
molecules

Review

Classification, Toxicity and Bioactivity of Natural
Diterpenoid Alkaloids

Amin Mahmood Thawabteh 1 , Alà Thawabteh 2, Filomena Lelario 3, Sabino Aurelio Bufo 3,4,*
and Laura Scrano 5

����������
�������

Citation: Thawabteh, A.M.;

Thawabteh, A.; Lelario, F.; Bufo, S.A.;

Scrano, L. Classification, Toxicity and

Bioactivity of Natural Diterpenoid

Alkaloids. Molecules 2021, 26, 4103.

https://doi.org/10.3390/

molecules26134103

Academic Editors: Dezső Csupor,
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Abstract: Diterpenoid alkaloids are natural compounds having complex structural features with
many stereo-centres originating from the amination of natural tetracyclic diterpenes and produced pri-
marily from plants in the Aconitum, Delphinium, Consolida genera. Corals, Xenia, Okinawan/Clavularia,
Alcyonacea (soft corals) and marine sponges are rich sources of diterpenoids, despite the difficulty to
access them and the lack of availability. Researchers have long been concerned with the potential ben-
eficial or harmful effects of diterpenoid alkaloids due to their structural complexity, which accounts
for their use as pharmaceuticals as well as their lousy reputation as toxic substances. Compounds
belonging to this unique and fascinating family of natural products exhibit a broad spectrum of
biological activities. Some of these compounds are on the list of clinical drugs, while others act
as incredibly potent neurotoxins. Despite numerous attempts to prepare synthetic products, this
review only introduces the natural diterpenoid alkaloids, describing ‘compounds’ structures and
classifications and their toxicity and bioactivity. The purpose of the review is to highlight some
existing relationships between the presence of substituents in the structure of such molecules and
their recognised bioactivity.

Keywords: diterpenoid alkaloids; Aconitum; Delphinium; Consolida; structural substituents; marine
sponges; bioactivity; toxicity

1. Introduction

Diterpenoid alkaloids (DAs) are substances produced by various natural plants with
significant thematic difficulties, bioactivity, and somewhat disreputable toxicity. To date,
1500 and more DAs have been isolated and characterised. Many remarkable DAs demon-
strate different pharmacological properties such as neurotropic, antimicrobial, antitumour,
hypotensive, analgesic, anti-inflammatory, muscle relaxant, antiarrhythmic, and local
anaesthetic [1–8].

DAs extracted from some plants belonging to the Ranunculaceae family, especially
genera Delphinium, Aconitum and Consolida, are often distinctive and recognised as cytotoxic
against cancer [9]. Aconitum spp. (monkshood) is one of the most extracted and isolated
sources of DAs, where more than half of natural DAs were isolated from [10–15].

DAs have long been used all over the world. People extract Aconitum due to either
medicinal and beneficial properties or toxic and harmful ones. In the ancient past, Aconitum
seasoned the top of arrows used for hunting animals and in wars. Of note, a Chinese tribe
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discovered that extracted crystallised Aconitum turned into a sand-like substance when left
for some time [16–19].

The first DA was isolated by Geiger in the early nineteenth century when he iso-
lated aconitine from Aconitum napellus. Then followed growing success in isolating many
other DAs with simultaneous development of extraction methods, purification techniques
and molecular identification, favouring their widespread use in medicine and scientific
research [1,3,7,9].

In the last ten years, we can acknowledge significant progress in studying DAs’
phytochemistry and identifying new natural DAs. Numerous researches performed are
the nourishment of many scientific articles and reviews on phytochemistry, chemical
reactions, compositional and botanical studies, and ‘DAs’ biological activities, classifying
these substances as structures containing either 18 or 19 and 20 cycled carbon atoms (C18,
C19, C20), i.e., according to the number of contiguous carbon atoms that constitute their
central arrangement [20,21].

The purpose of this review is to highlight some existing relationships between the
presence of substituents in the structure of such molecules and their recognised bioactivity.
Structure–activity relationship (SAR) analysis can guide researchers to modify existing
natural molecules or synthesise new compounds to propose novel-effective drugs. Fur-
thermore, for comparison with plant extracted DAs, a section of this review highlights
the structure of marine-diterpenoids, most of which are not alkaloids but, mainly used in
alternative medicine, having received significant attention by researchers in the last decade.

2. Classification of Diterpenoid Alkaloids

Diterpenoid alkaloids are heterocyclic systems containing β-aminoethanol, methy-
lamine, or ethylamine nitrogen atoms derived from the amination of tetra- or pentacyclic
diterpenoids and classified into C18-, C19-, and C20-diterpenoid alkaloids, according to
their carbon skeleton configuration [7].

2.1. C18-Diterpenoid Alkaloids

These compounds, for a long time structurally classified as belonging to the broad
group of C19-diterpenoid alkaloids, are currently considered independent. Furthermore,
they are split into two distinct types: the ranaconitine-type and the lappaconitine-type. The
main difference between them is the presence of additional oxygenation on the C7 position
in the ranaconitine-type.

2.1.1. Ranaconitine Group

The majority of this class of compounds comes from Aconitum plants and others from
Delphinium. In this class, alkaloid compounds having an oxygen group functionality in C7
comprise more than ten new compounds (structures 1–14 in Figure 1) [5–8].

