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A B S T R A C T   

Interactions among microorganisms deeply affect the dynamics of cheese microbial communities and, as a 
consequence, multiple aspects of cheese quality, from the production of metabolites affecting the taste, aroma 
and flavour, to body, texture and colour. Understanding and exploiting interactions among beneficial or detri-
mental microorganisms is therefore key to managing cheese quality. This is true for the simplest systems (fresh 
cheeses produced from pasteurized milk using defined starters) and the more so for complex, dynamic systems, 
like surface ripened cheese produced from raw milk, in which a dynamic succession of diverse microorganisms is 
essential for obtained the desired combination of sensory properties while guaranteeing safety. Positive 
(commensalism, protocooperation) and negative (competition, amensalism, predation and parasitism) in-
teractions among members of the cheese biota have been reviewed multiple times. However, even if the complex, 
multidimensional datasets generated by multi-omic approaches to cheese microbiology and biochemistry are 
ideally suited for the representation of biotic and metabolic interactions as networks, network science concepts 
and approaches are rarely applied to cheese microbiology. 

In this review we illustrate concepts relevant to the description of microbial interactions using a network 
science framework. Then, we briefly review methods used for the inference and analysis of microbial association 
networks (MAN) and their potential use in the interpretation of the cheese interactome. Finally, since these 
methods can only be used for mining microbial associations, we review the experimental methods used to 
confirm the nature of microbial interactions among cheese microbes.   

1. Foreword 

Cheeses, like all fermented foods, are man-made dynamic ecosys-
tems, in which the environment is organic and the biota is made solely 
by microbes (bacteria, fungi and viruses; Gobbetti et al., 2018; Jonnala 
et al., 2018; Wolfe and Dutton, 2015), with a few exceptions in which 
arthropods play a more or less beneficial role (Carvalho et al., 2020; 
Marcellino and Benson, 2014). Microbial metabolism is among the main 
drivers of cheese sensory properties, and the dynamics of the microbiota 
strongly impacts cheese quality and safety (Gobbetti et al., 2018; Jon-
nala et al., 2018). Even when the complex microbiota of raw milk is 
drastically simplified by heat treatments and by the addition of defined 
starter cultures, and when ripening and storage are relatively short (like 
in fresh cheeses), microbial interactions are still important in deter-
mining the success of the fermentation. Obvious examples are para-
sitism, when lytic bacteriophages infect starter strains, or proto- 
cooperation among key starter species, like Streptococcus thermophilus 

and Lactobacillus delbrueckii subsp. bulgaricus or lactis (Blaya et al., 2017; 
Irlinger and Mounier, 2009). The other side of the spectrum is repre-
sented by raw milk cheeses produced with no starter or by using tradi-
tional undefined starters, and with longer ripening. In these cheese 
varieties, a complex pattern of microbial interactions and a succession of 
species and strains invariably develops and its control is key to cheese 
quality (Blaya et al., 2017; Gobbetti et al., 2018; Irlinger and Mounier, 
2009; Jonnala et al., 2018; Mayo et al., 2021). The complexity of mi-
crobial successions and interactions in surface ripened cheeses is well 
known (Irlinger and Mounier, 2009), and has been demonstrated in an 
elegant and comprehensive way in a series of recent studies (Bonham 
et al., 2017; Cosetta et al., 2020; Kastman et al., 2016; Niccum et al., 
2020; Wolfe et al., 2014; Zhang et al., 2018). 

In all ecosystems, several types of positive (commensalism, proto- 
cooperation) and negative (competition, amensalism, parasitism) in-
teractions are possible between couple of partners or among more 
complex modules and cliques, i.e., among groups of species which have 
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more interactions among them that with other species in the network 
(see Canon et al., 2020; D'Souza et al., 2018 for recent reviews). Even if, 
ultimately, co-culturing in the laboratory and/or in appropriate model 
systems is the only way to obtain in-depth knowledge on the nature of 
interactions (Cosetta and Wolfe, 2019; D'Souza et al., 2018; Wolfe et al., 
2014), the wealth of data provided by metataxonomic, metagenomic 
and metabolomics approaches provides ample opportunity to mine for 
microbial association networks (MAN) and metabolic networks (Laye-
ghifard et al., 2017; Liu et al., 2020; Röttjers and Faust, 2018). 

Microbial interactions in cheese and in other fermented foods have 
been the subject of recent comprehensive reviews (Blaya et al., 2017; 
Canon et al., 2020; Gobbetti et al., 2018; Mayo et al., 2021). A schematic 
representation of interactions (parasitism, commensalism, amensalism, 
competition, protocooperation) occurring in an idealized surface 
ripened cheese is shown in Fig. 1, with some of the interactions 
described in detail in Section 3 and Table 1. 

The ensemble of microbial interactions in cheese is best described 
using network concepts. Surprisingly, while network science approaches 
are frequent in the study of host and environmental microbiomes, they 
are much less so in food and dairy microbiology (Parente et al., 2018). 
This is rather unfortunate, given the potential of the study of microbial 
interactions in food for the development of new processes and products 
and for the optimization of microbiome intervention strategies even in 
complex communities (Canon et al., 2020). 

In this review, we will briefly illustrate network approaches to the 
study of microbial communities, related terminology and methods. We 

will then review recent literature using high-throughput sequencing or 
meta-omic approaches for the study of microbial interactions in cheese 
microbial communities. Finally, we will point out to the possibility of 
using the metataxonomic data stored in the DairyFMBN database 
(Parente et al., 2020) for the mining of microbial associations in cheese. 

2. Network analysis concepts and approaches to the study of 
microbiota 

2.1. Network science and microbial ecology 

A network is, simply put, a collection of objects (nodes, vertices) 
connected by interactions (edges, arcs, links) (Newman, 2010): a sche-
matic network representation of microbial interactions in cheese is 
shown in Fig. 1. Because of the flexibility and power of this concept, 
network science is used in representing and understanding interactions 
in very diverse fields (physics, social sciences, biology, etc.). 

In the study of microbial associations, nodes can be of the same type 
(unipartite networks, as in microbial association networks, in which the 
nodes are microbial taxa, Operational Taxonomic Units, OTU, or 
Amplicon Sequence Variants, ASV) and the edges represent some sort of 
true or inferred association (positive or negative), which may or may not 
reflect a true biological interaction. Bipartite networks (i.e. networks 
with nodes belonging to two different types) are also of interest: net-
works of this type include Phage-Bacteria Interaction Networks (PBINs; 
Flores et al., 2011) and Food-Microbe interaction networks (which have 

Fig. 1. A simplified representation of a po-
tential interaction network in a surface 
ripened cheese. Red arrows indicate in-
teractions which have a negative effect 
(often referred to as mutual exclusion in-
teractions) on one or both partners. Green 
arrows indicate interactions which have a 
positive effect on one or both partners (often 
referred to as co-occurrence interactions). 
0 indicates no effect, + a positive effect, − a 
negative effect. Numbers refer to examples 
in Table 1. The direction of the arrows may 
be used to indicate the direction of the 
interaction. Parasitism (1) due to bacterio-
phage (∅) infections of starter bacteria, like 
Streptococcus thermophilus (ST) is one of the 
most frequent, and technologically relevant 
interactions in cheesemaking, together with 
the protocooperation between starter species 
(2), like S. thermophilus and Lactobacillus 
delbrueckii subsp. bulgaricus (LDB). Starter 
lactic acid bacteria (SLAB) frequently inhibit 
pathogenic or spoilage bacteria, like Escher-
ichia coli (EC) by competition, amensalism or 
ecosystem conditioning (decrease of pH, 
which in turn, due to syneresis and loss of 
water during ripening, results in reduced 
aW). The latter (decrease in pH due to pro-
duction of lactic acid, increase in pH due to 
consumption of lactic acid or proteolysis) is 
a frequent, indirect type of interaction. In 
some commensalistic (7) relationships 
products of the metabolism of one microor-
ganism may become substrate for another 
like the use of galactonate produced by the 
yeast Debaryomyces hansenii (DH, which is 
also responsible of increasing the pH) by 
Brevibacterium aurantiacum (BA) and Hafnia 
alvei (HA). In turn, H. alvei may develop 

commensalistic or proto-cooperative interactions, since siderophores produced by HA stimulate BA, which in turn releases energy compounds for HA from proteins 
and lipids. Complex cheese consortia are also implicated in the inhibition of Listeria monocytogenes (LM) by amensalism or competition (11). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)   
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Table 1 
Some examples of microbial interactions between cheese microorganisms and of methods used for their study in model systems or in cheese.   

