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a University of Basilicata, Department of Mathematics, Computer Sciences and Economics, Potenza, Italy
b University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, Kragujevac, Serbia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2021
Received in revised form 2 September 2021
Accepted 5 September 2021
Available online 10 September 2021

Keywords:
Fredholm integral equation
Nyström method
Lagrange interpolation
Discrete spline quasi-interpolants

The paper deals with an integral equation arising from a problem in mathematical biology. 
We propose approximating its solution by Nyström methods based on Gaussian rules 
and on product integration rules according to the smoothness of the kernel function. 
In particular, when the latter is weakly singular we propose two Nyström methods 
constructed by means of different product formulas. The first one is based on the Lagrange 
interpolation while the second one is based on discrete spline quasi-interpolants. The 
stability and the convergence of the proposed methods are proved in uniform spaces 
of continuous functions. Finally, some numerical tests showing the effectiveness of the 
methods and the sharpness of the obtained error estimates are given.
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1. Introduction

We consider the following integral equations of second kind

f (x)

1∫
0

k(x − y)dy +
1∫

0

k(y − x) f (y)dy = g(x), 0 ≤ x ≤ 1, (1)

where k is a given convolution kernel such that

T (x) =
1∫

0

k(x − y)dy �= 0, ∀x ∈ [0,1],

g is a known function and f is the unknown.
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Letting

(K f )(x) =
1∫

0

k(y − x) f (y)dy

and

(MT f )(x) = f (x)T (x),

we can rewrite (1) as follows

(MT + K ) f (x) = g(x), 0 ≤ x ≤ 1. (2)

These types of integral equations are of interests because arise from a problem in mathematical biology [3,11]. In particular 
in [3] the authors introduced two Kantorovic methods for approximating the solution of (2), proving their convergence in 
L2 spaces.

In this paper we propose to solve the equation (2) by suitable Nyström methods. We prove their stability and conver-
gence in spaces of continuous functions, give related error estimates in the uniform norm, and prove the well conditioning 
of the linear systems associated to the approximating equations. If the kernel k is smooth we discretize the integral (K f )(x)
by a Gauss-Legendre rule. Two Nyström methods based on product quadrature rules are proposed when k is weakly singu-
lar. The first one consists in approximating the unknown solution by a Lagrange polynomial based on Legendre zeros, while 
the second one approximates the function f by the discrete spline quasi-interpolant introduced in [23].

Nyström methods have been widely employed for the numerical resolution of equation (2) with T (x) = 1 (see, for 
example, [1,5–8,10,16,21,17–20] and the references therein). Moreover, very recently in [12] the authors describe a general 
framework for the theoretical investigation of Nyström methods based on quadrature rules of interpolatory type in spaces 
of continuous functions.

To our knowledge Nyström methods for approximating the solutions of integral equations of type (2) are not available in 
literature. We point out that, in order to solve (2) by means of one of the Nyström methods proposed for the case T (x) = 1, 
the equation (2) has to be rewritten as follows

f (x) +
1∫

0

k(y − x)∫ 1
0 k(x − t)dt

f (y)dy = g(x)∫ 1
0 k(x − t)dt

, 0 ≤ x ≤ 1,

and the quadrature rule is applied to the operator

(K ∗ f )(x) =
1∫

0

k(y − x)∫ 1
0 k(x − t)dt

f (y)dy.

However, when the exact value of the integral 
∫ 1

0 k(x − t)dt (both under the integral sign and on the right hand side) is not 
known, the resulting finite dimensional equations (and, then, the equivalent linear systems and the Nyström interpolants) 
cannot be directly used for the approximation of the solution. The introduction of an approximation of the integral 

∫ 1
0 k(x −

t)dt leads to new finite dimensional equations (approximating the previous ones) and then to a new method whose stability 
and convergence have to be investigated.

The paper is organized as follows. In Section 2 we introduce the functional spaces in which we are going to study the 
integral equation and give the assumptions under which its solution is unique. Section 3 is devoted to the description of the 
Nyström method for the case when k is a continuous function having constant sign in the interval [0, 1] and to the results 
dealing with its stability, convergence and well-conditioning of the associated linear systems. An error estimate in uniform 
norm is also given. In Section 4 we describe two Nyström methods proposed for the case of weakly singular function k, 
showing also in this case that both the methods are stable and convergent and lead to solving well-conditioned linear 
systems. For both methods we give error estimates in uniform norm and the computational details for some choices of the 
kernel function k. Section 5 contains some numerical tests to show the efficiency of the proposed methods. We do not make 
comparisons with the methods proposed in [3] because the authors in [3] did not give the necessary computational details. 
Finally, Section 6 is devoted to the proofs of the theoretical results.

2. Preliminaries

2.1. Notations and basic facts

In the sequel C will denote a positive constant which may have different values in different formulas. We will write 
C(a, b, . . .) to say that C depends on the parameters a, b, . . . and C �= C(a, b, . . .) to say that C is independent of the param-
eters a, b, . . . .
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By C0([a, b]) we denote the space of the continuous functions on the interval [a, b], −∞ < a < b < +∞, equipped with 
the uniform norm

‖ f ‖[a,b] = sup
x∈[a,b]

| f (x)|.

Moreover, we consider the Sobolev type space

Wr([a,b]) := { f ∈ C0([a,b]) : f (r−1) ∈ AC(a,b),‖ f (r)ϕr
a,b‖[a,b] < +∞},

where r is a positive integer, ϕa,b(x) = √
(b − x)(x − a) and AC(a, b) denotes the set of all functions which are absolutely 

continuous on every closed subset of (a, b), endowed with the norm

‖ f ‖Wr([a,b]) = ‖ f ‖[a,b] + ‖ f (r)ϕr
a,b‖[a,b].

Let us denote by Pm the set of all polynomials of degree at most m, and by

Em( f )[a,b] = inf
P∈Pm

‖ f − P‖[a,b]

the error of the best polynomial approximation of a function f ∈ C0([a, b]). We recall that

lim
m

Em( f )[a,b] = 0, ∀ f ∈ C0([a,b]).
When r > 0 is not integer, we consider the Zygmund space

Zr([a,b]) =
{

f ∈ C0([a,b]) : sup
i≥0

(1 + i)r Ei( f )[a,b] < +∞
}

,

equipped with the following norm

‖ f ‖Zr([a,b]) = ‖ f ‖[a,b] + sup
i≥0

(1 + i)r Ei( f )[a,b].

