
GENERALIZED SKEW DERIVATIONS ON SEMIPRIME RINGS

VINCENZO DE FILIPPIS AND ONOFRIO MARIO DI VINCENZO

Abstract. Let R be a semiprime ring with center Z(R), Q its right Martin-

dale quotient ring, C its extended centroid, F a generalized skew derivation

of R, associated with a non-zero skew derivation d of R, and n, m ≥ 1 fixed
integers such that F ([x, y])m = [x, y]n, for all x, y ∈ R. Then R contains a

non-zero central ideal.
The case of centralizers (generalized skew derivations associated with a zero

skew derivation) is also studied.

1. Introduction.

Let R be a prime ring with center Z(R), extended centroid C and right Martin-
dale quotient ring Q.
An additive mapping d : R → R is a derivation on R if d(xy) = d(x)y + xd(y)
for all x, y ∈ R. Let q ∈ R be a fixed element. A map d : R → R defined by
d(x) = [q, x] = qx−xq, x ∈ R, is a derivation on R, which is called inner derivation
defined by q. An additive map G : R → R is said to be a generalized derivation if
there exists a derivation d of R such that, for all x, y ∈ R, G(xy) = G(x)y + xd(y).
Basic examples of generalized derivations are the usual derivations on R and left
R-module mappings from R into itself. An important example is a map of the form
G(x) = ax + xb, for some a, b ∈ R; such generalized derivations are called inner.
Generalized derivations have been primarily studied on operator algebras. There-
fore any investigation from the algebraic point of view might be interesting (see for
example [16] and [19]).
In [11] the following result is proved:

Theorem 1.1. Let R be a prime ring, I a nonzero ideal of R and n a fixed positive
integer. If R admits a generalized derivation F associated with a derivation d such
that F ([x, y])n = [x, y] for all x, y ∈ I. Then either R is commutative or n = 1,
d = 0 and F is the identity map on R. Moreover in case R is a semiprime ring
and (F ([x, y])n = [x, y] for all x, y ∈ R, then either R is commutative or n = 1,
d(R) ⊆ Z(R), R contains a non-zero central ideal and F (x) − x ∈ Z(R), for all
x ∈ R.

In [15], Huang and Davvaz consider a similar situation and prove the following:

Theorem 1.2. Let R be a prime ring, F a generalized derivation of R, associated
with a derivation d, U the right Utumi quotient ring of R and m,n fixed positive
integers such that F ([x, y])m = [x, y]n for all x, y ∈ R. Then either R is commuta-
tive or d = 0. Moreover in case R is a semiprime ring then there exists a central
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idempotent element e ∈ U such that on the direct sum decomposition eU⊕ (1−e)U ,
d vanishes identically of eU and the ring (1− e)U is commutative.

