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Figure 1: Real-life photos captured in egocentric vision (top row) and segmentation overlay images (bottom row) obtained by
overlapping the input and prediction of our best model based on DeepLabv3+ with Xception-65 network backbone. Accurate
segmentation was achieved for both naked and clothed upper limbs in different lighting conditions, skin tone, occlusions,
hand poses, user/camera movements, indoor and outdoor scenarios.

ABSTRACT
Upper limb segmentation in egocentric vision is a challenging and
nearly unexplored task that extends the well-known hand local-
ization problem and can be crucial for a realistic representation of
users’ limbs in immersive and interactive environments, such as
VR/MR applications designed for web browsers that are a general-
purpose solution suitable for any device. Existing hand and arm
segmentation approaches require a large amount of well-annotated
data. Then different annotation techniques were designed, and
several datasets were created. Such datasets are often limited to
synthetic and semi-synthetic data that do not include the whole
limb and differ significantly from real data, leading to poor per-
formance in many realistic cases. To overcome the limitations of
previous methods and the challenges inherent in both egocentric
vision and segmentation, we trained several segmentation networks
based on the state-of-the-art DeepLabv3+ model, collecting a large-
scale comprehensive dataset. It consists of 46 thousand real-life and
well-labeled RGB images with a great variety of skin colors, clothes,
occlusions, and lighting conditions. In particular, we carefully se-
lected the best data from existing datasets and added our EgoCam
dataset, which includes new images with accurate labels. Finally,
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we extensively evaluated the trained networks in unconstrained
real-world environments to find the best model configuration for
this task, achieving promising and remarkable results in diverse
scenarios. The code, the collected egocentric upper limb segmenta-
tion dataset, and a video demo of our work will be available on the
project page1.
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1 INTRODUCTION
With the widespread availability of wearable RGB cameras and
head-mounted displays, systems for analyzing and detecting hands
in a first-person perspective, called egocentric or first-person vision
1Data and code available for research purposes and the video demo of our work can be
found at the following link: http://graphics.unibas.it/www/EgoUpperLimbSeg/index.
md.html
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(FPV), have increasingly developed [Betancourt et al. 2015]. It has
led to the growing development of hand-based approaches in FPV
in several areas, such as healthcare monitoring [Likitlersuang et al.
2019], gesture and sign language recognition [Zamora-Mora and
Chacón-Rivas 2019], human-computer and human-robot interac-
tion [Caggianese et al. 2016; Pathi et al. 2019], virtual, augmented,
and mixed reality [Caggianese et al. 2015; Gonzalez-Sosa et al. 2020].
Hand segmentation is the most demanding hand localization task
and is used as a pre-processing step in many applications since
it allows identifying hand regions with high accuracy and distin-
guishing the hands from the background and objects [Bandini and
Zariffa 2020]. In this study, we extended the hand segmentation task
focusing on the upper limb in egocentric vision in unconstrained
real-life environments. Understanding where the whole upper limb
is, with a certain precision at pixel-level, can be useful especially in
real-world scenarios where not only the hand but the rest of the
upper limb is framed, for example, using cameras with a wide field
of view. Furthermore, upper limb segmentation can be beneficial
for constructing a realistic solution to represent users in virtual
environments (VEs) visualized through head-mounted displays
(HMDs). Although VR allows users to be involved in experiences
that are difficult or impossible to achieve in the real world, many
applications are not fully accessible to everyone and anywhere.
Indeed, they are often coupled to specific platforms and require
software and libraries installation. In recent years, Web3D-based
solutions have been increasingly developed, providing an execu-
tion environment running directly in the browser and resulting in
easy setup and high cross-platform portability [Chittaro and Serra
2004; de Paiva Guimarães et al. 2018]. Two interesting applications
consist of VR chatrooms and Web3D virtual conferences, in which
each user can interact with 3D virtual objects and other participants
immersed in a Web3D virtual environment (Web3D VE) [Hok et al.
2020]. Such VR applications usually employ virtual avatars that are
often limited to hand representation or look artificial [Gonzalez-
Sosa et al. 2020]. Instead, the proposed approach can allow users
to see their real whole limbs in the virtual scene and interact with
virtual objects using their own hands, improving the user’s sense
of presence and embodiment [Kilteni et al. 2012].