The following estimates of Em( f )[a,b]

Em( f )[a,b] ≤ C
mr

‖ f ‖Wr([a,b]), ∀ f ∈ Wr([a,b]), (3)

and

Em( f )[a,b] ≤ C
mr

‖ f ‖Zr([a,b]), ∀ f ∈ Zr([a,b]) (4)

holds (see, for example, [15, p. 172]).
In the sequel we will write C0 := C0([0, 1]), Wr := Wr([0, 1]), Em( f ) := Em( f )[0,1] , Zr := Zr([0, 1]), ‖ f ‖∞ = ‖ f ‖[0,1] and 

ϕ = ϕ0,1.
We use the Gauss-Legendre quadrature rule on the interval [0, 1]

1∫
0

f (y)dy =
m∑

k=1

f (yk)λk + Rm( f ), (5)

where yk, k = 1, . . . , m, are the zeros of the Legendre polynomial pm which is orthornormal w.r.t. the Legendre weight in 
[0, 1], λk, k = 1, . . . , m, are the corresponding Christoffel numbers and Rm( f ) denotes the remainder therm. We recall that 
(see, for example, [15, p. 337])

|Rm( f )| ≤ E2m−1( f ), ∀ f ∈ C0. (6)

We will also consider the Lagrange polynomial interpolating the function f ∈ C0 at the Legendre zeros in [0, 1], i.e.,

Lm( f , y) =
m∑

k=1

lk(y) f (yk), lk(y) = λk

m−1∑
i=0

pi(yk)pi(y). (7)

Denoting by L log+ L the set of all measurable functions f : (0, 1) → R for which the integral

ρ( f ) :=
1∫

0

| f (y)|(1 + log+ | f (y)|)dy, log+ z =
{

log z, z > 1

0, z ≤ 1
,

is finite, the following lemma can be easily deduced by [12, Lemma 7].
195
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Lemma 2.1. For all functions f ∈ C0 and for all g such that g√
ϕ

∈ L log+ L, there exists a constant C �= C(m, f , g) such that

1∫
0

|g(y)||Lm( f , y)|dy ≤ Cρ
(

g√
ϕ

)
‖ f ‖∞.

2.2. Solvability of the integral equation (2)

In this section we study the mapping properties of the operators MT and K in order to give the assumptions under 
which the equation (2) admits a unique solution. We assume that

lim
h→0

max
|x−y|≤h

1∫
−1

|k(x) − k(y)|dy = 0, (8)

1∫
−1

|k(y)|dy < +∞, (9)

and

1∫
0

k(x − y)dy �= 0, ∀x ∈ [0,1]. (10)

The following lemma holds.

Lemma 2.2. Under the assumptions (8)-(10), the operator MT : C0 → C0 is invertible and the operator K : C0 → C0 is compact.

Using well-known results of functional analysis (see, for example, [13, Corollary 3.8]), the following theorem is a conse-
quence of the previous lemma.

Theorem 2.1. Under the assumptions (8)-(10) and Ker(MT + K ) = {0}, the integral equation (1) admits a unique solution in C0 for 
every choice of the right-hand side g ∈ C0 .

Remark 2.1. (See, for example, [2, p. 8].) If k belongs to C0([−1, 1]) or is weakly singular, then the hyphoteses (8), (9) and 
(10) are fulfilled.

In particular, the following lemma shows that the smoothness of k and g implies the smoothness of f ∗ .

Lemma 2.3. If k ∈ Wr([−1, 1]) and g ∈ Wr , r ≥ 1, then the unique solution f ∗ of the equation (2) belongs to Wr .

Finally, for weakly singular kernels, the following lemma can be easily deduced by [26, Theorem 1].

Lemma 2.4. Let k be a symmetric convolution kernel, i.e., k(y − x) := k(|x − y|) with k : (0, 1] → R. If

g ∈ C s((0,1]), s ≥ 1,

k(y) ∈ C s−1((0,1]), s ≥ 1,

and

|k( j)(y)| ≤ C yα− j, 0 < y ≤ 1, j = 0,1, . . . , s − 1, −1 < α < 0, C �= C(k, y), (11)

then the unique solution f ∗ of the equation (2) belongs to Z2(1+α) .

3. Case of continuous functions k having constant sign

The Nyström method we propose consists in solving, instead of (2), the following approximating equations
196
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(MTm + Km) fm(x) = g(x), 0 ≤ x ≤ 1, m ≥ 1, (12)

where

(Km f )(x) =
m∑

k=1

k(yk − x) f (yk)λk

and

Tm(x) =
m∑

k=1

k(x − yk)λk

are approximations of the integral (K f )(x) and the function T (x), respectively, by means of the Gauss-Legendre quadrature 
rule (5) and

(MTm f )(x) := f (x)Tm(x).

In order to compute the approximating solutions fm , we collocate the equations (12) at the quadrature knots yi, i =
1, . . . , m, obtaining the following linear systems

m∑
k=1

[
δi,kk(yi − yk)λk + k(yk − yi)λk

]
ak = g(yi), i = 1, . . . ,m, (13)

whose unknowns are ak = fm(yk), k = 1, . . . , m. The linear systems (13) are equivalent to (12) in the following sense: the 
array a = (a1, . . . , am)T is the solution of (13) if and only if the Nyström interpolant

fm(x) = 1

Tm(x)

[
g(x) −

m∑
k=1

k(yk − x)λkak

]
is the solution of (12).

The following theorem gives the assumptions under which the proposed method is stable and convergent. Moreover, it 
shows that the computation of the approximating solutions fm requires solving well conditioned linear systems.

Theorem 3.1. Assume that Ker(MT + K ) = {0} in C0 . If the kernel k belongs to C0([−1, 1]) and has constant sign and g ∈ C0 , then, 
for a sufficiently large m (say m ≥ m0),

• the operators MTm + Km : C0 → C0 are invertible and their inverses are uniformly bounded;
• the unique solution f ∗

m of (12) converges to the exact solution f ∗ of (2);
• the condition numbers in uniform norm of the matrices Am of the linear systems (13) satisfy

sup
m≥m0

cond(Am) < +∞. (14)

In particular, if k ∈ Wr([−1, 1]) and g ∈ Wr then the following estimate

‖ f ∗ − f ∗
m‖∞ ≤ C

mr
‖ f ∗‖Wr (15)

holds, where C �= C(m, f ∗).

4. Case of weakly singular functions k

In this section we consider the case where the kernel k(x − y) is weakly singular and we propose two Nyström methods 
which consist in discretizing the integral operator K by product quadrature rules.

4.1. Nyström method based on a product integration formula using Lagrange interpolation

The first method we propose consists in approximating (K f )(x) by

(K̃m f )(x) =
1∫

k(y − x)Lm( f , y)dy
0

197



M.C. De Bonis, M.P. Stanić and T.V. Tomović Mladenović Applied Numerical Mathematics 171 (2022) 193–211
=
m∑

k=1

f (yk)

1∫
0

k(y − x)lk(y)dy

=
m∑

k=1

f (yk)λk

m−1∑
i=0

pi(yk)ci(x),

where Lm( f ) is the Lagrange polynomial defined in (7) and

ci(x) :=
1∫

0

k(y − x)pi(y)dy. (16)

Letting

σk(x) := λk

m−1∑
i=0

pi(yk)ci(x)

we can write

(K̃m f )(x) =
m∑

k=1

σk(x) f (yk).

