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The numerical solution of Cauchy singular integral equations with
additional fixed singularities

Maria Carmela De Bonis a · Concetta Laurita a

Abstract

In this paper we propose a quadrature method for the numerical solution of Cauchy singular integral
equations with additional fixed singularities. The unknown function is approximated by a weighted
polynomial which is the solution of a finite dimensional equation obtained discretizing the involved
integral operators by means of a Gauss-Jacobi quadrature rule. Stability and convergence results for the
proposed procedure are proved. Moreover, we prove that the linear systems one has to solve, in order to
determine the unknown coefficients of the approximate solutions, are well conditioned. The efficiency of
the proposed method is shown through some numerical examples.

1 Introduction
This paper deals with the numerical solution of the following Cauchy singular integral equation (CSIE) with additional terms
having fixed singularities

a u(τ) +
b
π

∫ 1

−1

u(t)
t −τ

d t +

∫ 1

−1

k(t,τ)u(t)d t +

∫ 1

−1

h(t,τ)u(t)d t = g(τ), |τ|< 1, (1)

where u(τ) is the unknown function, h(t,τ) and g(τ) are given sufficiently smooth functions on [−1,1]× [−1,1] and [−1,1],
respectively, a and b are given real constants such that a2 + b2 = 1, and k(t,τ) is a known kernel assuming one of the forms

k(t,τ) =
1

1+ t
k̄
�

1−τ
1+ t

�

(2)

or

k(t,τ) =
1

1− t
k̄
�

1+τ
1− t

�

, (3)

for some given function k̄ on [0,+∞). The first integral is understood in the Cauchy principal value sense.
Note that the kernels k(t,τ) in (2) and (3) have fixed singularities at the points (−1, 1) and (1,−1), respectively, and differ from
the Mellin convolution type kernels that become singular if t and τ tend to the same point simultaneously.

Setting

(Du)(τ) = a u(τ) +
b
π

∫ 1

−1

u(t)
t −τ

d t, (4)

(Ku)(τ) =

∫ 1

−1

k(t,τ)u(t)d t, (5)

and

(Hu)(τ) =

∫ 1

−1

h(t,τ)u(t)d t, (6)

we can rewrite the equation (1) as follows
(D+ K +H)u= g. (7)

The solution u is searched in the following form
u(t) = vα,β (t) f (t), (8)

where f is a smooth function and vα,β (t) = (1− t)α(1+ t)β is a Jacobi weight. The exponents −1 < α,β < 1 depend on the
coefficients a and b of the operator D as follows

α= M −
1

2πi
log

�

a+ i b
a− i b

�

, β = N +
1

2πi
log

�

a+ i b
a− i b

�

,

where M and N are integers chosen so that the index χ = −(α+ β) = −(M + N) = 0, i.e. β = −α.
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Since several mathematical problems in physics and engineering can be reduced to the solution of Cauchy type integral
equations, the development of numerical methods for approximating their solution has been receiving an increasing interest in
recent years. Many papers are available in the literature on this topic especially in the case when only the compact perturbation
Hu appears in addition to the singular Cauchy operator and no other singular integral operator is involved (see, for instance,
[1, 17, 16, 20, 24, 22, 8, 2, 4, 3] and the references therein). For the complete equation, discretization schemes based on
polynomial approximation have been more recently proposed in [18, 11, 14, 15, 12, 13], where the case of kernels having
additional fixed singularities of Mellin type

k(t,τ) =
1

1− t
k̄
�

1−τ
1− t

�

and/or

k(t,τ) =
1

1+ t
k̄
�

1+τ
1+ t

�

,

is treated. In particular, in [14, 15, 12, 13] the authors considered some special choices of the function k̄. Moreover, the stability
of the proposed collocation methods is proved in weighted L2 spaces w.r.t. Chebyshev weights and collocation is performed with
respect to Chebyshev nodes.

To our knowledge, integral equations of type (1) with singular kernels of the form (2) or (3) have not been studied until now.
They are of interest, for instance, when one has to solve a boundary CSIE defined on a simple open wedge or on a polygonal
contour in the plane. Our aim is to propose a discrete collocation method for the approximation of the solution of equation (1),
proving its stability and convergence in more general weighted L2 spaces, suitably connected with the original problem (1). The
application of this procedure to the numerical solution of the above mentioned boundary CSIE will be the object of a further
investigation.

The method follows the scheme of a collocation-quadrature method proposed in [1] in the case where the kernels are smooth
and/or weakly singular. The unknown solution u of (7) is approximated by a suitable weighted polynomial un which is the
solution of a finite dimensional equation. Such equation is deduced from (7) by using first an appropriate Gauss-Jacobi quadrature
rule in order to discretize the integral operators H and K, and then a suitable Lagrange projector applied to both sides of the
equation having H and K replaced by their respective approximations. Hence, the numerical solution un is determined by solving
a linear system obtained by collocating such equation at suitable nodes.

Due to the fixed singularity of the kernel k(t,τ) at the point (−1,1) or (1,−1) (according to whether it takes the form (2)
or (3), respectively), the Gauss-Jacobi formula for the approximation of (Ku)(τ) diverges when τ approaches 1 or −1. For this
reason, in many papers (see, for example, [9, 10, 5, 6, 7, 21]) dealing with the numerical solution of integral equations with fixed
singularities of Mellin type, a slight modification of the quadrature formula has been employed in order to achieve stability and
convergence of the proposed numerical methods. Neverthless, in virtue of the choice of the collocation points, here we are able to
achieve stability and convergence results simply applying the classical Gauss-Jacobi rule, also providing an estimate of the error
in weighted L2 norm. We also pay special attention to the study of the conditioning of the involved linear systems. In particular,
we are able to prove that the sequence of their condition numbers converges to the condition number of the operator D+ K +H.