Here we continue this line of investigation and we examine what happens in
case F is a generalized skew derivation of R such that (F ([x, y])m = [x, y]n for
all x, y ∈ R. More specifically, let α be an automorphism of a ring R. An ad-
ditive map D : R → R is called an α-derivation (or a skew derivation) on R if
D(xy) = D(x)y + α(x)D(y) for all x, y ∈ R. In this case α is called an associated
automorphism of D. Basic examples of α-derivations are the usual derivations and
the map α− id, where id denotes the identity map. Let b ∈ Q be a fixed element.
Then a map D : R → R defined by D(x) = bx − α(x)b, x ∈ R, is an α-derivation
on R and it is called an inner α-derivation (an inner skew derivation) defined by
b. If a skew derivation D is not inner, then it is called outer.
An additive mapping F : R → R is called a generalized α-derivation (or a gener-
alized skew derivation) on R if there exists an additive mapping d on R such that
F (xy) = F (x)y + α(x)d(y) for all x, y ∈ R. A map d is uniquely determined by F
and it is called an associated additive map of F . Moreover, it turns out that d is
always an α-derivation (see [20, 21] for more details). A generalized α-derivation is
said to be regular if the associated α-derivation d is not zero.
Let us also mention that an automorphism α : R → R is inner if there exists
an invertible q ∈ Q such that α(x) = qxq−1 for all x ∈ R. If an automorphism
α ∈ Aut(R) is not inner, then it is called outer.
In all that follows let Q be the right Martindale quotient ring of R, and C = Z(Q)
the center of Q. We refer the reader to [2] for the definitions and the related prop-
erties of these objects. Of course Q is a prime centrally closed C-algebra.
It is known that automorphisms, derivations and skew derivations of R can be ex-
tended both to Q and U . In [4] (Lemma 2), J.C. Chang extended the definition
of a generalized skew derivation to the right Martindale quotient ring Q of R as
follows: by a (right) generalized skew derivation we mean an additive mapping
F : Q → Q such that F (xy) = F (x)y +α(x)d(y), for all x, y ∈ Q, where d is a skew
derivation of R and α is an automorphism of R, moreover there exists b ∈ Q such
that F (x) = bx + d(x), for all x ∈ R (see also Theorem 3.1 and Corollary 3.2 in
[6]).
In the first part of the paper we investigate generalized α-derivations associated
with a non zero α-derivation. Finally we dedicate the last section to (left) central-
izers, which is the case when the generalized α-derivation is not regular, that is F
is an additive map on R such that F (xy) = F (x)y, for all x, y ∈ R.

The results we obtain are the following:

Theorem 1. Let R be a prime ring with center Z(R), Q its right Martindale
quotient ring, C its extended centroid, F a regular generalized skew derivation of
R, associated with a non-zero skew derivation d of R, and n, m ≥ 1 fixed integers
such that F ([x, y])m = [x, y]n, for all x, y ∈ R. Then R is commutative.

Theorem 2. Let R be a prime ring with center Z(R), Q its right Martindale
quotient ring, C its extended centroid, F a left centralizer of R and n, m ≥ 1 fixed
integers such that F ([x, y])m = [x, y]n, for all x, y ∈ R. Then

(a) either R is commutative;
(b) or there exists λ ∈ C such that F (x) = λx, for all x ∈ R, where λm = 1

and um = un for all u ∈ [R,R].
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Theorem 3. Let R be a semiprime ring with center Z(R), Q its right Martindale
quotient ring, C its extended centroid, F a regular generalized skew derivation of
R, associated with a non-zero skew derivation d of R, and n, m ≥ 1 fixed integers
such that F ([x, y])m = [x, y]n, for all x, y ∈ R. Then R contains a non-zero central
ideal.

Theorem 4. Let R be a semiprime ring with center Z(R), Q its right Martindale
quotient ring, C its extended centroid, F a left centralizer of R and n, m ≥ 1 fixed
integers such that F ([x, y])m = [x, y]n, for all x, y ∈ R. Then

(a) either R contains a non-zero central ideal;
(b) or F (x) = λx, for all x ∈ R, where λm = 1 and um = un for all u ∈ [R,R].

2. The case of regular inner generalized skew derivations in prime
rings.

In this section we consider the case when F is an inner generalized skew derivation
induced by the elements a, b ∈ R and α ∈ Aut(R), that is F (x) = ax+α(x)b, for all
x ∈ R. We recall that in this case, the skew derivation d of R, which is associated
with F , is inner and has the following form: d(x) = bx − α(x)b, for all x ∈ R. Of
course we assume that d 6= 0.

In this sense, our aim will be to prove the following:

Proposition 1. Let R be a prime ring, n, m ≥ 1 fixed integers such that (a[r1, r2]+
α([r1, r2])b)m = [r1, r2]n, for all r1, r2 ∈ R, then R is commutative.

Remark 2. We would like to point out that in case the automorphism α (associated
with F and d) is the identity map on R, then d is merely an ordinary derivation
and F is an ordinary generalized derivation of R. In this situation, by Theorem 1.2
we have that either R is commutative or d(x) = bx − xb = 0, for all x ∈ R. The
last case is equivalent to b ∈ Z(R) and drives us to a contradiction. Therefore in
all that follows we consider the case when α is not the identity on R.