Then, the numerical method reduces to solving the approximating equations

(MT + K̃m) f̃m(x) = g(x), 0 ≤ x ≤ 1, m ≥ 1, (17)

with the unknowns f̃m . Collocating the above equations at the Legendre zeros yi, i = 1, . . . , m, we deduce the following 
equivalent linear systems

m∑
k=1

[
δi,k T (yi) + σk(yi)

]
ãk = g(yi), i = 1, . . . ,m, (18)

whose unknowns are ̃ai = f̃m(yi), i = 1, . . . , m.
After solving the above linear systems we compute the unknowns f̃m of the equations (17) as follows

f̃m(x) = 1

T (x)

[
g(x) −

m∑
k=1

σk(x)̃ak

]
. (19)

Each solution f̃m of (17) furnishes a solution to (18), merely evaluating f̃m at the nodes. The converse is also true, in fact 
for each solution ̃a = (̃a1, . . . , ̃am)T of (18), there is a unique solution of (17) that agrees with ̃a at the nodes.

Concerning the stability and the convergence of the method and the conditioning of the related linear systems, the 
following result holds.

Theorem 4.1. Assume that Ker(MT + K ) = {0} in C0 . If the kernel k satisfies (10),

ρ

(
k(· − x)√

ϕ

)
< +∞, (20)

and

lim
h→0

ρ

(
k(· − x − h) − k(· − x)√

ϕ

)
= 0 (21)

uniformly w.r.t. x and g ∈ C0 , then for a sufficiently large m (say m ≥ m0),

• the operators MT + K̃m : C0 → C0 are invertible and their inverses are uniformly bounded;
• the unique solution ̃ f ∗

m of (17) converges to the exact solution f ∗ of (2) and the following estimate

‖ f ∗ − f̃ ∗
m‖∞ ≤ CEm−1( f ∗), C �= C(m, f ∗) (22)

holds;
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M.C. De Bonis, M.P. Stanić and T.V. Tomović Mladenović Applied Numerical Mathematics 171 (2022) 193–211
• the condition numbers in uniform norm of the matrices ̃Am of the linear systems (18) satisfy

sup
m

cond( Ãm) < +∞.

Remark 4.1. If f ∗ belongs to Wr , with r ≥ 1 integer, or belongs to Zr , with r > 0, by (3)-(4), the estimate of the error (22)
becomes

‖ f ∗ − f ∗
m‖∞ = O

(
m−r) .

Remark 4.2. Examples of kernels satisfying (20), (21) and the assumptions of Lemma 2.4 are the following:

• |x − y|a , −1 < a < 0;
• log |x − y|;
• |x − y|a log |x − y|, −1 < a < 0.

In particular they satisfy the assumption (11) with α = a, −ε, a − ε, respectively, for some ε > 0. Consequently, if g satisfies 
the assumptions of Lemma 2.4 too, (22) becomes

‖ f ∗ − f̃ ∗
m‖∞ ≤ C

⎧⎪⎨⎪⎩
m−2(1+a), k(y − x) = |x − y|a,−1 < a < 0

m−2(1−ε), k(y − x) = log |x − y|
m−2(1+a−ε), k(y − x) = |x − y|a log |x − y|,−1 < a < 0

,

where C �= C(m).

4.1.1. Computational aspects
Note that the construction of the matrices Ãm of systems (18) and of the Nyström interpolants (19) requires the compu-

tation of the integrals ci(x), i = 1, . . . , m, given in (16). Since there is no universal method for computing such integrals, in 
this subsection we present the procedure we used in the cases where k(y −x) = log |y −x|, 0 ≤ x ≤ 1, and k(y −x) = |y −x|a , 
a > −1, 0 ≤ x ≤ 1, which are the most common weakly singular kernels. We note also that, for the above functions k (and 
in general if k is symmetric) we have T (x) = c0(x).

First, we will give some notations and properties of orthonormal Legendre polynomials on the interval [0, 1]. Let Pi and 
P̂ i be the Legendre polynomials which are orthogonal and orthonormal on the interval [−1, 1], respectively. It is easy to see 
that from the orthogonality conditions we have

pi(y) = √
2 P̂ i(2y − 1), i = 0,1, . . . ,

where pi are orthonormal Legendre polynomials shifted on the interval [0, 1]. Also, by using the recurrence relation for the 
Legendre polynomials Pi and ‖Pi‖∞ =

√
2

2i+1 , i = 0, 1, . . . , we obtain the recurrence relation for the orthonormal Legendre 
polynomials shifted on the interval [0, 1], i.e.,

i + 1√
(2i + 1)(2i + 3)

pi+1(y) = (2y − 1)pi(y) − i√
4i2 − 1

pi−1(y), i = 0,1, . . . ,

where p−1(y) = 0 and p0(y) = 1.
Now, using the results given in [4, p. 90] for x ∈ [−1, 1], we deduce the recurrence relations for integrals (16), with 

respect to the weakly singular kernels k(y − x) = log |y − x|, 0 < x < 1, and k(y − x) = |y − x|a , a > −1, 0 < x < 1.

• If k(y − x) = log |y − x|, −1 < x < 1, from [4, p. 90] we have

Mk+1(x) = (2k + 1)x

k + 2
Mk(x) − k − 1

k + 2
Mk−1(x), k = 2,3, . . . , (23)

where Mk(x) = ∫ 1
−1 Pk(y) log |x − y|dy, k = 0, 1, . . . , are the modified moments of the orthogonal Legendre polynomials 

Pk .
Then we obtain

Mk(x) = ‖Pk‖
1∫

−1

log |x − y| P̂k(y)dy,

and by the change of variables y := 2y − 1 and x := 2x − 1 we have
199
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Mk(x) =√
2‖Pk‖

1∫
0

log |2x − 2y|pk(y)dy

=√
2‖Pk‖

⎛⎝log 2

1∫
0

pk(y)dy + ck(x)

⎞⎠ .

Now, substituting the above relation in (23), we obtain the following recurrence relation for the integrals (16)

ck+1(x) = (2k + 1)(2x − 1)

k + 2

√
2k + 3

2k + 1

⎛⎝log 2

1∫
0

pk(y)dy + ck(x)

⎞⎠
− k − 1

k + 2

√
2k + 3

2k − 1

⎛⎝log 2

1∫
0

pk−1(y)dy + ck−1(x)

⎞⎠
− log 2

1∫
0

pk+1(y)dy, k = 2,3, . . . ,

where 0 < x < 1, and the starting integrals ck(x), k = 0, 1, 2, can be evaluated directly from (16). In particular we 
computed them using symbolic calculation in Wolfram Mathematica.

