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Abstract. It has been showed that in characteristic zero the gener-

ators of the minimal supervarieties of finite basic rank belong to the

class of minimal superalgebras introduced by Giambruno and Zaicev in

2003. In the present paper the complete list of the minimal superva-

rieties generated by minimal superalgebras whose maximal semisimple

homogeneous subalgebra is sum of three graded simple algebras is pro-

vided. As a consequence, we negatively answer the question of whether

any minimal superalgebra generates a minimal supervariety.
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1. Introduction

Let F be a field of characteristic zero. An actual quantitative measure
of the polynomial identities satisfied by an associative F -algebra A is given
by the sequence of its codimensions {cn(A)}n≥1, whose n-th term is the
dimension of the space of multilinear polynomials in n variables in the cor-
responding relatively free algebra of countable rank. It was introduced by
Regev in the seminal paper [11], where it was proved that when A satisfies a
non-zero polynomial identity (in the sequel we shall refer to these algebras
as PI algebras) {cn(A)}n≥1 is exponentially bounded. Later a fundamental
contribution of Giambruno and Zaicev ([6] and [7]) has showed that

exp(A) := lim
m→+∞

m
√
cm(A)

exists and is a non-negative integer, which is called the exponent of A.
This provides an integral scale allowing to measure the growth of any

variety and in a natural manner has addressed the research towards a clas-
sification of varieties according to the asymptotic behaviour of their codi-
mensions. Along this direction, among varieties of some fixed exponent a
prominent role is played by the minimal ones, namely those varieties of ex-
ponent d such that every proper subvariety has exponent strictly less than
d. In [8] it has been proved that a variety of exponential growth is minimal
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second named author was partially supported by CNPq - Brasil grant 305339/2013-3 and

“Para mulheres na Ciência” (L’ORÉAL-ABC-UNESCO).



if, and only if, it is generated by the Grassmann envelope of a so called
minimal superalgebra.

More in general, superalgebras are a key ingredient in the structure the-
ory of PI algebras, as shown by Kemer in the solution of the Specht Problem
([10]). From his work also the relevance of their graded polynomial identities
appears clear and this has deeply motivated their study. The point of view
we are going to explore here consists into asking information about the set
of graded identities of a F -algebra A endowed with a Z2-grading, which we
denote by TZ2(A). From an algebraic point of view, it is a TZ2-ideal of the
free F -superalgebra F 〈Y ∪ Z〉, namely a two-sided ideal of F 〈Y ∪ Z〉 in-
variant under every graded endomorphism, which is completely determined
by multilinear polynomials it contains (as we are working in characteristic
zero). In particular, extending into this setting the approach of Regev, we
are interested to the graded codimensions {cZ2

n (A)}n≥1 of A, whose n-th
term is defined as the dimension of the space of multilinear Z2-graded poly-
nomials in n variables in the corresponding relatively free Z2-graded algebra
of countable rank.

In [5] it was proved that this sequence is exponentially bounded if, and
only if, A is a PI algebra. Under the extra assumption that A is also finitely
generated, in [1] the authors stated that

expZ2
(A) := lim

m→+∞
m

√
cZ2
m (A)

exists and is a non-negative integer, which is called the Z2-graded exponent
or superexponent of A.

By virtue of this result, as in the ordinary case, it becomes natural and
interesting to investigate minimal varieties of PI associative superalgebras
(or supervarieties) of finite basic rank (that is, generated by a finitely gener-
ated superalgebra satisfying an ordinary polynomial identity) of fixed graded
exponent. The starting point for the problem we are going to focus in the
present paper on is the following statement in which minimal superalgebras
come again into the picture.

Theorem 1.1 (Proposition 3.2 of [4]). Let Vsup be a supervariety of finite
basic rank. If Vsup is minimal of superexponent d ≥ 2, then Vsup is generated
by a suitable minimal superalgebra.

According to it, the complete characterization of minimal supervarieties
of finite basic rank of exponential growth is reduced to decide whether any
minimal superalgebra generates a minimal supervariety. This problem is
still open and its possible solution seems to be more involved than that
of the ungraded case. In more detail, a minimal superalgebra A is finite-
dimensional and defined on an algebraically closed field. Hence, by the
generalization of the Wedderburn-Malcev Theorem we can write A = Ass +
J(A), where Ass is a maximal semisimple subalgebra of A homogeneous in
the Z2-grading and J(A) is its Jacobson radical (which is homogeneous as
well). Also Ass can be written as the direct sum of graded simple algebras
which can be of two types: either simple or non-simple as algebras. It
has been proved that in the case in which the sequence of the graded simple
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components of Ass has in some sense a regular distribution, the supervariety
generated by A is minimal (Theorems 4.7 and 5.4 of [4] and 3.6 of [3]).

In spite of this positive result, in the present article we provide a fam-
ily of minimal superalgebras not generating minimal supervarieties. This is
done by characterizing all minimal supervarieties generated by minimal su-
peralgebras whose maximal semisimple homogeneous subalgebra has three
graded simple summands.

2. Preliminaries and Announcement of the Main Results

Throughout the rest of the paper, unless otherwise stated, F is a field of
characteristic zero and all the algebras are assumed to be associative and to
have the same ground field F . For any pair of positive integers s and t the
symbol Ms×t means the space of all rectangular matrices with s rows and t
columns over F and set Ms := Ms×s; whereas, if m1, . . . ,mn is a sequence of
positive integers, let UT (m1, . . . ,mn) be the upper block triangular matrix
algebra of size m1, . . . ,mn. Finally, if F 〈X〉 is the free associative algebra
on a countable set X := {x1, x2, . . .} over F , for any positive integer q the
Standard polynomial in q variables Stq(x1, . . . , xq) is the element of F 〈X〉
defined as ∑

σ∈Sq

sgn(σ)xσ(1)xσ(2) · · ·xσ(q).