Contrary to many state-of-the-art approaches, which segmented
only the hand up to the wrist [Bambach et al. 2015; Urooj and Borji
2018] or bare arms [Li and Kitani 2013; Lin and Martinez 2020;
Wang et al. 2019], we were hence interested in the whole upper
limb, also taking into account the clothes. Moreover, we considered
hand-to-hand and hand-to-object occlusions, treating the limb as
foreground and the objects as part of the background. The main
problem we faced was the lack of well-annotated realistic RGB
images that included all the cases we wanted to analyze. Most ex-
isting datasets contain insufficient variety and a limited number of
annotated images (e.g., a few hundred or thousand), making them
unsuitable for training deep neural networks [Bandini and Zariffa
2020]. Larger datasets consist of easily labeled computer-generated
data that differs from the realistic domain in terms of chromaticity,
lighting conditions, shadows, and overall appearance. Such discrep-
ancies may not allow the model to generalize on real-life cases or
different datasets. Therefore, we collected about 46 thousand varied
RGB images with accurate labels, which may enable a deep neural

network to learn a wide range of realistic activities and achieve ac-
ceptable to remarkable results in unknown and unpredictable cases,
without any fine-tuning or new training. In particular, the data in-
cludes i) the best images and labels from the well-known EDSH [Li
and Kitani 2013] and TEgO [Lee and Kacorri 2019] datasets, ii)
our manually labeled dataset, called EgoCam, obtained using two
different cameras in egocentric vision.

To achieve our goal, we used the collected upper limb segmen-
tation dataset to train and test several networks based on the
DeepLabv3+ architecture [Chen et al. 2018], which is the state-
of-the-art deep convolutional networks for semantic segmentation
that obtained remarkable results on several benchmark datasets.
Finally, we conducted quantitative and qualitative assessments to
verify the effectiveness of our dataset and evaluate the best net-
work configuration, achieving promising and notable results for
both simple and complex/cluttered background scenes, different
lighting conditions, hand poses, occlusions, and dynamic camera
positions combined with the user’s motion, without the need for
domain adaptation. To the best of our knowledge, the proposed
work is the first to evaluate the effectiveness of a deep learning (DL)
model for upper limb segmentation in unconstrained realistic cases
and collecting vast and varied real-life well-annotated images.

The remainder of this paper is structured as follows: Section 2
presents an overview of the related works; Section 3 analyzes the
existing dataset, describes the requirements for selecting the best
data and provides detailed information about our EgoCam dataset;
Section 4 presents the considered networks, configuration parame-
ters and training phase; Section 5 illustrates the obtained results and
evaluations conducted; Section 6 presents our final considerations
and future directions.

2 RELATEDWORK
In this Section, we provide an overview of the hand/arm based
approaches, discuss the strengths and weaknesses of synthetic and
semi-synthetic datasets, and carefully analyze existing real datasets
containing RGB images of hands and arms captured in egocentric
vision. Finally, the use of deep learning techniques in Web3D-based
applications was analyzed.

Hand and Arm Based Methods. Hands/arms based approaches
can be divided into localization and interpretation methods [Ban-
dini and Zariffa 2020]. The former include all studies interested
in identifying the presence of hands and arms in images (detec-
tion) [Narasimhaswamy et al. 2019], classifying left/right hands
(hand identification) [Betancourt et al. 2017], identifying the hand/arm
pixel regions (segmentation) [Gonzalez-Sosa et al. 2020], and deriv-
ing the position of the hand joints (hand pose estimation or hand
tracking) [Capece et al. 2020; Gruosso et al. 2020; Zimmermann and
Brox 2017]. The latter collect all those methods that can deduce
high-level information starting from those obtained by the localiza-
tion methods, such as the identification of gestures, activities, and
interactions [Cai et al. 2017; Nguyen et al. 2018].

One of the first hand segmentation approaches based on deep
learning was proposed by A. Betancourt et al. [Betancourt et al.
2017], who extended traditional methods by introducing an in-
termediate hand-identification step to detect right and left hands
using a Maxwell distribution of angle and position. In this way,
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the authors demonstrated that hand segmentation in egocentric
videos can benefit from left/right discrimination. Y. Li et al. [Li
et al. 2019] introduced an unsupervised and semi-supervised hand
segmentation method for egocentric images starting from a fully
convolutional neural network (FCNN) pre-trained using pixel-level
annotations dataset, and subsequently that FCNN was re-trained
using unlabeled dataset with optimized mask annotations. Another
approach for hand segmentation was designed by M. Cai et al. [Cai
et al. 2020]. It consisted of a model adaptation framework based on
Bayesian CNN to deal with the typical generalization problem that
affects this type of task and the scarcity of large well-annotated
datasets. Conversely, some recent methods collected a large amount
of low-cost artificial data to train deep learning models, as proposed
by Gonzalez et al. [Gonzalez-Sosa et al. 2020]. In detail, they trained
a deep neural network using their own semi-synthetic egocen-
tric arm segmentation dataset, which consisted of more than 10
thousand composited images. Although their model achieved in-
teresting results, several false positive and segmentation errors in
color similarities between background and foreground were found.