The plan of the paper is as follows. In Section 2 we give some notation while in Section 3 we state some preliminary results
dealing with the mapping properties of the operators D, K and H. Section 4 contains the description of the numerical method
and the main results regarding stability, convergence and well-conditioning of the involved linear systems. The proofs of the
main results are given in Section 5. Finally, in Section 6 we present some numerical tests showing the performance of the method
and the reliability of the theoretical results.

2 Notation and basic facts
In the sequel C denotes a positive constant which may assume different values in different formulas. We will write C(a, b, . . .)
to say that C depends on the parameters a, b, . . . and C 6= C(a, b, . . .) to say that C is independent of the parameters a, b, . . ..
Moreover, if A, B ≥ 0, the symbol A∼ B means that there exists a constant 0< C 6= C(A, B) such that C−1B ≤ A≤ CB.

Let us introduce the function spaces where we are going to study equation (7).
With vγ,δ(t) = (1− t)γ(1+ t)δ, γ,δ > −1, we denote by L2

vγ,δ , the weighted space of all real-valued measurable functions F on
[−1, 1] such that

‖F‖L2
vγ,δ

:= ‖F‖vγ,δ :=

�

∫ 1

−1

|F(t)|2vγ,δ(t)d t

�
1
2

< +∞.

Let {pγ,δ
n }n be the system of the orthonormal polynomials w.r.t. the scalar product

< u, v >vγ,δ :=

∫ 1

−1

u(t)v(t)vγ,δ(t)d t (9)

with positive leading coefficients. The system {p̃γ,δ
n }n := {v−γ,−δp−γ,−δ

n }n is orthonormal w.r.t. the scalar product (9), too. Using
the above orthonormal systems, for a real number s ≥ 0, we define the following subspaces of L2

vγ,δ

L2
vγ,δ ,s

:=







u ∈ L2
vγ,δ : ‖u‖vγ,δ ,s :=

�∞
∑

i=0

(1+ i)2s|< u, pγ,δ
i >vγ,δ |2

�
1
2

< +∞






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and

L̃2
vγ,δ ,s

=







u ∈ L2
vγ,δ : ‖u‖vγ,δ ,s,∼ :=

�∞
∑

i=0

(1+ i)2s|< u, p̃γ,δ
i >vγ,δ |2

�
1
2

< +∞







.

In L2
vγ,δ ,s

, the error of best approximation by means of polynomials of degree at most n (P ∈ Pn) is defined as follows

En(u)L2
vγ,δ ,s
= inf

P∈Pn
‖u− P‖vγ,δ ,s.

In the sequel, since L2
vγ,δ ,0

= L̃2
vγ,δ ,0

= L2
vγ,δ , we will write En(u)L2

vγ,δ ,0
= En(u)L2

vγ,δ
. We recall that, for all s > 0, the following

equivalence holds true [25, (3.13)]

‖u‖vγ,δ ,s ∼

�∞
∑

i=0

(1+ i)2s−1E2
i (u)L2

vγ,δ

�
1
2

. (10)

For a continuous function u, we denote by Lγ,δ
n u the Lagrange polynomial interpolating u at the zeros

−1< tγ,δ
n,1 < tγ,δ

n,2 < . . .< tγ,δ
n,n < 1

of pγ,δ
n . We use the following representation for Lγ,δ

n u

Lγ,δ
n (u, t) := (Lγ,δ

n u)(t) =
n
∑

i=1

ψ
γ,δ
i (t)

r

λ
γ,δ
n,i u(tγ,δ

n,i ),

where

ψ
γ,δ
i (t) =

lγ,δ
n,i (t)
Ç

λ
γ,δ
n,i

, lγ,δ
n,i (t) =

pγ,δ
n (t)

[pγ,δ
n ]′(t

γ,δ
n,i )(t − tγ,δ

n,i )
, (11)

with λγ,δ
n,i , i = 1, . . . , n, the Christoffel numbers related to the weight vγ,δ.

We recall that, if s > 1
2 , Lγ,δ

n can be defined in L2
vγ,δ ,s

(see [1, Theorem 2.5]). More precisely, given a function u ∈ L2
vγ,δ ,s

, with

s > 1
2 , in the equivalent class of L2

vγ,δ ,s
containing u there exists a representative u0 which is locally continuous on [−1, 1] (see [1,

Remark 2.6]). Then Lγ,δ
n u is defined as Lγ,δ

n u0.
Moreover, if u ∈ L2

vγ,δ ,s
, s > 1

2 , then for 0≤ r ≤ s, we have

‖u− Lγ,δ
n u‖vγ,δ ,r ≤

C
ns−r
‖u‖vγ,δ ,s (12)

and, consequently,
‖Lγ,δ

n u‖vγ,δ ,r ≤ C‖u‖vγ,δ ,s, (13)

where C 6= C(n, u). Note that (12) can be found in [20, Th. 3.4] for the case 0 < r ≤ s, while it can be deduced from [20, Th.
3.1] and [20, eq. (3.13)] by easy computations.

