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Abstract: Investigating the variability of phytoplankton phenology plays a key role in regions char-
acterized by cyclonic circulation regimes or convective events, like the north-western Mediterranean
Sea (NWM). The main goal of this study is to assess the potential of the robust satellite techniques
(RST) in identifying anomalous phytoplankton blooms in the NWM by using 9 years (2008–2017) of
multi-sensor chlorophyll-a (chl-a) products from the CMEMS and OC-CCI datasets. Further applica-
tion of the RST approach on a corresponding time-series of in situ chl-a measurements acquired at the
BOUSSOLE site allows evaluation ofthe accuracy of the satellite-based change detection indices and
selecting the best indicator. The OC-CCI derived chl-a anomaly index shows the best performances
when compared to in situ data (R2 and RMSE of 0.75 and 0.48, respectively). Thus, it has been used
to characterize an anomalous chl-a bloom that occurred in March 2012 at regional scale. Results show
positive chl-a anomalies between the BOUSSOLE site and the Center of Convection Zone (CCZ) as a
possible consequence of an intense convection episode that occurred in February 2012.

Keywords: phytoplankton phenology; multi-sensor ocean colour data; long-term analysis; North-
Western Mediterranean Sea

1. Introduction

Variations in atmospheric and oceanic forcing (i.e., winds, intermittent upwelling, sea-
sonal change in stratification, sea surface warming) and the effects of climate changes can
impact some ecosystem properties, including marine primary production, the phytoplank-
ton community structure and phytoplankton phenology [1–3]. Changes in phytoplankton
phenology, such as timing and magnitude of the spring bloom, can produce harmful ef-
fects for the pelagic ecosystem, including mismatches with fish spawning, thus impacting
fisheries [4–6]. In this scenario, characterizing seasonal and inter-annual variations of
phytoplankton is a prerequisite for assessing how changes in the marine environment
propagate from primary producers to higher trophic levels [7].

Satellite ocean colourradiometry (OCR) is a powerful tool to study phytoplankton
phenology [8], as it provides synoptic and long-term observations of the sea-surface
chlorophyll-a concentration (chl-a), a proxy of phytoplankton biomass [9]. Several studies
have been conducted to investigate chl-a seasonal patterns at basin/regional scales by
using multivariate clustering methods with OCR data [10–13].
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Although the chl-a seasonality is well documented at these scales of analysis, the
assessment of its inter-annual variability deserves to be better investigated [14]. To this
aim, Barale et al. [15] analysed the chl-a inter-annual variability in the Mediterranean Sea
by using multi-annual (1998–2003) Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data,
thus detecting chl-a anomalies in some specific areas such as the Gulf of Lion and the
Rhodes gyre. Based on a merged (SeaWiFS and Moderate Resolution Imaging Spectrometer
(MODIS)) dataset (1998–2014), Mayot et al. [16] investigated the chl-a inter-annual variabil-
ity over well-identified bio-regions [10] highlighting the episodic occurrence of new trophic
regimes, especially in the north-western Mediterranean Sea (NWM). Other studies based
on OCR time series revealed how irregular (i.e., non-seasonal) inter-annual chl-a variations
can be found in areas affected by intense wind forcing or winter deep water convection
(WDWC) events such as the NWM, the Alboran Sea and the Adriatic Sea [7,14,17,18].

NWM can be considered a test area to study the interplay between phytoplankton
bloom dynamics and the WDWC events as they represent the major processes driving nutri-
ent availability into the euphotic layer and thus the open-ocean primary production [19,20].
Although WDWC is an annual feature in the NWM, its inter-annual fluctuations determine
a high variability in terms of magnitude and spatial extension of the spring bloom [21–24].
In this context, it is worth implementing tools capable of identifying the non-seasonal (i.e.,
irregular) chl-a variations [25,26].

The robust satellite technique (RST) [27] is a general change detection scheme based
on the analysis of long-term datasets homogeneous in the spatiotemporal domain which
was already applied for studying sea-surface processes with satellite imagery [28–30]. The
inherent rationale for the RST approach is to discard any cyclical fluctuations (daily or
seasonal) of a geophysical variable in order to identify only its statistically infrequent
variations and therefore are defined as anomalies (Tramutoli et al., 2007). Ciancia et al. [30]
successfully applied the RST approach to identify anomalous phytoplankton blooms in the
Gulf of Taranto (north-western Ionian Sea) by using 12 years (2003–2015) of MODIS-Aqua
Level 3/Level 2 chl-a data. However, the long-life sensor issues of MODIS (i.e., degradation
in the sensor detector response) could introduce noise in the derived products [9,31] and
so the application of the same method on the MODIS archive will not be feasible on
the long-term.