To the best of our knowledge, the proposed work is the first to
design a deep learning approach for the segmentation of the whole
upper limb in unconstrained environments and different lighting
conditions, skin tone, clothes, and occlusions.

Hand and Arm Datasets. Since obtaining ground-truth segmenta-
tion masks is very labor-intensive, time-consuming, and sometimes
impractical, synthetic and semi-synthetic data have been widely col-
lected, allowing to gather many images and get labels quickly and
with little effort [Gruosso et al. 2021; Lin andMartinez 2020; Mueller
et al. 2018]. Synthetic data is produced in a completely artificial
manner, while semi-synthetic data combines real and computer-
generated components. Both approximate real data and are used in
their place to train deep learning methods or validate mathematical
models [Nikolenko et al. 2019]. In the addressed context, synthetic
datasets consist of virtual hands generated with 3D modeling soft-
ware and often look artificial and unrealistic [Shilkrot et al. 2019].
Instead, semi-synthetic datasets are composed of real hands cap-
tured in constrained environments, such as a studio setting with
green screens, professional lighting, and static cameras. Chroma-
key software and traditional background subtraction techniques are
used to remove the green background and extract the foreground
objects [Gonzalez-Sosa et al. 2020; Lin and Martinez 2020]. The
foregrounds are finally composed with many background scenes
to build large-scale datasets. The images obtained do not exhibit
various lighting conditions, and the shadows are almost removed
from the studio lights with high luminous intensity. Furthermore,
the object shadows in the new background are absent, creating
a composite image deprived of part of the natural depth aspect.
The composite image usually has an artifact aspect, in which the
foreground is not well blended with the background, and there
are significant chromatic discrepancies. In addition, the usage of
background images that contain salient objects belonging to the
same class as the foreground can cause semantic ambiguities. For
example, if people occur in the background and their hands are
marked as background class, training with this data could mislead
the neural network [Li et al. 2020]. Training deep learning models
on a source domain that differs significantly from the target domain

could lead to poor results in real-life case evaluations. Intensive pre-
processing, such as image-to-image translation techniques [Capece
et al. 2019; Mueller et al. 2018] and image harmonization meth-
ods [Tsai et al. 2017], is usually used to bring realism to synthetic
and semi-synthetic data. Additionally, domain or scene adaptation
may be required, e.g., fine-tuning the network using custom scene
images to improve the accuracy for specific scenarios [Lin and
Martinez 2020].

Although various realistic datasets are publicly available and can
overcome the limitations of artificial datasets, they often contain
low-quality images with a pixelated effect and coarse segmentation
masks [Tang et al. 2018]. Table 1 illustrates the careful and thorough
classification we made of the most popular real datasets available,
consisting of real-life RGB images in egocentric vision and segmen-
tation masks of hands and arms. We found that some datasets con-
tain only the hand label, although the arm is also shown in the im-
ages, such as EgoHands [Bambach et al. 2015] and EYTH [Urooj and
Borji 2018]. Others consist of images showing both clothed and bare
arms, but only the bare arms are labeled as foreground, while the
clothed ones are marked as the background, i.e., THU-READ [Tang
et al. 2018], KBH [Wang et al. 2019], and a relatively small part of
TEgO [Lee and Kacorri 2019]. Instead, EGTEA Gaze+ [Li et al. 2018]
provides several coarse and polygonal labels and some mislabeled
regions, e.g., objects causing occlusion identified as hand. Addition-
ally, there is a small number of erroneous classifications in EDSH [Li
and Kitani 2013] and EgoGestureSeg [Gonzalez-Sosa et al. 2020].
The latter refers to a small subset of EgoGesture dataset [Zhang
et al. 2018] manually annotated by Gonzalez et al. [Gonzalez-Sosa
et al. 2020]. It contains images with indoor and outdoor scenarios,
varying ambient light conditions, shadows, occlusions between the
hands, and a challenging volume of motion blur.

We collected a large upper limb segmentation dataset that ex-
tends the existing real datasets and overcomes their limitations.