3 Mapping properties of the operators D, K and H
In this section we are going to establish sufficient conditions for the existence and uniqueness of the solution of integral equation
(7). To this end, we assume that, for some s > 0 and −1 < α < 1, the given functions appearing in (1) have the following
properties. We start from the case where the singular kernel k(t,τ) has the form (2). In this case we suppose that the kernel
k(t,τ) satisfies

‖k(t, ·)‖v−α,α ,s < +∞, ∀ t ∈ (−1, 1], (14)

‖k(·,τ)‖vα,−α ≤ C(1−τ)−
1+α

2 , C 6= C(τ), (15)

‖k(·,τ)‖vα,−α ,s ≤ C(1−τ)−
s+1+α

2 , C 6= C(τ). (16)

for −1< α < 0. If the function k(t,τ) has the form (3), we assume that, for 0< α < 1,

‖k(t, ·)‖v−α,α ,s < +∞, ∀ t ∈ [−1,1), (17)

‖k(·,τ)‖vα,−α ≤ C(1+τ)−
1−α

2 , C 6= C(τ) (18)

‖k(·,τ)‖vα,−α ,s ≤ C(1+τ)−
s+1−α

2 , C 6= C(τ). (19)
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Moreover, for the smoother kernel h(t,τ) we suppose that

sup
|t|≤1
‖h(t, ·)‖v−α,α ,s < +∞, (20)

sup
|τ|≤1
‖h(·,τ)‖vα,−α ,s < +∞. (21)

The following theorem establishes the invertibility of the operator D defined in (4) in the couple of spaces (L̃2
v−α,α ,s, L2

v−α,α ,s).

Theorem 3.1. Let −1 < α < 1. For all s ≥ 0, D : L̃2
v−α,α ,s → L2

v−α,α ,s is a continuous and invertible operator. Its adjoint operator
bD : L2

v−α,α ,s → L̃2
v−α,α ,s is bounded and is defined as

(bDg)(τ) = ag(τ)−
b
π

vα,−α(τ)

∫ 1

−1

g(t)
t −τ

v−α,α(t)d t.

Moreover bD is the inverse operator of D and the following relations

‖D‖ L̃2
v−α,α ,s

→L2
v−α,α ,s

= ‖bD‖L2
v−α,α ,s

→ L̃2
v−α,α ,s

= 1, (22)

Dvα,−αpα,−α
n = p−α,α

n , (23)

and
bDp−α,α

n = vα,−αpα,−α
n

hold true.

The mapping properties of the operator K defined in (5) are stated in the following result.

Theorem 3.2. Let −1< α < 1. If, for some s > 0, the kernel k(t,τ) satisfies

�

∫ 1

−1

‖k(t, ·)‖2
v−α,α ,s vα,−α(t)d t

�
1
2

< +∞, (24)

then the operator K : L2
v−α,α → L2

v−α,α ,r is continuous for all 0≤ r ≤ s and compact for all 0≤ r < s. Moreover, if (24) holds true with
s = 0, K : L2

v−α,α → L2
v−α,α is a compact operator.

Concerning the operator H given in (6), we state the following theorem.

Theorem 3.3. Let −1 < α < 1. If, for some s > 0, the kernel h(t,τ) satisfies (20), then the operator H : L2
v−α,α → L2

v−α,α ,r is
continuous for all 0≤ r ≤ s and compact for all 0≤ r < s.

Using the mapping properties of the integral operators K and H stated above, from the Fredholm Alternative one can easily
deduce the following result concerning the existence and uniqueness of the solution of equation (7).

Theorem 3.4. Under the assumptions of theorems 3.2 and 3.3, if Ker(D + K + H) = {0} in L̃2
v−α,α ,r for some 0 ≤ r < s, then the

equation (7) admits a unique solution u in L̃2
v−α,α ,r for each right-hand side g ∈ L2

v−α,α ,r .

4 The Method
Our aim is to propose a quadrature method for the numerical solution of the integral equation (7). We suppose that, for some
s > 1

2 , conditions (14)-(21) are fulfilled and that the right-hand side function g satisfies

g ∈ L2
v−α,α ,s. (25)

The numerical method consists in approximating the unknown solution u of (7) in the form (8) with β = −α by the weighted
polynomial un, belonging to the subset

Pn−1 := {vα,−αpn−1 : pn−1 ∈ Pn−1}

of L2
v−α,α , which satisfies the finite dimensional equation

L−α,α
n (D+ Kn +Hn)un = L−α,α

n g, (26)

where Knun and Hnun are suitable approximations of Kun and Hun, respectively, obtained by applying a Gauss-Jacobi quadrature
formula. More precisely, Knun and Hnun are defined as follows

(Knun)(τ) =
n
∑

j=1

λα,−α
n, j k(tα,−α

n, j ,τ)v−α,α(tα,−α
n, j )un(t

α,−α
n, j ),

(Hnun)(τ) =
n
∑

j=1

λα,−α
n, j h(tα,−α

n, j ,τ)v−α,α(tα,−α
n, j )un(t

α,−α
n, j ),
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where tα,−α
n, j , j = 1, . . . , n, are the zeros of pα,−α

n and λα,−α
n, j , j = 1, . . . , n, are the Christoffel numbers corresponding to the weight

vα,−α.
Taking into account the property (23) of the operator D, (26) can also be written as

(D+ L−α,α
n (Kn +Hn))un = L−α,α

n g. (27)

We point out that equation (27) makes sense assuming the conditions (14)-(21) and (25) satisfied for s > 1
2 (see Section 2).