The recent availability of homogenized and inter-calibrated time series of multi-sensor
(SeaWiFS, Medium Resolution Imaging Spectrometer (MERIS), MODIS-Aqua, Visible In-
frared Imaging Radiometer Suite (VIIRS)) OCR products provided by the European Space
Agency (ESA) Ocean Colour Climate Change Initiative Program (OC-CCI) and the Euro-
pean Union (EU) Copernicus Marine Environmental Monitoring Service (CMEMS) should
enablethe aforementioned limitations to be overcome [26,32,33] for the RST implementation.
Furthermore, their exploitation increases the probability of valid clear-sky observations and
the derived chl-a products easily adapt to different bio-optical conditions being based on
blended or switchable chl-a algorithms [32,33]. All these factors can contribute toreducing
the potential sources of noise in the historical signal measured thus improving the RST
sensitivity in detecting slight changes and subtle anomalies.

This paper aims at testing the RST approach on a new study area (i.e., NWM) by
multi-sensor merged data, thus requiring a preliminary assessment through sea-truth data.
The in situ measurements acquired by a permanent optical mooring, namely Bouée pour
l’acquisitiond’unesérieoptique à long terme (BOUSSOLE), located in the Ligurian Sea, can
be profitably exploited for this purpose as it provides collections of quasi-continuous data
since 2003 [34].

Our threefold objective is (1) to evaluate the potential of the RST approach on a
time series (2008–2017) of in situ chl-a measurements; (2) to validate results of the RST
methodology applied to 9 years (2008–2017) of multi-sensor merged chl-a products from
the CMEMS and OC-CCI (version 4.2) against corresponding in situ data; (3) extend the
single location analysis to a regional scale (i.e., NWM) in order to characterize the chl-a
anomalies in the spatio-temporal domain.
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2. Materials and Methods
2.1. Study Area

The NWM (Figure 1) is one of the most productive areas of the Mediterranean Sea,
recording annual primary production values ranging between 86 and 232 gC m−2 [35].
The NWM is characterized by meso-to oligotrophic conditions varying from spring to
summer depending on the seasonal fluctuations of the physical forcing (i.e., winter mixing
and thermal stratification) [35]. In particular, the area shows characteristics of a typical
temperate region, with a phytoplankton bloom occurring in late winter-early spring months
and it is classified as a “blooming” bio-region [10,16,36,37].
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circle (BOUSSOLE site) and triangle (center of convection zone (CCZ)), respectively. The mean cur-
rents are depicted by arrows with continuous black lines (WCC: western Corsican current, NC: 
northern current) while the Balearic front (BF) by an arrow with a dashed black line. 

The blooming area roughly coincides with the large-scale cyclonic circulation, delim-
ited on the northwest by the northern current (NC) flowing southward along the coastline, 
on the south by the permanent Balearic front (BF), and by the western Corsicancurrent 
(WCC) [23,38], as showed in Figure 1b. In addition, the variability in time, space and mag-
nitude of phytoplankton blooms is also due to the physical processes characterizing the 
NWM [39]. For instance, the NWM is known as a region where WDWC events take place, 
with a center located at about 43.0°N, 4.7°E (red triangle in Figure 1b) [40]. The cold and 
dry local winds (i.e., Mistral and Tramontana) blowing on the NWM can erode the near-
surface stratification thus inducing WDWC, that impacts the upper ocean through the 
supply of nutrients necessary to feed the successive spring bloom [24,39]. 

The BOUSSOLE site (43.37°N, 7.9°E) is located in the Ligurian Sea, in one of the 
NWM sub-basins, at about 32 nautical miles from the French coast (water depth is 2440 
m) [41]. In particular, BOUSSOLE is in the central area of the cyclonic circulation charac-
terizing the Ligurian Sea where the prevailing ocean currents were usually weak (<20 
cm/s) within most of the deployment years (18 years) [34]. The low-current pattern of the 
site together with the distance from shore are crucial characteristics making the site a sat-
isfactory location to calibrate and validate OCR observations [41]. 

The BOUSSOLE site shows a marked seasonality of the physical conditions [42] 
switching from deep (~400 m depth) mixed layers in winter to a prevailing stratification 
in summer (~20 m) [43,44]. It displays generally oligotrophic conditions especially in sum-
mer with chl-a values <0.1 mgm−3 (minima ~0.05 mg/m−3) and undetectable nitrate levels. 
The early spring bloom period (i.e., from February to March-April) usually produces an 
increase in chl-a up to 3–5 mgm−3 because of the nitrate enriched waters [41]. 

Figure 1. (a) Localization (highlighted in red) of the NWM within the Mediterranean basin;
(b) magnification of the study area within the red box of (a). Two sites of interest are represented by a
red circle (BOUSSOLE site) and triangle (center of convection zone (CCZ)), respectively. The mean
currents are depicted by arrows with continuous black lines (WCC: western Corsican current, NC:
northern current) while the Balearic front (BF) by an arrow with a dashed black line.

The blooming area roughly coincides with the large-scale cyclonic circulation, delim-
ited on the northwest by the northern current (NC) flowing southward along the coastline,
on the south by the permanent Balearic front (BF), and by the western Corsicancurrent
(WCC) [23,38], as showed in Figure 1b. In addition, the variability in time, space and
magnitude of phytoplankton blooms is also due to the physical processes characterizing
the NWM [39]. For instance, the NWM is known as a region where WDWC events take
place, with a center located at about 43.0◦N, 4.7◦E (red triangle in Figure 1b) [40]. The cold
and dry local winds (i.e., Mistral and Tramontana) blowing on the NWM can erode the
near-surface stratification thus inducing WDWC, that impacts the upper ocean through the
supply of nutrients necessary to feed the successive spring bloom [24,39].

