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Influence of Bed Roughness and Cross Section
Geometry on Medium and Maximum Velocity Ratio

in Open-Channel Flow
M. Greco1 and T. Moramarco2

Abstract: This paper deals with the analytic-theoretical derivation of the relationships between the entropic quantity ΦðMÞ, representing the
ratio between the mean and maximum flow velocities, and the relative submergence and aspect ratios, using classical open-channel flow
equations. ΦðMÞ is found to be highly dependent on the relative submergence when large or intermediate roughness scales occur, whereas it
might be assumed to be almost constant for a small roughness scale. Furthermore, considering the hydraulic geometry relationships, an
attempt is made to relate the relative submergence to the aspect ratio of flow through a log relationship whose coefficients depend on
the local bed slope, with an important implication for hydrological practices. Then a practical relation between ΦðMÞ and the aspect ratio
is proposed and validated in an operative chain for discharge assessment that shows high robustness and stability. The proposed model has
been applied to a set of experimental velocity data collected at gauged river sites with different geometric and hydraulic characteristics as well
as low, medium, and high flows. DOI: 10.1061/(ASCE)HY.1943-7900.0001064. © 2015 American Society of Civil Engineers.
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Introduction

Knowledge of the flow field in terms of velocity distribution in
natural channels has been and continues to be one of the most rel-
evant challenges for hydraulic engineers. Sediment transport proc-
esses and pollutant diffusion are classic hydraulic examples in
which knowledge of the flow dynamics plays a fundamental role
for prediction and design purposes. It is of considerable interest to
identify a simple velocity law that gives suitable results using few
parameters that are easy to measure or derive.

Recent studies outline the opportunity to relate the local energy
budget to the informational content held into the point velocity mea-
surements through a velocity distribution profile derived from an
entropy-probabilistic approach. In particular, Chiu (1987) showed
the high correlation between the mean, Um, and maximum, Umax,
flow velocities through the parameter ΦðMÞ ¼ ½eM=ðeM − 1Þ�−
ð1=MÞ. Considering the important implication that this finding
could have on the monitoring of high flows in rivers, many research-
ers have investigated the reliability of this relationship using field
data (e.g., Xia 1997; Moramarco et al. 2004; Mirauda et al.
2011; Greco and Mirauda 2015). Overall, they found ΦðMÞ and,
hence,M to be constant at a river site and unaffected by the magni-
tude of flood. Therefore,Mmight represent an intrinsic parameter of
a gauged site; this insight led Moramarco and Singh (2010) to ex-
plore the dependence ofM on the hydraulic and geometric character-
istics of a river site. This analysis was able to explain that M is not
dependent on the dynamics of a flood, as is expressed by the energy
or water surface slope, Sf , and to identify a formula expressingM as

a function of the hydraulic radius, Manning’s roughness, and the
location, y0, where the horizontal velocity is hypothetically equal
to zero. Considering that y0 is not simple to assess and therefore
might have high uncertainty, the assessment of M should be ad-
dressed using hydraulic and geometric variables that are easy tomea-
sure mainly for ungauged river sites. This insight might be achieved
considering the relative submergence D=d (where D is the average
water depth and d is the characteristic dimension of the roughness
elements). In natural rivers, indeed, the velocity distribution is af-
fected by the channel geometry, vegetation, and bank roughness,
and usually thevelocity can be assumed to bemonotonically increas-
ing from 0 at y0, near the channel bed, to the maximum value at the
water surface. Moreover, in the case of channels that are not very
wide, in addition to the boundary effect, the velocity varies even
along the transverse direction, and the maximum velocity occurs
at or below the water surface, which is known as the dip phenome-
non. Furthermore, the location of the maximum velocity in the flow
area depends on the aspect ratio B=D (Yang et al. 2004), with B the
channel width, through a relationship that is easily assessed if the
channel geometry is given. Therefore, at the global scale, the analy-
sis of the effect of bed roughness and cross-sectional geometry on the
Φ(M) assessment is relevant in the field of open-channel flow.