The following theorem establishes the stability and the convergence of the above numerical method under suitable assumptions.

Theorem 4.1. Let s > 1
2 , −1 < α < 0 (resp. 0 < α < 1), and η = min{s,−2α} (resp. η = min{s, 2α}). Let us assume that the

kernel k(t,τ) given in (2) (resp. (3)) satisfies (14)-(16) (resp. (17)-(19)) and (24), and also that (20)-(21) and (25) are fulfilled.
Then, if Ker(D+ K +H) = {0} in L̃2

v−α,α ,r for some 0≤ r < s and η > r, the inverses of the operators

D+ L−α,α
n (Kn +Hn) :

�

Pn−1,‖ · ‖v−α,α ,r,∼

�

→
�

Pn−1,‖ · ‖v−α,α ,r

�

exist and are uniformly bounded for all sufficiently large n.
Moreover, if u denotes the unique solution of (7) and un is the unique solution of (27), the following estimate

‖un − u‖v−α,α ,r,∼ =O
�

1
nη−r

�

(28)

holds true.

At this point, we can obtain the solution un of (27) by solving a system of linear equations equivalent to (27). In order to
get such linear system, we represent un in the basis {vα,−αψα,−α

i }ni=1 of Pn−1 and the right hand side gn := L−α,α
n g in the basis

{ψ−α,α
i }ni=1 of Pn−1. We recall that the definition of the polynomials ψα,−α

i and ψ−α,α
i is given in (11) and we also remark that the

two bases are both orthonormal with respect to the scalar product < · , ·>v−α,α .
Then, we write

un(τ) = vα,−α(τ)
n
∑

i=1

aiψ
α,−α
i (τ) =: vα,−α(τ) fn(τ), ai =

Ç

λα,−α
n,i fn(t

α,−α
n,i ), (29)

and

gn(τ) =
n
∑

i=1

biψ
−α,α
i (τ), bi =

Ç

λ−α,α
n,i g(t−α,α

n,i ).

Collocating the equation (27) at the zeros t−α,α
n,i , i = 1, . . . , n, of p−α,α

n and taking into account that, by (11) and (23), we have
(see [26, pag. 448])

(Dun)(t
−α,α
n,i ) =

b
π

n
∑

j=1

Ç

λα,−α
n, j

a j

tα,−α
n, j − t−α,α

n,i

,

we get the linear system

Ç

λ−α,α
n,i

n
∑

j=1

Ç

λα,−α
n, j

�

b

π(tα,−α
n, j − t−α,α

n,i )
+ k(tα,−α

n, j , t−α,α
n,i ) + h(tα,−α

n, j , t−α,α
n,i )

�

a j = bi , i = 1, . . . , n. (30)

Consequently, the array a= (a1, . . . , an)T is solution of (30) if and only if un defined in (29) is solution of (27). Moreover, the
matrix Mn of the coefficients of the linear system (30), that is the matrix of the isomorphism (D+ L−α,α

n (Kn +Hn)) : Pn−1→ Pn−1

with respect to the pair of bases {vα,−αψα,−α
i }ni=1 and {ψ−α,α

i }ni=1, satisfies the following property.

Theorem 4.2. Assuming that the hypotheses of Theorem 4.1 are fulfilled for r = 0, the condition number cond(Mn) of the matrix
Mn w.r.t. the spectral norm satisfies the equality

lim
n

cond(Mn) = cond(D+ K +H), (31)

being
cond(D+ K +H) = ‖D+ K +H‖L2

v−α,α→L2
v−α,α
· ‖(D+ K +H)−1‖L2

v−α,α→L2
v−α,α

.

5 Proofs
Proof of Theorem 3.1. The proof easily follows from [1, p. 204], taking into account that for any u ∈ L2

v−α,α

Du= Av−α,αu, bDu= vα,−α
bAu,

where

(Af )(τ) = a vα,−α(τ) f (τ) +
b
π

∫ 1

−1

f (t)
t −τ

vα,−α(t)d t

and

(bAf )(τ) = a v−α,α(τ) f (τ)−
b
π

∫ 1

−1

f (t)
t −τ

v−α,α(t)d t.
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Proof of Theorem 3.2. If we assume that (24) holds true for s = 0, it is well known that K : L2
v−α,α → L2

v−α,α is a compact operator
(see, for instance, [1]). In the case s > 0, since

|< Ku, p−α,α
i >v−α,α |2 =

�

�

�

�

�

∫ 1

−1

�

∫ 1

−1

k(t,τ)u(t)d t

�

p−α,α
i (τ)v−α,α(τ)dτ

�

�

�

�

�

2

≤ ‖u‖2
v−α,α

∫ 1

−1

|< k(t, ·), p−α,α
i >v−α,α |2vα,−α(t)d t,

for 0≤ r ≤ s, we get

‖Ku‖2
v−α,α ,r =

∞
∑

i=0

(1+ i)2r |< Ku, p−α,α
i >v−α,α |2

≤ ‖u‖2
v−α,α

∫ 1

−1

�∞
∑

i=0

(1+ i)2r |< k(t, ·), p−α,α
i >v−α,α |2

�

vα,−α(t)d t

= ‖u‖2
v−α,α

∫ 1

−1

‖k(t, ·)‖2
v−α,α ,r vα,−α(t)d t

≤ C‖u‖2
v−α,α .