We begin with:

Lemma 3. Let R be a dense subring of the ring of linear transformations of a vector
space V over a division ring D and let R contain nonzero linear tranformations of
finite rank. If (a[r1, r2] + α([r1, r2])b)m = [r1, r2]n, for all r1, r2 ∈ R, then either R
is commutative or R is a domain.

Proof. Firstly we assume both R is not commutative and dimDV ≥ 3 and prove
that a contradiction follows.
Since R is a primitive ring with non-zero socle, by [13] (p.79) there exists a semi-
linear automorphism T ∈ End(V ) such that α(x) = TxT−1 for all x ∈ R, hence
(au + TuT−1b)m = un, for all u ∈ [R,R]. Assume first that v and T−1bv are
D-dependent for all v ∈ V . By Lemma 1 in [9], there exists λ ∈ D such that
T−1bv = vλ, for all v ∈ V . In this case, for all x ∈ R,

d(x)v = (bx− TxT−1b)v = bxv − TxT−1bv = bxv − T (xvλ) =

bxv − T ((xv)λ) = bxv − T (T−1b)(xv) = bxv − bxv = 0.

This means that d(x)V = (0), for all x ∈ R and since V is faithful, it follows that
d(x) = 0, for all x ∈ R, a contradiction.
Suppose now there exists v ∈ V such that v and T−1bv are D-independent. Since
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dimVD ≥ 3, then there exists w ∈ V such that v, T−1bv, w are also D-independent.
By the density of R, there exist x, y ∈ R such that:

xv = v, xT−1bv = 0, xw = T−1v; yv = v, yT−1bv = w.

These imply that [x, y]v = 0 and (a[x, y] + T [x, y]T−1b)mv = (−1)mv, which leads
to the contradiction v = 0.
Therefore dimDV ≤ 2. Once again we assume the conclusion of our Lemma does
not hold in order to get a contradiction. That is, we suppose dimDV = 2, which
means that R is not a domain and it contains some non-trivial idempotent elements.
Let e2 = e be an idempotent element of R. We recall that R satisfies

(2.1) (a[x1, x2] + α([x1, x2])b)m = [x1, x2]n.

In (2.1) we replace [x1, x2] by [α−1(1 − e)x1e, α
−1(1 − e)x2e] and multiply on the

right by (1− e). Thus it follows that R satisfies(
[(1− e)α(x1)α(e), (1− e)α(x2)α(e)]b

)m

(1− e)

which is equivalent to

(2.2) (1− e)
(

(α(x1)α(e)(1− e)α(x2)− α(x2)α(e)(1− e)α(x1))α(e)b(1− e)
)m

.

By applying Remark 2.1 (1) in [24], we have that either α(e)(1−e) = 0 or α(e)b(1−
e) = 0.
Suppose that there exists e2 = e such that α(e)(1− e) = 0. In (2.1) replace [x1, x2]
by [α−1(1− e)x1e, x2e] and multiply on the right by (1− e). Therefore R satisfies(

(1− e)α(x1)α(e)α(x2)α(e)b
)m

(1− e)

that is R satisfies (
(α(x1)α(e)(1− e)α(x2)α(e)b(1− e)

)m+1

.

Hence by Levitzki’s Lemma it follows α(e)Rα(e)b(1−e) = 0, that is α(e)b(1−e) = 0
in any case.
Analogously we may prove that α(1 − e)be = 0 for all e=e ∈ R. This implies that
α(e)b = α(e)be = be, for any idempotent element e of R. Let T be the additive
subgroup generated by all idempotent elements in R, then it is easy to check that
α(x)b = bx, for all x ∈ T . Moreover, by [14] (page 18), it is well known that
[R,R] ⊆ T , which implies α(x)b = bx, for all x ∈ [R,R]. In this case, by [5] we get
F = 0, and by our main assumption [x1, x2]n is satisfied by R. This last implies
the contradiction R is commutative. �

For the proof of our Proposition we premit the following:

Fact 4. Let R be a domain and α ∈ Aut(R) be an automorphism of R which is
outer. In [17] Kharchenko proved that if Φ(xi, α(xi)) is a generalized polynomial
identity for R, then R also satisfies the non-trivial generalized polynomial identity
Φ(xi, yi), where xi and yi are distinct indeterminates.
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2.1. Proof of Proposition 1. Suppose first that α is X-inner. Thus there exists
an invertible element q ∈ Q such that α(x) = qxq−1, for all x ∈ R. Thus (au +
quq−1b)m = un, for all u ∈ [R,R]. Since R and Q satisfy the same generalized
polynomial identities with coefficients in Q (see [7]), it follows that (au+quq−1b)m =
un, for all u ∈ [Q,Q]. If q−1b ∈ C = Z(Q), then d(x) = bx−bx = 0, for all x ∈ R, a
contradiction. So we may assume that q−1b /∈ C, and (a[x1, x2]+ q[x1, x2]q−1b)m−
[x1, x2]n is a non-trivial generalized polynomial identity for Q. By Martindale’s
theorem [22], Q is a primitive ring having non-zero socle with the field C as its
associated division ring. Moreover Q is isomorphic to a dense subring of the ring of
linear tranformations of a vector space V over C. By Lemma 3 dimCV = 1, that
is Q is commutative, as well as R.
Hence we may assume that α is X-outer. By Theorem 1 in [8], Q satisfies

(2.3) (a[x1, x2] + α([x1, x2])b)m − [x1, x2]n

moreover by Main Theorem in [8] Q is a GPI-ring. Thus Q is a primitive ring
having non-zero socle and its associated division ring D is a finite-dimensional over
C. By Lemma 3 dimDV = 1, that is Q is a domain. In light of Fact 4 and by (2.3),
Q satisfies

(a[x1, x2] + [y1, y2]b)m − [x1, x2]n

and in particular, for x1 = x2 = 0, ([r1, r2]b)m = 0 for all r1, r2 ∈ Q. By Lemma 1
in [5], either R is commutative, or b = 0 (which implies the contradiction d = 0).

3. The general case of regular generalized skew derivations in
Prime Rings.

Here we can finally prove the main Theorem in case R is a prime ring and F is a
regular generalized skew derivation of R. As remarked in the Introduction we can
write F (x) = bx + d(x) for all x ∈ R, b ∈ Qr and d is a non-zero skew derivation of
R (see [4]). We also fix the following Fact which will be useful for our proof:

Fact 5. In [10] Chuang and Lee investigated polynomial identities with skew deriva-
tions. They proved that if Φ(xi, D(xi)) is a generalized polynomial identity for R,
where R is a prime ring and D in an outer skew derivation of R, then R also
satisfies the generalized polynomial identity Φ(xi, yi), where xi and yi are dis-
tinct indeterminates. Furthermore, they proved [10, Theorem 1] that in the case
Φ(xi, D(xi), α(xi)) is a generalized polynomial identity for R, where R is a prime
ring, D is an outer skew derivation of R and α is an outer automorphism of R, then
R also satisfies the generalized polynomial identity Φ(xi, yi, zi), where xi, yi, and
zi are distinct indeterminates.

Fact 6. By [10] (Theorem 1) we have the next result. If d is a non-zero skew-
derivation of R and

Φ
(

x1, . . . , xn, d(x1), . . . , d(xn)
)

is a skew-differential identity of R, then one of the following statements holds:
(a) either d is inner ;
(b) or R satisfies the generalized polynomial identity

Φ(x1, . . . , xn, y1, . . . , yn).
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3.1. Proof of Theorem 1. By Theorem 2 in [10] R and Q satisfy the same gen-
eralized polynomial identities with a single skew derivation, then F (u)m = un, for
all u ∈ [Q,Q]. Suppose that d is X-inner, then there exist b ∈ Q and α ∈ Aut(Q)
such that d(x) = bx − α(x)b, for all x ∈ R. In this case F (x) = (a + b)x − α(x)b
and by Proposition 1 it follows that Q is commutative.
Assume finally that d is X-outer. Since Q satisfies

(3.1)
(
a[x1, x2] + d([x1, x2])

)m − [x1, x2]n

then Q satisfies

(3.2)
(
a[x1, x2] + d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1))

)m − [x1, x2]n.