Type of 
interaction 

Cheese Partner(s) (effect/ 
cost)a 

Mechanism Time and space 
dependence 

Methods References  

1 Parasitism All varieties Lytic bacteriophages 
(+/0) 
Several LAB (− /€) 

Infection followed by lytic 
cycle 

Same time. 
Contact 
required. 

Traditional culture-based 
methods, molecular 
methods, lineage specific 
qPCR, metagenomic 
approaches, matching 
CRISPR arrays and targets 

Dairy bacteriophages 
reviewed in (Pujato 
et al., 2018; Erkus 
et al., 2013;  
Somerville et al., 
2019; Walsh et al., 
2020)  

2 Proto - 
cooperation 

Fresh cheese, 
some semi- 
hard and 
cooked 
varieties, 
undefined 
starters 

S. thermophilus (+/0) 
L. delbrueckii subsp. 
bulgaricus (+/0) or L. 
delbrueckii subsp. lactis 

Cross-feeding (CO2, formic 
acid, amino acids, vitamins, 
amines, fatty acids), 
modification of the 
environment (O2 

consumption) 

Same time. No 
contact required 
(diffusible 
products) 

Growth kinetics, 
metabolome and 
transcriptome analysis in 
monocultures and mixed 
cultures, metagenome 
analysis 

Reviewed in ( 
Sieuwerts et al., 2008;  
Herve-Jimenez et al., 
2009; Sieuwerts et al., 
2010; Somerville 
et al., 2021)  

3 Commensalism Surface 
ripened 
cheeses 

Brevibacterium linens/ 
aurantiacum 
(producing 
hydroxamate 
siderophores) (=/€) 
Brevibacterium linens/ 
aurantiacum 
(siderophore negative 
strains) (+/0) 

Siderophore negative strains 
are limited in the cheese 
environment by competition 
for Fe3+; siderophores 
produced by other strains 
allow growth 

Same time. No 
contact required 
(diffusible 
products) 

Coculture experiments, 
Comparative genomics, 
metabolomic analysis 

(Noordman et al., 
2006; Pham et al., 
2017)  

4 Competition Surface 
ripened cheese 

Penicillium spp. (?/?) 
Glutamicibacter 
arilaitensis (− /€) 

The presence of the mould 
generates competition for 
microelements, which 
induced production of a Zn2+

chelating agent 
(coproporphyrin III), which 
is also a pink pigment. At 
high concentration 
coproporphyrin III may 
inhibit Penicillium 

Same time. No 
contact required 
(diffusible 
products) 

Co-culture experiments, 
metabolome analysis, 
imaging mass 
spectrometry, RNA-seq 

(Cleary et al., 2018)  

5 Commensalism Swiss-type 
cheeses 

Starter Lactic Acid 
Bacteria (=/0) 
Propionibacterium 
(+/0) 

SLAB produce lactic acid and 
release peptides and amino 
acids from caseins, which 
subsequently are used by 
Propionibacterium 

Succession 
(SLAB grow 
first); no contact 
required 
(diffusible 
products) 

Traditional co-culturing 
approaches 

(Baer, 1995; Fröhlich- 
Wyder et al., 2002)  

6 Commensalism Undefined 
strain starters, 
many cheeses 

Prt+ strains/species 
(=/€), Prt− strain/ 
species (+/0) 

Co-existence of proteinase 
negative and positive 
strains/species, due to the 
release of peptides by the 
proteinase: several examples 
in mixed cultures as 
representative cases of an 
interaction with some cost 
for one of the partners 

Same space and 
time (SLAB/ 
SLAB) same 
space, different 
time (SLAB/ 
NSLAB) 

Traditional co-culturing 
approaches, qPCR, 
metagenomic analysis in 
starter cultures, cheese 
and model cheeses 

(Desfossés-Foucault 
et al., 2014; Erkus 
et al., 2013; Juillard 
et al., 1996; Moser 
et al., 2018)  

7 Commensalism Surface - 
ripened 
cheeses 

Debaryomyces hansenii 
(=/0), Brevibacterium 
aurantiacum (+/€), 
and Hafnia alvei (+/0) 

D. hansenii provides 
ecosystem conditioning by 
removing lactic acid and 
increasing pH. Galactonate 
produced by D. hansenii is 
consumed by the two 
bacteria. A strong positive 
interaction exists between 
B. aurantiacum (which is 
stimulated by siderophores) 
and H. alvei (stimulated by 
glycerol and FAA) 

Succession 
(yeast/others) 
or same time. 
Cheese surface. 
No contact 
required. 

Co-culture experiments in 
mini-cheese model, RNA- 
seq analysis and soluble 
metabolome analysis by 
UHPLC-MS and HPLC-UV 
in mini-cheese models, 

(Pham et al., 2019)  

8 Commensalism Natural rind 
cheeses 

Staphylococcus 
equorum (+/0) 
Scopulariopsis or 
Penicillium (=/€) 

Selected moulds stimulate 
the growth of S. equorum by 
modulating iron 
(siderophore production) 
and possibly amino acid 
availability. 

Same time. No 
contact 
required. 

Co-culture experiments. 
Comparative genomics, 
RNA-seq 

(Kastman et al., 2016)  

9 Other +
competition 

Bloomy rind 
cheese (Saint 
Nectaire) 

Serratia 
proteamaculans (− /?) 
Mucor lanceolatus 
(− /?) 

Mucor specifically facilitates 
the dispersal of motile 
Serratia 

Same time. 
Contact 
required. 

Co-culture experiments. 
Imaging, meta- 
transcriptomics, 
transposon mutagenesis, 
comparative genomics 

(Zhang et al., 2018)  

10 Other Model surface 
ripened cheese 

Volatiles (including acetic 
acid) produced by 

Same time. No 
contact required 

(Cosetta et al., 2020) 

(continued on next page) 
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been frequently used as a descriptive tool for the structure of microbial 
communities in foods: see Parente et al., 2018 for a review). In this case, 
edges represent simply the occurrence of a relationship (a bacteriophage 
infecting a bacterial strain, the presence of a given taxon in a given 
sample), which can be sometimes weighted (see below). More complex 
networks (sample-OTU-metabolite) can be built using multi-omic data 
(Liu et al., 2020). 

In most cases, networks used for representing microbial associations 
are undirected (i.e., the edge does not point from one of the nodes to 
another, because the relationship is considered to be reciprocal). On the 
other hand, parasite-host networks are usually represented as directed 
networks, with edges going from phages to bacteria. Directed networks 
can be used to represent in a more meaningful way ecological re-
lationships like commensalism, amensalism or parasitism, while mutu-
alistic relationships and competition are typically undirected (Canon 
et al., 2020; D'Souza et al., 2018). 

Networks can be weighted if the edges have some sort of integer or 
real number associated to them, representing the “strength” of the as-
sociation (i.e., a correlation or distance value for association networks, 
abundance of a taxon in a given sample, some measure of the virulence 
of a phage toward a host, etc.). 