This proves that K : L2
v−α,α → L2

v−α,α ,r is bounded. Moreover, it is compact for any 0≤ r < s in virtue of the compact embedding of
L2

v−α,α ,s in L2
v−α,α ,r for any r < s (see [1, Conclusion 2.3]).

Proof of Theorem 3.3. The proof can be obtained by proceeding as in the proof of Theorem 3.2, by replacing the kernel k with
the kernel h and using assumption (20).

In order to prove Theorem 4.1, we need the following results.

Lemma 5.1. Let −1< α < 1. If, for some s > 1
2 , the kernel h(t,τ) satisfies (20) and (21) then, for all un ∈ Pn−1 we have

‖(H − L−α,α
n Hn)un‖v−α,α ,r ≤

C
ns−r
‖un‖v−α,α , 0≤ r < s, (32)

where C 6= C(n, un).

Proof. We have

‖(H − L−α,α
n Hn)un‖v−α,α ,r ≤ ‖(H − L−α,α

n H)un‖v−α,α ,r + ‖L−α,α
n (H −Hn)un‖v−α,α ,r

=: A+ B. (33)

Since, by Theorem 3.3, Hun ∈ L2
v−α,α ,s, using (12) we get

A≤
C

ns−r
‖Hun‖v−α,α ,s ≤

C
ns−r
‖un‖v−α,α . (34)

Concerning B, for r = 0, we have
B = ‖L−α,α

n (H −Hn)un‖v−α,α (35)

and for r > 0, recalling (10), we get

B ≤ C

�

n−1
∑

i=0

(1+ i)2r−1E2
i

�

L−α,α
n (H −Hn)un

�

L2
v−α,α

�
1
2

≤ C

�

n−1
∑

i=0

(1+ i)2r−1‖L−α,α
n (H −Hn)un‖2

v−α,α

�
1
2

≤ C‖L−α,α
n (H −Hn)un‖v−α,α

�

n−1
∑

i=0

(1+ i)2r−1

�
1
2

≤ Cnr‖L−α,α
n (H −Hn)un‖v−α,α . (36)

Then, it remains to estimate

‖L−α,α
n (H −Hn)un‖v−α,α =

�

∫ 1

−1

|L−α,α
n (H −Hn)un(τ)|2v−α,α(τ)dτ

�
1
2

.
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Using the Gaussian rule based on the zeros of p−α,α
n , we get

‖L−α,α
n (H −Hn)un‖v−α,α =

�

n
∑

j=1

λ−α,α
n, j

�

(H −Hn)un(t
−α,α
n, j )

�2
�

1
2

.

Now, writing

(Hnun)(τ) =

∫ 1

−1

Lα,−α
n (h(·,τ), t) fn(t)v

α,−α(t)d t

and using Hölder’s inequality and (12) with r = 0, we get

|(H −Hn)un(τ)| ≤
∫ 1

−1

|h(t,τ)− Lα,−α
n (h(·,τ), t)|| fn(t)|vα,−α(t)d t

≤ ‖ fn‖vα,−α‖h(·,τ)− Lα,−α
n (h(·,τ))‖vα,−α

≤
C
ns
‖un‖v−α,α‖h(·,τ)‖vα,−α ,s. (37)

Then, under the assumption (21), we obtain

‖L−α,α
n (H −Hn)un‖v−α,α ≤

C
ns
‖un‖v−α,α

�

n
∑

j=1

λ−α,α
n, j ‖h(·, t−α,α

n, j )‖
2
vα,−α ,s

�
1
2

≤
C
ns
‖un‖v−α,α ,

with C 6= C(n, un). Replacing the above estimate into (35) and (36), we get

B ≤
C

ns−r
‖un‖v−α,α , 0≤ r < s. (38)

Finally, combining (34) and (38) with (33), the thesis follows.

Lemma 5.2. Let s > 1
2 and −1 < α < 0 (resp. 0 < α < 1). If the kernel k(t,τ) given in (2) (resp. (3)) satisfies (14)-(16) (resp.

(17)-(19)), then, for all un ∈ Pn−1 we have

‖(K − L−α,α
n Kn)un‖v−α,α ,r ≤

C
nη−r

‖un‖v−α,α , 0≤ r < η, (39)

where η=min{s,−2α} (resp. η=min{s, 2α}) and C 6= C(n, un).

Proof. We prove the lemma in the case where k(t,τ) has the form (2). The other case can be treated analogously.
Repeating the same steps of the proof of Lemma 5.1 with K and Kn in place of H and Hn, respectively, we just need to prove that

‖L−α,α
n (K − Kn)un‖v−α,α =

�

∫ 1

−1

�

L−α,α
n (K − Kn)un(τ)

�2
v−α,α(τ)dτ

�
1
2

=

�

n
∑

j=1

λ−α,α
n, j

�

(K − Kn)un(t
−α,α
n, j )

�2
�

1
2

≤
C
nη
‖un‖v−α,α . (40)

Proceeding as done for the estimate (37) and using the assumption (16), for any τ ∈ [−1,1) we get

|(K − Kn)un(τ)| ≤
C
ns
‖un‖v−α,α‖k(·,τ)‖vα,−α ,s

≤
C
ns
‖un‖v−α,α(1−τ)−

s+1+α
2 . (41)

Consequently, we obtain

‖L−α,α
n (K − Kn)un‖v−α,α ≤

C
ns
‖un‖v−α,α

�

n
∑

j=1

λ−α,α
n, j (1− t−α,α

n, j )
−s−1−α

�
1
2

≤
C
ns
‖un‖v−α,α

�

n−1
∑

j=1

λ−α,α
n, j (1− t−α,α

n, j )
−s−1−α +λ−α,α

n,n (1− t−α,α
n,n )

−s−1−α

�
1
2

=:
C
ns
‖un‖v−α,α (A1 + A2)

1
2 . (42)
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Let us to estimate the terms in the brackets. We recall that the zeros of p−α,α
n are labeled in increasing order, i.e.