The BOUSSOLE site (43.37◦N, 7.9◦E) is located in the Ligurian Sea, in one of the NWM
sub-basins, at about 32 nautical miles from the French coast (water depth is 2440 m) [41].
In particular, BOUSSOLE is in the central area of the cyclonic circulation characterizing the
Ligurian Sea where the prevailing ocean currents were usually weak (<20 cm/s) within
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most of the deployment years (18 years) [34]. The low-current pattern of the site together
with the distance from shore are crucial characteristics making the site a satisfactory location
to calibrate and validate OCR observations [41].

The BOUSSOLE site shows a marked seasonality of the physical conditions [42]
switching from deep (~400 m depth) mixed layers in winter to a prevailing stratification in
summer (~20 m) [43,44]. It displays generally oligotrophic conditions especially in summer
with chl-a values <0.1 mgm−3 (minima ~0.05 mg/m−3) and undetectable nitrate levels.
The early spring bloom period (i.e., from February to March-April) usually produces an
increase in chl-a up to 3–5 mgm−3 because of the nitrate enriched waters [41].

2.2. In Situ Chl-A Data

The BOUSSOLE site is visited monthly since July 2001 to acquire 0–400-m casts of hy-
drological (conductivity–temperature–depth, CTD) data, complementary inherent optical
properties (IOPs) and apparent optical properties (AOPs), water samples for subsequent
phytoplankton pigment analyses (high-performance liquid chromatography, HPLC) and
particulate absorption measurements [43,45].

In addition, the deployment of two sets of WetLabs (now Sea-Bird Scientific) ECOFLN-
TUs fluorometers (470 nm excitation, 695 nm emission) on the optical mooring (at 4 and 9 m
depths, respectively) has allowed for the acquisition of chl-a fluorescence (Fluo, relative
units) since 2007 [14]. Copper shutters on instrument optics are used to minimize biofoul-
ing. Sixty-second measurement sequences are recorded every 15 min and the median value
of each sequence is kept as representative of the measure.

For each day, average Fluo data acquired before dawn, Fluo1, and after sunset, Fluo2,
are used to filter out data potentially affected by non-photochemical quenching [14]. The
average value of Fluo1 and Fluo2 is then used as daily Fluo value, i.e., approximately the
interpolated value at solar noon (about 11h30′ UTC local time). The daily Fluo is converted
into daily chl-a (mg m−3) by the following relationships based on log-linear regression
analysis of fluorescence and total chl-a from HPLC analyses at 5 and 10 m depth:

ln[chl − az1 ] = 0.8183 ln[Fluoz1 ]− 0.171 (1)

ln[chl − az2 ] = 0.7182 ln[Fluoz2 ]− 0.2484 (2)

wherez1and z2are the shallowest and deepest depth, respectively. Finally, the optically
weighted chl-a value is approximated as:

chl − a =
2[chl − a]z1 + [chl − a]z2

3
(3)

Within the purpose of this work, we selected the 2008–2017 period to implement the
RST approach.

2.3. Satellite Chl-A Data

Both the OC-CCI and CMEMS dataset are mostly based on a common processing
chain and include daily chl-a products developed to be used for long-term studies (since
1998, ongoing). However, they differ by the spatial resolution, the optical classification
schemes and the algorithms for chl-a retrievals they are based on.

Focusing on the OC-CCI data, we considered the Level 3 daily chl-a product at 4 km
spatial resolution [46], hereafter OC-CCI chl-a. This is a merged product derived from the
OC-CCI remote-sensing reflectance, Rrs(λ), from SeaWiFS(1997–2010), MERIS (2002–2012),
MODIS (2002-ongoing) and VIIRS (2011-ongoing). Inter-sensor bias is removed both by
band-shifting [47] and bias-correcting the MODIS and MERIS Rrs(λ) values to the SeaWiFS
reference values and merging is obtained through a weighted averaging procedure [7,48].
Then, the application of an optical classification scheme [49–51] allows for determining
the best empirical OC-CCI chl-a algorithm, that is a result of a blended algorithm between
OC3 [52], OCI [53] and OC5 [54]. In order to evaluate the membership percentage to each
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water class at pixel level, we also extracted the daily “normalised water class membership”
products with the corresponding daily chl-a.

The CMEMS data, considered here, is the Level 3 daily chl-a product at 1km reso-
lution (OCEANCOLOUR_MED_CHL_L3_REP_OBSERVATIONS_009_073) [55] hereafter
CMEMS chl-a. The CMEMS processing chain replicates the OC-CCI one (by usingRrs(λ)
from SeaWiFS, MERIS, MODIS and VIIRS), except that all available daily pixels (originally
at 4 km resolution) are remapped at 1 km resolution (on the equirectangular grid covering
the Mediterranean Sea) before performing the band-shifting [32]. Then the procedure
identifies two possible water types, Case I and Case II, following the optical classification
scheme by D’Alimonte et al. [56] before deriving chl-a values with the Med-OC4 [57] or
the AD4 [58] algorithms. The daily CMEMS chl-a product includes information of a water
type mask at pixel level.