Compounds 1–6 contain a 7,8-methylenedioxy group, while compounds 1, 3–6 feature
a 10-OH. In particular, alkaloids 1–2 have a 16-OH group instead of the O-methyl unit,
usual in C18-DAs [22–26].

The bi-hydroxyl groups distinguish the compounds (7–12) in C8 and C7 [27]. Com-
pound 9—puberumine—is the first example of a naturally occurring DA containing the
chlorine substitute on C3 [27].

On the other hand, compound 10 in Figure 1 has a double bond in C2-C3, which
distinguishes it from the rest of the group, and vaginatunine (11, in Figure 1) shows the
presence of a methoxy substitute in C8 [28].

Alkaloids 13 and 14 in Figure 1 have an N-acetylanthranoyloxy substituent in C17;
furthermore, they have fewer ester groups, suggesting that they are less toxic [29].
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Figure 1. C18-ranaconitine Das.

2.1.2. Lappaconitine Group

The methine unit in C7 characterises the lappaconitine compounds; examples are
natural to various Aconitum and Delphinium species [5,8].

Minor toxicity characterises plant roots containing weisaconitine compounds (struc-
tures 15–18 in Figure 2) [30]. Structurally, the lactam carbonyl and acetoxy groups are
specific to weisaconitine compounds 16 and 17, respectively. Furthermore, a chloro-
substitution in C4 and two hydroxyl groups in C1 and C3 are natural to sinomontanine N
(18) [31].
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2.1.3. Rearranged Group

Sinomontadine (19 in Figure 3), isolated from Aconitum sinomontanum, shows a sur-
passing skeleton unlike other DAs compounds; it exhibits a seven-membered ring [31]
instead of six, by the incorporation of a carbon atom into the six-ring system with the
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expansion to a seven carbons ring. The result is a set of new compounds such as puberu-
dine (20, Figure 3) and puberunine (21, Figure 3), isolated from Aconitum barbatum var.
puberulum and recognised as an exceptional class of DAs [27].
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Figure 3. C18-rearranged DAs.

Puberudine (compound 20 in Figure 3) has a distinctive characteristic in the A ring,
which is an open ring (1,2-Seco), and also a specific double bond between C2 and C3, in
addition to the carbonyl group on C1 instead of the methoxyl or hydroxyl group [27,31].

2.2. C19-Diterpenoid Alkaloids

C19- is the largest category of the DAs, belonging to pentacyclic compounds. Most of
the C19-DAs are isolated from Aconitum, Delphinium, and the roots of Aconitum carmichaelii [9].

C19-DAs are compounds classified into seven types (lactone, aconitine, lycoctonine,
7,17-Seco, franchetine, rearranged class, and glycosides) according to the oxygen-containing
groups on C7 and the difference of skeleton as shown in Figure 4 [20,21].
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Figure 4. C19-DAs class.

The plurality of C19-DAs are lycoctonine and aconitine types, which are isolated from
Delphinium. The presence of the oxygen-substituent group in the lycoctonine-type on C7
constitutes the difference between them.
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2.2.1. C19-Aconitine Class

Aconitines (structures 22–62 in Figure 5a,b) do not show an oxygenated C7. Due to
the ester-group presence on C8 and sometimes on C14, they exhibit acute toxicity [1,3,8].
Several aconitines lack oxygenated groups on C15 and C6 (22–40) and rarely arrange a
hydroxyl group on C1 as compound 22 [2,3,32–50].
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Some aconitine compounds (26–29, in Figure 5a) display a double bond between C19
and N, which isolate from Aconitum hemsleyanum var. circinatum and Aconitum straminifio-
rum. Others bear an additional CH2COCH3 group on C19, with the same skeleton as
acetonyl-talatisamine (30, Figure 5a) and hemaconitine D (31, Figure 5a) [41,42,51].

Three new C19-DA compounds, isolated from the genus Aconitum (32–34), distinguish
an anisoyl group in C14 and a double bond between C15 and C16, as for compound 32.
DAs 35–40 have an anthranoyl substituent in C18 and a double bond between C15 and
C16, as is visible for compounds 38–40, further to the specific double bond N=C19 [37,38].
Compounds 41–43 in Figure 5b are water extract of the A. carmichaelii lateral roots. They
lack the oxygenated unit in C6 while showing an oxygenated group in C15. On the contrary,
other C19-DAs (44–53) have an oxygen-containing substituent in C6 and lack oxygen in
C15. And some (54–64) have both oxygen-containing groups in C6 and C15 [3,32].

Furthermore, DAs 61–62, isolated from the roots of A. carmichaelii, are characterised
by the presence of quaternary amine (cation) having a positive charge (+HN-3R), which
tolerate a function similar to that of a nitrone (+NO=C) [52].

2.2.2. C19-Lycoctonine Class

The ester ratio at C8 or C14 in lycoctonines (Figure 6) is less than the ester ratio in
aconitine, whereas the ratio at C18 is higher in the lycoctonine class. Lycoctonines are
subdivide into two subtypes based on the methylenedioxy group attached at C7 and C8.
Some lycoctonines, isolated from Aconitum, differentiate with diol at C7-C8 as compounds
63–73 in Figure 6. Other lycoctonines characterise the presence of 7,8 methylenedioxy
group (74–81), as shown in Figure 6 [22,53–63].
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DAs 63–67 in Figure 6 show an O-acetamidobenzoate moiety [54–57]. DAs 65 and
66 exhibit hydroxyl substitution at C12 [54]. Tianshanitine B (68) has hydroxyl instead of
methoxy in C16. Anthriscifoldine A (69) and majusine C (70) exhibit a double bond between
C2 and C3 [22,56,58]. A nitrone functionality is highlightable in DAs 71–73 (Figure 6) due
to the N=C19 moiety.