On this basis, the present paper deals with the relationship be-
tween ΦðMÞ and the geometrical flow ratios D=d and B=D using
classical open-channel flow and regime theory equations. The
relationship ΦðMÞ ¼ fðB=DÞ is developed and applied to a set
of experimental velocity data collected in gauged river sites with
different geometric and hydraulic characteristics. Finally, the rela-
tionship is validated in an operative chain for water discharge
assessment and showed high robustness and stability.

Entropy Velocity Profile and Geometric Ratios in
Open-Channel Flow

Shannon (1948) formulated the concept of entropy as a measure of
information or uncertainty associated with a random variable or its
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probability distribution. Chiu (1987, 1991) applied the principle of
maximum entropy (POME) to open-channel flows, and modeled
the velocity distribution, shear stress, and sediment concentration.
Analysis of the velocity distribution in the probability domain has
the advantage of determining the cross-sectional mean flow veloc-
ity and the momentum and energy coefficients without dealing di-
rectly with the geometrical shape of cross sections, which tends to
be extremely complex in natural channels (Chiu 1991; Luo and
Singh 2011; Cui and Singh 2013).

Thus, Chiu (1987), by using POME, inferred the two-
dimensional velocity distribution, obtaining

uðξÞ ¼ Umax

M
ln

�
1þ ðeM − 1Þ ξ − ξ0

ξmax − ξ0

�
ð1Þ

where u = velocity; ðξ − ξ0Þ=ðξmax − ξ0Þ = cumulative probability
distribution function, in which ξ is a function of the spatial coor-
dinates in the physical space; ξmax ¼ ξ at the point where Umax oc-
curs; and ξ0 ¼ ξ at the channel bed where u ¼ 0. Under such
circumstances, umonotonically increases from ξ0 to ξmax. Therefore,
M can be used as a measure of the uniformity of probability and
velocity distributions, and, as shown by Chiu (1987), its value can
be determined by the mean, Um, and maximum velocity values as

Fig. 1. Mean and maximum velocities observed in field

Fig. 2. Observed relationship between aspect ratio and relative submergence

© ASCE 06015015-2 J. Hydraul. Eng.

 J. Hydraul. Eng., 2016, 142(1): 06015015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
ic

he
le

 G
re

co
 o

n 
04

/1
3/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



ΦðMÞ ¼ Um

Umax
¼

�
eM

eM − 1
− 1

M

�
ð2Þ

Eq. (2) was verified by several authors by collecting velocity
data in gauged river sites worldwide (Xia 1997; Moramarco et al.
2004; Greco et al. 2014; Ammari and Remini 2010); it represents
the fundamental relationship, from a practical point of view,
for estimating ΦðMÞ, which is known as the velocity ratio, using
the ratio between mean and maximum velocities recorded at
gauged sites.

To identify the dependence ofM on the hydraulic and geometric
characteristics of channels, i.e., the relative submergence and aspect
ratio, respectively, the formulation proposed by Greco (2015) for
Um is considered

Um

u�
¼ 1

k
ln
D
d
þ 1

k
lnC0 ð3Þ

in which u� = shear velocity; d = characteristic bottom roughness
height (i.e., d50 or d84); k = von Karman constant; and C0 =
dimensionless coefficient.

The maximum velocity conveys important information about
channel flow because it defines the range of the velocity distribu-
tion. In the flow area, the location of maximum velocity from the
river bottom, ymax, is of interest, because the maximum velocity
does not always occur at the water surface but at some distance
below it. Overall, this phenomenon, known as a velocity dip,
may be induced by several factors, one of which is the secondary
currents (Nezu and Nakagawa 1993), which refer to the circulation
in a transverse channel cross section, while the longitudinal flow
component is called the primary flow.