• If k(y − x) = |y − x|a , a > −1, −1 < x < 1, from [4, p. 90] we have

Mk+1(x) = (2k + 1)x

k + a + 2
Mk(x) − k − a − 1

k + a + 2
Mk−1(x), k = 1,2, . . . , (24)

where Mk(x) = ∫ 1
−1 Pk(y)|x − y|ady, k = 0, 1, . . . , are the modified moments of the orthogonal Legendre polynomials Pk . 

Then, proceeding as it was done in the previous case, we obtain the following recurrence relation for the integrals (16)

ck+1(x) = (2k + 1)(2x − 1)

k + a + 2

√
2k + 3

2k + 1
ck(x) − k − a − 1

k + a + 2

√
2k + 3

2k − 1
ck−1(x), k = 1,2, . . . ,

where 0 < x < 1, and ck(x), k = 0, 1, can be evaluated directly from (16).

4.2. Nyström method based on a product integration formula using discrete spline quasi-interpolants

Before introducing the second Nyström method we recall the definition of discrete spline quasi-interpolants (see [24,22,
23]).

Let Xm = {0 = x0 < x1 < · · · < xm = 1} be a uniform partition of interval I = [0, 1], i.e., the length of the subinterval 
Ii = [xi−1, xi] is h = 1

m . We denote by Sd(I, Xm) the space of splines of order d (degree d − 1) and of class Cd−2 on the 
uniform partition Xm and we let J = {1, 2, . . . , m + d − 1}. A basis of such space is formed by the family of B-splines 
B = {B j | j ∈ J }, with multiple nodes 0 = x0 = x−1 = · · · = x−d+1 and 1 = xm = xm+1 = · · · = xm+d−1. The support of B j is 
[x j−d, x j] for all j ∈ J . Let us define the following set

Tm =
{

t j

∣∣∣∣∣ t j = x j−1 + x j−2

2
, j ∈ J

}
.

A discrete quasi-interpolant spline (abbr. dQI) of order d (degree d − 1) is a spline operator of the form:

Q d( f ) =
∑
j∈ J ′

μ j( f )B j,

whose coefficients μ j( f ) are the linear combinations of values of f on evaluation points of spline {τ j | j ∈ J ′}, i.e., either 
on the set Tm for d odd or on the set Xm for d even. Also, J ′ is equal to J or {1, 2, . . . , m} for d odd or even, respectively. 
Moreover, Q d is exact on Pd−1, i.e.,

Q d(p) = p, for all p ∈Pd−1.
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By using expansion of monomials ek(x) = xk , k = 0, 1, . . . , as linear combination of B-splines (see [9,14,25]) and the exact-
ness of Q d on Pd−1, explicit form of the functionals μ j( f ), j ∈ J ′ , is obtained (see [23,24,22]). Also, Q d( f ) can be expressed 
in the quasi-Lagrange form:

Q d( f , y) =
∑
j∈ J ′

L̃ j(y) f (τ j),

where the fundamental functions ̃L j are linear combination of B-splines.
Setting

f̄m(y) = Q d( f , y)

and approximating the integral operator in (2) by

(K̄m f )(x) =
∑
j∈ J ′

⎛⎝ 1∫
0

L̃ j(y)k(y − x)dy

⎞⎠ f (τ j)

=
∑
j∈ J ′

σ j(x) f (τ j),

where σ j(x) = ∫ 1
0 L̃ j(y)k(y − x)dy, the Nyström method we propose in this subsection consists in solving the following 

approximating equations

f̄m(x)T (x) +
∑
j∈ J ′

σ j(x) f̄m(τ j) = g(x), 0 ≤ x ≤ 1, m = 1,2, . . . ,

which can also be written in the following more compact form

(MT + K̄m) f̄m(x) = g(x). (25)

Collocating the above equation at the points τ j , j ∈ J ′ , we obtain the following linear system∑
j∈ J ′

[
δi, j T (τi) + σ j(τi)

]
ā j = g(τi), i ∈ J ′, (26)

having ā j = f̄m(τ j), j ∈ J ′ , as unknowns. Solving the previous system we can construct the following approximating solution

f̄m(x) = 1

T (x)

⎛⎝g(x) −
∑
j∈ J ′

σ j(x)ā j

⎞⎠ . (27)

The stability and the convergence of the method as well as the well-conditioning of the linear systems (26) are stated 
by the following theorem.

Theorem 4.2. Assume that Ker(MT + K ) = {0} in C0 . If the kernel k satisfies (8)-(10) and g ∈ C0 , then for a sufficiently large m (say 
m ≥ m0)

– the operators MT + K̄m : C0 → C0 are invertible and their inverses are uniformly bounded;
– the unique solution f̄ ∗

m of (25) converges to the exact solution f ∗ of (2) and the following estimate holds true

‖ f ∗ − f̄ ∗
m‖∞ ≤ Cω

(
f ∗, 1

m

)
, C �= C(m,d, f ∗), (28)

where ω is the ordinary modulus of smoothness;
– the condition numbers in uniform norm of the matrices Ām of the linear systems (26) satisfy

sup
m≥m0

cond( Ām) < +∞.

Remark 4.3. In particular, if f ∗ ∈ Cd+1, with d even, by [1, Theorem 6], (28) becomes

‖ f ∗ − f̄ ∗
m‖∞ ≤ C

{
m−d−a−1, k(y − x) = |x − y|a,−1 < a < 0

m−d−1 log m−1, k(y − x) = log |x − y| ,

where C �= C(m).
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4.2.1. Univariate quadratic splines
In this subsection we will give the computational details of the above described method in the case of discrete spline 

quasi-interpolant Q 3 f and with respect to the kernels k(y − x) = log |y − x| and k(y − x) = |y − x|a , −1 < a < 0, 0 ≤ x ≤ 1.
Note that d = 3 and J ′ = J = {1, 2, . . . , m + 2}. For the computation of the approximate solution (27) one has to calculate 

the integrals σ j(x), j ∈ J . As each ̃L j(y) can be represented as a linear combination of a finite number of B-splines B j (see 
[24]),

L̃1 =B1 − 1

3
B2,

L̃2 =3

2
B2 − 1

8
B3,

L̃3 = − 1

6
B2 + 5

4
B3 − 1

8
B4,

L̃ j =1

8
(−B j−1 + 10B j − B j+1), 4 ≤ j ≤ m − 1,

L̃m = − 1

8
Bm−1 + 5

4
Bm − 1

6
Bm+1,

L̃m+1 = − 1

8
Bm + 3

2
Bm+1,

L̃m+2 =Bm+2 − 1

3
Bm+1

and k(y − x) = k(x − y), x, y ∈ [0, 1], in our cases, it is sufficient to calculate the integrals b j(x) = ∫ 1
0 B j(y)k(y − x)dy, j ∈ J . 