By Fact 6 and (3.2), Q satisfies

(3.3)
(
a[x1, x2] + y1x2 + α(x1)y2 − y2x1 − α(x2)y1)

)m − [x1, x2]n.

Moreover, in light of Fact 5, if α is an outer automorphism of Q, then by (3.3) it
follows that Q satisfies

(3.4)
(
a[x1, x2] + y1x2 + z1y2 − y2x1 − z2y1)

)m − [x1, x2]n.

In particular, for x1 = x2 = 0, Q satisfies (z1y2 − z2y1)m. Choose z1 = y1 and
z2 = y2 so that [y1, y2]m is an identity for Q, which implies that Q is commutative.

Finally consider the case α is X-inner, then there exists an invertible element q
of Q, such that α(x) = qxq−1, for all x ∈ Q. Starting from (3.3), Q satisfies the
generalized identity

(3.5)
(
a[x1, x2] + y1x2 + qx1q

−1y2 − y2x1 − qx2q
−1y1)

)m − [x1, x2]n.

Since we assume α is not the identity map on Q, then q /∈ C and (3.5) is a non-
trivial generalized polynomial identity for Q. By Martindale’s theorem [22], Q is a
primitive ring having non-zero socle with the field C as its associated division ring.
Moreover Q is isomorphic to a dense subring of the ring of linear tranformations of
a vector space V over C. Also in this case we prove that R must be commutative.
Assume dimCV ≥ 2. Since q /∈ C, there exists v ∈ V such that v, q−1v are linearly
C-independent. Moreover, by the density of Q, there exist r1, r2, s1, s2 ∈ Q, such
that

r1v = v, r2v = v, s1v = v, s2v = 0, r2q
−1v = 0.

Hence by (3.5) we get

0 =
((

a[r1, r2] + s1r2 + qr1q
−1s2 − s2r1 − qr2q

−1s1)
)m − [x1, x2]n

)
v = v

which is again a contradiction.

4. The Semiprime Case for regular generalized skew derivations.

In this second section we assume the following:
• Let R be a semiprime ring with center Z(R), Q its right Martindale quotient

ring, C its extended centroid, F a regular generalized skew derivation of R,
associated with a non-zero skew derivation d of R, and n, m ≥ 1 fixed
integers such that F ([x, y])m = [x, y]n, for all x, y ∈ R.

We will prove that R contains a non-zero central ideal.
Here we premit two results which will be useful in the sequel:
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Fact 7. Let R be prime ring and α ∈ Aut(R) be such that xy − α(y)x = 0 for all
x, y ∈ I, a non-zero ideal of R. Then R is commutative and α is the identity map
on R.

Proof. Let x, y ∈ I and r ∈ R, then by our assumption (xr)y = α(y)xr = xyr,
that is x[r, y] = 0. Since R[R, I] = (0) and by the primeness of R we easily
conclude that R is commutative. Thus xy = xα(y) for all x, y ∈ I, which is
I(y−α(y)) = (0). Once again by the primeness of R we have that α is the identity
map on I. In particular, for all r ∈ R and x ∈ I, it follows both α(xr) = xr and
α(xr) = α(x)α(r) = xα(r). Hence x(α(r) − r) = 0, that is I(α(r) − r) = 0 for
any r ∈ R. Therefore we conclude that α is the identity on R. In light of this, we
finally have 0 = xy − α(y)x = [x, y], so that I is commutative, as well as R. �

Fact 8. Let R be prime ring and a, b ∈ R such that ([x, a]b)m = 0 for all x ∈ R.
Then either a ∈ Z(R) or ab = ba = 0.