An unfamiliar hydroxyl group is detectable on C10 in compounds 74–77. Moreover,
DAs 78–81 show a quaternary amine with the N=C19 double bond [63,64].

The known, naturally occurring alkaloids of the amine subtypes in the aconitine and
lycoctonine types possess the following distinctive features:

(i) In most cases, they have oxygenated functionalities at C1, C6, C8, C14, C16, and C18.
Interestingly, the positions of these oxygenated groups are specific for the resulting
structural tendency from simple to complex: C13 or C10 to C3/C13 or C3/C10 to
C3/C13/C15 or C3/C10/C13/C15 [32,50].

(ii) Many alkaloids contain only the common oxygenated groups, e.g., methoxyl and
hydroxyl group(s). In most cases, the methoxyl groups locate at C1, C16, and C18.
The hydroxyl groups mainly located at C8 and C14. The presence of hydroxyl groups
at C3, C10, C13, and C15 may lead to their structural diversity [53,54,63].

(iii) Some alkaloids contain only the common ester groups, e.g., acetoxy group and
benzoyloxy. There are a few examples with other ester groups. Among them, the
acetoxy group presents a chemotaxonomic characteristic. The ester groups locate at
C8, C14, or C8/C14 [3,32].

(iv) They contain an N-ethyl structural unit. Very few alkaloids possess an N-methyl
group [33].

(v) The oxygenated substituents at the C1, C6, and C15 positions of the alkaloids possess
an a-orientation in most cases [42].

2.2.3. C19-Lactone Class

A six-membered lactone characterises this class (structures 82–85 in Figure 7) obtained
by the oxidation of the ketone existing at C14 of aconitine (Figure 7) [65–67].
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The lactone-type C19-diterpenoid alkaloids contain simpler oxygenated functionalities
as compared to the aconitine- and lycoctonine-type C19-diterpenoid alkaloids. All lactone-
type C19-diterpenoid alkaloids lack oxygenated functionalities at the C3, C7, C13, C15, and
C16 positions and possess oxygenated groups at the C1 and C8 positions. They also have
an oxygenated functionality at the C6 position in most cases. Only a very few alkaloids
have no oxygenated groups at both C6 and C16 positions [65–67].

2.2.4. C19-7,17-Seco Class

7,17-Seco compounds derive from aconitine DAs with outstanding C7-C8 double
bond. DAs 86–89 (Figure 8) show oxygen in C15, except for compound 89. Most of the Seco
DAs class come from Aconitum brachypodum [42,68–70]. Brachyaconitine C (86) exhibits a
C17=N unit in 7,17, while secoaconitine (88) shows an epoxy ring between C17 and C3 [69].
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2.2.5. C19-Franchetine Class

DAs in this class (90–93 in Figure 9) feature an additional oxygenated bond between
C6 and C17 [37,38,41,47,71,72]. All compounds exhibit a double bond between C7 and
C8, except 92, 7,8-epoxy-franchetine from A. straminifiorum [37,38,42,71,72]. Guiwuline
(structure 90 in Figure 9) is an example of a compound having an OH group in C15 [37].
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2.2.6. C19-DA Glycosides

Aconicarmichosides A–H, K–L, and I–J (structures 94–100 in Figure 10) are the only
glycosidic DAs found in nature [20,21]. Structurally, they belong to the aconitine class,
with the addition of the sugar moieties, and include L-arap and L-araf in C1 or C14 [5–8].
These compounds are currently components of the aqueous extract from A. carmichaelii
lateral roots [5–8].
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Figure 10. C19-glycosides DAs.

2.2.7. C19-DA Rearranged Class

Puberuline C and yunnanenseine A (structures 101 and 102 in Figure 11, respectively),
isolated in the order from A. barbatum var. puberulum and Delphinium yunnanense, belong to
the rearranged class with the C8-C17 bond, rather than a C7-C17 bond [73–75].
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Aconitramine A (103 in Figure 11), isolated from the Aconitum transsectum, shows a
three-membered ring formed via C8, C9, and C10 [32].

Hemsleyaconitines F (104 in Figure 11) and G (105 in Figure 11), typically extracted
from A. hemsleyanum, exhibit skeletons with five-membered D-ring linking C9, C13, C14,
C15, and C16, which looks different from the six-membered D-ring of their analogues [74].

Grandiflodine B (compound 106 in Figure 11) from Delphinium grandiflorum is distinc-
tive of a remarkable skeleton with the cleavage of N–C19 and C7–C17 bonds [76].