An algebra A is a Z2-graded algebra or a superalgebra if it has a vec-
tor space decomposition A = A(0) ⊕ A(1) such that A(i)A(j) ⊆ A(i+j). The
elements of A(0) are called homogeneous of degree 0 and those of A(1) homo-
geneous of degree 1. An element w of A is homogeneous if it is homogeneous
of degree 0 or 1 (and denote its degree by |w|), whereas a subalgebra or an

ideal V ⊆ A is homogeneous if V = (V ∩A(0))⊕(V ∩A(1)). The superalgebra
A is called simple (or Z2-simple) if the multiplication is non-trivial and it
has no non-trivial homogeneous ideals. In this case, we shall also refer to A
as a graded simple algebra.

Let F 〈Y ∪ Z〉 be the free associative algebra on the disjoint countable
sets of variables Y := {y1, y2, . . .} and Z := {z1, z2, . . .}. It has a natural
superalgebra structure if we require that the variables from Y have degree 0
and those from Z have degree 1. The superalgebra F 〈Y ∪Z〉 is said to be the
free superalgebra over F . An element f(y1, . . . , ym, z1, . . . , zn) of F 〈Y ∪ Z〉
is a Z2-graded polynomial identity for a superalgebra A = A(0) ⊕ A(1) if
f(a1, . . . , am, b1, . . . , bn) = 0A for every a1, . . . , am ∈ A(0) and b1, . . . , bn ∈
A(1). Given a TZ2-ideal I of F 〈Y ∪ Z〉, the variety of superalgebras or su-
pervariety Vsup associated to I is the class of all F -superalgebras whose
TZ2-ideals of graded polynomial identities contain I. The TZ2-ideal I is
denoted by TZ2(Vsup). The supervariety Vsup is generated by the superal-
gebra A if TZ2(Vsup) = TZ2(A), and in this case we write Vsup = supvar(A).

Furthermore, set expZ2
(Vsup) := expZ2

(A) = limm→+∞
m

√
cZ2
m (A), the su-

perexponent of the supervariety Vsup (we recall that the m-th Z2-graded

codimension cZ2
m (A) of A is the dimension of the vector space P sup

m

P sup
m ∩TZ2 (A)

,
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where P supm is the space of multilinear polynomials of degree m of F 〈Y ∪Z〉
in the variables y1, . . . , ym, z1, . . . , zm).

Assume that A is a finite-dimensional superalgebra and let A = Ass +
J(A) be its Wedderburn-Malcev decomposition. Furthermore the maximal
semisimple homogeneous subalgebra Ass of A can be written as the direct
sum of graded simple algebras whose structure is well known, at least when
the ground field is algebraically closed. In fact, they are one of the following
types:

(a) Mk,l :=

(
A B
C D

)
, where k ≥ l ≥ 0, k 6= 0, A ∈ Mk, D ∈ Ml, B ∈

Mk×l and C ∈Ml×k, endowed with the grading M
(0)
k,l :=

(
A 0
0 D

)
and M

(1)
k,l :=

(
0 B
C 0

)
;

(b) Mm(F ⊕ tF ), where t2 = 1F , with grading (Mm, tMm).

Giambruno and Zaicev in [8] introduced the definition of minimal super-
algebra.

Definition 2.1. Let F be an algebraically closed field. A superalgebra A is
called minimal if it is finite-dimensional and A = Ass + J(A) where

(i) Ass = A1 ⊕ · · · ⊕An with A1, . . . , An graded simple algebras;
(ii) there exist homogeneous elements w12, . . . , wn−1,n ∈ J(A) and min-

imal homogeneous idempotents e1 ∈ A1, . . . , en ∈ An such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1 1 ≤ i ≤ n− 1

and

w12w23 · · ·wn−1,n 6= 0A;

(iii) w12, . . . , wn−1,n generate J(A) as a two-sided ideal of A.

In Lemma 3.5 of [8] it was shown that the minimal superalgebra A =
Ass + J(A) has the following vector space decomposition

(1) A =
⊕

1≤i≤j≤n
Aij ,

where A11 := A1, . . . , Ann := An and, for all i < j,

Aij := Aiwi,i+1Ai+1 · · ·Aj−1wj−1,jAj .

Moreover J(A) = ⊕i<jAij and AijAkl = δjkAil, where δjk is the Kronecker
delta. Finally, as stressed in Chapter 8 of [9], the order of the components
A1, . . . , An of Ass is important. For this reason, in the sequel we shall
tacitly agree that if Ass = A1 ⊕ · · · ⊕An, then A1J(A)A2J(A) · · ·An 6= 0A.
According to the main result of [1], expZ2

(A) = dimF (Ass).
The aim of the paper is to contribute to the classification of minimal

supervarieties of fixed graded exponent. We recall the definition.

Definition 2.2. A variety Vsup of PI associative superalgebras is said to
be minimal of superexponent d if expZ2

(Vsup) = d and expZ2
(Usup) < d for

every proper subvariety Usup of Vsup.
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As observed in the Introduction, in the case of finite basic rank the ques-
tion which remains still open is to characterize those minimal superalgebras
generating minimal supervarieties. Along this direction the main contribu-
tion can be summarized in the following

Theorem 2.3 (3.6 of [3]). Let A = Ass + J(A) be a minimal superalgebra.
If Ass = A1 ⊕ · · · ⊕ An and there exists 1 ≤ h ≤ n such that A1, . . . , Ah
are non-simple graded simple and Ah+1, . . . , An are simple graded simple
algebras (or conversely), then the supervariety generated by A is minimal of
superexponent dimF (A1 ⊕ · · · ⊕An).