Web3D and Deep Learning. Recently, DL techniques have been
applied to Web3D. H. Kim et al. [Kim and Won Lee 2020] developed
a DL-based recognition system for 3D objects stored in X3D files.
In particular, they trained a deep neural network using the geo-
metric coordinates of 3D models and estimating their shapes. An-
other approach for 3D model analysis was proposed by W. Zhou et
al. [Zhou et al. 2020], who trained two Siamese networks based on
the VGG-16 model for shape retrieval and introduced an hybrid
convolutional neural network to obtain the best view of 3D furni-
ture. The main drawback of using DL for web applications is the
requirement of large computational resources. For example, several
DL frameworks require at least one GPU with CUDA enabled. In
addition, DL algorithms are usually developed in a certain program-
ming language and run on a certain operating system or platform.
Recently, researchers have then spent much effort on DL-powered
web solutions and obtained promising results, although there is
still a gap between desktop and in-browser approaches [Ma et al.
2019]. In particular, several in-browser DL frameworks allow per-
forming network inference and training directly in the browser,
e.g., WebDNN [Hidaka et al. 2017] and TensorFlow.js [Smilkov
et al. 2019]. An interesting approach using this technology was
developed by N. Xie et al. [Xie et al. 2019]. In detail, they trained
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Table 1: Real datasets showing both hands and arms. They are categorized into vision mode (FPV: first-person view or egocen-
tric; TPV: third-person view), skin tone, clothes arms, limbs labeled as foreground (B: bare; C: clothed; C*: clothed with some
errors), scenarios, lighting conditions (A: variable ambient light; F: flashlight; Sh: strong shadows; S: strong sunlight), occlu-
sions (HO: hand-to-object; HH: hand-to-hand), presence of motion blur, label quality (Some coarse: some labels are coarse and
polygonal; Coarse: most or all labels are coarse; Err.: some wrong classifications; Acc.: accurate data), and image quality (L-:
very low; L: low; M: medium; H: high).

Dataset Mode Skin Clothed
Arms

Labeled
Limbs Scenario Light Occlusion Motion

Blur
Label
Quality

Image
Quality

EgoHands
[Bambach et al. 2015]

FPV,
TPV White ✓ Hand Indoor,

Outdoor A HO, HH ✓
Some
coarse H

EGTEA Gaze+
[Li et al. 2018] FPV White −

Hand,
forearm (B) Indoor A HO, HH ✓

Some
coarse,
Err.

H

THU-READ
[Tang et al. 2018] FPV White ✓

Hand,
forearm (B)

Indoor,
Outdoor A, Sh HO, HH ✓ Coarse L-

KBH
[Wang et al. 2019] FPV White ✓

Hand,
forearm (B) Indoor A, F, Sh − ✓

Some
coarse L

EYTH
[Urooj and Borji 2018]

FPV,
TPV White ✓ Hand Indoor,

Outdoor A HO, HH ✓ Acc. L

EgoGestureSeg
[Gonzalez-Sosa et al. 2020] FPV White ✓

Hand,
forearm (B, C)

Indoor,
Outdoor A, S, Sh HH ✓

Acc.,
Err. M

EDSH
[Li and Kitani 2013] FPV White −

Hand,
forearm (B)

Indoor,
Outdoor A, S, Sh HO ✓

Acc.,
Err. M

TEgO
[Lee and Kacorri 2019] FPV White,

Black ✓
Hand,

forearm (B, C*) Indoor A, F, Sh HO −
Acc.,
Err. H

EgoCam (ours) FPV White ✓
Hand, forearm(B, C),
elbow (C), part of the

upper-arm (C)

Indoor,
Outdoor A, S, Sh HH ✓ Acc. H

a conditional generative adversarial network to generate global
illumination maps of 3D human organs and used TensorFlow.js
for network prediction directly on the Web3D client. Those frame-
works also provide amodel converter, which converts and optimizes
neural networks trained with well-known native DL frameworks
to enable fast execution on web browsers. In addition, they support
backend implementations for JavaScript APIs (such as WebGL and
WebGPU) that can be used to access the GPU and speed up DL
algorithms, such as in Web3D applications.

3 UPPER LIMB SEGMENTATION DATASET
To collect the upper limb segmentation dataset, we established strict
requirements to select the best images from existing datasets or
acquire new data. In particular, we focused on many interesting
parameters, such as the vision mode (first-person or third-person
view), the diversification of skin tone, scenarios, and lighting con-
ditions, the presence of motion blur due to realistic user/camera
movements in egocentric vision, inter-hand and hand-to-object
occlusions. Moreover, we investigated the quality of the data: i) in
the case of images, we considered the resolution and defined as a
positive factor the absence of artifacts and compressions that cause
a pixelated effect; ii) in the case of labels, we considered polygonal
and coarse ground-truth masks and labeling errors as bad factors
(for example, objects misclassified as foreground and arms partially
labeled). Finally, we checked the presence of bare or clothed arms
in the images. Since we are interested in both cases, both bare and
clothed arms must be labeled as foreground.