Since each B-spline can be expressed in the Bernstein basis{
βd−1

r (y) =
(d−1

r

)
(1 − y)r yd−1−r : r = 0,1, . . . ,d − 1

}
of Pd−1, by using results given in [1], we have that b j , j ∈ J , are given in the following way. For k(y − x) = log |y − x| we 
have

b(1)
1 (x) =1

3
h log h + hφ2

( x

h

)
,

b(1)
2 (x) =2

3
h log h + h

2

(
φ0

( x

h

)
+ 2φ1

( x

h

)
+ φ2

( x

h

)
+ φ2

( x

h
− 1

))
,

b(1)
j (x) =h log h + 1

2

(
φ0

( x

h
+ 3 − j

)
+ φ0

( x

h
+ 2 − j

)
+ 2φ1

( x

h
+ 2 − j

)
+φ2

( x

h
+ 2 − j

)
+ φ0

( x

h
+ 1 − j

))
, 3 ≤ j ≤ m,

b(1)
m+1(x) =2

3
h log h + h

2

(
φ0

( x

h
+ 2 − m

)
+ 2φ1

( x

h
+ 1 − m

)
+ φ0

( x

h
+ 1 − m

)
+ φ2

( x

h
+ 1 − m

))
,

b(1)
m+2(x) =1

3
h log h + hφ0

( x

h
+ 1 − m

)
.

In the case k(y − x) = |y − x|a , −1 < a < 0, x ∈ [0, 1] we have

b(2)
1 (x) =ha+1ψ2

( x

h

)
,

b(2)
2 (x) =1

2
ha+1

(
ψ0

( x

h

)
+ 2ψ1

( x

h

)
+ ψ2

( x

h

)
+ ψ2

( x

h
− 1

))
,

b(2)
j (x) =1

2
ha+1

(
ψ0

( x

h
+ 3 − j

)
+ ψ0

( x

h
+ 2 − j

)
+ 2ψ1

( x

h
+ 2 − j

)
+ψ2

( x

h
+ 2 − j

)
+ ψ0

( x

h
+ 1 − j

))
, 3 ≤ j ≤ m,

b(2)
m+1(x) =1

2
ha+1

(
ψ0

( x

h
+ 2 − m

)
+ 2ψ1

( x

h
+ 1 − m

)
+ ψ0

( x

h
+ 1 − m

)
+ ψ2

( x

h
+ 1 − m

))
,

b(2)
m+2(x) =ha+1φ0

( x

h
+ 1 − m

)
.

The integrals φr(x) = ∫ 1
0 log |y − x|β2

r (y)dy, r = 0, 1, 2, and ψr(x) = ∫ 1
0 |y − x|aβ2

r (y)dy, r = 0, 1, 2, can be calculated with the 
aid of Wolfram Mathematica.
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Table 1
Example 5.1.

m cond(Am) err(3)
m

3 4.1652 7.205e − 05
4 4.9856 2.286e − 07
5 5.4760 6.712e − 10
6 5.7846 6.370e − 13
7 5.9888 9.301e − 16
8 6.1301 eps

5. Numerical tests

In this section we will show by some numerical tests the performances of the proposed methods.
For each example, we will compute the absolute errors

errm = max
t∈X

| f (t) − fm(t)|,
where X is a sufficiently large uniform mesh of [0, 1] and the condition numbers in uniform norm of the matrices associated 
with the solved linear systems. In particular, the superscripts (3), (4.1) and (4.2) have been used for errm and fm in order 
to distinguish the implemented numerical method ((3), (4.1) and (4.2) denote Section 3, Subsection 4.1 and Subsection 4.2, 
respectively). When the exact solution of the integral equation is not known, the absolute errors errm have been computed 
replacing f by fm with m = 2100. The method given in Subsection 4.2 has been implemented with d = 3.

Note that, even if the method in Subsection 4.1 converges always faster than the method in Subsection 4.2 (see Exam-
ples 5.5-5.8), the latter method has the advantage of requiring a less computational cost.

Example 5.1. Consider the equation

f (x)

1∫
0

e(x−y)dy +
1∫

0

e(y−x) f (y)dy = e−x

2
+ (e − 1)ex−1x2 cos(x),

with

k(z) = ez, g(z) = e−z

2
+ (e − 1)ez−1z2 cos(z),

whose exact solution is f (x) = x2 cos(x) ∈ Wr, r ≥ 1. Since the function k is very smooth, we compute the approximate 
solution using the method described in Section 3. Looking at the numerical results presented in Table 1, one can see that, 
according to the theoretical expectations, the convergence is very fast and the condition numbers of the solved matrices are 
less than 6.5.

Example 5.2. Consider

f (x)

1∫
0

1

((x − y)2 + 4)
dy +

1∫
0

1

((y − x)2 + 4)
f (y)dy = sin(x2 + 1),

with

k(z) = 1

(z2 + 4)
, g(z) = sin(z2 + 1).

The exact solution is unknown, but, according to Theorem 3.1, f ∈ Wr, r ≥ 1. The results reported in Table 2 confirm that 
also in this case the convergence is very fast and the condition numbers are very small.

Example 5.3. We take the equation

f (x)

1∫
0

e|x−y| 11
2 dy +

1∫
0

e|y−x| 11
2 f (y)dy = x3 log(x + 4),

with

k(z) = e|z| 11
2

, g(z) = z3 log(z + 4),
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Table 2
Example 5.2.

m cond(Am) err(3)
m

3 2.4431 2.2731e − 04
4 2.6709 5.7163e − 06
5 2.8251 1.4087e − 07
6 2.8987 1.7861e − 10
7 2.9617 1.8290e − 11
8 2.9927 1.2210e − 13
9 3.0244 1.1507e − 15
10 3.0398 eps

Table 3
Example 5.3.

m cond(Am) err(3)
m

10 3.1624 1.0991e − 08
20 3.3553 1.2787e − 10
50 3.4819 3.4684e − 13
100 3.5225 3.9804e − 15
150 3.5358 eps

Table 4
Example 5.4.

m cond(Am) err(3)
m

50 3.1230 2.1419e − 09
150 3.1265 1.5680e − 11
250 3.1268 1.5756e − 12
450 3.1269 1.0441e − 13
650 3.1269 1.3115e − 14
750 3.1269 2.8589e − 15

whose exact solution is unknown. Applying Lemma 2.3 and Theorem 3.1 we deduce that f ∈ W5 and that the error behaves 
as m−5. This slower convergence is confirmed by the results in Table 3. In fact, in this case it is necessary to take m = 150
to attain an approximation of the solution with machine precision. Also in this case the condition numbers of the matrices 
are very small.