According to it, the possible smallest number of graded simple summands
of the maximal semisimple homogeneous subalgebra of a minimal superal-
gebra A such that supvar(A) is not minimal is n = 3 (for the sake of com-
pletness, we recall that the cases n = 1 and n = 2 were originally settled
in Corollary 3.5 and Theorem 5.4 of [4], respectively). For this reason it
becomes interesting to investigate what happens when Ass = A1⊕A2⊕A3.
Obviously, by virtue of Theorem 2.3, for our aims nothing is to do when ei-
ther A2 and at least one between A1 and A3 are both simple graded simple
or they are both non-simple graded simple. Hence the unique situations we
remain to deal with are when:

• A1 and A3 are non-simple graded simple and A2 is simple graded
simple;
• A1 and A3 are simple graded simple and A2 is non-simple graded

simple.

We shall show that in all these cases A generates a minimal supervariety
unless in the latter one. Indeed, the main result we prove, which is the core
of the present paper and the starting point for further developments, shows
that in such an event if the subspace A13 appearing in the decomposition (1),
which is a non-zero (A1, A3)-bimodule, is not irreducible, then supvar(A) is
not minimal except for one case, namely

Theorem 2.4. Let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕A2 ⊕A3 with

A1 = Mk,l, A2 = Mm(F ⊕ tF ) and A3 = Mr,s.

If A13 is not irreducible as a (A1, A3)-bimodule, then A generates a minimal
supervariety (of superexponent dimF (A1 ⊕ A2 ⊕ A3)) if, and only if, either
k = l or r = s.

3. The case in which A1 and A3 are non-simple graded simple

Assume throughout this Section that A1 = Mm(F ⊕ tF ), A2 = Mk,l and
A3 = Mr(F ⊕ sF ) (where t2 = s2 = 1F ). We aim to show that any minimal
superalgebra whose maximal semisimple homogeneous subalgebra coincides
with A1 ⊕ A2 ⊕ A3 generates a minimal supervariety. To this end we need
to investigate in more details the structure of such a superalgebra: this is
done via the language of actions of automorphisms. In fact, it is well known
that any superalgebra A can be viewed as an algebra with action of an
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automorphism φ of A of order at most 2. Indeed, the homomorphism φ of
A = A(0) ⊕ A(1) defined by φ(a0) := a0 and φ(a1) := −a1 for any a0 ∈ A(0)

and a1 ∈ A(1) is an automorphism of A of order at most 2. Conversely, if
A is an algebra with an automorphism φ of order at most 2, then, setting
A(0) := {a| a ∈ A, φ(a) = a} and A(1) := {a| a ∈ A, φ(a) = −a}, A is a

superalgebra with grading (A(0), A(1)).
Let A = Ass + J(A) be a minimal superalgebra such that Ass = A1 ⊕

A2 ⊕ A3. By regarding A as a φ-algebra, for i ∈ {1, 3} we can write Ai
as Ai = Ii ⊕ φ(Ii), where Ii is a minimal two-sided ideal of Ai, and the
corresponding homogeneous idempotents (of degree zero) ei appearing in
the Definition 2.1 as ei = ρi + φ(ρi) with ρi a non-homogeneous minimal
idempotent of Ii. For simplicity, set ρ̄i := φ(ρi) and Īi := φ(Ii).

Let us consider the element w13 := w12w23 and the subspace A13 of the
decomposition (1). As for the homogeneous radical elements wj,j+1 defining
A the equality

ejwj,j+1ej+1 = ejwj,j+1 = wj,j+1ej+1 = wj,j+1

is satisfied, one has that

w13 = (ρ1 + ρ̄1)w12w23(ρ3 + ρ̄3)

= ρ1w12w23ρ3 + ρ̄1w12w23ρ̄3 + ρ̄1w12w23ρ3 + ρ1w12w23ρ̄3

and

A13 = A1w12A2w23A3 = A1w12e2A2e2w23A3 = A1w12w23A3.

Thus

A13 =I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3⊕
I1ρ1w12w23ρ̄3Ī3 ⊕ Ī1ρ̄1w12w23ρ3I3.

As by the definition of minimal superalgebra w13 6= 0A, we deduce that
at least one of the homogeneous summands ρ1w12w23ρ3 + ρ̄1w12w23ρ̄3 and
ρ̄1w12w23ρ3 + ρ1w12w23ρ̄3 of w13 is non-zero. Suppose that just one of those
is non-zero. In such an event we shall say also in the sequel that A13 is
direct sum of two terms. In particular, if ρ1w12w23ρ3 + ρ̄1w12w23ρ̄3 6= 0A,
then

A13 = I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3,

otherwise

A13 = I1ρ1w12w23ρ̄3Ī3 ⊕ Ī1ρ̄1w12w23ρ3I3.

Set I3 := I3 and ε3 := ρ3 if the first case occurs and I3 := Ī3 and ε3 := ρ̄3

otherwise; moreover, put I1 := I1 and ε1 := ρ1 (and, as before, ε̄i := φ(εi)
and Īi := φ(Ii) for i ∈ {1, 3}), in any event we can write

A13 = I1ε1w12w23ε3I3 ⊕ Ī1ε̄1w12w23ε̄3Ī3.

Furthermore let us define

v12 :=

{
ε1w12 + ε̄1w12 if |w12| = 0;
ε1w12 − ε̄1w12 otherwise
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and

v23 :=

{
w23ε3 + w23ε̄3 if |w23| = 0;
w23ε3 − w23ε̄3 otherwise.

It is straightforward to check that the subalgebra ofA generated byA1, A2, A3

and the homogeneous elements v12 and v23 is a minimal superalgebra co-
inciding with A. Hence we can always assume that the radical elements
generating J(A) are of degree 0.

Claim. There exists one isomorphism-type for a minimal superalgebra A =
(A1 ⊕A2 ⊕A3) + J(A) such that A13 is direct sum of two non-zero terms.