2.3. C20-Diterpenoid Alkaloids

DAs-C20 are more complex compounds than C18 and C19. They are tetracyclic diter-
penes with a 20-carbons skeleton; a Trans ring connects between C19 and C20. Most
DAs-C20 isolated from Delphinium and classified as atisine, denudatine, hetisine, hetidine,
anopterine, napelline, and vakognavine (Figure 12).
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2.3.1. C20-Atisines Class

Atisines are DAs isolated from different species of the genera Aconitum, Delphinium
and Spiraea [7,8]. Whereas spirimines A and B (107 and 108 in Figure 13) result from
Spiraea japonica var. acuminata [77]. DA-108 shows a methoxy group on C19 [77], whereas
leucostomines A and B (109 and 110 in Figure 13) exhibit a quaternary ammonium hy-
droxyethyl group. Compounds 111–113 reveal an oxazolidine ring, and compound 112, a
trimethyl-oxocyclohexyloxy group. DAs 114–116 exhibit an O–C–N unit between C7 and
C20, and structure 116 shows a carbonyl group at C15 [78–80].
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2.3.2. C20-Denudatine Class

Most of the denudatine DAs (compounds 81–89 in Figure 14) originate from Aconitum
spp, except DAs 123–124 obtained from the whole herb of Delphinium anthriscifolium var.
savatieri [81]. A hydroxyl group and an oxygenated group are respectively on C16 and
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C17 in DAs 117–120. Finally, an epoxy group between C16 and C17 is visible in DAs
123–125 [82–91].
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2.3.3. C20-Hetisine Class

Hetisines are the most prominent C20-DAs members (structures 126–138 in Figure 15).
Most of them isolated from Aconitum spp. and Delphinium spp. [7,8], and include hydroxyl
or methoxide groups in C6 and C3 as shown by structures 126–130 [43]. DAs 126–129
exhibit an OH group on C6, whereas compound 130 brings a methoxide. An a-oriented
OH group at C3 is characteristic of most C20-DAs; however, compound 129 possesses a
b-oriented OH group [92–94]. Propionyloxy in C13 and 2-methyl butyryloxy moieties in C2
and a quaternary N base characterise compounds 131–133 obtained from the lateral roots
of A. carmichaelii. Compounds 134–138 lose an oxygen group in C11 and C13 [67,95–100].
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2.3.4. C20-Hetidine Class

The smallest group in the hetidine classification consists of three compounds (139–141
in Figure 16) [99,101,102]. It is distinguished by the presence of the N=CH group, an endo-
cyclic double bond, and a hydroxyl at C5 in all hetidine-DAs [97–99,101]. Rotundifosine F
(structure 139 in Figure 16) exhibits a cardicine chloride in C17, whereas the DA 140 shows
the hordenine group in the same position, and DA 141 brings a (2-methoxyethyl)-benzene
ethanol moiety [99].
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2.3.5. C20-Vakognavine Class

Most vakognavine DAs (142–147 in Figure 17) come from Aconitum and Delphinium.
Structurally, they have a rare double bond between C16 and C17, an aldehyde group in
C19, and a characteristic N–Me group [56,93,99,103–105].
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2.3.6. C20-Napelline Class

There are few alkaloids in this class (148–153 in Figure 18). DA 148 have an N=C19 and
an endocyclic double bond; DA 149 a lactam fragment [73,106,107]. Aconicarmichinium
A tri-fluoroacetate, aconicarmichinium B trifluoroacetate, and aconicarmichinium C chlo-
ride (151–153), obtained from the alcohol iminium salts of A. carmichaelii [107], complete
the class.
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2.3.7. C20-Anopterine Class

DAs in this classification come from Anopterus/Anopterus macleayanus species (154–156
in Figure 19). All anopterine DAs are similar; they have two hydroxyl groups, an N–Me
and an endocyclic double bond [108]. They differ only the substituent in C11; compounds
154 and 155 show a hydroxymethyl butenoate, whereas the DA-156 exhibits an O-benzoyl
group [108].
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2.3.8. C20-Rearranged Classes

They are new C20-DAs (157–160 in Figure 20) with rearranged carbon skeletons.
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Kaurine A and B (157, 158 in Figure 20) come from Isodon rubescens. These two
compounds show a 7,20-aza-ent-kaurane skeleton instead of a 19,20. Moreover, the DA-157
exhibit a lactone between C11 and C16 [74,88,109,110].

Compound 159 is isolated from D. grandiflorum. Compared to the hetisine class
skeleton, the bond between the N atom and C17 was open due to forming a five-member
ring, including C4, C5, C6, C18, and the N atom [109].

DA 160 is obtained from the roots of Delphinium trichophorum. Its skeleton con-
tains a rearranged C-ring, a pentacyclic structure, and is not hexacyclic, as in a hetisane
class [111,112].

Almost all of the C20-diterpenoid alkaloids contain oxygenated groups. However,
in contrast to the C19-diterpenoid alkaloids, C20-DAs possess the following distinctive
features [113–157]:

(i) Most of them do not contain a methoxy group in their structures as C19-DAs [108];
(ii) Some alkaloids contain an acetoxy group or benzoyloxy ester group, or both, and do

not include other ester groups [56,93];
(iii) Most C20-DAs possess exocyclic methylene, and many of them have a secondary

hydroxyl function in the allylic position [109,157];
(iv) Few atisine and hetidine-type alkaloids contain N,O- mixed acetal/ketal units [77,78,

99,101].