Example 5.4. Taking the equation

f (x)

1∫
0

1

((x − y)4 + 3)
dy +

1∫
0

1

((y − x)4 + 3)
f (y)dy =

∣∣∣∣x − 1

2

∣∣∣∣ 7
2

,

with

k(z) = 1

(z4 + 3)
, g(z) =

∣∣∣∣z − 1

2

∣∣∣∣ 7
2

,

by Theorem 3.1 we deduce that the unknown belongs to W3. As one can see in Table 4, we need to take m = 750 to obtain 
an approximation of the solution with 15 exact decimal digits. This agrees with the theoretical expectations, in fact in this 
case the rate of converge is m−3. According to (14) the condition numbers of the solved linear systems do not increase for 
m going to infinity.

Example 5.5. Consider the equation

f (x)

1∫
0

|x − y|−1/2dy +
1∫

0

|y − x|−1/2 f (y)dy = g(x),

with

k(z) = |z|−1/2, g(z) = ex(2(
√

1 − z + √
z) + √

π(Er f (
√

z) + Er f i(
√

1 − z))),
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Table 5
Example 5.5.

m cond( Ãm) err(4.1)
m cond( Ām) err(4.2)

m

3 1.7302 2.925e − 03 3.0629 1.584e − 02
4 1.9505 1.614e − 04 3.1125 1.163e − 04
5 2.1802 7.275e − 06 3.1995 4.646e − 05
6 2.3272 2.783e − 07 3.2437 2.149e − 05
7 2.4804 9.186e − 09 3.2995 1.341e − 05
8 2.5846 2.639e − 10 3.3295 1.004e − 05
9 2.6943 6.693e − 12 3.3669 8.447e − 06
10 2.7719 1.517e − 13 3.3891 5.604e − 06
11 2.8543 3.236e − 15 3.4165 3.267e − 06
12 2.9143 6.540e − 17 3.4339 2.479e − 06

Table 6
Example 5.6.

m cond( Ãm) err(4.1)
m cond( Ām) err(4.2)

m

4 2.1977 3.703e − 04 3.7580 2.701e − 04
8 3.3555 6.809e − 07 4.1433 2.713e − 05
16 4.1437 1.392e − 12 4.3772 1.976e − 06
18 4.2299 3.170e − 14 4.4052 1.269e − 06
20 4.2953 2.800e − 15 4.4282 8.343e − 07
21 4.3302 2.330e − 16 4.4159 6.814e − 07

whose exact solution is f (x) = ex , where

Er f (z) = 2√
π

z∫
0

e−t2
dt, Er f i(z) = Er f (iz)/i, i2 = −1,

are the error functions. Since the function k is weakly singular, we solve it using the methods proposed in Subsections 
4.1 and 4.2. Since the solution f belongs to Wr for any r ≥ 1, according to Remarks 4.1 and 4.3 the method proposed in 
Subsection 4.1 has faster convergence. This behaviour is verified by the numerical results presented in Table 5. As one can 
see, the condition numbers of the linear systems solved in both methods are comparable.

Example 5.6. Consider the equation

f (x)

1∫
0

log |x − y|dy +
1∫

0

log |y − x| f (y)dy = g(x),

with k(z) = log |z|, whose exact solution is f (x) = x
1+x2 , and g(z) can be explicitly obtained using Wolfram Mathematica. 

Also in this case the solution is very smooth and, as shown in Table 6, the convergence rate of the method in Subsection 
4.1 is higher. The condition numbers of both the methods are very small.

Example 5.7. Consider the equation

f (x)

1∫
0

|x − y|−1/2dy +
1∫

0

|x − y|−1/2 f (y)dy = g(x),

with k(z) = |z|−1/2, whose exact solution is f (x) = ∣∣x − 1
4

∣∣9/2
and g(z) can be explicitly obtained using Wolfram Mathemat-

ica. In this case the solution f belongs to Z 9
2

(⊃ C4). According to Remark 4.1 the convergence order of the method given 

in Subsection 4.1 is m− 9
2 , while taking into account Remark 4.3, the method given in Subsection 4.2 has convergence order 

m− 7
2 . The results given in Table 7 show that the method given in Subsection 4.1 has faster convergence.

Example 5.8. Consider the equation

f (x)

1∫
|x − y|−1/5dy +

1∫
|x − y|−1/5 f (y)dy = g(x),
0 0
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Table 7
Example 5.7.

m cond( Ãm) err(4.1)
m cond( Ām) err(4.2)

m

4 1.9505 2.512e − 03 3.1125 1.049e − 03
8 2.5846 6.406e − 06 3.3295 1.378e − 04
16 3.1165 6.917e − 08 3.4981 1.609e − 05
32 3.4856 3.007e − 09 3.6245 1.184e − 06
64 3.7094 6.752e − 11 3.7189 1.248e − 07
128 3.8342 1.288e − 12 3.7886 8.909e − 09
256 3.9004 6.651e − 14 3.8395 8.585e − 10
512 3.9346 1.035e − 15 3.8765 8.084e − 11
515 3.9348 9.406e − 16 3.8765 7.924e − 11

Table 8
Example 5.8.

m cond( Ãm) err(4.1)
m cond( Ām) err(4.2)

m

100 3.3311 2.439e − 09 3.3208 2.585e − 06
200 3.3379 2.573e − 10 3.3293 8.384e − 07
300 3.3395 5.357e − 11 3.3326 4.287e − 07
400 3.3402 2.049e − 11 3.3344 2.632e − 07
500 3.3405 8.672e − 12 3.3355 1.782e − 07
600 3.3407 4.673e − 12 3.3362 1.281e − 07
800 3.3409 1.617e − 12 3.3373 7.351e − 08
1000 3.3411 6.936e − 13 3.3379 4.546e − 08
1400 3.3412 1.697e − 13 3.3387 1.823e − 08
1700 3.3412 5.800e − 14 3.3391 8.034e − 09
1900 3.3412 2.210e − 14 3.3393 3.469e − 09
2090 3.3412 9.000e − 16 3.3394 1.531e − 10

with k(z) = |z|−1/5 and g(z) = | sin z|5/2 whose exact solution is unknown. According to Lemma 2.4 the unknown solution 
belongs to Z 8

5
. The results given in Table 8 show that the convergence rate of the method given in Subsection 4.1 is higher 

than the one of the method given in Subsection 4.2. This agrees with the theoretical expectations (see Remarks 4.2 and 4.3).

6. Proofs

We first prove Lemma 2.2.

Proof of Lemma 2.2. The compactness of the operator K : C0 → C0 under the assumptions (8) and (9) is well-known [2, 
p. 7].

Now we prove the invertibility of MT : C0 → C0. Letting

(K̄ f )(x) =
1∫

0

k(x − y) f (y)dy, (29)

under the assumptions (8) and (10), it is easy to see that the function T (x) = (K̄ f )(x) with f ≡ 1 belongs to C0 as well as 
the function 1

T (x) . Moreover, taking into account that

‖MT f ‖∞ = ‖T f ‖∞ ≤ ‖T ‖∞‖ f ‖∞ ≤ C‖ f ‖∞,∥∥∥M 1
T

f
∥∥∥∞ =

∥∥∥∥ 1

T
f

∥∥∥∥∞
≤

∥∥∥∥ 1

T

∥∥∥∥∞
‖ f ‖∞ ≤ C‖ f ‖∞,

and

MT M 1
T

= M 1
T

MT = I,

we easily deduce that MT : C0 → C0 is a bounded invertible operator and its inverse is the bounded operator M 1
T

: C0 →
C0. �

In order to prove Lemma 2.3 we need the following result.