In fact, take another minimal superalgebra B = Bss + J(B) such that
Bss = B1⊕B2⊕B3 with Bj = Aj for every 1 ≤ j ≤ 3 and B13 is the direct
sum of two summands. Let us call z12 and z23 the homogeneous radical
elements defining B (which we can suppose of degree zero) and let fj ∈ Bj
be the minimal idempotents appearing in the Definition 2.1. Using the same
above arguments one has that

B13 = J1ν1z12z23ν3J3 ⊕ J̄1ν̄1z12z23ν̄3J̄3,

where, for i ∈ {1, 3}, Bi = Ji ⊕ J̄i, with Ji a minimal two-sided ideal
of Bi, and νi is the non-homogeneous minimal idempotent of Ji such that
fi = νi + ν̄i (here we are regarding B as an algebra with action of an
automorphism of order 2, we call φB to distinguish it from that of A, and
set J̄i := φB(Ji) and ν̄i := φB(νi)).

For 1 ≤ j ≤ 3, let us consider the superalgebras isomorphisms

Ψjj : Aj −→ Bj

such that Ψjj(εj) = νj (and hence Ψjj(ε̄j) = ν̄j) if j 6= 2 and Ψ22(e2) = f2.
Since I1ε1 ⊗ e2A2 is irreducible as a (I1, A2)-bimodule, the map

η : I1ε1 ⊗ e2A2 −→ I1ε1v12e2A2, a1ε1 ⊗ e2a2 7−→ a1ε1v12e2a2

is a bimodules isomorphism. In analogous manner we define an isomorphism
from J1ν1 ⊗ f2B2 into J1ν1z12f2B2. On the other hand the action of the
maps Ψ11 and Ψ22 on I1e1 and e2A2 respectively induces an isomorphism
from I1ε1⊗ e2A2 into J1ν1⊗ f2B2. The final outcome of these deduction is
that there exists a vector spaces isomorphism

ψ12 : I1ε1v12e2A2 −→ J1ν1z12f2B2, a1ε1v12e2a2 7−→ Ψ11(a1)ν1z12f2Ψ22(b2).

Now, as
A12 = I1ε1v12e2A2 ⊕ Ī1ε̄1v12e2A2

and
B12 = J1ν1z12f2B2 ⊕ J̄1ν̄1z12f2B2,

the map

Ψ12 : A12 −→ B12, h+ k 7−→ ψ12(h) + ψ12(k̄)

(where, obviously, h ∈ I1ε1v12e2A2, k ∈ Ī1ε̄1v12e2A2 and ψ12(k̄) := φB(ψ12(φ(k))))
is a vector spaces isomorphism preserving the Z2-gradings.

The same argument yields that the map

ψ23 : A2e2v23ε3I3 −→ B2f2z23ν3J3, a2e2v23ε3a3 7−→ Ψ22(a2)f2z23ν3Ψ33(a3)
7



induces a vector spaces isomorphism preserving the Z2-gradings, let us call
Ψ23, from A23 = A2e2v23ε3I3 ⊕ A2e2v23ε̄3Ī3 into B23 = B2f2z23ν3J3 ⊕
B2f2z23ν̄3J̄3.

Finally, the same conclusion holds for

Ψ13 : A13 −→ B13,

a1ε1v12v23ε3a3+a′1ε̄1v12v23ε̄3a
′
3 7−→ Ψ11(a1)ν1z12z23ν3Ψ33(a3)+Ψ11(a′1)ν̄1z12z23ν̄3Ψ33(a′3).

But A = ⊕1≤i≤j≤3Aij and B = ⊕1≤i≤j≤3Bij , hence, gluing the maps
Ψij , we have actually constructed a vector spaces isomorphism from A into
B preserving the Z2-gradings, which is easily seen to be a superalgebras
isomorphism.

If we drop the assumption on the decomposition of A13 we are able to
show that non-isomorphic minimal superalgebras with the same semisimple
part satisfy the same Z2-graded polynomial identities.

Theorem 3.1. Let A1 = Mm(F ⊕ tF ), A2 = Mk,l and A3 = Mr(F ⊕ sF )
(where t2 = s2 = 1F ). Any minimal superalgebra whose maximal semisimple
homogeneous subalgebra coincides with A1⊕A2⊕A3 has the same TZ2-ideal
of graded polynomial identities.

Proof. Let A = Ass + J(A) be a minimal superalgebra such that Ass =
A1⊕A2⊕A3 and A13 is sum of four distinct terms, namely (using the same
above notations)

A13 =I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3⊕
I1ρ1w12w23ρ̄3Ī3 ⊕ Ī1ρ̄1w12w23ρ3I3.

Set H := I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3, which is a two-sided ho-
mogeneous ideal of A, let us consider the superalgebra A′ := A/H. We
observe that its maximal semisimple subalgebra A′ss coincides with Ass and,
as H ⊆ J(A), its Jacobson radical J(A′) is equal to J(A)/H. As a con-
sequence, the homogeneous elements w12 + H and w23 + H of A′ generate
J(A′). Furthermore

(w12 +H) · (w23 +H) = w12w23 +H 6= 0A′

otherwise also I1ρ1w12w23ρ̄3Ī3⊕ Ī1ρ̄1w12w23ρ3I3 should be in H, which con-
tradicts the original assumption on A13. Therefore we conclude that A′ is
a minimal superalgebra such that A′13 = A13/H is direct sum of two sum-
mands.

Now, take the homogeneous two-sided ideal K := I1ρ1w12w23ρ̄3Ī3 ⊕
Ī1ρ̄1w12w23ρ3I3 of A. Proceeding in the same way, we obtain that A′′ :=
A/K is a minimal superalgebra such that A′′ss = Ass and A′′13 is the direct
sum of two non-zero terms. Thus, according to the claim, A′ is isomorphic
to A′′.

Looking at the identities satisfied by these superalgebras, it is easily seen
that

(2) TZ2(A) ⊆ TZ2(A′) = TZ2(A′′).
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On the other hand, let f ∈ F 〈Y ∪Z〉 be a graded polynomial identity for
A′. Since TZ2(A′) = TZ2(A′′), for any graded evaluation µ : F 〈Y ∪Z〉 −→ A
one has that

µ(f) ∈ H ∩K = 0A.