−1=: t−α,α
n,0 < t−α,α

n,1 < . . .< t−α,α
n,n < t−α,α

n,n+1 := 1.

About the first term, by using the generalized Markov-Stieltjes inequalities (see [28]) we have

n−1
∑

j=1

λ−α,α
n, j (1− t−α,α

n, j )
−s−1−α ≤

∫ t−α,α
n,n

−1

(1−τ)−s−1−2α(1+τ)αdτ.

If α≤ − s
2 , one immediately has

A1 ≤ C, C 6= C(n),

while, if α > − s
2 , we can write

A1 ≤

(

∫ 0

−1

+

∫ t−α,α
n,n

0

)

(1−τ)−s−1−2α(1+τ)αdτ

≤ C + C(1− t−α,α
n,n )

−s−2α ≤ Cn2s+4α,

being 1− t−α,α
n,n ∼ n−2 (see [27, Theorem 3]). Taking also into account the relation [29, p. 353. eq. (15.3.10)],

λ−α,α
n, j ∼∆t−α,α

n, j v−α,α(t−α,α
n, j ), ∆t−α,α

n, j = t−α,α
n, j+1 − t−α,α

n, j , (43)

for A2 we have

A2 ≤ C∆t−α,α
n,n (1− t−α,α

n,n )
−s−1−2α(1+ t−α,α

n,n )
α

≤ Cn2s+2α∆t−α,α
n,n (1− t−α,α

n,n )
−1−α

≤ Cn2s+2α

∫ 1

t−α,α
n,n

(1−τ)−1−αdτ

≤ Cn2s+2α(1− t−α,α
n,n )

−α

≤ Cn2s+4α.

Let us observe that for α≤ − s
2 , the previous inequality reduces to

A2 ≤ C, C 6= C(n).

Hence, we can conclude that the term ‖L−α,α
n (K − Kn)un‖v−α,α can be estimated as follows

‖L−α,α
n (K − Kn)un‖v−α,α ≤















C
ns
‖un‖v−α,α α≤ − s

2

C
n−2α

‖un‖v−α,α α > − s
2

.

Proof of Theorem 4.1. Recalling that the operator D+K +H : L̃2
v−α,α ,r → L2

v−α,α ,r is invertible under our assumptions, for un ∈ Pn−1
we have

‖un‖v−α,α ,r,∼ = ‖(D+ K +H)−1(D+ K +H)un‖v−α,α ,r,∼. (44)

Since we can write
(D+ K +H)un = (D+ L−α,α

n (Kn +Hn))un + (K − L−α,α
n Kn)un + (H − L−α,α

n Hn)un,

from (44), (32) and (39) we get

‖un‖v−α,α ,r,∼ ≤ ‖(D+ K +H)−1‖L2
v−α,α ,r

→ L̃2
v−α,α ,r

×
�

‖(D+ L−α,α
n (Kn +Hn))un‖v−α,α ,r + εn‖un‖v−α,α ,r,∼

�

,

with εn =O(nr−η) and then

‖(D+ L−α,α
n (Kn +Hn))un‖v−α,α ,r ≥

�

‖(D+ K +H)−1‖−1
L2

v−α,α ,r
→ L̃2

v−α,α ,r

− εn

�

‖un‖v−α,α ,r,∼.

From the last inequality, since
D :

�

Pn−1,‖ · ‖v−α,α ,r,∼

�

→
�

Pn−1,‖ · ‖v−α,α ,r

�

is an invertible operator (see Theorem 3.1) and, by (23),
�

D+ L−α,α
n (K̄n +Hn)

�

(Pn−1) ⊆ Pn−1,
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we can deduce that, for n large enough (say n≥ n0), the continuous operators

D+ L−α,α
n (Kn +Hn) :

�

Pn−1,‖ · ‖v−α,α ,r,∼

�

→
�

Pn−1,‖ · ‖v−α,α ,r

�

are invertible and their inverses are uniformly bounded (see, for instance, [19, p. 214]. Hence, for n≥ n0, (27) has a unique
solution un ∈ Pn−1 and

‖un‖v−α,α ,r,∼ ≤ C‖L−α,α
n g‖v−α,α ,r ≤ C‖g‖v−α,α ,s, (45)

according to (13). Therefore, the estimate

‖u− un‖v−α,α ,r,∼ ≤ ‖(D+ K +H)−1‖L2
v−α,α ,r

→ L̃2
v−α,α ,r

× ‖(g − L−α,α
n g)− (K − L−α,α

n Kn)un − (H − L−α,α
n Hn)un‖v−α,α ,r

≤ ‖(D+ K +H)−1‖L2
v−α,α ,r

→ L̃2
v−α,α ,r

×
�

‖(g − L−α,α
n g)‖v−α,α ,r + ‖(K − L−α,α

n Kn)un‖v−α,α ,r + ‖(H − L−α,α
n Hn)un‖v−α,α ,r

�

combined with (12), (39), (32) and (45) implies (28).