Both the OC-CCI and CMEMS chl-a products were downloaded for the same period
of in situ chl-a measurements (2008–2017). It is worth noting that the satellite chl-a dataset
used could be less populated than the in situ one because of filtered or flagged pixels
(cloudy or no data).

2.4. The Robust Satellite Techniques

RST is a statistical method developed to analyse multi-annual series of satellite
data [27] and has been already used for monitoring sea surface environmental phenom-
ena [9,28–30]. RST requires the computation, at pixel level, of the climatological mean and
standard deviation (called reference fields) of the investigated variable observed within
homogenous conditions (i.e., same location, month and acquisition time). Although RST
was developed for application on satellite data, here we also test its application on in situ
chl-a data that meets the homogeneity requirement.

After calculation of reference fields, the Absolutely Local Index of Change of the
Environment for chl-a, namely the chl-a ALICE index [30], is computed as:

⊗chl−a (x, y, t) =
chl − a (x, y, t)− µchl−a (x, y)

σchl−a (x, y)
(4)

wherechl-a(x,y,t) is the chl-a value at longitude x, latitude y and time t, µchl-a(x,y) and
σchl-a(x,y) are the climatological monthly mean and standard deviation computed at the
same location. These parameters are computed for the three 2008–2017 datasets considered
here (i.e., CMEMS, OC-CCI and in situ), and we refer alternatively to each of them using
the same symbols in the following.

A positive/negative chl-a ALICE value indicates an increase/decrease of chl-a with
respect to its climatological value. For construction, the chl-a ALICE index is a standardized
variable, which tends to have a Gaussian distribution. This is confirmed in Figure 2a–c
where the frequency histograms of the chl-a ALICE index values are displayed with
the theoretical Gaussian curve superimposed. The three chl-a ALICE indices follow a
Gaussian distribution (with a µ~0 and a σ~1), although showing a slight positive skewness
(withFisher–Pearsoncoefficients ofskewness ≤1). Therefore, the occurrence probability of
values above/below ±1, ±2 and ±3 are about 16%, 2.5% and 0.13%, respectively.

We define a chl-a anomaly when the chl-a ALICE index is above/below ±2 (i.e.,
|⊗chl−a(x, y, t)|>2) representing a statistically significant level of occurrence probability.

2.5. Ancillary Data

In order to better characterize the chl-a anomalies at regional scale (Figure 1b), we
used the CMEMS physical re-analysis MEDSEA_REANALYSIS_006_004 product. It is
generated with a hydrodynamic model, (supplied by the Nucleus for European Mod-
elling of the Ocean (NEMO)), and on a variational data assimilation scheme (OceanVAR)
for temperature and salinity vertical profiles and satellite sea level anomaly along track
data [59]. In particular, we downloaded and processed the mean daily fields of eastward
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and northward sea water velocities (at about 4–5 km spatial resolution) to derive the mean
daily velocity and direction of the sea surface current.
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Figure 2. Frequency histograms of the chl-a Absolutely Local Index of Change of the Environ-
ment(ALICE) index computed at the BOUSSOLE site for the 2008–2017 December months with the
computed and theoretical Gaussian probability density function, f(x)(red and dashed black lines,
respectively), for: (a) in situ; (b) Copernicus Marine Environmental Monitoring Service (CMEMS,
mean value of a 3 × 3 pixels box centred at the BOUSSOLE site); (c) Ocean Colour Climate Change
Initiative Program (OC-CCI, pixel centred at the BOUSSOLE site).

Furthermore, we also analysed the sea surface heat losses to detect the related WDWC
episodes and investigate their influence on the occurrence and timing of anomalous phyto-
plankton blooms. To this aim, we considered the ERA5 reanalysis dataset provided by the
Climate Data Service (CDS) [60].Based on the European Centre for Medium-Range Weather
Forecasts (ECMWF), ERA5 includes consistent atmosphere and sea surface analyses from
1979 to the present [61]. We downloaded the 3-hourly ERA5 data (at about 25 km spatial
resolution) related to four components of the sea-air fluxes (i.e., surface net shortwave
flux-Qssf, surface net thermal radiation-Qstr, surface latent heat flux-Qslhf, surface sensible
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heat flux-Qsshf) from the CDS website and computed at pixel level the daily mean of each
component to derive the daily Net Heat Flux (Qnet- Wm−2) via the bulk formulae [62]:

Qnet = Qss f + Qstr + Qslh f + Qssh f (5)

2.6. Match-Up Analysis

The performances of the RST approach on the NWM area by multi-sensor merged
CMEMS and OC-CCI data need to be assessed through a comparison with corresponding
in situ data. We first derived time series of OC-CCI chl-a data at the pixel centred on BOUS-
SOLE, and time series of CMEMS chl-a values for a 3 × 3 box located at the BOUSSOLE
site to homogenize their spatial resolutions. For the OC-CCI dataset, all the flagged pixels
(cloudy or no data) were discarded as well those showing less than 50% membership to a
given water class. For the CMEMS dataset, only the 3 × 3 boxes containing at least 50% of
valid pixels (not flagged) and characterized by >50% (at least 5 pixels on the 3 × 3 box) of
membership to one of the two water types were retained for further processing.