2.4. Bis-Diterpenoid Alkaloids

Structurally, Bis-DAs (162–169 in Figure 21) are classified into three classes, atisine–
denudatine (162 in Figure 21), hetidine–hetisine (163 in Figure 21), and heteratisine–
hetidine (164 in Figure 21). The atisine–denudatine consists of an atisine-type and a
denudatine-type C20-DA, characterised by an O-ether linkage between atisine and denuda-
tine. Hetidine–hetisine comprises a hetidine-type and a hetisine-type C20-DA with an
oxygen atom linking hetidine and hetisine in the compound. Heteratisine–hetidine links a
lactone-type C19-DA and a hetidine-type C20-DA [154–158].



Molecules 2021, 26, 4103 16 of 28Molecules 2021, 26, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 21. Bis-diterpenoid alkaloids. 

3. Marine Diterpenoid 

Natural products of marine origin have become progressively substantial lead struc-

tures for drug discovery [159–166]. However, their structural variety often distinguishes 

them from products obtained from plants [159]. In this context, the scant availability of 

material from natural sources often poses a significant limitation to their utilisation. 

Diterpenoids obtained from soft corals of the genus Xenia show a vast range of biological 

activities such as antiproliferative [160], antiangiogenic [161], or bactericidal [162] effects. 

The dichloromethane extract from the Formosan soft coral Xenia blumi showed signifi-

cant cytotoxicity to A549 (human lung adenocarcinoma), HT-29 (human colon adenocarci-

noma), and P-388 (mouse lymphocytic leukaemia) cell cultures [163–165]. Bioassay-guided 

fractionations of this extract resulted in the isolation of eight new Xenia-diterpenoids, 
blumiolide-A (170 in Figure 22), blumiolide-B (171 in Figure 22), 9-deoxy-isoxeniolide-A (172 

in Figure 22), 9-deoxy-7,8-epoxy-isoxeniolide-A (173 in Figure 22), 9-deacetoxy-7,8-epoxy-13-

Figure 21. Bis-diterpenoid alkaloids.

3. Marine Diterpenoid

Natural products of marine origin have become progressively substantial lead struc-
tures for drug discovery [159–166]. However, their structural variety often distinguishes
them from products obtained from plants [159]. In this context, the scant availability of
material from natural sources often poses a significant limitation to their utilisation.

Diterpenoids obtained from soft corals of the genus Xenia show a vast range of biological
activities such as antiproliferative [160], antiangiogenic [161], or bactericidal [162] effects.

The dichloromethane extract from the Formosan soft coral Xenia blumi showed signifi-
cant cytotoxicity to A549 (human lung adenocarcinoma), HT-29 (human colon adenocarci-
noma), and P-388 (mouse lymphocytic leukaemia) cell cultures [163–165]. Bioassay-guided
fractionations of this extract resulted in the isolation of eight new Xenia-diterpenoids,
blumiolide-A (170 in Figure 22), blumiolide-B (171 in Figure 22), 9-deoxy-isoxeniolide-A
(172 in Figure 22), 9-deoxy-7,8-epoxy-isoxeniolide-A (173 in Figure 22), 9-deacetoxy-7,8-
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epoxy-13-epi-xenicin (174 in Figure 22), 9-deoxy-7,8-epoxy-xeniolide-A (175 in Figure 22),
blumiolide-C (176 in Figure 22), and blumicin-A (177 in Figure 22) [167–169].
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Xenia-diterpenoid blumiolide C (178 in Figure 22), isolated from X. blumi, exhibits
a potent in vitro antiproliferative activity (ED50 values of 1.5 µm and 0.6 µm against the
human colon cancer cell line HT-29 and the mouse P-388 leukaemia line, respectively).
Structurally, blumiolide C is distinct from most Xenia-diterpenoids because of the presence
of a Z, rather than the commonly found E, double bond as part of the nine-membered
ring [160,162].

Pachyclavulide B (179 in Figure 22), isolated from the Okinawan soft coral, Pachyclavu-
laria violacea, is a briarane-type diterpenoid containing eight chiral centres and a highly
oxygenated tricyclic system [168]. It exhibits moderate growth-inhibitory activity against
cancer cells (SNB-75) of the central nervous system [169].

Kalihinol A (180 in Figure 22), isolated from the Guamanian marine sponge, Acanthella
sp., is a richly functionalised tricyclic diterpenoid with isocyano and hydroxyl tetrahydropy-
ranyl and chlorine functions [170]. Biological activity, including antimicrobial [170–172], an-
tifungal [170–176], cytotoxic [174], anthelmintic [173–177], and antifouling [178–182], have
been reported. Kalihinol A, obtained from the Okinawan sponge, Acanthella sp., strongly in-
hibits proliferation of the malaria parasite, Plasmodium falciparum (EC50 1.2 × 10−9 M), and
express a remarkable selective index (SI 317), defined as the ratio of FM3A cell cytotoxicity
to P. falciparum [183,184].
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Stolonidiol (181 in Figure 22) and stolonitriene (182 in Figure 22) are dolabellane-type
diterpenoids isolated from the Okinawan marine soft coral, Clavularia sp. [185,186]. Most
dolabellane-type diterpenoids possess trans-bicyclo tetradecane and exhibit antimicrobial,
antitumor, and antiviral activity [187,188]. Stolonidiol is unique for multiple biologi-
cal activities and expresses potent cytotoxic activity toward P388 leukaemia cells (IC50
0.015 µg mL−1) and ichthyologic activity toward killifish, Oryzias latipes (minimum lethal
concentration: 10 µg mL−1) [185].