Before proving Theorem 4.2 we state the following useful lemma that can be demonstrated by proceeding analogously to the
proof of [23, Theorem 2.3] (see, also, [20]).

Lemma 5.3. Let vγ,δ, γ,δ > −1, be a Jacobi weight and T : L2
vγ ,δ→ L2

vγ ,δ be a bounded linear operator. Assume that Xn ⊂ L2
vγ ,δ is a

finite dimensional dense subspace of the space L2
vγ ,δ and that there exists a projector Πn : L2

vγ ,δ→ Xn such that

sup
n
‖Πn‖L2

vγ ,δ
→L2

vγ ,δ
<∞.

Then, one has that
lim

n





T |Xn







L2
vγ ,δ
→L2

vγ ,δ
= ‖T‖L2

vγ ,δ
→L2

vγ ,δ
.

Proof of Theorem 4.2. In what follows, for simplicity of notation, we shall omit to write the subscript L2
v−α,α → L2

v−α,α in the
symbol ‖ · ‖L2

v−α,α→L2
v−α,α

used for the norm of an operator acting from the space L2
v−α,α into itself. Moreover, we will briefly denote

the operator D + K + H by B and the operator D + L−α,α
n (Kn + Hn) by Bn. We begin by observing that Mn is the matrix of the

isomorphism
Bn|Pn−1

: (Pn−1,‖ · ‖v−α,α)→ (Pn−1,‖ · ‖v−α,α)

with respect to the pair of bases {vα,−αψα,−α
i }ni=1 and {ψ−α,α

i }ni=1 which are both orthonormal in the space L2
v−α,α endowed with

the scalar product < · , ·>v−α,α . Consequently, it can be easily seen that for the spectral norm of the matrices Mn and M−1
n one has

‖Mn‖=




Bn|Pn−1







as well as
‖M−1

n ‖=









�

Bn|Pn−1

�−1







 .

Then, our aim becomes to show that
lim

n





Bn|Pn−1





= ‖B‖ (46)

and
lim

n










�

Bn|Pn−1

�−1







=




B−1




 . (47)

Let us consider the linear operator Πn : L2
v−α,α → Pn−1 defined as follows

Πn f = vα,−αSα,−α
n (v−α,α f ), f ∈ L2

v−α,α ,

with Sα,−α
n the Fourier operator given by

Sα,−α
n u=

n−1
∑

i=0

< u, pα,−α
i >vα,−α pα,−α

i .

It is a projector of L2
v−α,α onto the subspace Pn−1 satisfying the assumptions of Lemma 5.3. Then, we can deduce that

lim
n





B|Pn−1





= ‖B‖. (48)

Furthermore, from (32) and (39) we can deduce

lim
n





Bn|Pn−1
− B|Pn−1





= 0

and, consequently,
lim

n

�

�





Bn|Pn−1





−




B|Pn−1







�

�= 0. (49)
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Combining (48) and (49) we get (46).
In order to prove (47), first we consider the set of Fourier operators S−α,α

n : L2
v−α,α → Pn−1 defined as

S−α,α
n u=

n−1
∑

i=0

< u, p−α,α
i >v−α,α p−α,α

i

which is a uniformly bounded sequence of projectors onto the dense subspace Pn−1 of L2
v−α,α . Consequently, in virtue of Lemma

5.3, we get
lim

n





B−1|Pn−1





= ‖B−1‖. (50)

It remains to show the equality

lim
n










�

Bn|Pn−1

�−1
− B−1|Pn−1








= 0 (51)

which, combined with (50), allows us to deduce (47).
Recalling Theorem 4.1, for any fixed polynomial pn−1 ∈ Pn−1 there exists a unique function un ∈ Pn−1 such that Bnun = pn−1.
Then, under our assumptions, we can write

B−1
n pn−1 − B−1pn−1 = B−1Bun − B−1pn−1

= B−1 (Bun − pn−1)
= B−1 (Bun − Bnun)
= B−1

�

B|Pn−1
− Bn|Pn−1

�

un

from which, taking into account (32) and (39), it follows that

‖B−1
n pn−1 − B−1pn−1‖v−α,α ≤ ‖B−1‖εn ‖un‖v−α,α

≤ ‖B−1‖εn










�

Bn|Pn−1

�−1







‖pn−1‖v−α,α

with εn→ 0 as n→∞. But Theorem 4.1 assures that, for n large enough (say n≥ n0),









�

Bn|Pn−1

�−1







≤ C, C 6= C(n),

therefore we can conclude that if n≥ n0, for any pn−1 ∈ Pn−1, pn−1 6= 0,




B−1
n pn−1 − B−1pn−1







v−α,α

‖pn−1‖v−α,α
≤ C εn. (52)

From (52), (51) immediately follows and the proof is complete.

6 Numerical examples
In this section we will show the numerical results obtained by applying the proposed method to some test integral equations of
type (1). For each example, chosen a suitable value of the parameter α, the constant coefficients a and b appearing in (1) will be
given by a = cos (πα) and b = − sin (πα). Since the solution u is unknown, we will consider as exact the approximating one
u1024.