Match-up with in situ data were analysed with the following statistical indicators,
such as the coefficient of determination (R2), the p-value, and the root mean square error
(RMSE), defined as:

MSE =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2 (6)

whereinxi is the ith satellite-derived chl-a ALICE value (OC-CCI/CMEMS), yi is the ith in
situ-derived one, and N is the number of match-up.

3. Results
3.1. Climatological Analysis

One of the main goals of this work is to evaluate the RST suitability to detect anoma-
lous phytoplankton blooms at the BOUSSOLE site and within the NWM area. For this
reason, we performed a preliminary analysis of the climatological chl-a cycle to identify the
bloom timing and the months where focusing the RST analysis. To this end, we computed
the 8-day composite climatology of in situ chl-a data at the BOUSSOLE site (Figure 3).
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bloom according to Siegel et al. [63]. The empty green circles define the bloom timing (start/end)
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This climatology follows the typical seasonal cycle of the NWM “blooming” trophic
regime [10,36], as it displays a gradual chl-a increase in late winter/early spring reaching
its maximum in spring (i.e., 0.8 mgm−3 on the third week of March).

To define the bloom timing (start/end), we used the methods based on a chl-a thresh-
old criterion proposed by Siegel et al. [63] and its revised version by Brody et al. [64]. The
first method indicates a start of the bloom the third week of November and its end the first
week of May, respectively. The Brody et al. [64] approach puts the start of the bloom at
the first week of November and its end at the third week of May when chl-a values are
below the previous threshold (red line in Figure 3) for two consecutive weeks. The second
method is more robust as it reduces the transient effects of data noise [64], and is used here
as a reference to select the months where focusing the RST analysis (i.e., November–May
2008–2009, November–May 2009–2010, . . . etc.).

3.2. Validation of the Satellite Chl-A Absolutely Local Index of Change of the Environment(ALICE)

Figure 4 shows the temporal variability of the three chl-a ALICE indices considered
here for each November–May period of the 2008–2017 time series. Although some of the
satellite time series show data gaps due to flagged pixels, they display a general good
agreement with in situ time series for most of the considered periods. In particular, all the
three chl-a ALICE indices are able to concurrently detect statistically significant anomalies
(i.e., chl-a ALICE Index > 2) at the BOUSSOLE site, as for example in March 2012, May
2012 and May 2016.

To assess the accuracy of the satellite-based chl-a ALICE indices we performed a
match-up analysis with the corresponding in situ values. For consistency, we re-sampled
the in situ chl-a dataset to satellite data frequency. Figure 5a,b show the scatter plots of the
match up for the CMEMS and OC-CCI datasets, respectively.

The accuracy of the two satellite-derived chl-a ALICE indices were evaluated by
the regression indices and statistical indicators summarized in Table 1. The chl-a ALICE
OC-CCI exhibits better performances with a higher R2 value (0.75) and a lower RMSE value
(0.48) as compared to the chl-a ALICE CMEMS. This result is probably due to the higher
accuracy of the blended algorithm the OC-CCI chl-a products are based on. An evaluation
of the CMEMS and OC-CCI chl-a algorithms can be found in Appendix A.

3.3. Regional Scale Analysis: The March 2012 Case Study

The better performances of the chl-a ALICE OC-CCIsuggested its exploitation for
further insights at regional scale. As shown in Figure 4d, the chl-a ALICE OC-CCIrecorded
statistically significant anomalies (i.e.,chl-a ALICE values >2) in March 2012 at the BOUS-
SOLE site, indicating the occurrence of a phytoplankton bloom deserving to be in-depth
investigated. The variability of the OC-CCI derived ALICE values (with the corresponding
in situ ones) in March 2012 is shown in Figure 6.

The two chl-a ALICE indices show a good agreement (with a R2 value of 0.9 and
p-value < 0.001) thus inherently proving the effectiveness of the RST approach in detecting
relative variations of the investigated signal regardless the different source of data (satel-
lite vs. in situ). Both the chl-a ALICE indices identify persistent chl-a anomalies at the
BOUSSOLE site on 6 days (i.e., 16, 19–22, 24 March 2012).

To characterize the spatial extension of the chl-a anomalies we computed the daily
OC-CCI chl-a ALICE maps over the whole NWM area. Figure 7 shows the days with less
than 50% of cloudy (or flagged) pixels within the 16–24 March 2012 period (i.e., 16, 19, 22,
24 March 2012) and includes also two days (i.e., 27, 30 March 2012) after the bloom event to
better characterize the dynamics of chl-a anomalies.

