are mostly related to lesions with low pig-

mentation and low contrast, while FP errors maybe related to three-dimensional

lesions, i.e., thick lesions with focus plans at different levels and weak contrast

between diseased skin and healthy skin. Failures in BCC category are due to

FN errors, which are related to weak contrast and pigmentation regression and435

to weak contrast between diseased skin and healthy skin. FNs are the majority

of the errors for the images classified as MEL that presents a low JSI. Those

FN errors are due to pigmentation regression and incomplete acquisitions that
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occur when dealing with large sized lesions. In NV category, we the segmenta-

tion failures seem related to FN errors caused by the incomplete acquisition of440

the lesion and to morphological heterogeneity. The category with more failures

is BKL where FN errors seem related to images with low contrast, presence of

regression, and large sized lesions.

Overall, it should be underlined that in many cases diagnosis based on im-

age alone can be strongly improved by adding specific related information such445

as anatomical site of the lesion, gender, age, fototype (which could be derived

from an image taken from a contro-lateral healthy site) and other anamnestic

information. Particularly, follow-up of specific lesions at weeks/months of dis-

tance may represent a strong support to further improvement, since this may

represent the evaluation of the E feature (evolution) within the ABCDE rule.450

5. Conclusions

Deep learning based methods have the potential to improve melanoma de-

tection at an early stage by helping in tracking the lesion evolution. Lesion

area segmentation is the first step to create an artificial intelligence system

that is able to quantitatively compare images of the lesion captured at different455

time moments. In this work, we have described a lesion area segmentation for

dermoscopic images called Attention Squeeze U-Net. Its architecture combines

successful ideas from the literature, namely the attention mechanism from At-

tention U-Net (Oktay et al., 2018), the reduced number of parameters from

Squeeze U-Net (Beheshti and Johnsson, 2020), and the symmetrical shape from460

U-Net (Ronneberger et al., 2015).

Attention Squeeze U-Net has a reduced number of parameters, which is com-

patible with the computational power of embedded devices, and, at the same

time, segmentation results comparable with larger models (in terms of the num-

ber of trained parameters). Experimental results, conducted on two different465

publicly available datasets, demonstrate the effectiveness of the proposed model

in accurately segmenting dermoscopic images.

22



We are strongly convinced that the availability of more and more powerful

embedded devices (including smartphones) will enable, in the very near future,

the patients to run locally the lesion segmentation task, thus preserving their470

privacy and being proactively involved in the early detection of melanoma.
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