Lemma 6.1. If k ∈ Wr([−1, 1]) then k(y − ·) ∈ Wr([0, 1]) uniformly w.r.t. y and k(· − x) ∈ Wr([0, 1]) uniformly w.r.t. x.
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Proof. Taking into account that

∂r

∂xr
k(y − x) = (−1)rk(r)(z)|z=y−x

and (
x(1 − x)

(1 − (y − x))(1 + (y − x))

) r
2 ≤ 1,

we get∣∣∣∣ ∂r

∂xr
k(y − x)ϕr(x)

∣∣∣∣ =
∣∣∣[k(r)(z)ϕr−1,1(z)

]
|z=y−x

∣∣∣( x(1 − x)

(1 − (y − x))(1 + (y − x))

) r
2

≤ max
0≤x,y≤1

∣∣∣[k(r)(z)ϕr−1,1(z)
]
|z=y−x

∣∣∣
≤ max|z|≤1

∣∣∣k(r)(z)ϕr−1,1(z)
∣∣∣ . (30)

Consequently, if k ∈ Wr([−1, 1]) then k(y − ·) ∈ Wr([0, 1]) uniformly w.r.t. y. Analogously, taking into account that

∂r

∂ yr
k(y − x) = k(r)(z)|z=y−x

and (
y(1 − y)

(1 − (y − x))(1 + (y − x))

) r
2 ≤ 1,

we deduce that k(· − x) ∈ Wr([0, 1]) uniformly w.r.t. x. �
Now we can prove Lemma 2.3.

Proof of Lemma 2.3. If we prove that 1
T ∈ Wr and K f ∈ Wr for any f ∈ C0 then, under the assumption g ∈ Wr , we get

f = g

T
− K f

T
∈ Wr .

On the other hand, since, under the assumption (10), T (x) �= 0 for any x ∈ [0, 1], if T ∈ Wr then 1
T ∈ Wr , too. Thus, we need 

to prove that T ∈ Wr and K f ∈ Wr for any f ∈ C0. We prove only that K is a continuous map from C0 into Wr since, taking 
into account that T (x) = (K̄ f )(x) with f ≡ 1 (K̄ f defined in (29)), the proof of T ∈ Wr is similar.

Using (30) we have

|(K f )(r)(x)ϕr(x)| ≤
1∫

0

∣∣∣∣ ∂r

∂xr
k(y − x)ϕr(x)

∣∣∣∣ | f (y)|dy

≤ ‖ f ‖∞
1∫

0

∣∣∣[k(r)(z)ϕr−1,1(z)
]
|z=y−x

∣∣∣dy

≤ ‖ f ‖∞‖k‖Wr

and then, for k ∈ Wr([−1, 1]), K : C0 → Wr is a continuous map. �
In order to prove Theorem 3.1 we need the following lemmas.

Lemma 6.2. If k ∈ C0([−1, 1]) then the sequence {Km}m is pointwise convergent to K , uniformly bounded and collectively compact.

Proof. We first prove the pointwise convergence of {Km}m to K , i.e.,

lim
m

‖(K − Km) f ‖∞ = 0, ∀ f ∈ C0. (31)

Note that |(K f )(x) − (Km f )(x)| is the error of the Gauss-Legendre rule applied to the function Fx(y) = k(y − x) f (y), for 
every fixed x ∈ [0, 1]. Then, by (6),
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|(K f )(x) − (Km f )(x)| ≤ E2m−1(Fx). (32)

If we prove that the function Fx is continuous, uniformly with respect to x, we deduce (31). For any y ∈ [0, 1], we have

max
x∈[0,1] |Fx(y + h) − Fx(y)| ≤ | f (y + h)| max

x∈[0,1] |k(y − x + h) − k(y − x)|
+ | f (y + h) − f (y)| max

x∈[0,1] |k(y − x)|
≤ | f (y + h)| max

z∈[y−1,y] |k(z + h) − k(z)|
+ | f (y + h) − f (y)| max

z∈[y−1,y] |k(z)|
≤ ‖ f ‖∞ max

z∈[−1,1] |k(z + h) − k(z)|
+ max

y∈[0,1] | f (y + h) − f (y)| max
z∈[−1,1] |k(z)|.

Then, if f ∈ C0 and k ∈ C0([−1, 1]) (i.e., f and k are uniformly continuous)

lim
h→0

max
x∈[0,1] |Fx(y + h) − Fx(y)| = 0, y ∈ [0,1],

i.e., Fx ∈ C0 uniformly with respect to x.
Now we prove the uniformly boundedness of the sequence {Km}m . We have

|(Km f )(x)| ≤ ‖ f ‖∞
m∑

k=1

|k(yk − x)|λk ≤ ‖ f ‖∞ max
x,y∈[0,1] |k(y − x)|

m∑
k=1

λk

≤ ‖ f ‖∞ max
z∈[−1,1] |k(z)|

and, then, under the assumption on k,

sup
m

‖Km‖C0→C0 ≤ C < +∞.

It remains to prove the collectively compactness of the sequence {Km}m , i.e., the relatively compactness in C0 of the set

{Km f ∈ C0 : m ≥ 1 and ‖ f ‖∞ ≤ 1}.
Using the Ascoli-Arzelà Theorem, since the sequence {Km}m is uniformly bounded, it is sufficient to prove that

lim
h→0

sup
m

sup
‖ f ‖∞=1

‖(Km f )(· + h) − (Km f )(·)‖∞ = 0. (33)

The above condition can be easily proved. In fact, for any f ∈ C0, we have

|(Km f )(x + h) − (Km f )(x)| ≤
m∑

k=1

|k(yk − x − h) − k(yk − x)|| f (yk)|λk

≤ ‖ f ‖∞ max
x,y∈[0,1] |k(y − x − h) − k(y − x)|

≤ ‖ f ‖∞ max
z∈[−1,1] |k(z − h) − k(z)|.

Then, under the assumption k ∈ C0([−1, 1]), (33) follows. �
Lemma 6.3. Assuming that the function k belongs to C0([−1, 1]) and has constant sign, the operators MTm are bounded, admit as 
uniformly bounded inverses the operators M 1

Tm
and pointwise converge to MT .