Therefore f is a graded polynomial identity for A. Hence TZ2(A′) ⊆ TZ2(A)
and, by virtue of (2), the equality holds. �

Easy consequence of the above result is the following

Theorem 3.2. Let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕A2 ⊕A3 with

A1 = Mm(F ⊕ tF ), A2 = Mk,l and Mr(F ⊕ sF ).

Then A generates a minimal supervariety of superexponent dimF (A1⊕A2⊕
A3).

Proof. Set Vsup := supvar(A) and let us consider a subvariety Usup ⊆ Vsup
such that expZ2

(Vsup) = expZ2
(Usup). Since Vsup satisfies some Capelli

identities, Usup has finite basic rank (see Theorem 11.4.3 of [9]). Hence, by
a result of Kemer, Usup is generated by a finite-dimensional superalgebra
B̃. According to Lemma 8.1.4 of [9], there exists a minimal superalgebra B

such that TZ2(B̃) ⊆ TZ2(B) and expZ2
(B̃) = expZ2

(B). Therefore TZ2(A) ⊆
TZ2(B) and expZ2

(A) = expZ2
(B) as well. Furthermore from Lemma 3.3 of

[4] we know that Bss = A1 ⊕A2 ⊕A3.
At this point, Theorem 3.1 yields that TZ2(A) = TZ2(B), and this con-

cludes the proof. �

4. The case in which A1 and A3 are simple graded simple

Throughout this Section let A1 = Mk,l, A2 = Mm(F⊕tF ) and A3 = Mr,s

and consider a minimal superalgebra A such that Ass = A1 ⊕ A2 ⊕ A3 (for
the elements defining A we use the notations of Definition 2.1). As before,
regarding A as a φ-algebra, write A2 = I2⊕φ(I2), where I2 is a minimal two-
sided ideal of A2, and its corresponding homogeneous idempotents (of degree
zero) e2 as ρ2 +φ(ρ2) with ρ2 a non-homogeneous minimal idempotent of I2.
For simplicity, set ρ̄2 := φ(ρ2) and Ī2 := φ(I2). Using the usual arguments,
one has that

A13 = A1w12ρ2w23A3 +A1w12ρ̄2w23A3

is a (A1, A3)-bimodule such that each of its summands is an irreducible
(A1, A3)-bimodule.

We make a preliminary observation.

Remark. If the elements w12ρ2w23 and w12ρ̄2w23 are linearly dependent,
then they coincide.

Proof. Assume that there exist α, β ∈ F \ {0F } such that

αw12ρ2w23 + βw12ρ̄2w23 = 0A.

Consequently

(−1)|w12|+|w23|(αw12ρ̄2w23 + βw12ρ2w23) = 0A
9



as well. The combination of the above equalities yields{
αw12ρ2w23 + βw12ρ̄2w23 = 0A;
βw12ρ2w23 + αw12ρ̄2w23 = 0A.

Now, if α2 − β2 6= 0F then w12ρ2w23 = w12ρ̄2w23 = 0A, and hence

w12w23 = w12e2w23 = w12(ρ2 + ρ̄2)w23 = 0A,

which is not allowed since, according to Definition 2.1, that element is non-
zero. Thus suppose that α2 = β2. If α = β one has again that w12w23 = 0A,
which is not allowed. Therefore it must be α = −β, and this implies that
w12ρ2w23 = w12ρ̄2w23. �

Assume now that A13 is irreducible as a (A1, A3)-bimodule. Then

A13 = A1w12ρ2w23A3 = A1w12ρ̄2w23A3.

This means that there exist an integer k and, for every 1 ≤ i ≤ k, elements

ai ∈ A1 and bi ∈ A3 such that w12ρ̄2w23 =
∑k

i=1 aiw12ρ2w23bi. It follows
that

w12ρ̄2w23 = e1w12ρ̄2w23e3 =
k∑
i=1

e1aiw12ρ2w23bie3 =
k∑
i=1

e1aie1w12ρ2w23e3bie3

=

k∑
i=1

αie1w12ρ2w23βie3 = γw12ρ2w23,

since e1aie1 = αie1 and e3bie3 = βie3 for suitable αi, βi ∈ F and γ :=∑k
i=1 αiβi is in F \ {0F }. By the above remark, we conclude that

(3) w12ρ2w23 = w12ρ̄2w23

and it is a homogeneous element of degree |w12|+ |w23|.
Before of proceeding, we construct two examples of minimal superalge-

bras belonging to the class we are considering. To this end, we recall that a
Z2-grading on the complete matrix algebra Mn is called elementary if there
exists a n-tuple (g1, . . . , gn) ∈ Zn2 such that the matrix units Eij of Mn are

homogeneous and Eij ∈ M (τ)
n if, and only if, τ = gj − gi. In an equivalent

manner, we can say that it is defined a map | | : {1, . . . , n} −→ Z2 inducing
a grading on Mn by setting the degree of Eij equal to |j|−|i|. Obviously the
algebra of upper block triangular matrices also admits elementary gradings.
In fact, the embedding of such an algebra into a full matrix algebra with an
elementary grading makes it a homogeneous subalgebra.

Now, let us consider the subalgebra of UT (k + l, 2m, r + s) consisting of
matrices of the form 

C J1 J2 J3

0 D E J4

0 E D J5

0 0 0 H

 ,

where C ∈ Mk+l, D,E ∈ Mm, H ∈ Mr+s, J1, J2 ∈ M(k+l)×m, J3 ∈
M(k+l)×(r+s), J4, J5 ∈ Mm×(r+s). We endowe it with two gradings induced

10



by the (k+l+2m+r+s)-tuples (0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

, 0, . . . , 0︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
r times

, 1, . . . , 1︸ ︷︷ ︸
s times

)

and (0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

, 0, . . . , 0︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
s times

). Let us denote these

superalgebras by (Â, | |Â) and (B̂, | |B̂) (and their matrix units by E
(Â)
ij and