Networks can be characterized by many network- and node- or edge- 
level indices, whose analysis may provide insights in the structure of the 
microbial community, allow the quantitative comparison of networks 
observed under different circumstances or assist in the identification of 
microorganisms which may have a prominent role in the structure and 
functioning of the microbial community (see Sections 2.1.1 and 2.1.2). A 
detailed review of these indices is beyond the scope of this work, and 
interested readers are referred to comprehensive reviews on microbial 
interaction networks (Layeghifard et al., 2017; Liu et al., 2020). Here we 
will present a simplified description of the most important indices, 
which is essential for the interpretation of the information provided in 
the following sections. 

2.1.1. Global network properties 
Several network level indices allow to typify network properties, to 

evaluate robustness of the microbial community toward disturbances 
and to compare networks occurring in different biomes or in the same 
biome under different conditions (Layeghifard et al., 2017; Peschel 
et al., 2020; Röttjers and Faust, 2018). In host biomes, disease is known 
to modify microbial association network structure (Ma, 2018; Röttjers 
and Faust, 2018). In a similar way, comparison of global network 
properties may provide insights on the effect of technological in-
terventions (i.e. effect of starter addition and/or heat treatment), 
bacteriophage infection or spoilage on the structure of cheese microbial 
association networks. 

The number of nodes and edges, the average degree, the con-
nectance, the average path length (the average distance between pair of 
nodes), the node degree distribution and the global clustering coefficient 
are all important measures of network structure. The average degree, is, 
simply, the average number of edges per node. Connectance is defined as 
the ratio between the actual number of interactions with the potential 
number of interactions (Delmas et al., 2019; Dunne et al., 2002). The 

node degree distribution is the distribution of the probability that a node 
has a given degree. The clustering coefficient is a measure of the orga-
nization of the network in modules or cliques with a higher average 
degree among them than with other nodes. Microbial association net-
works in host and environmental biomes have been found to differ 
significantly from random networks and to have a scale-free structure. 
While in random networks each node has an equal probability of having 
an edge with another node, with a node degree distribution that follows 
a Poisson distribution, microbial interaction networks tend to have a 
power law node degree distribution, in which most nodes have a small 
degree while some, the hubs, have a large number of edges. This, in turn, 
results in the so-called small-world properties (low average path length, 
highly modular structure). The occurrence of highly interconnected 
hubs and of densely connected modules of nodes should result in resis-
tance to disturbance (i.e., removal of random nodes or edges should not 
significantly change the structure of the network). On the other hand, 
removal of hub species or of edges connecting different modules can 
result in significant disruptions. Food MAN have been found to be 
simpler, to lack the small-world, scale free structure of environmental 
MAN, and to have at most a truncated power-law distribution of node 
degrees (Layeghifard et al., 2017; Parente et al., 2018; Röttjers and 
Faust, 2018). Since MAN can include both positive and negative asso-
ciations, another important network property is the proportion of pos-
itive edges (PEP) (Faust et al., 2015). Changes in the ratio of positive to 
negative interactions may be considered markers for shift from a 
“healthy” to a “diseased” microbiome (Ma, 2018). 

2.1.2. Node and edge properties 
Several individual node properties contribute to the identification of 

keystone taxa in microbial association networks. Keystone taxa have 
been defined as “highly connected taxa that individually or in a guild 
exert a considerable influence on microbiome structure and functioning 
irrespective of their abundance across space and time. These taxa have a 
unique and crucial role in microbial communities, and their removal can 
cause a dramatic shift in microbiome structure and functioning” 
(Banerjee et al., 2018). Properties which have been used to measure the 
centrality of a taxa or its importance in an ecosystem are the degree, the 
weighted degree, other measures of how central is a node in the network 
(closeness, betweenness or eigenvector centrality) and the clustering 
coefficient). Their definition and significance have been reviewed 
recently (Layeghifard et al., 2017; Liu et al., 2020; Röttjers and Faust, 
2018). 

Hub species are characterized by high values of centrality measures 
(degree, closeness and eigenvector centrality) while bottlenecks are 
characterized by high values of betweenness centrality (the number of 
shortest paths passing through a node) and both may have key roles in 
ecosystem functioning and stability. 

The detection of modules of highly interconnected nodes (with a 
high clustering coefficient) may help in the identification of groups of 
taxa which share the same niche or may have strong metabolic 
interactions. 

It is worth noting that betweenness can be also calculated for edges: 
edges which have high edge betweenness are important for the structure 

Table 1 (continued )  

Type of 
interaction 

Cheese Partner(s) (effect/ 
cost)a 

Mechanism Time and space 
dependence 

Methods References 

Galactomyces 
geotrichum (?/?), Vibrio 
casei (+/− ) 

G. geotrichum strongly 
stimulate the growth of 
V. casei 

Co-culture experiments 
on cheese agar, RNA-seq, 
meta-taxonomic analyses  

11 Amensalism, 
competition 

Surface 
ripened cheese 

Smear cheese 
consortia (0/€), 
Listeria monocytogenes 
(− /− ) 

Microbial consortia of 
surface ripened cheese 
inhibit L. monocytogenes by 
competition or amensalism 
(bacteriocin production) 

Same time. No 
contact required 

Co-culture experiments in 
vitro, simulated cheese 
environments, cheeses 

(Callon et al., 2014;  
Eppert et al., 1997;  
Imran et al., 2010)  

a Effect: + stimulation of growth, = no effect, − inhibition/death; cost: 0 no cost, € metabolic cost, ? unclear. 
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of the network, because their removal disrupts the network. 

2.2. Methods for the inference and visualization of networks in 
microbiome studies 

Because of the importance of network approaches in the description 
and understanding of microbial communities, a large variety of methods 
have been developed for the representation and inference of microbial 
association networks. We will briefly describe the tools used for network 
visualization and those used for the inference and analysis of microbial 
association networks and of bipartite networks. 

2.2.1. Network visualization tools 
Visual representation and analysis of bipartite sample-OTU networks 

(in which edges simply represent the occurrence of an OTU in a sample, 
possibly weighted by the relative abundance) can be used as a descrip-
tive tool for the identification of clusters of samples or taxa and for the 
identification of the core and accessory microbiota (Parente et al., 
2016). Node and edge tables derived from metataxonomic data (like 
those generated using QIIME's make_otu_network.py script) can be im-
ported in graph visualization software (like Gephi, https://gephi.org/, 
or Cytoscape https://cytoscape.org/; Shannon et al., 2003). The Shi-
nyFMBN app also provides a simple way of exporting data extracted 
from the FoodMicrobionet database (Parente et al., 2019) to Gephi and 
Cytoscape. These tools allow to filter nodes, calculate network and node 
statistics, use them or node or edge metadata to apply styles (shapes, 
sizes, colours, etc.) to subsets of nodes and edges, and to rearrange the 
graph using layout algorithms (which rearrange the position of node and 
edges in a 2-D or 3-D space) with the purpose of identifying and visu-
alizing modules or hubs. As a result, the core microbiota, including taxa 
which are consistently present in a large number of samples, usually 
appears in the centre of the graph, while members of accessory micro-
biota, which is are only occasionally present, appear at the periphery. 
The interested readers are referred to De Filippis et al. (2014) for the first 
application of this approach in foods and Parente et al. (2016) for further 
examples on how application of styles (colour, size, thickness) to nodes 
and edges can enhance the visualization of bipartite food-microbe 
networks. 

While both Cytoscape and Gephi provide tools for obtaining network 
and node statistics, they are most frequently used using menu driven 
interfaces and visualizations are hardly reproducible. R packages 
(including igraph and GGraph, among others) are more difficult to use 
and less flexible in terms of visualization options but have a significant 
advantage in terms of reproducibility and transparency of 
documentation. 

Graph visualizations are visually pleasant and may provide some 
insight on the structure of microbial communities, but their interpreta-
tion is highly subjective and, due to the large number of options of 
layout algorithms, may be misleading and unreproducible if not prop-
erly documented. 