The occurrence of chl-a anomalies mostly characterized the first four days (i.e., 16, 19,
22, 24 March 2012), especially on 16 March 2012, with the highest percentage of chl-a ALICE
values > 2 (about 26.5% of the valid pixels in the scene). Although some chl-a anomalies
are close to the Western Corsica coastline, the area with higher chl-a ALICE values was the
region between the BOUSSOLE site and the CCZ. In particular, the anomalous chl-a pattern
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was persistent around the BOUSSOLE site during the 16–24 March period, probably due to
the cyclonic circulation regime characterizing the area, as shown by the sea surface current
data (Figure 7a,d).
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Table 1. Regression indices and statistical indicators for thematch-up analyses of the satellite-derived
chl-a ALICE indices.

chl-a ALICE N R2 p-Value RMSE

Copernicus Marine
Environmental Monitoring

Service (CMEMS)
550 0.65 <0.001 0.57

Ocean Colour Climate Change
Initiative Program (OC-CCI) 588 0.75 <0.001 0.48

The chl-a ALICE values decreased in the BOUSSOLE area after the 24 March 2012 as
the chl-a anomalous features clearly moved southward along the NC main flow. For this
reason, the chl-a concentration returned to usual values for the seasonal period in most of
the area except for the south-western zone where residual chl-a anomalies still occurred.

Based on this evidence, we can hypothesize that a strong deep-water convection event
together with the permanent large-scale cyclonic circulation of NWM might have induced
the occurrence of such an anomalous phytoplankton bloom.

3.4. Influence of Winter Deep Water Convection (WDWC)Event on the March 2012 Anomalous
Chl-A Bloom

The achieved results lead to assume the occurrence of a WDWC event before the
NWM phytoplankton bloom of mid-March 2012. In this regard, several authors have
considered winter 2012 (i.e., from December 2011 to February 2012) as exceptional over the
North Atlantic and European region [65] and the strongest in terms of heat losses within
the 2008–2012 winter period [40]. In this context, we looked at the daily Qnet values at the
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BOUSSOLE site and in the CCZ (Figure 8) to detect episodes of intense heat losses at the sea
surface and associated WDWC events that potentially occurred during the January–March
2012 period. The two sites show a strong episode of net heat loss during the first half of
February 2012 (10–12 days) followed by a less intense short-term event in early March 2012
(~3 days), after the water column stratification (i.e., the first day of the year when the Qnet
becomes positive).
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The 03–10 February 2012 period displays the highest averaged Qnet values of about
−543 Wm−2 and −688 Wm−2 for the BOUSSOLE and CCZ sites, respectively. The mag-
nitude of such a net heat loss could indicate a WDWC event that affected the anomalous
phytoplankton bloom in March 2012. To address this assumption, we performed a cross-
correlation analysis between the Qnet values and the corresponding Chl-a ALICE ones
within the January–March 2012 period. To provide a statistically significant analysis, we
considered only the in situ Chl-a ALICE values by exploiting their higher availability than
the corresponding satellite-derived ones. Figure 9 shows the cross-correlation plot between
Qnet and in situ Chl-a ALICE at the BOUSSOLE site for the 90-day (January 2012–March
2012) time of analysis.

The relatively high correlation at 0 lagindicates that positive chl-a anomalies are
concurrent with net heat increases and vice versa. It means that the phytoplankton bloom
in March 2012 occurred with water column stratification (i.e., positive Qnet values), as
shown in Figure 8a. The highest negative correlation is recorded at negative lags (i.e.,
−0.52 at−44 days) thus suggesting that the positive chl-a anomalies of mid-March 2012 are
associated with intensive net heat losses at the beginning of February 2012. For this reason,
we derived the corresponding OC-CCI 8-day chl-a map for the NWM area to delineate
the spatial extent of the WDWC zone. To this aim, we adopted a threshold chl-a value
as an index of the active vertical mixing of water column [42,65]. Considering that this
value ranges between 0.15–0.25 mgm−3 for the study area [40], we used here the threshold
of 0.25 mgm−3 given the slight overestimation of the OC-CCI algorithm for chl-a values
<0.15 mgm−3(see Figure A1b in Appendix A).

Figure 10a shows the extent of the WDWC zone by applying the threshold chl-a value
to the 03–10 February 2012 composite chl-a map. Then we compared the WDWC extension
of February 2012 with the chl-a anomalies of 16 March 2012 (day with highest occurrence
of values >2), in order to identify a potential cause–effect relationship between the two
(Figure 10b).
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The WDWC zone encompasses most of the open-ocean except for the shelf area within
the Gulf of Lion as well as part of areas close to Corsica and Sardinia. Most of the chl-a
anomalies detected on 16 March 2012 fall into the WDWC zone with a percentage of about
78%, thus apparently indicating a possible link between the strong WDWC episode of
February 2012 and the anomalous chl-a bloom of mid-March 2012.