E
(B̂)
ij ) respectively. It is easily seen that the maximal semisimple homoge-

neous subalgebra of Â is equal to Â1 ⊕ Â2 ⊕ Â3 where

Â1 := 〈E(Â)
ij | 1 ≤ i, j ≤ k + l〉 ∼= Mk,l,

Â2 := 〈E(Â)
ij + E

(Â)
i+m,j+m, E

(Â)
pq + E

(Â)
p+m,q−m | k + l + 1 ≤ i, j, p ≤ k + l +m,

k + l +m+ 1 ≤ q ≤ k + l + 2m〉 ∼= Mm(F ⊕ tF ),

Â3 := 〈E(Â)
ij | k + l + 2m+ 1 ≤ i, j ≤ k + l + 2m+ r + s〉 ∼= Mr,s

and its Jacobson radical is generated as a two-sided ideal by the homoge-

neous elements of degree zero w
(Â)
12 := E

(Â)
1,k+l+1 and w

(Â)
23 := E

(Â)
k+l+1,k+l+2m+1.

Finally, since for w
(Â)
12 and w

(Â)
23 and the homogeneous (minimal) idempo-

tents e
(Â)
1 := E

(Â)
11 ∈ Â1, e

(Â)
2 := E

(Â)
k+l+1,k+l+1 + E

(Â)
k+l+m+1,k+l+m+1 ∈ Â2

and e
(Â)
3 := E

(Â)
k+l+2m+1,k+l+2m+1 ∈ Â3 the relations appearing in Definition

2.1 are satisfied, we have that Â is a minimal superalgebra. Moreover the
subspace Â13 is irreducible as a (Â1, Â3)-bimodule.

The same conclusion holds for the superalgebra B̂, which has semisimple
part B̂ss = B̂1⊕B̂2⊕B̂3 coinciding with that of Â (for the elements defining

B̂ it is sufficient to replace the supscpript (Â) with (B̂) and observe that, in

this case, w
(B̂)
23 is homogeneous of degree 1).

Lemma 4.1. If k > l and r > s, for the minimal superalgebras (Â, | |Â)

and (B̂, | |B̂) one has that TZ2(Â) 6⊆ TZ2(B̂) and TZ2(Â) 6⊆ TZ2(B̂). Conse-

quently, Â and B̂ are not isomorphic as graded algebras.

Proof. As a first step, we prove that TZ2(Â) 6⊆ TZ2(B̂). To this end, let
us consider the element of F 〈Y ∪ Z〉
(4)
f := St2(m+k)−1(y1, . . . , y2(m+k)−1)z1 St2(m+r)−1(y2(m+k), . . . , y2(2m+k+r−1))

and observe that any non-zero graded evaluation of the Standard polynomi-
als St2(m+k)−1(y1, . . . , y2(m+k)−1) and St2(m+r)−1(y2(m+k)+1, . . . , y2(2m+k+r)−1)

in Â is in J(Â) ⊕ Â3 and Â1 ⊕ J(Â), respectively. Therefore any non-

zero graded evaluation of f in Â is in J(Â)2. In particular, it has to be

a linear combination of the matrix units E
(Â)
ij with either 1 ≤ i ≤ k and

k + l + 2m + r + 1 ≤ j ≤ k + l + 2m + r + s or k + 1 ≤ i ≤ k + l and
k + l + 2m+ 1 ≤ j ≤ k + l + 2m+ r. Now, take the polynomial

(5) g := St2l(ŷ1, . . . , ŷ2l)f St2s(ŷ2l+1, . . . , ŷ2(s+l)),
11



where ŷ1, . . . , ŷ2(s+l) are pairwise different variables of degree zero of F 〈Y ∪
Z〉 not involved in f . Let µ : F 〈Y ∪ Z〉 −→ Â be a non-zero graded

evaluation of g in Â. Since g is multilinear, for our aims we can assume
that such an evaluation is made at a homogeneous basis of Â including

the matrix units E
(Â)
ij of Â1 and Â3. According to the above discussion,

µ(St2l(ŷ1, . . . , ŷ2l)) must be in Â1 and µ(St2s(ŷ2l+1, . . . , ŷ2(s+l))) must be in

Â3. Taking in account the homogeneous degree of these factors and the
original assumption that k > l and r > s, the Amitsur-Levitzki Theorem

yields that µ(St2l(ŷ1, . . . , ŷ2l)) is linear combination of the matrices E
(Â)
αβ

and µ(St2s(ŷ2l+1, . . . , ŷ2(s+l))) of the matrices E
(Â)
pq , where 1 ≤ α, β ≤ k

and k + l + 2m + 1 ≤ p, q ≤ k + l + 2m + r. This fact combined with the
previous observations on the graded evaluations of the polynomial f allows
to conclude that g is an element of TZ2(Â).

Finally, as (B̂1⊕B̂12⊕B̂2)(0) contains a subalgebra isomorphic to UT (k,m),
for every 1 ≤ i ≤ k and k+ l+1 ≤ j ≤ k+ l+m there exists a graded evalu-

ation of St2(m+k)−1(y1, . . . , y2(m+k)−1) in B̂ equal to E
(B̂)
ij . Analogously, for

every k+l+m+1 ≤ p ≤ k+l+2m and k+l+2m+1 ≤ q ≤ k+l+2m+r there is

an evaluation of St2(m+r)−1(y2(m+k), . . . , y2(2m+k+r−1)) equal to E
(B̂)
pq . Thus,

fixed integers i, j, p, q as above with the extra assumption that i > 1 if k > 1
and q < k+l+2m+r if r > 1, since that in any case we can find an evaluation

of St2l(ŷ1, . . . , ŷ2l) equal to E
(B̂)
1i and one of St2s(ŷ2l+1, . . . , ŷ2(s+l)) equal to

E
(B̂)
q,k+l+2m+r, evaluating the variable z1 at E

(B̂)
jp + E

(B̂)
j+m,p−m we have found

a graded evaluation of the polynomial g in B̂ equal to E
(B̂)
1,k+l+2m+r . There-

fore g is not a graded polynomial identity for B̂, and the desired conclusion
holds.