In the tables that follow we will report the pointwise weighted absolute errors

en(τ) =
�

�un(τ)− u1024(τ)
�

� v−α,α(τ),

the L2 weighted errors

er rn = ‖un − u1024‖v−α,α =

�

1024
∑

k=1

λα,−α
1024,k

�

�

� fn

�

tα,−α
1024,k

�

− f1024

�

tα,−α
1024,k

�

�

�

�

2
�

1
2

,

the corresponding estimated orders of convergence

eocn =
log (er rn/er r2n)

log 2
,

and the condition numbers cond(Mn) in the spectral norm of the matrices Mn associated with the linear systems (30). As one can
see, the numerical results confirm the stability and the convergence of the proposed method. Actually, the numerical convergence
order appears to be higher than the theoretical one. More precisely, the numerical evidence allows us to presume that this order
is about 2η (see the values of eocn reported in the tables). Moreover, in accordance with (31), the sequence {cond(Mn)}n is
convergent as n goes to infinity.

Finally, we remark that, in correspondence of the chosen weight v−α,α, all the assumptions on k(t,τ), h(t,τ) and g(τ) are
fulfilled for every s > 1/2.
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Table 1: Example 6.1

n en(−0.99) en(−0.45) en(0.3) en(0.8) en(0.99)
8 2.31e-02 8.66e-03 3.94e-03 1.78e-03 2.05e-03
16 1.62e-03 3.06e-04 8.49e-05 1.18e-04 2.67e-03
32 6.43e-05 1.04e-05 1.43e-06 2.60e-05 5.24e-05
64 4.13e-06 1.68e-06 1.34e-06 1.47e-06 3.62e-05
128 2.45e-07 3.12e-08 7.23e-08 3.99e-08 1.65e-06
256 1.97e-08 2.40e-09 4.99e-10 3.42e-09 4.40e-08
512 2.60e-11 8.92e-11 2.09e-11 5.25e-10 7.07e-09

Table 2: Example 6.1

n errn eocn cond(Mn)
8 1.97e-02 2.50 9.269840292397463
16 3.49e-03 2.51 9.275792936415662
32 6.11e-04 2.55 9.276121867983536
64 1.04e-04 2.58 9.276137709516037
128 1.73e-05 2.61 9.276138434721977
256 2.82e-06 2.72 9.276138467436798
512 4.29e-07 9.276138468912372

Example 6.1. Let us assume that the known functions in the equation (1) are the following

k(t,τ) =
1
π
(1+ t)

p

(1+ t)(1−τ)
(1+ t)3 + (1−τ)3

, h(t,τ) = sin (tτ), g(τ) = eτ +τ2

and that the parameter α defining the Jacobi weights vα,−α and v−α,α is − 2
3 . Consequently, by (28) the convergence order is at

least η= 4
3 . In tables 1 and 2 we show the obtained results.

Example 6.2. In this example we consider an integral equation of type (1) with

k(t,τ) =
1

2π
1+τ

(1− t)2 + (1+τ)2
, h(t,τ) =

(t2 +τ2)
1+ eτ

, g(τ) = τ5.

Choosing α= 0.9 the value of η in (28) is 1.8. We report in tables 3 and 4 the obtained numerical results.

Table 3: Example 6.2

n en(−0.9) en(−0.2) en(0.5) en(0.7) en(0.8)
8 1.40e-04 1.10e-04 1.35e-04 1.84e-06 1.95e-04
16 2.65e-06 1.60e-06 4.41e-06 1.45e-07 4.90e-06
32 5.16e-07 6.84e-08 1.79e-07 3.70e-08 3.15e-07
64 2.31e-09 2.61e-09 3.99e-09 3.03e-09 3.41e-11
128 2.29e-10 1.02e-10 1.37e-10 1.71e-10 1.06e-10
256 1.31e-11 3.10e-12 3.76e-12 1.01e-11 2.46e-11
512 1.60e-12 7.32e-13 7.19e-13 7.23e-13 5.14e-12

Example 6.3. Let

k(t,τ) =
1
5
(1−τ)
(1+ t)2

e−
1−τ
1+t , h(t,τ) = et+τ, g(τ) = log (τ3 + 3)

be the kernels and the right-hand side in equation (1) and let α = −4/5 (η = 1.6). By applying the numerical method proposed
in Section 4, the results shown in tables 5 and 6 were obtained.
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Table 4: Example 6.2

n errn eocn cond(Mn)
8 7.07e-04 3.36 1.129055966832389e+01
16 6.85e-05 3.60 1.129088076447376e+01
32 5.65e-06 3.65 1.129088727287702e+01
64 4.48e-07 3.67 1.129088740182178e+01
128 3.50e-08 3.69 1.129088740444359e+01
256 2.71e-09 3.74 1.129088740449769e+01
512 2.02e-10 1.129088740450248e+01

Table 5: Example 6.3

n en(−0.99) en(−0.8) en(−0.4) en(0.3) en(0.9)
8 7.87e-03 1.03e-03 6.43e-05 8.41e-05 7.59e-05
16 9.57e-06 7.54e-07 3.13e-07 3.82e-07 7.61e-06
32 2.11e-07 3.84e-08 1.08e-08 1.58e-08 1.16e-07
64 5.85e-09 2.57e-10 7.15e-10 7.89e-10 1.92e-10
128 2.53e-10 2.39e-11 1.94e-11 2.94e-11 4.02e-11
256 2.61e-12 1.90e-12 1.92e-12 4.86e-14 4.20e-12
512 3.20e-12 6.28e-13 1.24e-12 9.69e-14 1.37e-13
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