2.2.2. Inference of microbial associations 
While simple network visualizations are relatively straightforward, 

the inference of microbial associations (or of more complex associations 
in meta-omic data) requires specialized tools (Liu et al., 2020; Peschel 
et al., 2020; Röttjers and Faust, 2018). The most frequently used data are 
16S rRNA marker gene data, which are affected by sparsity and 
compositionality. 

Sparsity is related to the occurrence of a large number of zeros in 
OTU or ASV abundance tables. It is usually difficult to establish if the 
zeros are simply missing data due to insufficient sequence depth or if 
they are structural zeroes, reflecting the absence of a given feature. 
Compositionality is due to the fact that the true abundance of the target 
gene is rarely measured and relative frequencies are often used in OTU 
or ASV abundance tables. Even when absolute abundances are used, 
they suffer from a compositional bias, since, when the increase in 

abundance of a given taxon must be accompanied by the decrease in 
abundance of less abundant taxa. 

In addition, in several cases, indirect correlations may be detected. 
Indirect correlations occur when an association between taxa A and B is 
inferred if both are associated with taxon C or with a common envi-
ronmental condition. 

Further difficulties ensue from the limitations of amplicon targeted 
approaches, whose resolution is often limited to the genus level. Finally, 
time-series data with enough time points to use model-based approaches 
for the inference of microbial interactions are relatively rare (Röttjers 
and Faust, 2018), and methods developed for cross-sectional data (i.e., 
data obtained for a collection of related samples which do not represent 
a time series) are more common. 

These difficulties prevent the use of simple correlation measures 
between the abundance of different OTU/ASVs to infer the occurrence of 
an association, which, in turn, may represent a true biological interac-
tion, and have led to the development of specific methods for the 
transformation of data prior to analysis or for the calculation of alter-
native association measures. A complete review of the methods and al-
gorithms used to infer microbial association networks for cross-sectional 
data, of their strengths and weaknesses is beyond the scope of this paper: 
this is an active area of research and scores of papers have been pub-
lished in recent years. The interested readers are encouraged to peruse 
one of the many recent reviews on the subject (Jiang et al., 2019; Liu 
et al., 2020; Röttjers and Faust, 2018). 

Here we will briefly describe a few approaches which have been used 
more frequently and tested in comparative studies. 

SparCC (Sparse Correlations for Compositional data; Friedman and 
Alm, 2012) infers networks based on Pearson correlations on log-ratio 
transformed data, thus addressing, at least in part, the issue of compo-
sitionality, and has been frequently used. CCREPE (Compositionality 
Corrected by REnormalization and Permutation; Faust et al., 2012), also 
known as ReBoot, uses permutations and renormalization to remove 
correlations due to compositionality alone and is implemented in the 
CoNet app (Faust and Raes, 2016) with a variety of correlation, simi-
larity- and dissimilarity-based measures, which can be used in an 
ensemble approach. SPIEC-EASI (SParse InversE Covariance Estimation 
for Ecological Association Inference; Kurtz et al., 2015) is based on 
estimation of conditional covariances, is robust to both compositionality 
and indirect correlations, and has performed well in benchmarking, 
especially when using the neighbourhood selection method (also known 
as the MB method (Meinshausen and Bühlmann, 2006). Another recent 
method based on estimation of semi-parametric correlation and infer-
ence of conditional dependence is SPRING (SemiParametric Rank-based 
approach for INference in Graphical model; Yoon et al., 2019). 

Some of the methods mentioned above (SPIEC-EASI, SPRING) have 
been reported to be robust toward indirect associations, but more direct 
methods to remove and/or identify the effect of environmental variables 
(pH, aW, salt in moisture, temperature, etc.) exists. The CoNet app in 
Cytoscape (Faust and Raes, 2016) does allow to process metadata and 
infer associations between OTU/ASV and environmental variables. 
FlashWeave, a high throughput method for large scale network infer-
ence is also able to remove indirect correlations by including informa-
tion on sample properties and is an extremely promising tool, given its 
ability to handle large composite datasets (Tackmann et al., 2019). 
Furthermore, an approach based on Joint Species Distribution Models 
and Poisson-Lognormal models has been claimed to be able to remove 
edges due to association between OTU/ASV and environmental vari-
ables, but has not been tested on microbial communities (Chiquet et al., 
2021). While there is clearly a need to explicitly model the effect of 
covariate on microbial association networks, this has only rarely been 
done and, rather unfortunately, covariates are very rarely deposited as 
sample metadata in sequence repositories. 

Finally, it is well known that network inference is method specific, 
and specific interactions, like amensalism, may be undetectable for 
cross-sectional studies (Weiss et al., 2016), but we have recently shown 
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that combining several methods may help in detecting stable and 
scientifically reasonable associations in food microbiomes (Parente 
et al., 2018, 2022). In fact, using a combination of three approaches 
(CoNet, SparCC and SPIEC-EASI) we were able to detect >40 co- 
presence and >40 mutual exclusion relationships in association net-
works for a variety of foods which were detected by at least 2 methods. 
The associations usually included known co-presence relationship be-
tween beneficial bacteria or between spoilage bacteria and mutual 
exclusion relationships between beneficial and spoilage organisms. 
More recently (Parente et al., 2022), we inferred microbial association 
networks for 34 studies on cheese microbiota using two correlation- 
based methods (SparCC and CCREPE) and two conditional indepen-
dence methods (SPIEC-EASI and SparCC) and detected several stable (i. 
e. association detected by more than one method in more than one 
study) associations at the genus and species level, including both well- 
known associations and novel associations which need experimental 
confirmation. 

2.2.3. Software for the inference of microbial association networks 
The scarcity of studies on the inference of microbial association 

networks in cheese (and in food in general) may have been, at least in 
part, due to the delay with which approaches base on high throughput 
sequencing methods have been used in foods compared to other biomes 
and to the lack of user-friendly software for network inference, char-
acterization and comparison. 

The CoNet app in Cytoscape has been for a long time the only user 
friendly, menu driven tool for network inference and analysis (Faust and 
Raes, 2016). Although it does provide different methods for network 
inference, it does not allow network comparisons. 

A number of R packages allow the inference of microbial associa-
tions, including SpieacEasi, (Kurtz et al., 2015), which implements both 
the SparCC and SPIEC-EASI methods, and SPRING (Yoon et al., 2019). A 
comprehensive and relatively user-friendly R package (NetCoMi, 
Peschel et al., 2020) for network inference with a large variety of 
methods, which also includes tools for estimation of network and node 
statistics, network visualization and formal network comparison, has 
recently become available. 

Web based platforms, like MetagenoNets (Nagpal et al., 2020) are 
also available, thus empowering users who lack coding abilities. 

3. Experimental approaches for the validation of interactions 
predicted by microbial association networks inference 

Computational tools for the inference of microbial association net-
works are essentially explorative tools: although they provide a variety 
of information related to the structure of the interaction network, on the 
occurrence of potentially novel interactions and on keystone “species”, 
the interactions must be confirmed by in-vitro or in-vivo experiments. In 
a recent review Cosetta and Wolfe (2019) exemplified this approach in 
the sequence pattern – process – mechanism. In the pattern detection 
approach network inference tools can be used to identify statistically 
robust interactions. These are then tested in the process phase in 
experimental microbial communities, possibly in model systems. 
Finally, in the “mechanism” phase, metabolomic and transcriptomic 
approaches are used to identify the genetic and metabolic bases for the 
interaction. There are several examples for experimental approaches 
validating predictions based on microbial association network inference 
for environmental and host biomes (see Röttjers and Faust, 2018 for a 
review). As to cheese microbial communities, potential interactions are 
usually inferred by more heuristic approaches based on simple obser-
vations on the composition of microbial communities rather than on 
formal criteria. 

Interactions in cheese are frequently mediated by diffusible or vol-
atile metabolites (including volatile organic compounds) and/or by 
physical contact, and different approaches are used to de-construct in-
teractions in vivo or in vitro. 