Proof. It is a consequence of Remark 2.1(1) in [24]. �

4.1. The proof of Theorem 3. Let P be a prime ideal of R, set R = R/P and
write x = x + P ∈ R, for all x ∈ R. We start from

(4.1)
(

F ([x, y])
)m

= [x, y]n, ∀x, y ∈ R.

Let x, y ∈ R and p ∈ P , then(
F [xp, y])

)m

= [px, y]n

that is (
F (xpy − yxp)

)m

= 0

which means

(4.2)
(

α(x)d(p)y + α(x)α(p)d(y)− α(y)α(x)d(p)
)m

= 0

We divide the proof into three cases:

CASE 1. d(P ) ⊆ P .

In this case we may define d : R → R, such that d(x) = d(x), for all x ∈ R.
From (4.2) we have

(4.3)
(

α(x)α(p)d(y)
)m

= 0.

If α(P ) 6⊆ P , then α(P ) is a non-zero ideal of R. Hence, for x ∈ P in (4.3) it follows
(α(P )2d(R))m = 0, which implies d(R) ⊆ P .
On the other hand, if α(P ) ⊆ P , then we define α : R → R, such that α(x) = α(x),
for all x ∈ R. Hence d is an α-derivation of R and F is a generalized α-derivation
of R. Therefore, by the prime case, either d(R) = 0 or R is commutative, that is
either d(R) ⊆ P or [R,R] ⊆ P .

CASE 2. d(P ) 6⊆ P and α(P ) ⊆ P .
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Also in this case we may define α : R → R, such that α(x) = α(x), for all x ∈ R.
We also have that d(P ) is a non-zero ideal of R, moreover by (4.2) we get

(4.4)
(

α(x)d(p)y − α(y)α(x)d(p)
)m

= 0

that is (
Xy − α(y)X

)m

= 0

for all X ∈ α(R)d(P ), which is a non-zero ideal of R. By [5] and using Fact 7, it
follows α is the identity map on R and R is commutative, that is [R,R] ⊆ P .

CASE 3. d(P ) 6⊆ P and α(P ) 6⊆ P .

In this case we remark that d(P ) is a non zero left ideal of P and α(P ) is a non
zero ideal of R. Let x ∈ P , r ∈ R, then by (4.1) we have(

F ([α−1(r)x, x])
)m

= [α−1(r)x, x]n

and by computations it follows

(4.5)
(

[r, α(x)]d(x)
)m

= 0.

By Fact 8 we have that, for all x ∈ P , either α(x) ∈ Z(R) or α(x)d(x) = d(x)α(x) =
0.
Let x ∈ P such that 0 6= α(x) /∈ Z(R), so that α(x)d(x) = d(x)α(x) = 0. Thus, for
all r ∈ R, y ∈ P , and by (4.1) we have(

F ([x, α−1(r)y])
)m

= [x, α−1(r)y]n

that is

(4.6)
(

α(x)rd(y)− rα(y)d(x)
)m

= 0.

Right multiplying by α(x) it follows(
α(x)rd(y)

)m

α(x) = 0

which means (
α(x)Rd(P )

)m

= 0.

Since d(P ) is a non-zero left ideal of R and by Levitzki’s Lemma, one has α(x)R = 0,
that is α(x) = 0, a contradiction. Therefore α(x) ∈ Z(R), for all x ∈ P , so that
α(P ) ∈ Z(R). Since α(P ) is a non zero ideal of R, we finally conclude that R is
commutative, that is [R,R] ⊆ P .
In light of previous argument we have that, for any prime ideal P of R, either
d(R) ⊆ P or [R,R] ⊆ P , then both d(R)[R,R] ⊆

⋂
i Pi = (0) and [d(R), R] ⊆⋂

i Pi = (0) (where Pi are all prime ideals of R). In particular, since d(R) 6= 0, the
non-zero ideal generated by d(R) is central in R, and we are done.
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5. Analogous results for Centralizers.