Kalihinane-type diterpenoid possessing cis or trans-decalin and tetrahydropyran or
tetrahydrofuran as its fundamental skeleton is a highly functionalised marine diterpenoid bear-
ing isocyano, isothiocyanate, formamide, hydroxy, and (or) chlorine groups [189–192]. Most
kalihinane-type diterpenoids exhibit antimicrobial [171,172,189], antifungal [172,175,189],
cytotoxic [174], anthelmintic [175,189], antifouling [190], and antimalarial [191] activities.

Kalihinene X (183 in Figure 22), isolated from the Japanese marine sponge, Acanthella
cavernosa, is a formamide kalihinane-type diterpene with cis-decalin chlorinated tetrahy-
dropyran moieties [190]. Kalihinene X inhibits the attachment and metamorphosis of
cyprid larvae of the barnacle, Balanus amphitrite, with EC50 of 0.49 µg mL−1, which does
not show toxicity at this concentration [192].

4. Toxicity

Regardless of the broad domain of ‘DAs’ biological activities obtained from Aconi-
tum and Delphinium plants, DA plants and their compounds are cardiotoxins and potent
neurotoxins, despite being evaluated as decorative plants [113–119].

Toxic DAs mainly affect the central nervous system and the heart, with gastroin-
testinal side effects. Overdose can lead to death due to the development of ventricular
arrhythmias and cardiac arrest [114,119,120]. With the ubiquitous tradition of using DAs
as herbal medicines, often disguised as ornamental plants, poisoning cases are notoriously
widespread [119,121].

‘DAs’ toxicity is mainly due to the diester diterpene alkaloids (C19-Aconitine class),
which exhibit two ester groups, an acetyl moiety on C8 and a benzoyl\anisoyl moiety on
C14 [114,122]. Therefore, the de-esterification of C19-Aconitine DAs reduces their toxicity.
For example, the mono-ester diterpene alkaloid benzoylaconine is 200-fold less toxic
than aconitine [114]. Furthermore, alkaline hydrolysis of acetyl and benzoyl in aconitine
produces aconine (alcohol amine diterpenoid alkaloid), which is less than 1000-fold as toxic
as aconitine [122].

In general, the Aconitum roots used in traditional medicines follows specialised process-
ing methods, such as soaking, boiling, or hydrolysing; this causes a decrease in aconitine
derivatives toxicity (benzylaconine or aconine) [147,150]. When comparing the proportion
of aconitine in raw chuanwu to processed chuanwu (soaked or boiled), the balance of
aconitine in the raw material is more remarkable. For this reason, the exposure to poisoning
is higher when using raw chuanwu [119].

The cardiotoxicity and neurotoxicity of aconitines are in virtue of their actions on the
voltage-sensitive sodium channels of the cell membranes of excitable tissues, including
the myocardium, nerves, and muscles. Aconitine binds to open sensitive, high-voltage
sodium channels, causing continuous sodium channel activation, becoming resistant to
excitation. The electrophysiological mechanism of induction of arrhythmias due to delayed
post-depolarisation and early post-depolarisation is triggered [114,119,121–123].

Aconitine ‘DAs’ arrhythmic properties are part of its cholinergic (anticholinergic)
effects mediated by the vagus nerve. Aconitine has a positive inotropic effect by prolonging
sodium’s influx during the action potential [114,122].

It has antihypertensive and bradycardia actions by virtue of the activation of the
ventral nucleus in the hypothalamus. By acting on voltage-sensitive sodium channels in
axons, aconitine inhibits neuromuscular transmission by reducing acetylcholine’s induced
quantitative release. On the other hand, aconitine DAs can cause severe contractions of the
ileum by releasing acetylcholine from the posterior node cholinergic nerves [114,122].
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Studies conducted on the effect of aconitine in mice concluded that it induces cell
death by promoting excess Ca2+ in the ventricular muscle cells, causing disruption of the
Na+/Ca2+ exchange system and reducing the regulation of the sarco-endoplasmic network
of Ca2+-ATPase [124,125].

Three diterpene mono-ester alkaloids (MEA) and three diterpene di-ester alkaloids
(DEA), tested on fish for cardiac toxicity, revealed how acetate in the C8 position of DEA
contributes most to cardiac toxicity [126–128].

Unfortunately, there is no specific treatment for Aconitum poisoning. In contrast,
supportive cardiovascular therapy is usual in poisoning cases [114,122].

5. Bio-Activities of DAs
5.1. Analgesic Activities

Opioids, salicylates, propionic acid derivatives, oxicam, and other non-steroidal
anti-inflammatory drugs, usually used to control pain, have harmful side effects in gas-
trointestinal damage by inhibiting prostaglandin production in addition to the potential
for addiction and adverse effects on the nervous system to opioid users [129].

Over the past ten years, studies have examined the effect of plant parts and alkaloids
derived from them, such as A. carmichaelii [130], Aconitum weixiense [30], Aconitum bul-
leyanum [131], Aconitum baikalensis [132], and Aconitum brachypoumi [133], which has seen
them used as analgesics [20,21,30,72,130–132,134–137].