With the exception of experiments performed in-vivo (i.e., in real 
cheese systems), simplified communities (2–4 members) are most 
frequently used, even if much larger assemblages have been tested in 
some cases (Callon et al., 2011, 2014; Imran et al., 2010). Simplified 
communities grown in liquid media are clearly the easiest way to clarify 
the mechanisms of microbial interactions, but they may be insufficient 
to resolve the complex and dynamic interplay in cheese, especially in 
cheeses produced with undefined starters, raw milk varieties or surface 
ripened cheeses. 

In fact, several commensalistic interactions are, in fact, indirect: they 
are due to niche conditioning (change of pH, production/consumption 
of substrates, release of nutrients) and most microbial growth occurs in 
different life stages of the cheese (curd manufacturing, ripening) or at 
different locations (core, surface). Examples are the commensalistic in-
teractions between starter lactic acid bacteria (SLAB) and non-starter 
lactic acid bacteria (NSLAB) in cheeses ripened internally by bacteria; 
lactic acid bacteria (LAB) - propionibacteria in Swiss-type cheeses; LAB - 
fungi - surface flora in surface ripened cheeses; (Blaya et al., 2017; 
Gobbetti et al., 2018; Mayo et al., 2021; Sieuwerts et al., 2008; Smid and 
Lacroix, 2013). The interested reader is referred to the many excellent 
reviews (Blaya et al., 2017; Gobbetti et al., 2018; Mayo et al., 2021; 
Sieuwerts et al., 2008; Smid and Lacroix, 2013) which have been pub-
lished on this subject. Here we will concentrate on more direct in-
teractions, based on physical contact or exchange of soluble or volatile 
metabolites. 

Table 1 summarizes some representative interactions, together with 
the experimental approaches used for their study, ranging from simple 
growth experiments, occasionally with modelling of growth kinetics, to 
meta-transcriptomic and metabolomic approaches in cheese or model 
systems. Most studies analyse commensalistic relationships, either due 
to ecosystem conditioning or to exchange of metabolites, and the ma-
jority is focused on surface ripened cheeses and bloomy rind cheeses, in 
which the development of desired sensory properties relies on complex 
interactions between LAB, Proteobacteria, Actinobacteria, Staph-
ylococcaceae, yeasts and moulds. 

Negative interactions due to bacteriophages (parasitism) are rela-
tively simple to study and have a profound impact on the structure and 
dynamics of microbial communities in cheese (Erkus et al., 2013; Pujato 
et al., 2018; Zotta et al., 2021). Because of their importance, bacterio-
phage - host interaction networks are reviewed in a separate paragraph 
(see Section 4). 

Amensalism due to production of bacteriocins is also important, both 
because it might affect the stability of mixed strain starters and because 
of potential uses in bio-preservation for the control of pathogenic and 
spoilage microorganisms (Silva et al., 2018). Furthermore, this phe-
nomenon is relatively easy to study in vitro (see Favaro et al., 2015; Lozo 
et al., 2021 for recent reviews). In addition, mining metagenomes for 
bacteriocin genes (Escobar-Zepeda et al., 2016; Lozo et al., 2021; Walsh 
et al., 2020), and using targeted methods for studying their expression in 
cheese is relatively easy (Trmčić et al., 2011). To our knowledge, there is 
no meta-transcriptomic data on the expression of bacteriocin genes in 
cheese during ripening. 

Complex interactions are responsible of anti-listerial activity of 
beneficial microorganisms which develop on surface-ripened cheeses. 
The inhibitory activity may be due to factors other than bacteriocin 
production, including competition, and studies in model systems (cheese 
agar) have shown that complex consortia are needed, and that activity 
varies significantly with their composition and complexity (Callon et al., 
2014; Imran et al., 2010). 

Amensalism can be strongly affected by the solid nature of the cheese 
matrix: cheese moisture and even the internal environment of colonies 
may affect the diffusion of relatively large molecules (Floury et al., 2015; 
Guitián et al., 2019) like bacteriocins but also, in the short term, of 
smaller molecules. In fact, spatial distribution of colonies and diffusion 
of molecules within and between colonies in or on the cheese matrix 
may significantly affect cheese quality for several reasons. First of all, 
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except when cells or microcolonies are in close proximity, interactions 
are probably not relevant. Gradients within a single colony may be 
important in affecting the growth in different locations of a colony 
(Malakar et al., 2000, 2003), although the buffered environment of 
cheese may prevent the existence of pH microgradients, at least in 
microcolonies (Jeanson et al., 2013). Inoculum level may affect size and 
distribution of microcolonies and this, in turn, has been shown to affect 
cheese composition (Boucher et al., 2015a,b; Jeanson et al., 2010), 
although, in the long term, it might not affect the distribution of small 
soluble metabolites implicated in some cross-feeding relationships be-
tween SLAB and LAB (Czárán et al., 2018), at least in cheeses internally 
ripened by bacteria. 

The situation is quite different in mould ripened cheeses and surface 
ripened cheeses. In fact, the composition of the microbiota on the sur-
face and core of several cheeses (including cheese internally ripened by 
bacteria) is significantly different (see Jonnala et al., 2018 for a review) 
and differences in ecological conditions may strongly affect interactions 
between microorganisms and vice-versa. In Stilton cheese, the occur-
rence of mixed micro-colonies close to the internal veins formed by the 
mould was shown by Fluorescence In Situ Hybridization (Ercolini et al., 
2003) and this was hypothesized to be due to commensalism. However, 
in the same cheese, Lactococcus and Leuconostoc formed in other parts of 
the curd pure culture microcolonies, and microcolonies identified as 
Lactiplantibacillus plantarum or tentatively identified as Latilactobacillus 
curvatus appeared in different location (underneath the crust or close to 
the veins). 

In conclusion, imaging techniques are certainly most useful in 
studying the spatial organization of interacting microorganisms in 
cheese (Hickey et al., 2015), but mass-spectrometry techniques may also 
be of great importance in evaluating the importance of compounds like 
siderophores (Cleary et al., 2018) or possibly bacteriocins (Hindré et al., 
2003). 

Microbial interactions on cheese rinds may affect in a complex way 
the survival and growth of Listeria monocytogenes and Escherichia coli, 
two pathogens which have been associated with foodborne outbreaks 
due to the consumption of surface-ripened cheeses (Fusco et al., 2020). 
Co-cultivation with bacteria found on the surface of cheese (Brevi-
bacterium, Psychrobacter) has been found to affect the expression of genes 
whose transcription is regulated by the global stress regulator σB (Anast 
and Schmitz-Esser, 2020) and the expression of a small non coding RNA, 
thus suggesting that stress due to competition is involved in this inter-
action. Random Barcode Transposon Sequencing and RNA-Seq have 
recently been used to identify genes which are related to the survival and 
growth in a cheese model of Escherichia coli, when grown alone or in 
binary and multiple associations with cheese-rind microorganisms like 
Geotrichum candidum, Hafnia alvei and Penicillium camemberti (Morin 
et al., 2018). Important genes were related to amino acid synthesis or 
metabolism, iron acquisition or response to toxic compounds and 
oxidative stress, thus confirming once again the importance of these 
factors in fitness and interactions in cheese. In addition, growth in co- 
culture demonstrated that the cheese species might exert both positive 
effects (by providing free amino acids) and negative effects (by amens-
alism through the production of toxic compounds or oxidative stress). 
Incidentally, this experiment also showed that pairwise interactions may 
be not representative of the growth in more complex (4 members) 
communities. Although this highlights the limitations of experiments in 
model systems, teasing out interactions in real systems may prove 
exceedingly difficult, due to variability in time and space and to the 
complex and dynamic nature of the microbial communities, especially in 
surface ripened cheeses. 