In this final section we study similar previous conditions on prime and semiprime
rings involving generalized α-derivations which are not regular, that is associated
with a zero α-derivation. As remarked in the Introduction, in this case the gener-
alized skew derivation F is called (left) centralizer, that is F (xy) = F (x)y, for all
x, y ∈ R. Also here we firstly consider the case of prime rings and prove Theorem
2. Then we generalize the result to the semiprime case and prove Theorem 4.

We premit the following:

Lemma 9. Let R be a semiprime ring and F a left centralizer of R such that
[F (x), x] = 0, for all x ∈ R. Then either there exists λ ∈ C such that F (x) = λx
for all x ∈ R, or R contains a non-zero central ideal.

Proof. By [3], there exist λ ∈ C and ϑ : R → C such that F (x) = λx + ϑ(x), for
all x ∈ R.
Assume there exists x0 ∈ R such that ϑ(x0) 6= 0. Thus F (x0) = λx0 + ϑ(x0) and
right mulitplying by any y ∈ R we have

(5.1) F (x0y) = F (x0)y = λx0y + ϑ(x0)y.

On the other hand, for any y ∈ R there exists ϑ(x0y) ∈ C such that

(5.2) F (x0y) = λx0y + ϑ(x0y)

and comparing (5.1) with (5.2) it follows ϑ(x0)y = ϑ(x0y) ∈ C, for all y ∈ R.
Hence, by (5.1) we also get (F (x0) − λx0)y ∈ C, for any y ∈ R. We notice that,
in light of ϑ(x0) 6= 0, one has (F (x0)− λx0)R 6= (0), therefore there exists y0 ∈ R
such that 0 6= (F (x0) − λx0)y0 ∈ C. In particular R(F (x0) − λx0)y0)R ⊆ C, that
is the ideal generated by (F (x0)− λx0)y0 is central. �

5.1. The proof of Theorem 2. Since F is a (left) centralizer, there exists b ∈ Q
such that F (x) = bx, for all x ∈ R and R satisfies the generalized polynomial iden-
titiy (b[x1, x2])m − [x1, x2]n. By a theorem due to Beidar (Theorem 2 in [1]) this
generalized polynomial identity is also satisfied by Q. In case C is infinite, we have
(b[r1, r2])m − [r1, r2]n = 0 for all r1, r2 ∈ Q

⊗
C C, where C is the algebraic closure

of C. Since both Q and Q
⊗

C C are centrally closed ([12], Theorems 2.5 and 3.5],
we may replace R by Q or Q

⊗
C C according as C is finite or infinite. Thus we

may assume that R is centrally closed over C which is either finite or algebraically
closed. By Martindale’s theorem [22], R is a primitive ring having a non-zero socle
H, with C as the associated division ring. Moreover eHe is a simple central algebra
finite dimensional over C, for any minimal idempotent element e ∈ RC. We may
assume H non-commutative, otherwise also R must be commutative. Notice that
H satisfies (b[x1, x2])m − [x1, x2]n) (see for example proof of Theorem 1 in [18]).
Since H is a simple ring then one of the following holds: either H does not contain
any non-trivial idempotent element or H is generated by its idempotents.
In this last case, assume e2 = e ∈ H. Choose any r ∈ H and let x1 = er(1 − e)
and x2 = 1 − e. Hence (ber(1 − e))m = 0, that is ((1 − e)ber)m+1 = 0 imply-
ing ((1 − e)beR)m+1 = (0). By Levitzki’s Lemma and primeness of R, it fol-
lows (1 − e)be = 0. This implies that, for any idempotent element e of rank 1,
(1− e)be = 0. Hence [b, e] = 0, for any idempotent of rank 1, and [b, H] = 0, since
H is generated by these idempotent elements. This argument gives the contradic-
tion that b ∈ C.
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Therefore H cannot contain any non-trivial idempotent elements, then H is a finite
dimensional division algebra over C and b ∈ H = RC = Q. If C is finite then H
is a finite division ring, that is H is a commutative field and so R is commutative
too.
If C is infinite then H ⊗C K ∼= Mr(K), the ring of r× r matrices over K, where K
is a splitting field of H. In this case, a Vandermonde determinant argument shows
that (b[x1, x2])m − [x1, x2]n is still an identity in Mr(K) . As above one can see
that if r ≥ 2 then b commutes with any idempotent element in Mr(K). In any case
we have the contradiction.
By the previous argument we may assume that b ∈ C. Thus H satisfies bm[x1, x2]m−
[x1, x2]n, which is a polynomial identity with coefficients in C. Hence H is a P.I.-
ring, then there exists a field K such that H and Mr(K) satisfies the same poly-
nomial identities, in particular Mr(K) satisfies bm[x1, x2]m− [x1, x2]n. Fix i, j and
denote eij the matrix unit with 1 in (i, j)-entry and zero elsewhere.
Let [x1, x2] = eii − ejj . Notice that, if r = 2 and char(K) = 2, then eii − ejj = I2