Investigations on the effectiveness of analgesics obtained from C18- and C19-DAs
showed that aconitine and lappaconitine affect sodium channels. Aconitine inhibits nerve
conduction by continuous depolarisation, while lappaconitine may block Na+ channels
and act as a local anaesthetic [129,138].

Lappaconitine (C18-DAs) shows pain-relief properties. However, lappaconitine sul-
fate, obtained by the modification of lappaconitine, exerts a more noticeable analgesic
action than lappaconitine, which is poorly soluble in water [139,140].

Studies on the analgesic activity of C19-DAs demonstrated that compound 60 in
Figure 5b, extracted from A. carmichaelii, exerts an analgesic effect on mice when used in
acetic acid with a non-toxic dose of 0.5 mg/kg of body weight [141].

Compounds 100 in Figure 10 and 101 in Figure 11, administered in acetic acid using
doses of 1.0, 0.3, and 0.1 mg/kg, showed a weak analgesic effect on mice using the higher
amount of 1 mg/kg, with a pain suppression rate of 78.34%, whereas the rate was less
than 20% for compounds 98 and 99 in Figure 10 [21]. The lack of the methoxy group in
C6, as for compounds 94 and 95, seems to exert a fairly noticeable effect on the analgesic
activity, whereas the presence of a methoxyl group in C1, as for the compounds 98 and 99,
significantly decreases the activity [21].

Other C19-DAs exhibit analgesic effects with low toxicity as guiwuline (compound 90
in Figure 9) [72], bulleyaconitines A, foresaconitines, and yunaconitines [131].

The structure–activity relationship (SAR) analysis revealed the fundamental structures
necessary for observing the analgesic activity of the C19-DAs. For example, substituents
in C8 should be either the acetoxyl or ethoxyl group, a tertiary amine is essential in
the cyclohexane ring, and substituents in C14 different from an aromatic ester would
reduce the effectiveness. Furthermore, the hydroxylation at C15 is requisite to undergo
bioactivation [5,135].

The characteristic skeletons, showing low toxicity in C20-DAs, encouraged researchers
to conduct studies on their analgesic effects. In contrast to the substantial toxicity of C18-
DAs and C19-DAs, C20-DAs may be effective candidate drugs for the management of pain
treatments. In addition, the sulfonated compound (157 in Figure 20), extracted from the
lateral roots of A. carmichaelii, also showed a significant analgesic activity [142].

5.2. Anti-Inflammatory Activities

NSAIDs (salicylates, acetic acid derivatives, profenes, oxycamates, pyrazolidine
derivatives, selective cyclooxygenase-2 inhibitors, and phenamic acids) are the most com-
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monly used analgesics and anti-inflammatory drugs. They have many side effects on the di-
gestive and nervous systems [115]. Based on studies conducted on C19-DAs extracted from
Aconitum and Delphinium, diterpenoid alkaloids can interact with neurotransmitters, mak-
ing them good candidates as anti-inflammatory drugs [30,37,55,70,105,129,130,143–146].

Compound 144 in Figure 17 inhibits the activity of cyclooxygenase-2 (COX-2) with
inhibitory concentration (IC50) nearly equal to that of acetylsalicylic acid (29.75 µM and
29.30 µM, respectively); this is what makes it a possible alternative to aspirin [105].

The activity of compound 55 in Figure 5b and compound 87 in Figure 8 on inhibiting
NO production in lipopolysaccharide cells (LPS) stimulated the macrophage cell line
RAW 264.7, with a behaviour similar to dexamethasone. IC50 values were 7.46 ± 0.89 µM
and 8.09 ± 1.31 µM for compounds 87 and 55, respectively, and 8.32 ± 1.45 µM for
dexamethasone [68,70]. Swatinine (compound 64 in Figure 6, obtained from Aconitum
baikalense has an anti-inflammatory activity similar to indomethacin, with an inhibition rate
of 38.71% and 42.02%, respectively [55]. Therefore, given their particular activity, various
DAs can provide good resources for exploring promising anti-inflammatory drugs.

Bulleyanines A and B (168 and 169 in Figure 21, respectively), two novel compounds,
were isolated from Aconitum bulleyanum. Compound A showed a marked effect on anti-
inflammatory activity with an inhibition rate of 74.60% (40 µmol L−1), compound B showed
as inactive, as compared to positive control dexamethasone (78.70%) at 100 µg mL−1 [158].

5.3. Antimicrobial Activities

Several researchers demonstrate the antimicrobial activity of some DAs. For example,
sinchiangensine (compound 59 in Figure 5b) has potent antibacterial activity against Staphy-
lococcus aureus with minimum inhibitory concentration (MIC) value 0.147 mmol mL−1;
furthermore, lipodeoxyaconitine (analogue of sinchiangensine) is active against the same
bacterium with MIC value 0.144 mmol mL−1 [144].

Some C20-vakognavine compounds, e.g., carmichaedine (compound 144 in Figure 17),
show activity against Bacillus subtilis with MIC of 8 mmol mL−1 [104]. Besides, some
aconitine-type DAs such as vilmorine D, vilmorrianine A, and yunaconitine exhibit an-
tibacterial activity against S. aureus and B. subtilis [145].

Compound 50A in Figure 5b, obtained from the roots of Aconitum duclouxi, also
show antibacterial activity against B. subtilis with an MIC of 147.73 mmol L−1; moreover,
compounds 50A and 50B show antifungal activity against Candida albicans with MIC of
51.84 and 128 mg mL−1, respectively [146,147].