The collection and interpretation of multi-omic data is probably the 
most promising approach for the study of microbial interactions in 
cheese during curd production and ripening, although cost and 
computational power issues may still limit the collection of large lon-
gitudinal data sets needed to use model-based approaches for inferring 
interactions. The most extensive demonstration of the value of complex, 

integrated approaches, for finely dissecting the complex interactions in 
cheese microbial communities is probably the on-going work on surface 
ripened cheeses (Bonham et al., 2017; Cleary et al., 2018; Cosetta and 
Wolfe, 2020; Cosetta et al., 2020; Kastman et al., 2016; Niccum et al., 
2020; Wolfe et al., 2014; Zhang et al., 2018). Starting from an extensive 
metataxonomic and metagenomic characterization of the rind microbial 
communities of bloomy surface, washed rind and natural dry rind 
(Wolfe et al., 2014) from all over the world, and from the development 
of a detailed set of protocols for dissecting interactions in model cheeses 
(Cosetta and Wolfe, 2020), this group was able to provide detailed ev-
idence for the drivers which determine the diversity and functionality of 
microbial communities on the surface of cheeses. 

In fact, surface ripened cheeses provide an excellent model for the 
study of microbial interactions in an environment which, at least in part, 
can be mimicked in the laboratory under the controlled conditions 
which are needed to dissect the nature of the interactions and establish 
cause-effect relationships. 

First of all, cheeses which are surface ripened by filamentous fungi 
(thus resulting in a bloomy rind, like Camembert, Brie, Saint Nectaire; 
Spinnler, 2017) or by complex consortia of yeasts, moulds and bacteria 
(washed rind cheeses, like Limburger, Tilsit, Port du Salut, Taleggio, 
etc.; Mounier et al., 2017) are economically important worldwide. They 
include both traditional varieties (which are still produced by using raw 
milk and rely on natural contamination from the environment, with very 
limited use of starter cultures) and industrial varieties, which are pro-
duced using pasteurized milk inoculated with defined or undefined 
starters and in which the development of the surface microbiota is 
promoted by the addition of specific combinations of fungi and bacteria. 
The composition of the rind microbiota of these cheeses is significantly 
more complex that those of cheeses with hard, dry rind (Wolfe et al., 
2014), and the mature microbiota is the result of a complex succession: 
growth of halophilic, acid sensitive bacteria is made possible by the 
consumption of lactic acid by yeasts and by the increase in pH due to 
proteolysis caused by yeasts, moulds and, to a lesser extent, by LAB. 
Recent research using high-throughput sequencing approaches has 
shown that, beyond the complex assemblages of Actinobacteria (Brevi-
bacterium, Microbacterium, Arthrobacter, Corynebacterium) and Firmicutes 
(Staphylococcus) which have been traditionally been associated with the 
pigmentation and aroma of these varieties, several Proteobacteria, 
including Pseudoalteromonas, Hafnia, Vibrio, Halomonas, and Psychro-
bacter, may contribute with their metabolic activities (Afshari et al., 
2018; Jonnala et al., 2018; Wolfe et al., 2014). In addition, the increase 
in pH of the rind during ripening makes the growth and survival of 
pathogenic microorganisms easier, including Listeria monocytogenes and 
Shiga-toxin producing Escherichia coli. Understanding how these species 
are controlled by amensalism and competition is a key factor for the 
safety of these cheeses. Finally, several subdominant species which are 
prevalent on the surface of these cheeses are not deliberately inoculated 
(as part of the primary starter or the secondary ripening cultures). The 
role of cheesemaking environments, including different areas in the 
cheese plant and ripening shelves in the dispersal of these species and in 
the maintenance of a continuous inoculation source is therefore 
important in both providing beneficial and spoilage microbes (Bokulich 
and Mills, 2013; Guzzon et al., 2017). 

While environmental and technological conditions may determine 
some of the co-occurrence and mutual exclusion patterns among bac-
teria and fungi, microbial interactions (both trophic and non-trophic) do 
explain why some of these relationships systematically occur across 
cheeses from different geographical areas (Wolfe et al., 2014). Apart 
from indirect interactions (de-acidification of the cheese surface due to 
growth of yeasts or moulds), several direct interactions are known to 
exist (Mayo et al., 2021; Mounier et al., 2008). Competition for micro-
elements, with interactions mediated by exchange of siderophores or 
other metal chelators is frequent in surface ripened cheeses as is 
competition for folic acid, which can be alleviated by the exchange of 
corrinoids (modified tetrapyrroles with a cobalt centre, which include 
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vitamin B12), a frequent mechanism for microbial interactions (see 
Table 1; Abreu and Taga, 2016). Below, two examples from recent 
studies are described in more detail. 

Clear-cut classification of microbial interactions in the framework of 
those listed in Fig. 1 and Table 1 may be difficult. Competitive re-
lationships may hide more subtle relationships between partners: on the 
surface of bloomy rind cheeses motile proteobacteria like Serratia pro-
teamaculans can exploit the network of hyphae formed by fungi like 
Mucor lanceolatus for dispersal: motile cells move along the water film on 
the lax hyphal growth formed by the fungus to disperse on the surface of 
the cheese, thus colonizing a larger area (Pujato et al., 2018). The 
relationship is somewhat specific and no dispersal or significantly lower 
dispersal is observed with other cheese fungi forming denser hyphal 
networks. Dispersal ability also varies among strains of Serratia. On the 
other hand, as in many other cases, some competition is observed be-
tween the two partners. RNA-seq analysis of Serratia grown in co-culture 
with Mucor showed that co-growth alters the supply of nutrients and 
metabolites and the metabolism of Serratia, but no significant difference 
in the expression of genes related to motility and quorum-sensing was 
found. Both transposon mutagenesis and comparative genomics sup-
ported the fact that genes related to flagellin production (and hence to 
motility) are essential for dispersal, but also provided proof that other 
genes are implicated in the relationship between these two species: a few 
mutants were able to kill Mucor, while others showed similar dispersal 
but altered colony morphology. In the same paper the authors elegantly 
demonstrated that fungal networks dramatically affect the structure of 
the microbial community and that dispersal, as well as other interactions 
(competition, amensalism) is implicated. In fact, several motile Proteo-
bacteria could disperse on fungal networks, while motile and non-motile 
species of Firmicutes and Actinobacteria showed limited dispersal or no 
dispersal. Fungal growth may be therefore responsible for better growth 
of Proteobacteria on the surface of bloomy rind cheeses. 

While many interactions may require a more or less close contact 
between partners, some are mediated by volatile compounds. Recently 
(Cosetta et al., 2020) it has been shown that volatile compounds pro-
duced by moulds isolated from bloomy or washed rind cheeses (Gal-
actomyces geotrichum, Debaryomyces hansenii, Penicillium sp., 
Scopulariopsis sp., Fusarium domesticum) strongly stimulate or inhibit the 
growth of selected Proteobacteria (with Vibrio being strongly stimulated, 
and Pseudomonas often inhibited), and contribute to explaining the 
abundance of these species on cheese rinds. In the case of Vibrio casei, 
stimulation was related to significant changes in the transcriptome, and 
free fatty acids and esters of free fatty acids produced by the fungal 
partners were implicated in the relationship. 

4. Future prospects 

4.1. Does inference of microbial association networks provide useful 
information? 

Even with all limitations related to the inference of association net-
works from metataxonomic data (see Section 2, and Röttjers and Faust, 
2018 for a review), microbial association network inference offers 
invaluable information which may then be used to guide experiments to 
confirm the nature of the associations inferred in silico. The availability 
of simple to use workflows to calculate network properties and to 
compare networks (Peschel et al., 2020) can be used to formally test 
hypotheses on the effect of operational parameters (heat treatment, 
spoilage, use of starter cultures, etc.) on the structure of association 
networks. The networks structure of host microbiomes is known to be 
dramatically affected by disease (Layeghifard et al., 2017; Liu et al., 
2020; Ma, 2018) and this has been proven to be true for the effect of 
mastitis on microbial communities in milk (see Parente et al., 2020, for a 
review). It is tempting to speculate that a given set of network properties 
may be associated to “healthy” cheese microbiomes in high quality 
cheeses, and that spoilage or sensory profiles deviating from those which 

are optimal for a given cheese may be associated, beyond the simple 
identification of biomarkers, to systematic changes in the structure of 
microbial association networks. 