Proof. Letting

(K ∗ f )(x) =
1∫

0

k(x − y) f (y)dy and (K ∗
m f )(x) =

m∑
k=1

k(x − yk) f (yk)λk,

proceeding as it was done in Lemma 6.2 for the sequence {Km}m , it is easy to see that, under the assumptions k ∈
C0([−1, 1]) and (10), the functions Tm(x) = (K ∗

m f )(x) with f ≡ 1 belong to C0 as well as the functions 1
Tm(x) . Moreover, 

the functions Tm(x) uniformly converge to the function T (x) = (K ∗ f )(x) with f ≡ 1. Furthermore, with f ≡ 1, we have
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|Tm(x)| = |(K̄m f )(x)| ≤
m∑

k=1

|k(x − yk)|λk ≤ max
x,y∈[0,1] |k(x − y)|

m∑
k=1

λk

≤ max
z∈[−1,1] |k(z)|,

and, denoting by x0 the point belonging to [0, 1] s.t. |Tm(x0)| = ‖Tm‖∞ and recalling that we are assuming k of constant 
sign, we get (we are assuming that k has positive sign, but the proof in case of negative sign is similar)

‖Tm‖∞ = |Tm(x0)| = |(K̄m f )(x0)| =
∣∣∣∣∣

m∑
k=1

k(x0 − yk)λk

∣∣∣∣∣ =
m∑

k=1

k(x0 − yk)λk

≥ min
z∈[−1,1]k(z)

m∑
k=1

λk

= min
z∈[−1,1] |k(z)|,

i.e.

‖Tm‖∞ ≥ min
z∈[−1,1] |k(z)|.

Consequently,

‖MTm f ‖∞ = ‖Tm f ‖∞ ≤ ‖Tm‖∞‖ f ‖∞ ≤ C‖ f ‖∞, C �= C(m),∥∥∥M 1
Tm

f
∥∥∥∞

=
∥∥∥∥ 1

Tm
f

∥∥∥∥∞
≤ 1

‖Tm‖∞
‖ f ‖∞ ≤ C‖ f ‖∞, C �= C(m),

MTm M 1
Tm

= M 1
Tm

MTm = I,

and

lim
m

max
x∈[0,1] |(MTm f )(x) − (MT f )(x)| = lim

m
max

x∈[0,1] |Tm(x) f (x) − T (x) f (x)|
≤ ‖ f ‖∞ lim

m
‖Tm − T ‖∞ = 0. (34)

The proof of the lemma is complete. �
Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Using [13, Problem 10.3, p. 153] and Lemmas 6.2 and 6.3, we deduce that, for all sufficiently large 
m, the inverses (MTm + Km)−1 exist and are uniformly bounded and

‖ f ∗
m − f ∗‖∞ ≤ C

[‖(Km − K ) f ∗‖∞ + ‖(MTm − MT ) f ∗‖∞
]
. (35)

Moreover, proceeding as in [2, pp. 112-113] we get

cond(Am) ≤ cond(MTm + Km) ≤ C < +∞, C �= C(m).

It remains to prove only (15). To do this, we use (35).
Since by Lemma 6.1 and Lemma 2.3 under the assumptions k ∈ Wr([−1, 1]) and g ∈ Wr we get k(· − x) ∈ Wr([0, 1])

uniformly w.r.t. x and f ∈ Wr , applying (3), with Fx(y) = k(y − x) f ∗(y) we deduce that

E2m−1(Fx) ≤ 2‖ f ∗‖∞Em−1(k(· − x)) + ‖k(· − x)‖∞Em−1( f ∗)

≤ C
mr

‖ f ∗‖Wr ,

and, taking into account (32),

‖(Km − K ) f ∗‖∞ ≤ C
mr

‖ f ∗‖Wr (36)

follows. Moreover, by (34),

‖(MTm − MT ) f ‖∞ = max |Tm(x) f (x) − T (x) f (x)| ≤ ‖ f ‖∞ max |Tm(x) − T (x)|,

x∈[0,1] x∈[0,1]
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where |Tm(x) − Tm(x)| is the error of the Gauss-Legendre rule applied to the function k(y − x) with respect to the variable 
y, for every fixed x ∈ [0, 1]. Then, under the assumption k ∈ Wr([−1, 1]), by Lemma 6.1 and (3),

|T (x) − Tm(x)| ≤ 2E2m−1(k(· − x)) ≤ C
mr

‖k‖Wr [−1,1],

i.e.,

‖(MTm − MT ) f ‖∞ ≤ C
mr

‖ f ‖Wr . (37)

Consequently, substituting (36) and (37) into (35), (15) follows.
The proof is complete. �
In order to prove Theorem 4.1 we need the following lemma.

Lemma 6.4. If the kernel k satisfies (20) and (21), then the sequence {K̃m}m is pointwise convergent to K , uniformly bounded and 
collectively compact.

Proof. Denoting by P ∈ Pm−1 the polynomial of best approximation of f ∈ C0, we have

|(K f )(x) − (K̃m f )(x)| ≤
1∫

0

|k(y − x)|| f (y) − P (y)|dy

+
1∫

0

|k(y − x)||Lm( f − P , y)|dy.

Using Lemma 2.1, we get

|(K f )(x) − (K̃m f )(x)| ≤ Em−1( f )

⎡⎣ 1∫
0

|k(y − x)|dy + ρ

(
k(· − x)√

ϕ

)⎤⎦
and by (9) and (20) we get

‖(K − K̃m) f ‖ ≤ CEm−1( f ), (38)

i.e., pointwise convergence of {K̃m}m to K .
Since the uniform boundedness of the sequence {K̃m}m trivially follows by Lemma 2.1, it remains to prove its collective 

compactness. As it was done in the proof of Lemma 6.2, we prove (33) with K̃m in place of Km . Applying Lemma 2.1 again, 
we get

|(K̃m f )(x + h) − (K̃m f )(x)| ≤
1∫

0

|k(y − x − h) − k(y − x)||Lm( f , y)|dy

≤ Cρ
(

k(· − x − h) − k(· − x)√
ϕ

)
‖ f ‖∞.

Then, using (21) the collective compactness of {K̃m}m follows. �
Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Applying [2, Theorem 4.1.1, p. 106] and Lemma 6.4, we deduce that, for all sufficiently large m, the 
inverses (MT + K̃m)−1 exist and are uniformly bounded and

‖ f ∗ − f̃ ∗
m‖∞ ≤ C‖(K̃m − K ) f ∗‖∞.

Recalling (38), (22) follows.
Moreover, proceeding as in [2, pp. 112-113] we get

cond( Ãm) ≤ cond(MT + K̃m) ≤ C < +∞, C �= C(m).

The proof of the theorem is now complete. �
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Taking into account the following lemma, the proof of Theorem 4.2 is similar to the one of Theorem 4.1.

Lemma 6.5. If the kernel k satisfies (8) and (9), then the sequence {K̄m}m is pointwise convergent to K , uniformly bounded and 
collectively compact.

Proof. The proof of the lemma can be found in the proof of [1, Theorem 5]. �
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