As can be noted in Table 1 and Figures 2 and 3, EDSH [Li and
Kitani 2013] and TEgO [Lee and Kacorri 2019] mostly met the main
requirements and show different cases of lighting and skin tones.
In particular, the first image of Figure 2 was taken from the EDSH
subset that includes hand-to-object interactions in the kitchen, and
the other three show variable ambient light, shadows, and strong
sunlight conditions. Instead, Figure 3 highlighted the diversity of
skin tone, hand-to-object occlusions, and different lighting cases
of the TEgO dataset. The first image comes from the in-the-wild
subset with flashlight illumination, the second is from the in-the-
wild subset with no indoor lighting, and the last two come from the
in-the-vanilla subset. Hence, we used their best data as a part of the
upper limb segmentation dataset, discarding incorrect or partially
labeled data. The correctness of the labels was manually verified
by carefully inspecting the data and overlapping each RGB image
with the corresponding ground-truth mask.

The second part of the upper limb segmentation dataset consists
of our dataset, called EgoCam. It was built using two cameras in
egocentric vision: the first device had an extra-wide field of view
and 1, 280 × 720 resolution, while the second device had a standard
field of view and higher resolution, i.e., 1, 080×1, 920. Both cameras
were employed to record RGB videos at 30 fps. Four subjects (two
male and two female) were shot moving freely in indoor or outdoor
scenes, with a wide variety of lighting conditions, backgrounds, and
clothes (see Table 1 for details). Moreover, the limbs and hands were
framed in different poses, and the space occupied in the images was
variable. For example, the hand and arm can be near or far from the
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Figure 2: Some example of images and ground-truth annota-
tions of the EDSH dataset [Li and Kitani 2013].

Figure 3: Some images and ground-truth annotations of the
TEgO dataset [Lee and Kacorri 2019].

camera, enter or leave the field of view from different directions,
almost fill the image or occupy a small region of it, as shown in
Figure 4. In detail, the arm, elbow, and part of the upper arm are
captured in the first two images. The third photo is an example of
inter-hand occlusion, while the fourth and the fifth show some blur
near the fingers caused by the movement. The last three panels
display hands and arms with different lights and clothes.

EgoCam has two main advantages. Firstly, it increases the num-
ber ofwell-annotated images in the upper limb segmentation dataset.
In particular, all data was manually labeled. Secondly, it contains
video frames showing cases that are poor or absent in all analyzed
datasets. In details, the elbow and upper arm were captured, since
those limb sections can be easily framed using egocentric cameras
with a wider field of view, such as the GoPro and ZED Mini. In
addition, we introduced arms with clothes that differ in color, fabric,
shape, and length, providing further information variety.

Since the collected data had different orientations (portrait or
landscape) and aspect ratio, we performed a square crop designing
an automatic procedure that moves the cropping area with a fixed
step for each dataset and saves the square images and labels. In
particular, the procedure defined a square cutting bounding box
with dimensions equal to min (h,w), whereh andw were the height
and width of the original image. The bounding box was then auto-
matically moved along the largest dimension of the original image,
i.e., vertically for portrait images and horizontally for the landscape
ones. A shift step of 80 was used for the EgoCam dataset, while
it was set to 30 for the TEgO and EDSH datasets. A different shift
step was adopted since the limb occupies a smaller portion inside

Figure 4: Some images andwell-annotatedmasks of our Ego-
Cam dataset.

the frame in the case of the EgoCam dataset. Therefore, a large
number of crops would lead to many images similar to each other
and where the limb is not often captured. Finally, we inspected all
saved square images and deleted any useless clippings, e.g., with no
hands, arms, or distinguishable parts of them. The main advantage
of that procedure is that a further and greater variety of limb posi-
tions is provided, as hands and arms can also be partially visible and
located in different image portions. Thus, our final overall dataset
on upper limb segmentation consisted of 46, 021 well-annotated
frames: 1, 165 from EDSH, 31, 999 from TEgO, and 12, 857 from
EgoCam. It was split into 43, 837 images for training and 2, 184
for testing. The training set contains images taken from all three
datasets, while the test set includes only a subset of 2, 079 TEgO
and 709 EgoCam data that differ from the training set. This choice
is due to the limited number of EDSH images, i.e., 1, 165 frames
showing only a single subject’s upper limbs. Finally, all data was
reshaped to the spatial size of 360 × 360 to accelerate the network
training.