Finally, analysis of microbial association networks may help to mine 
for previously unknown interactions among microorganisms relevant 
for cheese ripening and provide the basis for the design of microbiome- 
based starter cultures (Canon et al., 2020; Mayo et al., 2021). 

While a naïve use of microbial association network inference tools 
should be discouraged, their availability, in conjunction with complex 
metataxonomic databases as FoodMicrobionet and DairyFMBN (Parente 
et al., 2019, 2020) should significantly facilitate the mining of existing 
and new data for the inference of microbial associations. 

4.2. Down to the strain level 

One limitation of HTS targeting 16S rRNA gene is that, at the very 
best, they can provide taxonomic resolution at the genus and, some-
times, at the species level. Inference of Amplicon Sequence Variants 
and/or use of improved taxonomic databases may improve taxonomic 
resolution. On the other hand, biological interactions in cheese happen 
at the strain level, not at the species level (i.e., different strains of the 
same species can show a different interaction pattern). This is certainly 
true for bacteriophage-host interactions (Erkus et al., 2013, 2016) and 
has also been recently demonstrated for surface ripened cheeses (Nic-
cum et al., 2020). Bacteriophages strongly affect the structure and 
microdiversity of mixed strain starters (see Section 4.4 and Zotta et al., 
2021, for a review). Strain specific behaviours and response to positive 
(indirect effects due to change in pH; direct effects due to cross-feeding 
relationships possibly related to the availability of iron, vitamins, amino 
acids) and negative (amensalism, competition) relationships in simpli-
fied communities including combinations of different strains of Staphy-
lococcus equorum, Brachybacterium alimentarium, Brevibacterium 
aurantiacum and a Penicillium strain, in simulated cheese-rind experi-
ments, result in different community assemblies, which are reflected by 
changes in quality relevant feature (volatile compounds, colour). Strain 
specific relationships were also found in interactions mediated by vol-
atile compounds (Cosetta et al., 2020). 

Although HTS methods targeting protein-coding genes have been 
used to study the structure of population of key bacterial species (see 
Bertuzzi et al., 2018; Moser et al., 2018; Walsh et al., 2020 for recent 
reviews), they can only detect sequence variants of selected genes, not 
strains. Shotgun metagenomic approaches can provide full resolution for 
both bacterial strains and bacteriophages (Afshari et al., 2018, 2020; 
Somerville et al., 2019, 2021; Walsh et al., 2020). However, the cost and 
the need for computing resources is still significantly higher compared 
to amplicon targeted approaches, and, as a result, shotgun metagenomic 
studies typically have a lower number of samples. In addition, the 
relatively low diversity of some cheese microbial communities may 
prevent the detection of the less abundant members of the microbiota: in 
fact, using a combination of short-reads and long-read de novo assem-
blies, Somerville et al. (2019, 2021) only found a very low number of 
strains in Emmental and Gruyere cheese and related starter cultures. 
This low diversity may be due to population bottlenecks caused by 
repeated propagation under selective conditions, and may be common 
to several traditional cheese types (Erkus et al., 2013, 2016; Zotta et al., 
2021). Improvements in sequencing technology and in bioinformatic 
pipelines (Hildebrand, 2021) and integration between metagenomics, 
metatranscriptomics and metabolomics, and custom designed qPCR 
methods to quantitatively monitor single strains or lineages may offer 
great potential for the study of ecological and metabolic interaction in 
cheese (Erkus et al., 2013; Niccum et al., 2020). 

4.3. Model-based approaches and effect of environmental variables 

Correlation or conditional dependence tools used for the inference of 
microbial association networks may be unable to detect some negative 
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interactions (like amensalism; Weiss et al., 2016), especially in cross 
sectional studies based on compositional data. In addition, they may be 
unable to properly separate the effect of habitat filtering if environ-
mental variables are not included (see Section 2.2.2). The number of 
time series studies using metataxonomic or meta-omic approaches for 
the study of the dynamics of cheese microbiota is increasing (Choi et al., 
2020; De Filippis et al., 2016; De Pasquale et al., 2014), and the lack of 
quantitative measurements of the target genes and the lack of metadata 
related to significant environmental variables (temperature, pH, aW, salt 
in moisture) prevents the use of model-based approaches for the infer-
ence of microbial interactions. In principle, using absolute quantifica-
tion of the total amount of target (16S RNA or RNA gene) is possible, and 
has been attempted in a few studies (Cauchie et al., 2017; Fougy et al., 
2016; Rouger et al., 2018; Zotta et al., 2019). However, only rarely have 
attempts been made to use these data to study the dynamics of members 
of the bacterial community (Zotta et al., 2019). In addition, when DNA is 
used as a target the question of the viability of the detected taxa remains 
open, and qPCR of 16S rRNA or rRNA gene can only provide partial 
indications of the real abundance of a given taxon, given the differences 
in copy numbers of these targets (Větrovský and Baldrian, 2013). On the 
other hand, lineage specific qPCR methods have successfully been used 
to study the dynamics of individual strains or groups of strains in cheese 
(Erkus et al., 2013, 2016). Viability PCR with ethidium monoazide 
(EMA) or propidium monoazide (PMA) is one method for inferring 
which portion of a microbial community is active (Emerson et al., 2017) 
and has been used in cheese (Erkus et al., 2016; Porcellato and Skeie, 
2016) and milk and milk environments (Kable et al., 2019). Although 
the technique needs to carefully standardized and validated, because of 
potential biases (Emerson et al., 2017) it is certainly a promising 
approach for the detection of the dynamics of the viable portion of 
cheese microbial communities. 

Therefore, in principle, use of time series metataxonomic data, 
possibly coupled to viability PCR and model-based inference methods 
may be feasible and may be used to test in cheese model complex in-
teractions after their preliminary evaluation in simplified laboratory 
models. MetaMis is one example of software packages using model- 
based inference (Shaw et al., 2016). More study with properly 
designed experiments is definitely needed in this area. 

4.4. Phage-bacteria interaction networks 

Bacteriophage infections of starter bacteria are the main cause of 
failure of cheese fermentations when defined starter cultures are used 
(Erkus et al., 2013; Zotta et al., 2021). Even when the more phage- 
tolerant undefined starter cultures are used, bacteriophages have a 
dramatic impact on the structure and dynamics of bacterial populations 
and communities (Erkus et al., 2013). In the latter case they have been 
found to be important in maintaining the equilibrium in complex asso-
ciation by a “kill the winner” mechanism (Erkus et al., 2013; Flores et al., 
2011): bacteriophages killing of the most competitive strains prevent the 
elimination of the slow-growing strains from cultures reproduced by 
back-slopping. Even if bacteriophages of starter species are more 
frequently studies, several non-starter bacteria which are important in 
surface ripened cheeses (Brevibacterium, Glutamicibacter, Microbacterium, 
etc.: Jacobs-Sera et al., 2020; Klyczek et al., 2017; de Melo et al., 2020) 
or Swiss-type cheese (Propionibacterium: Cheng et al., 2018) are also 
known and, in some cases might be responsible of defects in cheese. 
More recently, metavirome studies are being carried out in starter cul-
tures and in cheeses (Colombo et al., 2018; Dugat-Bony et al., 2020; 
Frantzen and Holo, 2019; Muhammed et al., 2017; Queiroz et al., 2021) 
and are allowing the discovery of novel bacteriophage-host interactions 
relevant to cheese ecology and quality. 