On the other hand, the same arguments used above allow to conclude
that the polynomial

Γ := St2l(ŷ1, . . . , ŷ2l)δ St2s(ŷ2l+1, . . . , ŷ2(s+l)),

where

δ := St2(m+k)−1(y1, . . . , y2(m+k)−1)y2(m+k) St2(m+r)−1(y2(m+k)+1, . . . , y2(2m+k+r)−1)

and ŷ1, . . . , ŷ2(s+l) are pairwise different elements of degree zero of F 〈Y ∪Z〉
not involved in δ, is in TZ2(B̂) \ TZ2(Â), and this completes the proof. �

We prove now that the graded algebras Â and B̂ are, up to isomorphisms,
the unique elements of the class of minimal superalgebras we are dealing
with (we continue to use the notations introduced at the beginning of the
Section).

Lemma 4.2. For a minimal superalgebra A = (A1 ⊕A2 ⊕A3) + J(A) such
that k > l, r > s and A13 is irreducible as a (A1, A3)-bimodule there exist
two isomorphism-types (according to |w12|+ |w23| (mod 2)).
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Proof. Let us consider the elements

u12 := w12ρ2 − w12ρ̄2 and u23 := ρ2w23 − ρ̄2w23

of A. When |w12| = |w23| = 1, both of them are of degree 0 and, from the
fact that u12u23 = w12w23 6= 0A, it is easily seen that the subalgebra of
A generated by A1, A2 and A3 and u12 and u23 is a minimal superalgebra
coinciding with A. In the same manner, if |w12| = 1 and |w23| = 0, u12 has
degree 0, whereas u23 has degree 1. In this case if we replace the elements
w12 and w23 with u12 and u23 respectively, we also obtain the superalgebra
A. Therefore we conclude that it is always possible to assume that |w12| = 0,
and hence we are left with two possibilities (according to |w23|).

At this point, take a minimal superalgebra B with maximal semisimple
homogeneous subalgebra Bss = B1⊕B2⊕B3 coinciding with Ass and homo-
geneous radical elements z12 (which, as w12, we can assume of degree zero)
and z23 such that |z23| = |w23| and B13 is irreducible as a (B1, B3)-bimodule.
We aim to show that A and B are isomorphic as graded algebras. Now, for
every 1 ≤ j ≤ 3, call fj the minimal idempotents (of degree zero) of Bj
and write f2 as f2 = ν2 + ν̄2, where ν2 is the the non-homogeneous minimal
idempotent of the minimal two-sided ideal J2 of B2 such that B2 = J2⊕J̄2

(we are regarding B as an algebra with action of an automorphism φB of
order 2 and setting J̄2 := φB(J2) and ν̄2 := φB(ν2)). Let us consider the
superalgebras isomorphisms

Ψjj : Aj −→ Bj

such that Ψjj(ej) = fj if j 6= 2 and Ψ22(ρ2) = ν2 (and hence Ψ22(ρ̄2) = ν̄2).
Applying the same arguments of the previous Section, for every 1 ≤ i < j ≤
3 one constructs a vector space isomorphism Ψij from the subspace Aij of
A into the subspace Bij of B, which clearly preserves the Z2-grading when
(i, j) 6= (1, 3). For what concerns the latter case, for the map

Ψ13 : A1w12ρ2w23A3 −→ B1z12ν2z23B3, a1w12ρ2w23a3 7−→ Ψ11(a1)z12ν2z23Ψ33(a3)

invoking (3) one has that

Ψ13(φ(w12ρ2w23)) = Ψ13((−1)|w23|w12ρ̄2w23) = Ψ13((−1)|w23|w12ρ2w23)

= (−1)|z23|z12ν2z23 = (−1)|z23|z12ν̄2z23

= φB(z12ν2z23) = φB(Ψ13(w12ρ2w23)),

from which it follows that the Z2-grading is still preserved.
Since A = ⊕1≤i≤j≤3Aij and B = ⊕1≤i≤j≤3Bij , these maps induce a

vector space isomorphism from A into B, which is easily verified (the details
are left to the reader) to actually be a superalgebras isomorphism.

Therefore we are left with at most two isomorphism-types for the super-
algebras we are considering. From the fact that the previously constructed
minimal non-isomorphic superalgebras, Â and B̂, satisfy all the assumptions
of the Lemma, the desired conclusion follows. �

We are now in a position to state the first main result of this Section.
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Theorem 4.3. Let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕A2 ⊕A3 with

A1 = Mk,l, A2 = Mm(F ⊕ tF ) and A3 = Mr,s.

If A13 is irreducible as a (A1, A3)-bimodule, then A generates a minimal
supervariety of superexponent dimF (A1 ⊕A2 ⊕A3).

Proof. Using verbatim the same arguments of the proof of Theorem 3.2,
we reduce to considering a minimal superalgebra B = Bss + J(B) such that
Bss = B1 ⊕ B2 ⊕ B3 with Bi = Ai and homogeneous minimal idempotents
fi ∈ Bi for every 1 ≤ i ≤ 3, its Jacobson radical is generated by homogeneous
elements z12 and z23 with z12z23 6= 0B and TZ2(A) ⊆ TZ2(B). It is sufficient
to show that TZ2(A) = TZ2(B).

To this aim, we preliminarly observe that we can assume that B13 is
irreducible as well. In fact, suppose that this is not the case. Hence, writing
as usual f2 as ν2 + ν̄2, one has that

B13 = B1z12ν2z23B3 ⊕B1z12ν̄2z23B3.

Let I be the ideal of B generated by z12ν2z23 − z12ν̄2z23, which is obviously
homogeneous. Now, for the superalgebra B′ := B/I it is easily seen that
its maximal semisimple homogeneous subalgebra coincides with Bss and,
since I ⊆ B13, its Jacobson radical is equal to J(B)/I. Furthermore (z12 +
I) · (z23 + I) 6= 0B′ , since z12z23 is not in I. Therefore B′ is a minimal
superalgebra such that B′13 is irreducible and

TZ2(B) ⊆ TZ2(B′).