Finally, we can conclude that the area most affected by the February 2012 WDWC
event roughly coincides with the large cyclonic gyre of the NWM area. Although such
a permanent large-scale circulation is probably the primary cause for the phytoplankton
bloom extension [42], the anomalous behaviour of March 2012 evidenced by the RST
approach can be ascribed to the intense convection episode of February 2012 as described
by several studies [40,42,65].
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4. Conclusions

The phytoplankton phenology is an invaluable indicator for assessing how marine
ecosystems react to external forcing [37,66]. Although the seasonality represents the most
relevant factor influencing the chl-a variability at the Mediterranean Sea scale [17,18], the
non-seasonal (irregular) component plays a crucial role in some regions characterized by
cyclonic circulation regimes and blooming dynamics such as the Alboran Sea, the Adriatic
Sea and the NWM [7]. In these areas phytoplankton phenology appears to be closely
related to regional scale processes usually associated with convective events caused by
winter cooling and strong winds [67,68]. In this context it is worth developing metrics
to describe phytoplankton phenology and detect local-induced chl-a variations due to
environmental forcing.

The exploitation of long-term data based on multi-sensor merged observations al-
lowed developing and implementing ocean monitoring indicators (OMIs) able to track
the relative changes of the essential climate variables (ECVs—recognised by the Global
Climate Observing System (GCOS)), such as sea surface temperature (SST) and chl-a
concentration [25]. CMEMS makes the “regional annual chlorophyll anomaly” (RACA)
indicator available for the Mediterranean Sea by using historical series (1997–2014) of multi-
sensor merged OCR data [69]. RACA is computed by subtracting a reference climatology
(1997–2014) from the annual chl-a mean on a pixel-by-pixel basis and has been mainly de-
signed to investigate the effects of climate changes and their potential correlations with the
North Atlantic Oscillation (NAO) or El Niño Southern Oscillation (ENSO) phenomena [13].
However, the annual scale of the analysis tends to smooth short-term (daily, weekly)
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anomalies induced by regional scale processes thus hampering their identification. In fact,
the inherent rationale of RACA is to identify if the chl-a annual mean is above/below the
climatological annual mean without taking into account the site-specific natural variability
(i.e., standard deviation). For this reason, the maximum value of the RACA in the Mediter-
ranean Sea can assume a different meaning if recorded in a “non-blooming” area rather
than in a “blooming” one characterized by a higher inter-annual chl-a variability.

The RST approach is designed to overcome this limitation as the chl-a ALICE index
(Equation (1)), for construction, furnishes a measurement of the chl-a deviation from its
normal value (i.e., climatological monthly mean), weighted for its natural variability [30].
The Gaussian distribution of the chl-a ALICE index provides a statistically-based assess-
ment of locally-induced changes in chl-a concentration. Furthermore, the differential and
self-adaptive nature of the RST methodology ensures its applicability to different water
types or trophic regimes and thus its potential usability for the whole Mediterranean Sea.

In this work, we assessed the potential of the RST approach in identifying anomalous
phytoplankton blooms in the NWM by using 9 years (2008–2017) of multi-sensor merged
chl-a products from the CMEMS and OC-CCI datasets. The application of RST on a
corresponding time series of in situ chl-a measurements at the BOUSSOLE site allowed us
to evaluatethe accuracy of the satellite-based chl-a ALICE indices and selecting the best
indicator as well. Although both CMEMS and OC-CCI chl-a ALICE indices demonstrated
to be capable in detecting chl-a anomalies, the latter performed best when compared to in
situ data (R2and RMSE values of 0.75 and 0.48, respectively). This was probably due to the
higher accuracy of the blended algorithm the OC-CCI chl-a products are based on, thus
suggesting that a regional blended algorithm could be developed for the NWM to improve
the accuracy of chl-a products.

Then we exploited the synoptic view of satellite data as well as the pixel-based and self-
adaptive RST capabilities to move from a local to a regional scale analysis. The chl-a ALICE
OC-CCIwas used to characterize the anomalous phytoplankton bloom of mid-March 2012.
The area roughly encompassed between the BOUSSOLE site and the CCZ showed the
highest persistence of positive chl-a anomalies (i.e., ⊗chl−a(x, y, t)> 2), probably due to the
cyclonic circulation regime characterizing the area.

Based on this analysis, it is reasonable to assume the influence of the WDWC episodes
on the March 2012 anomalous phytoplankton bloom. The cross correlation analysis between
the Qnet and in situ ALICEvalues at the BOUSSOLE site gave a statistical weight to such
an assumption. The highest negative correlation (i.e.,−0.52) at −44 days suggests the
positive chl-a anomalies of mid-March 2012 are associated tointensive net heat losses at
the beginning of February 2012. In particular, the anomalous behaviour of March 2012
can probably be ascribed to the intense convection episode recorded in February 2012,
considering that most of the chl-a anomalies detected on 16 March 2012 fall into the WDWC
zone with a relevant percentage (78%). Within a future perspective there will be the need
for acquiring additional data to better understand the relationships between physical
forcing and the phytoplankton phenology. In particular, it would be worthanalysing time
series of heat fluxes and mixed layer depths to better define the RST-based metrics and to
in-depth investigate the phytoplankton phenology in the NWM.
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Appendix A