Phage-Bacteria Interaction Networks (PBINs) are typically repre-
sented as bipartite networks (see Section 2.1). Their statistical structure 
has been elucidated (Flores et al., 2011; Weitz et al., 2013), and dif-
ferences between the structure of PBINs for Lactococcus (which tend to 

show nestedness) and S. thermophilus (which tend to be modular) have 
been attributed to the differences in phage resistance mechanisms in 
these species. 

To the best of our knowledge, approaches based on bipartite network 
analysis have not been recently used to elucidate the structure of PBINs 
of dairy microorganisms. The development of new high-throughput 
approaches for the study of the metavirome in dairy products (see 
Zotta et al., 2021 for a recent review) combined with network science 
approaches is certainly promising in studying the evolution of 
bacteriophage-host relationships in natural starters and cheese in self- 
assembled communities (Canon et al., 2020) in cheese manufacture. In 
fact, many traditional cheeses are still produced by using undefined 
starters reproduced by back-slopping (Zotta et al., 2021), and dispersal, 
diversification, evolution and drift (Nemergut et al., 2013) all play a role 
in shaping the structure, dynamics and function of microbial commu-
nities, at least in early stages of cheese-making. 

Finally, beyond their role in regulating the structure of bacterial 
populations, bacteriophages (and prophages) may have other beneficial 
effects in microbial communities (induction of lysis, with release on 
nutrients for other members of the community; providing mechanisms 
for recombination and gene exchange; Paillet and Dugat-Bony, 2021). 

Use of the concepts and computational approaches of bipartite 
network analysis (available, for example in the R bipartite package; 
Dormann et al., 2009) may be of assistance to both scientists interested 
in studying the structure and evolution of PBINs in cheese and to starter 
companies seeking to develop phage rotation schemes by facilitating the 
identification of potential hub strains and the identification of modules 
of virulent phages and susceptible strains. 
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Franz, C.M.A.P., 2020. Microbial quality and safety of milk and milk products in the 
21st century. Compr. Rev. Food Sci. https://doi.org/10.1111/1541-4337.12568. 

Gobbetti, M., Di Cagno, R., Calasso, M., Neviani, E., Fox, P.F., De Angelis, M., 2018. 
Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends 
Food Sci. Technol. 78, 244–254. https://doi.org/10.1016/j.tifs.2018.06.010. 

Guitián, M.V., Ibarguren, C., Soria, M.C., Hovanyecz, P., Banchio, C., Audisio, M.C., 
2019. Anti-Listeria monocytogenes effect of bacteriocin-incorporated agar edible 
coatings applied on cheese. Int. Dairy J. 97, 92–98. https://doi.org/10.1016/j. 
idairyj.2019.05.016. 

E. Parente et al.                                                                                                                                                                                                                                 

https://doi.org/10.7554/elife.22144
https://doi.org/10.1007/s11306-014-0769-0
https://doi.org/10.1128/aem.02621-15
https://doi.org/10.1128/aem.02621-15
https://doi.org/10.1016/j.ijfoodmicro.2010.12.019
https://doi.org/10.1016/j.ijfoodmicro.2010.12.019
https://doi.org/10.1016/j.ijfoodmicro.2014.01.003
https://doi.org/10.1016/j.ijfoodmicro.2014.01.003
https://doi.org/10.3389/fmicb.2020.02088
https://doi.org/10.1016/j.idairyj.2020.104806
https://doi.org/10.1016/j.idairyj.2020.104806
https://doi.org/10.1016/j.ijfoodmicro.2016.10.012
https://doi.org/10.1186/s12866-018-1159-y
https://doi.org/10.1186/s12866-018-1159-y
https://doi.org/10.3389/fevo.2021.588292
https://doi.org/10.1007/s00253-020-10651-7
https://doi.org/10.1007/s00253-020-10651-7
https://doi.org/10.1128/msystems.00036-18
https://doi.org/10.1128/msystems.00036-18
https://doi.org/10.1111/jam.14046
https://doi.org/10.1016/j.mib.2019.09.004
https://doi.org/10.1016/j.mib.2019.09.004
https://doi.org/10.1002/cpmc.95
https://doi.org/10.1111/1462-2920.15223
https://doi.org/10.1111/1462-2920.15223
https://doi.org/10.1016/j.idairyj.2017.12.010
https://doi.org/10.1016/j.idairyj.2017.12.010
https://doi.org/10.1039/c8np00009c
https://doi.org/10.1371/journal.pone.0089680
https://doi.org/10.1038/srep21871
https://doi.org/10.1038/srep21871
https://doi.org/10.1111/1462-2920.15113
https://doi.org/10.1111/1462-2920.15113
https://doi.org/10.1128/aem.00757-14
https://doi.org/10.1128/aem.00757-14
https://doi.org/10.1111/brv.12433
https://doi.org/10.1016/j.ijfoodmicro.2014.03.004
https://doi.org/10.2174/1874213000902010007
https://doi.org/10.2174/1874213000902010007
https://doi.org/10.1016/j.fm.2019.103278
https://doi.org/10.1073/pnas.192407699
https://doi.org/10.1186/s40168-017-0285-3
https://doi.org/10.1186/s40168-017-0285-3
https://doi.org/10.1128/aem.63.12.4812-4817.1997
https://doi.org/10.1128/aem.63.12.4812-4817.1997
https://doi.org/10.1128/aem.69.6.3540-3548.2003
https://doi.org/10.1128/aem.69.6.3540-3548.2003
https://doi.org/10.1038/ismej.2013.108
https://doi.org/10.1016/j.ijfoodmicro.2016.03.027
https://doi.org/10.1016/j.fm.2016.02.004
https://doi.org/10.12688/f1000research.9050.2
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.3389/fmicb.2015.01200
https://doi.org/10.3389/fmicb.2015.01200
https://doi.org/10.1016/j.tifs.2014.09.001
https://doi.org/10.1016/j.tifs.2014.09.001
https://doi.org/10.1073/pnas.1101595108
https://doi.org/10.1073/pnas.1101595108
https://doi.org/10.3389/fmicb.2015.00366
https://doi.org/10.1128/aem.00323-16
https://doi.org/10.3390/v11050443
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1051/lait:2001001
https://doi.org/10.1111/1541-4337.12568
https://doi.org/10.1016/j.tifs.2018.06.010
https://doi.org/10.1016/j.idairyj.2019.05.016
https://doi.org/10.1016/j.idairyj.2019.05.016


International Journal of Food Microbiology 368 (2022) 109618

11

Guzzon, R., Carafa, I., Tuohy, K., Cervantes, G., Vernetti, L., Barmaz, A., Larcher, R., 
Franciosi, E., 2017. Exploring the microbiota of the red-brown defect in smear- 
ripened cheese by 454-pyrosequencing and its prevention using different cleaning 
systems. Food Microbiol. 62, 160–168. https://doi.org/10.1016/j.fm.2016.10.018. 

Herve-Jimenez, L., Guillouard, I., Guedon, E., Boudebbouze, S., Hols, P., Monnet, V., 
Maguin, E., Rul, F., 2009. Postgenomic analysis of Streptococcus thermophilus 
cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of 
nitrogen, purine, and iron metabolism. Appl. Environ. Microbiol. 75, 2062–2073. 
https://doi.org/10.1128/aem.01984-08. 

Hickey, C.D., Sheehan, J.J., Wilkinson, M.G., Auty, M.A.E., 2015. Growth and location of 
bacterial colonies within dairy foods using microscopy techniques: a review. Front. 
Microbiol. 6, 99. https://doi.org/10.3389/fmicb.2015.00099. 

Hildebrand, F., 2021. Ultra-resolution metagenomics: when enough is not enough. 
mSystems 6, e00881-21. https://doi.org/10.1128/msystems.00881-21. 
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