is the identity matrix in M2(K) and it follows easily that bm = I2. There-
fore we consider the case either r ≥ 3 or r = 2 and char(K) 6= 2. In any
case, eii − ejj 6= Ir, the identity matrix in Mr(K), and by computation we have
bm(eii + (−1)mejj) = eii + (−1)nejj . Right multiplying by eii we get bmeii = eii.
Repeating this process for any i = 1, . . . , r, we conclude that:

• any (i, j)-entry of the matrix bm is zero, for i 6= j;
• any (i, i)-entry of the matrix bm is 1

that is bm is the identity matrix in Mr(K). This mean bmx = x, for all x ∈ Mr(K),
and as above remarked we also have bmx = x, for all x ∈ H, as well as in Q and R.
The proof is now complete.

We finally extend the previous Theorem to the semiprime case:

5.2. The proof of Theorem 4. Let now R be a semiprime ring and P be a prime
ideal of R. As above, set R = R/P and write x = x + P ∈ R, for all x ∈ R. We
start from

(5.3)
(

F ([x, y])
)m

= [x, y]n, ∀x, y ∈ R.

In particular for y ∈ P and x ∈ R, we get
(

F (y)x
)m

= 0, that is
(

F (P )R
)m

= 0

and, by Levitzki’s Lemma, F (P ) = 0, so that F (P ) ⊆ P . In this case we may
define F : R → R, such that F (x) = F (x), for all x ∈ R. By Theorem 2, for all R
we have:

(a) either R is commutative;
(b) or there exists µ ∈ C such that F (x) = µx, for all x ∈ R, and um = un for

all u ∈ [R,R].

In any case, for any prime ideal P and for all x, y ∈ R, [x, y]m− [x, y]n ⊆
⋂

i Pi =
(0), then um = un, for all u ∈ [R,R].
Moreover, for all x ∈ R, [F (x), x]R[R,R] ⊆

⋂
i Pi = (0), then [F (x), x]R[F (x), x] =

(0) and by the semiprimeness of R it follows [F (x), x] = 0 for all x ∈ R.
Thus by Lemma 9, either R contains a non-zero central ideal or there exist λ ∈ C
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such that F (x) = λx, for all x ∈ R. In the last case:(
λ([x, y])

)m

= [x, y]n, ∀x, y ∈ R.

Applying again Theorem 2 for any prime ring R, we have:
(a) either R is commutative;
(b) or λmx = xn, for all x ∈ R.

Thus, for any prime ideal P and for all x ∈ R, one has (λmx− x)[R,R] ⊆
⋂

i Pi =
(0). In case (λmx− x) = 0, for all x ∈ R, then λm is the identity element of R. On
the other hand, in case there exists x0 ∈ R such that (λmx0−x0) 6= 0, then by [23]
(see Lemma 1.3), we conclude that 0 6= (λmx0− x0) ∈ Z(R), and R contains a non
zero central ideal (it is the ideal generated by λmx0 − x0).
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