4 THE PROPOSED APPROACH
Our goal was to accurately segment human upper limbs in ego-
centric unconstrained real-life environments. We propose an end-
to-end deep learning approach, which is robust to inter-hand and
hand-object occlusions, various lighting conditions, different limb
position in the frame and skin tone, indoor and outdoor scenarios,
dynamic user/camera movements. In particular, we focused on the
DeepLabv3+ model [Chen et al. 2018] since it is the state-of-the-art
networks for semantic segmentation and achieved notable results
on many benchmark datasets. It is characterized by an encoder-
decoder architecture. The encoder extracts semantic information
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and reduces the size of the feature maps, whereas the decoder
recovers spatial and detailed object boundary information. The
DeepLabv3+ encoder is based on the DeepLabv3 model [Chen et al.
2017b], which combines the advantages of the atrous (or dilated)
convolutions and atrous spatial pyramid pooling (ASPP) introduced
by the previous DeepLab architectures [Chen et al. 2014, 2017a]. In
particular, the atrous convolution is a modified version of the con-
volution operation, which upsamples convolution filters with holes
in order to enlarge their field of view and take the context more
into account, but without increasing the computational costs and
number of parameters. The ASPP module consists of several layers
placed in parallel: one 1 × 1 convolution, three atrous convolutions
with multiple atrous rates, and an image pooling layer. The main
benefit of ASPP is the ability to capture the multi-scale context
effectively and improve segmentation. The overall structure of the
DeepLabv3+ encoder consists of a backbone network and an ASPP
module followed by a 1 × 1 convolutional layer. The backbone is
usually a deep convolutional neural network that employs atrous
convolutions. The decoder exploits the information learned from
both the encoder and the backbone. Indeed, the low-level features
of the backbone network are passed through a 1 × 1 convolution
and then concatenated with the encoder output, which is first up-
sampled using bilinear interpolation. Finally, a 3 × 3 convolution
and a further bilinear upsampling are applied.

We trained several networks based on the DeepLabv3+ architec-
ture using the upper limb segmentation dataset and conducted
many experiments to find a robust and efficient configuration.
Hence, we considered various backbone networks based on the
ResNet [He et al. 2016] and Xception [Chollet 2017] models adapted
to semantic segmentation. In particular, the first two networks
were based on the beta variant of ResNet, a modified version of
the original ResNet in which the first 7 × 7 convolution was re-
placed with three 3 × 3 convolutions. The backbone networks had
50 and 101 layers and were named ResNet-50-beta and ResNet-101-
beta, respectively. The other two backbone networks were based
on the modified aligned Xception network proposed by Chen et
al. [Chen et al. 2018], which is an effective network that showed
promising results and a reduction in computation time. In detail,
depthwise separable convolution replaced max pooling operations
of the original Xception network [Chollet 2017], and further batch-
normalization and ReLU were added. We adopted the Xception
backbone networks with 41 and 65 layers.

All backbone networks were trained using the cross-entropy loss
function and the stochastic gradient descent optimization algorithm
with momentum set to 0.9 and using polynomial learning rate pol-
icy with 0.9 power value, following the training protocol suggested
in [Chen et al. 2017b]. Training a deep model from scratch requires
a copious amount of data and resources in terms of memory, com-
putation, and time. Although GPU acceleration is widely used, it
is usually recommended to start from a pre-trained model on a
huge dataset (e.g., millions of data) and apply transfer learning
or fine-tuning techniques. Therefore, we used publicly available
pre-trained weights2. We found models pre-trained on the Ima-
geNet [Russakovsky et al. 2015] and MS-COCO [Lin et al. 2014]

2The pre-trained weights used are publicly available on the DeepLab project page:
https://github.com/tensorflow/models/tree/master/research/deeplab

datasets in the case of Xception-65, while only ImageNet pre-trained
weights for the ResNet-50-beta, ResNet-101-beta, and Xception-41
based networks. ImageNet is a generic and huge dataset, often used
for classification and object detection tasks, while MS-COCO is
smaller than ImageNet and used for classification, detection, and
segmentation. For this reason, a segmentation network pre-trained
on MS-COCO may benefit more from the learned features than
using only ImageNet pre-training [Chen et al. 2018], and a shorter
training may be sufficient. Then, Deeplabv3+ built on top of the
ResNet and smaller Xception networks were trained for 300K itera-
tions, with batch size set to 12, and 0.001 base learning rate. The
training of the other model lasted 90K iterations until convergence,
setting the batch size to 8 and the base learning rate to 0.0001. All
models were trained using one Nvidia Titan Xp GPU with 12GB
memory, and data augmentation with random left/right flip was
applied during training to avoid model overfitting.