To understand the better performances of the chl-a ALICE OC-CCIas compared
to chl-a ALICE CMEMS, we have to evaluate the corresponding chl-a data and their
associated water classes. To this end, we performed a match-up analysis between the
satellite (CMEMS/OC-CCI) chl-a values and the corresponding in situ measurements at
the BOUSSOLE site. Figure A1a,b shows the derived scatter plots for the CMEMS OC-CCI
chl-a values, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 22 
 

 

worthanalysing time series of heat fluxes and mixed layer depths to better define the RST-
based metrics and to in-depth investigate the phytoplankton phenology in the NWM. 

Author Contributions: Conceptualization, E.C., V.V., N.P. and T.L.; Methodology, E.C., V.V., N.P., 
T.L. and V.T.; Validation, E.C. and V.V.; Data Curation, E.C., V.V. and V.S.; Writing–Original Draft 
Preparation, E.C. and V.V.; Writing–Review andEditing, E.C., V.V., N.P., T.L. and D.A.; Supervision, 
D.A. and V.T., Funding (BOUSSOLE project), D.A. and V.V. All authors have read and agreed to 
the published version of the manuscript. 

Funding: The BOUSSOLE time series project is funded by the Centre National d’EtudesSpatiales 
(CNES) and the European Space Agency (ESA/ESRIN contract 4000119096/17/I-BG) and supported 
by the French Oceanographic Fleet for ship time. 

 

Acknowledgments: MelekGolbol, Emilie Diamond, GrigorObolenski, Vincent Taillandier and Ed-
uardo Soto Garçia were essential for work at sea during the BOUSSOLE monthly cruises. Celine 
Dimier, Josephine Ras and Mustapha Ouhssain from the SAPIGH analytical platform of the La-
boratoired’Océanographie de Villefranche (CNRS-France) are warmly acknowledged for the analy-
sis of pigments. We are grateful to Lawrence George III for editing on an earlier version of the man-
uscript. 

Conflicts of Interest:The authors declare no conflict of interest. 

Appendix A 
To understand the better performances of the chl-a ALICE OC-CCIas compared to 

chl-a ALICE CMEMS, we have to evaluate the corresponding chl-a data and their associ-
ated water classes. To this end, we performed a match-up analysis between the satellite 
(CMEMS/OC-CCI) chl-a values and the corresponding in situ measurements at the BOUS-
SOLE site. Figure A1a,b shows the derived scatter plots for the CMEMS OC-CCI chl-a 
values, respectively. 

 

Figure A1. Scatter plots of the satellite-derived chl-a values versus the corresponding in situ one,
where (a) refers to the CMEMS chl-a product and (b) to the OC-CCI chl-a one.

The accuracy of the two types of algorithms (i.e., switchable or blended for CMEMS
and OC-CCI, respectively) were evaluated by the regression indices and statistical indica-
tors summarized in Table A1. The OC-CCI blended algorithm exhibits a better accuracy
than the CMEMS switchable algorithm, with a higher R2value (0.80 vs. 0.66) and a lower
RMSE value (0.18 vs. 0.33). Such a result could probably stem from different optical
classification schemes the CMEMS and OC-CCI chl-a products are based on.
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Table A1. Regression indices and statistical indicators for thematch-up analyses of the CMEMS/OC-
CCI chl-a algorithms.

Chl-A Algorithm N R2 p-Value RMSE (g/m3)

CMEMS 550 0.66 <0.001 0.33
OC-CCI 588 0.80 <0.001 0.18

We also counted the occurrence of Case I/Case II water types for the CMEMS dataset
(at least 5 pixels on the 3 × 3 box) and computed the percentage membership to each of
the 14 OC-CCI original classes for the OC-CCI dataset (pixel centred) as summarized in
Table A2. For OC-CCI water classes, they have been reduced into three types: open water
(classes1–7), transitional (8–12) and coastal (13–14) according to Jackson et al. (2017).

Table A2. Water type membership related to the BOUSSOLE site within the 7-month period consid-
ered (November–May).

Dataset Water Type Membership (%)

CMEMS
Case I 96.36

Case II 3.64

OC-CCI

Open 12.76

Transitional 86.89

Coastal 0.35

The BOUSSOLE site falls into the Case I type for about 97% of the CMEMS dataset
whereas it belongs to transitional water classes for about 87% of the OC-CCI dataset. This
means that, for the CMEMS chl-a, theMedOC4 algorithm [57] has been used in 97% of the
cases, whereas for the OC-CCI chl-a, the OC5 algorithm [54] was predominantly adopted
within the blended rationale, being the optimal algorithm for transitional water type [51].

Although the OC-CCI classification scheme has low total classification scores in the
Mediterranean Sea [51], these results suggest that its blended algorithm is more flexible
than the switchable CMEMS algorithm and more capable to adapt to the peculiar optical
characteristics of the NWM [57,70–73].
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