In this context, Moramarco and Singh (2010) identified the ratio
between Umax and u� as

Umax

u�
¼ 1

k
ln

�
D

y0ð1þ αÞ
�
þ α

k
ln

�
α

1þ α

�
ð4Þ

with α ¼ ðD=ymax − 1).
y0 can be assumed to be proportional to the characteristic bot-

tom roughness height, d, as suggested by Rouse (1965) through the
experimental parameter Cξ ¼ y0=d. Therefore, Eq. (4) becomes

Umax

u�
¼ 1

k
ln

�
D
d

�
þ 1

k
ln

�
αα

Cξð1þ αÞ1þα

�
ð5Þ

Unlike in Moramarco and Singh (2010), here the ratio between
Eqs. (3) and (5), based on logarithmic properties, explicitly pro-
poses ΦðMÞ as a function of the relative submergence D=d

ΦðMÞ ¼ Um

Umax
¼

ln
�
C0D
d

�

ln
h
D
d

αα

Cξð1þαÞ1þα

i ≅ AΦ ln
D
d
þ BΦ ð6Þ

where AΦ and BΦ are simple coefficients. Eq. (6) was derived under
the assumption that the variability of lnðD=dÞ ranges from 1 to 10
and the corresponding ratio between the two coefficients,
lnðC0Þ= ln½ðααÞ=Cξð1þ αÞ1þα�, is less than 2, as is generally found
in field data. In fact, under these constraints, the relation

Fig. 3. Observed correlations between parameters k� and a� and the local bed slope

Fig. 4. Observed relative submergence versus computed one
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½ln ðC0D=dÞ= ln ½D=d × ðαα=Cξð1þ αÞ1þαÞ�; ln ðD=dÞ� can be
linearly interpolated with a high correlation of determina-
tion ðR2 ≈ 0.9Þ.

Eq. (6) explains the possible effects of bed roughness on the
entropy velocity distribution in open-channel flow depending on
the scale of large, intermediate, and small roughness (Bathurst
1985). Further, invoking the hydraulic geometry relationships,
it is always possible to express average flow width, B, and depth,
as well as the ratio D=d, as functions of the water discharge,
Q (Leopold and Maddock 1953; Leopold et al. 1964; Griffiths
1980)

B ¼ αQa; D ¼ βQb;
D
d
¼ γ

i%j Q
c ð7Þ

in which i% represents the local bed slope, and a, b, c, α, β, γ,
and j are numerical coefficients. After a little algebra, the relative sub-
mergence can be reported in terms of the aspect ratio,B=D, obtaining:

D
d
¼ γ

i%j

�
β
α
·
B
D

�
c=ða−bÞ

¼ k�
�
B
D

�
a�

ð8Þ

where k� and a� are coefficients. Finally, Eq. (6) can be reformulated
taking into account Eq. (8), and thevelocity ratioΦðMÞ can bederived
through the aspect ratio as follows:

Fig. 5. (a) ΦðMÞ versus aspect ratio, B=D; (b) observed discharge versus computed ones by coupling Eqs. (2) and (9)
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ΦðMÞ ¼ AB ln
B
D
þ BB ð9Þ

in which AB and BB are appropriate coefficients.
Greco (2015) specified the coefficient assumed in Eq. (6) as a

function of D=d, yielding
8>>><
>>>:

AΦ ¼ 0.11
BΦ ¼ 0.51

⇒ D
d < 4

and
AΦ ¼ 0

BΦ ¼ 0.66
⇒ D

d > 4

ð10Þ

AB and BB in Eq. (9) can be easily inferred.

Field Investigation and Data Discussion

The aforementioned dependence between the entropy parameter,
M, through ratio ΦðMÞ, the relative submergence, D=d, and the
aspect ratio, B=D, has been investigated based on a large volume
of data collected at several gauged river sites along different Italian
rivers located in Southern Italy, i.e., the Fellone and Amato Rivers
in the Calabria region, Basento, Sinni, Agri, and Cavone Rivers in
the Basilicata region, and the Tiber River in the Umbria region in
central Italy. Such a database is extremely significant because it
covers a relevant interval of water discharge, from a few liters
up to hundreds of cubic meters per second (0.07–240 m3=s), a
bed slope in the range 0.1–1%, flow depth (0.07–5, 28 m), and
mean sediment diameter, d50, ranging from 3 to 7 cm. Furthermore,
assuming d50 to be representative of roughness, the relative sub-
mergence (D=d50) ranges from 1.15 to 70.

The observed domain (Um,Umax) is shown in Fig. 1. In the same
figure, the linear regressions, differentiated among data sets in the
bulk of field data, are reported, and quite similar values of ΦðMÞ
ranging from 0.608 to 0.678 are identified.