5 RESULTS
We evaluated the effectiveness of our approach and the robustness
against several scenarios and conditions, comparing the trained
models. We performed both quantitative and qualitative extensive
tests. In particular, we tested all models on our test set and EgoGes-
tureSeg dataset to assess their performance and generalization level.
In the case of quantitative tests, we adopted conventional metrics for
the segmentation task [Minaee et al. 2021], such as Accuracy (Acc),
Intersection over Union (IoU), and mean F1 score (mF1) for each cat-
egory (upper limb and background classes). Since Acc and IoU may
not be reliable for the overall assessment of the test set (e.g., due to
unbalanced classes), the average over the number of categories is
usually calculated, obtaining mAcc and mIoU, respectively. [Lateef
and Ruichek 2019]. For graphic purposes, the DeepLabv3+ back-
bone networks were indicated by abbreviations in the following
tables and figures (X-41: Xception-41; X-65: Xception-65; R-50-b:
ResNet-50-beta; R-101-b: ResNet-101-beta).

5.1 Results on Upper Limb Segmentation Test
Set

Firstly, we tested all models on the test subset of our upper limb
segmentation dataset. The network with ResNet-101-beta backbone
performed best on most of the metrics considered, as illustrated in
Table 2. In the case of themAccmetric for each class, such a network
achieved the second-best result. In particular, it differs by 0.0006
for the background class and a negligible amount of 0.0001 for the
upper limb class compared to the best case. However, the obtained
values show excellent results for all trained networks. The worst
model often diverges by limited quantities andwith a difference that
does not exceed 1-2%. On the other hand, it is not easy to identify
the best network observing the qualitative results on the test set.
Some examples are shown in Figure 5. The network with ResNet-
101-beta backbone provides the most accurate masks, although
there are some pixel classification errors between the fingers in the
second and fourth columns. In these two cases, the most accurate is
the Xception-65 based network. Better precision, especially on the
edges of hands, can be noted. However, this network presents some
wrong pixel classifications, as shown in the first and fifth columns
of Figure 5. For this reason, we conducted other experiments on the

https://github.com/tensorflow/models/tree/master/research/deeplab
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EgoGestureSeg (Section 5.2) to highlight the differences between
the performance of our trained models.
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Figure 5: Somequalitative results on test images from the up-
per limb segmentation dataset. The output of each network
and the ground-truth segmentation masks are reported.

5.2 Results on EgoGestureSeg
To further compare all models and evaluate the level of general-
ization, we tested them on the challenging EgoGestureSeg dataset
(see Section 2 and Table 1 for details), providing both quantitative
and qualitative assessments. Table 3 illustrates the metric values
obtained. In this case, the model with the Xception-65 backbone
showed better performance for almost all metrics. Interestingly,
the gap between the best and the worst models is significant, e.g.,
for the limb class, there is a variation of about 14% on the mean
Accuracy and 12% on the mean Intersection over Union and mean
F1 score. That is most evident in the qualitative results in Figure 6.
The input images in the first row show various lighting conditions
and scenarios. In particular, the upper limbs are located only in
a part of the image close to the frame edges (first and last panel),
are strongly illuminated (second panel) or backlit and dark (fourth
panel). In addition, a cluttered background in the third image and a
very blurry hand in the last one are shown. As can be noted, ResNet-
based models often failed to fully locate the limb, especially on the
last two images. A slight improvement occurred with the Xception-
41 based network. Instead, the network that uses the Xception-65
backbone found the limb in all images with only minor errors. It is
noteworthy that Xception-61 based network is the only model that

did not make classification errors related to the background of the
last image. In our opinion, the results obtained with the EgoGes-
tureSeg dataset prove that using initial weights pre-trained with
both ImageNet and MS-COCO can help the network have a broader
view and be able to generalize better. Furthermore, the conducted
tests show that the Xception-based architecture is more robust to
challenging situations than the ResNet-based one.
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Figure 6: Some qualitative results testing all models on the
EgoGestureSeg dataset. The predictions of eachmodel (from
the second to the fifth row) and the ground-truth labels (last
row) are shown.

5.3 Inference Time
We made a further comparison between the models considering
the inference time. In particular, we measured the average time
required to segment RGB images with spatial dimensions equal
to the network input size, i.e., 360 × 360, as shown in Table 4. All
networks were tested on the same computer, equipped with one
Nvidia Titan Xp GPU with 12GB memory. As expected, the deeper
models based on Xception-65 and ResNet-101-beta were slower
than models with fewer layers. Although the mean computation
time of the deeper models was the same, the network based on the
Xception-65 backbone is lighter than the one based on ResNet-101-
beta. Furthermore, the average inference times of all models prove
more than real-time performance.