Additionally, aconicaramide, extracted from the lateral roots of A. carmichaelii, displays
equinoctial antibacterial activity against Macrococcus caseolyticus, Staphylococcus epidermidis,
and S. aureus (MIC 200, 400, and 800 mg mL−1, respectively) [84].

Oleracein E demonstrated antibacterial activity against S. aureus, M. caseolyticus, Kleb-
siella pneumonia, and Streptococcus pneumoniae (MIC: 50, 200, 200, and 200 mg mL−1, respec-
tively) [84].

Extensive laboratory experiments are helpful promoters for the preparation of new
antimicrobial formulations.

5.4. Antioxidant Activities

Diterpenoid alkaloids showed auspicious 1,1-diphenyl-2-picrylhydrazyl (DPPH)-like
scavenging activity. Aconitine-type C19-DAs could be suitable antioxidants because of
their ability for binding to metal ions [105]. Swatinine compounds (64 and 73 in Figure 6)
offered an effective DPPH radical scavenging ratio of 65.3% and 63.4%, respectively, at
1 µM, whereas butylated hydroxytoluene (standard antioxidant) inhibited to 92.1% at
the same concentration [55]. These results indicate that C19-DAs could also offer new
antioxidant agents, selecting substances with lower toxicity in this group.
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5.5. Cytotoxic Activity

Various ‘DAs’ anticancer activities have been widely studied from different parts of
Aconitum, Consolida, and Delphinium in the last decade [148]. The most effective natural DAs
with anticancer properties in Aconitum were C19-DAs and some derivatives of C20-DAs.
SAR analysis showed that DA activity increased in correspondence with simple structural
modification of these compounds, but their anticancer mechanisms need further studies.

Researchers examined many newly obtained DAs against the lung cancer cell lines,
A549. Compounds 59 in Figure 5b [144], 135 [96,97] and 137 [96] in Figure 15, and
160 [96] and 161 [101] in Figure 20 showed appreciable cytotoxicity toward the A549
with IC50 < 20 µM.

Other compounds (1, 3, 4, and 6 in Figure 1; 22 in Figure 5) were active against liver
cancer cell line HepG2 [105], and compound 144 in Figure 17 showed perfect activity
against HepG2 with IC50 of 3.65 µM [105]. In contrast, DA-59 (Figure 5b) [144] and
compound 161 (Figure 20) showed IC50 of 9.18 µM and 18.52 µM against liver cancer cell
line SMCC-7721 [101].

DA-153 (Figure 18) has a strong effect against human prostate carcinoma with IC50
of 3.1 µM [108,149]; furthermore, DA-112 (Figure 13) shows a significant action against
human breast adenocarcinoma MCF-7 cell line with IC50 3.16 µM [79].

Compounds 51 [150] and 59 [144] (Figure 5b), and 161 (Figure 20) [101,151], character-
ize an anticancer activity vs. leukaemia cell lines HL-60, and DAs 51–55 (Figure 5b) exerted
potent action against line K562 [150].

SAR of antitumor DAs indicates that the number and position of the hydroxyl and
ester groups in C19-DAs may play an essential role in cytotoxicity, especially substitutions
in C1, C3, C6, and C8 [50,53,92,105,144,148,152,153].

Three new bis-DAs derived from genus Aconitum (165–167 in Figure 21) present
remarkable cytotoxic activity in vitro against lung cancer A-549, colon cancer HCT-15, and
breast cancer MCF-7 cells; their IC50s were <28 µM [154].

6. Conclusions

Over the past decade, more than 300 DAs were discovered and extracted from plants,
particularly Aconitum, Delphinium, and Consolida genera.

Structurally, DAs derived from four isoprenyl ‘units’ condensation subdivide into
more than 45 classes based on their central structure arrangement and different substituent.
These compounds display a broad area of pleasant chemical properties and biological
activity, such as analgesic, anti-inflammatory, antimicrobial, cytotoxic activity, and toxic
effects. Their toxic effect is manifested in the nervous and cardiovascular systems, acting
as potent neurotoxins and cardiotoxins. The toxicity of C18-DAs and C19-DAs groups has
justified their development into new therapeutic drugs, except glycosidic DAs, which
have additional sugar moieties in their structures that facilitate their water solubility
unlike the other DA groups. This observation gives future hope to discovering new
chemical compounds with low toxicity and useful bio-activity in the aqueous extracts of
alkaloids with SAR similar to C19-DAs. The complex nature of the diterpenoid-alkaloids’
SAR suggests the need for an accurate knowledge of individual compound properties to
discover further safe and valuable applications of novel bioactive compounds.

The ‘researchers’ competition, turned to deeper study of C20-DAs after a SAR analysis,
displayed their chemical structure diversity and their little toxicity compared to C19-DAs.
In addition, their classification into seven groups with different SARs facilitates the search
for biologically active molecules and potential new drugs.

Many research efforts, oriented to studying the anti-inflammatory, analgesic, and
anticancer activity of DAs, highlighted that numerous C19-DAs and C20-DAs have notice-
able effectiveness. The C20-hetisine class showed the highest possibilities with the lowest
toxicity among the other DAs. For this reason, the hetisine compounds may be good
starters for developing novel anticancer drugs using alkaloids.
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