Considering Eq. (8), the theoretical relationship derived from
the regime theory between the relative submergence and the aspect
ratio is reported in Fig. 2 for each gauged site. Although a few cross
sections were well populated (i.e., S. Lucia, Ponte Nuovo, Grass-
ano, Amato), the log dependence between the aspect ratio and the
relative submergence seems to be consistent. Fig. 2 shows an
existing robust relationship between D=d and B=D, differentiated
among the cross-section data set. This insight supports the idea of a
correlation between coefficients k� and a� of Eq. (8) and the local
geometric characteristics of the flow. Thus, the dependence of
parameters k� and a� on the local bed slope has been investigated
for the nine gauge sites, as reported in Fig. 3, obtaining for k� and
a� the relationship

k� ¼ 8.2i%−2.57ðR2 ¼ 0.86Þ and

a� ¼ 1.61i% − 1.43ðR2 ¼ 0.85Þ ð11Þ

Based on the available data set, Fig. 4 depicts a comparison be-
tween the relative submergence, D=d, computed by Eq. (8), using
k� and a� expressed through the observed correlation of each cross
section (Fig. 2), and D=d, also given by Eq. (8), but where k� and
a� are estimated as a function of i% using Eq. (11). As can be seen,
the results are quite satisfactory and the relationship between the
relative submergence and the aspect ratio encourages the use of
such a relationship during operational activities. Indeed, if the river
geometry is known, B=D and, as a consequence, D=d can be
explicitly estimated using Eq. (8), where k� and a� are given by
Eq. (11). Therefore, ΦðMÞ can be quickly computed using
Eq. (9), and, as shown in Fig. 5(a), the estimated values represent

the observed ones fairly well at the investigated gauged sites.
Therefore, once the roughness condition and the aspect ratio are
estimated, velocity measurements can be collected in the cross sec-
tion at all stage levels—low, medium, and high—obtaining for each
one Umax, which is the maximum value sampled among all velocity
points in the flow area. Note that Umax occurs in the upper portion
of the flow area and can be easily sampled even during high flood-
ing. The Umax value can be used in Eq. (2), together with the value
of ΦðMÞ, corresponding to the observed relative submergence or
aspect ratio, independently using Eq. (6) or Eq. (9), obtaining,
de facto, the mean flow velocity Um and, hence, the discharge.
Fig. 5(b) compares the discharges computed applying Eqs. (2)
and (9) versus the observed ones, with reference to the available
data set, with a resulting percentage error of less than 20%.

Conclusion

An analytic-theoretical derivation of the relationships between the
medium and maximum velocity ratio, ΦðMÞ, and the geometrical
flow ratios, like relative submergence and aspect ratio, was pro-
posed using entropy theory and hydraulic geometry relationships.
The analysis was based on the experimental evidence that ΦðMÞ is
dependent on the relative submergence in the case of high-inter-
mediate roughness flow (D=d < 4), while such relationships can
be assumed to be negligible once low roughness flow occurs
(D=d > 4). On this basis, the relationship between ΦðMÞ, D=d,
and B=D is found to be robust, and this is of paramount importance
in identifying a practical formulation relating the velocity ratio
ΦðMÞ to the ratio flow width/flow depth, avoiding the need to as-
sess the bottom roughness height, d.

The application of the proposed methodology to a set of exper-
imental velocity data collected in gauged river sites with different
geometric and hydraulic characteristics, as well as low, medium,
and high stages, has shown that the approach can be conveniently
used to estimate ΦðMÞ at a river site. Finally, discharge can be es-
timated with an error of �20% once the maximum velocity and
geometry are known. Further investigations are, however, needed
for natural channels wider than those investigated.

Notation

The following symbols are used in this paper:
B = flow width;

B=D = aspect ratio;
D = water depth;
d = characteristic bottom roughness height;

D=d = relative submergence;
i% = bed slope;
M = entropy parameter;
Q = water discharge;

Um = medium cross velocity;
Umax = maximum cross velocity;

y0 = location where the horizontal velocity is zero; and
ΦðMÞ = medium and maximum velocity ratio.
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