6 CONCLUSION
In the proposed work, we focused on upper limb segmentation in
egocentric vision providing an effective end-to-end deep learning
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Table 2: Quantitative comparison using our upper limb segmentation test set. The metric values in percentages related to the
overall test set and for each class are reported. The best values for each metric are highlighted in bold.

Models Overall Limb Background

mAcc mIoU mF1 Acc IoU mF1 Acc IoU mF1
DeepLabv3+ (X-41) 99.14 98.00 97.92 98.57 96.47 97.17 99.71 99.53 98.67
DeepLabv3+ (X-65) 98.84 97.69 97.35 97.96 95.93 96.31 99.72 99.46 98.39
DeepLabv3+ (R-50-b) 98.95 98.23 98.54 98.06 96.88 98.05 99.84 99.59 99.02
DeepLabv3+ (R-101-b) 99.17 98.26 98.63 98.56 96.94 98.19 99.78 99.59 99.07

Table 3: Metric values in percentages computed testing all models on the EgoGestureSeg dataset. The metrics related to the
overall set and for each class are reported. The best values are highlighted in bold.

Models Overall Limb Background

mAcc mIoU mF1 Acc IoU mF1 Acc IoU mF1
DeepLabv3+ (X-41) 95.02 92.64 87.84 90.64 87.29 82.83 99.40 97.98 92.80
DeepLabv3+ (X-65) 96.05 93.38 90.42 92.83 88.59 86.71 99.25 98.16 94.13
DeepLabv3+ (R-50-b) 89.16 86.50 82.44 78.77 76.61 74.35 99.56 96.39 90.39
DeepLabv3+ (R-101-b) 92.30 89.85 85.88 85.10 82.44 79.47 99.50 97.25 92.24

Table 4: Average inference time computed using one Nvidia
Titan Xp GPU with 12GB memory and testing RGB images
with a spatial dimension equal to the network input size, i.e.,
360 × 360. The model size for each neural network is also
reported.

Models Inference time (s) Model size (MB)
DeepLabv3+ (X-41) 0.017 108
DeepLabv3+ (X-65) 0.02 158
DeepLabv3+ (R-50-b) 0.016 102
DeepLabv3+ (R-101-b) 0.02 175

solution in unconstrained real-life environments. Since existing
approaches often need a large amount of well-annotated data to
learn from, many datasets were developed. Most of them employed
a large quantity of synthetic and semi-synthetic images, which are
usually labeled with less effort and cost than real data but differ
considerably from the target realistic domain in terms of chro-
maticity, lighting conditions, foreground/background blending, and
overall appearance. That could lead to poor model performance in
real-world cases, and domain/scene adaptation techniques can be re-
quired. On the other hand, obtaining accurate segmentation masks
from real photos and video frames is laborious and sometimes im-
practical. Although various realistic datasets are publicly available,
they often contain low-quality images and coarse segmentation
masks. Furthermore, existing approaches based on real data were
limited to the segmentation of hands up to the wrist or bare arm.
To overcome those limitations, we trained several segmentation
deep neural networks based on the state-of-the-art DeepLabv3+
model. Moreover, we collected a large well-annotated upper limb
segmentation dataset. It contains about 46 thousand images and
shows a wide range of real-life scenarios, lighting conditions, skin
tone, clothes, and occlusions. The collected dataset consists of care-
fully selected data from the TEgO and EDSH datasets, which met
the main requirements we looked for, and our manually labeled

EgoCam dataset. The latter was built using two cameras in egocen-
tric vision, recording videos with various female and male subjects
in a wide variety of situations. Finally, we extensively tested and
compared the trained networks to find the best model configuration,
assess their generalization level, and prove the robustness against
several scenarios, achieving remarkable results and more than real-
time performances. The main advantage of the proposed approach
regards the possibility of accurately segment both bare and clothed
human upper limb, also in case of inter-hand and hand-object occlu-
sions, variable lighting conditions, skin colors, indoor and outdoor
real-life environments. It can be particularly useful when egocen-
tric cameras with a wide field of view are employed since they can
capture the whole upper limb and not only the user’s hand. To the
best of our knowledge, the proposed work is the first to evaluate the
effectiveness of deep learning approach in such unconstrained real-
world scenarios and collecting a large comprehensive dataset with
real well-annotated images. It could allow locating the user’s limb
interactively and also obtaining pixel-precise information. That
may increase the user’s sense of presence and body ownership, for
example, in Web3D VEs, providing a general-purpose solution that
can be executed on any device using a web browser and without
a specific hardware configuration or software installation. In the
future, we plan to conduct a user study to assess the usefulness of
our approach in web-based immersive applications and perform a
comparison with state-of-the-art methods for egocentric hand and
arm segmentation.
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