As TZ2(A) ⊆ TZ2(B), for our aims it is sufficient to replace the superalgebra
B with B′.

If k > l and r > s Lemma 4.1 and 4.2 yield that A and B are isomorphic
either to Â or to B̂. In particular, from Lemma 4.1 it follows that the
containment TZ2(A) ⊆ TZ2(B) implies that A is isomorphic to B as a graded
algebra and, consequently, TZ2(A) = TZ2(B).

Finally, assume that k = l (analogous arguments can be used when r = s,
and for this reason we avoid to discuss it). We aim to show that all the
superalgebras satisfying these hypothesis have the same TZ2-ideal of graded
polynomial identities, namely TZ2(A1) ·TZ2(A2) ·TZ2(A3) (we could actually
strenghten the conclusion of Lemma 4.2 and prove that in this case there
exists only one isomorphism-type of minimal superalgebra with the required
properties, but we have preferred to adopt this other startegy since it will
be useful in the sequel). We notice that, as the first part of the proof of
Lemma 4.2 does not depend on the assumption on the pairs of integers (k, l)

and (r, s), A and B are isomorphic either to Â or to B̂. In any case, both
of these superalgebras can be written as(

V U
0 W

)
,

where V = Mk,l, U = M(k+l)×(2m+r+s) and W ⊆ M2m+r+s is the subalge-

bra of Â (B̂, respectively) generated by Â2, Â3 and w
(Â)
23 (B̂2, B̂3 and z

(B̂)
23 ,
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respectively). Since k = l, from Proposition 5.3 of [2] we deduce that V
is Z2-regular and Theorem 4.5 of [2] yields that the ideal of graded poly-
nomial identities satisfied by this algebra is equal to TZ2(V ) · TZ2(W ) =
TZ2(A1) ·TZ2(W ). But, according to the discussion of Section 2 of [3], in any
event W is a minimal superalgebra with maximal semisimple homogeneous
subalgebra coinciding with A2 ⊕A3. At this stage, from Theorem 5.3 of [4]
one has that TZ2(W ) = TZ2(A2) ·TZ2(A3), and this concludes the proof. �

It remains to analyze what happens when the (A1, A3)-bimodule A13

is not irreducible, namely to prove the main result of this paper which is
claimed in Theorem 2.4.

Proof of Theorem 2.4. Using the previously presented arguments, re-
placing the element w12 with u12 := w12ρ2 − w12ρ̄2 if |w12| = 1 and w23

with u23 := ρ2w23 − ρ̄2w23 again if |w23| = 1, we can always assume that
the radical elements of A appearing in Definition 2.1 have degree zero (we
notice that, since A13 is not irreducible, we also have u12w23 6= 0A and
w12u23 6= 0A). Furthermore, the same lines of reasoning applied in the pre-
vious situations allow to conclude that there exists one isomorphism type
for the minimal superalgebra A when A13 is not irreducible as a (A1, A3)-
bimodule (the easy details are left to the reader).

Now, suppose first that either k = l or r = s. We aim to show that
supvar(A) is minimal. To this purpose, as in the proof of Theorem 3.2 take
a minimal superalgebra B = Bss + J(B) such that TZ2(A) ⊆ TZ2(B) and
Bss = A1⊕A2⊕A3. We have to prove that A and B satisfy the same graded
polynomial identities. Now, if B13 is not irreducible, by the above remark A
is isomorphic to B as a graded algebra, and we are done. In the remaining
case, in the proof of Theorem 4.3 we have established that

TZ2(B) = TZ2(A1) · TZ2(A2) · TZ2(A3).

As the second term of the above equality is contained in TZ2(A), the desired
conclusion holds.

Conversely, assume that k > l and r > s. The final target is to construct
a minimal superalgebra A′ such that TZ2(A) & TZ2(A′) and expZ2

(A) =
expZ2

(A′). To this end, let I be the ideal of A generated by the element
w12ρ2w23 − w12ρ̄2w23, which is clearly homogeneous, and set A′ := A/I.
Obviously,

TZ2(A) ⊆ TZ2(A′).

As seen in the proof of Theorem 4.3 (in that case for the algebra B), A′ is
a minimal superalgebra with maximal semisimple homogeneous subalgebra
equal to A1 ⊕A2 ⊕A3. Furthermore, if φ′ is the action induced by φ on A′,
one has that

φ′(w12ρ2w23 + I) = w12ρ̄2w23 + I = w12ρ2w23 + I

(we have supposed that |w12| = |w23| = 0). This means that A′13 is irre-

ducible. Therefore, A′ is isomorphic to the superalgebra Â.
15



On the other hand, let us consider the subalgebra of UT (2(k+l), 2m, 2(r+
s)) consisting of matrices of the form

K 0 I1 I2 I3 I4

0 K I2 I1 I4 I3

0 0 L P I5 I6

0 0 P L I6 I5

0 0 0 0 Q 0
0 0 0 0 0 Q

 ,

where K ∈ Mk+l, L,P ∈ Mm, Q ∈ Mr+s, I1, I2 ∈ M(k+l)×m, I3, I4 ∈
M(k+l)×(r+s), I5, I6 ∈Mm×(r+s). We endowe it with the grading induced by
the 2(k + l +m+ r + s)-tuple

(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
l times

0, . . . , 0︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
r times

, 1, . . . , 1︸ ︷︷ ︸
s times

, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
s times

),

which we denote by Ǎ. If E
(Ǎ)
ij are its matrix units, it is easily seen that the

maximal semisimple subalgebra of Ǎ is equal to Ǎ1 ⊕ Ǎ2 ⊕ Ǎ3 where

Ǎ1 := 〈E(Ǎ)
ij + E

(Ǎ)
i+k+l,j+k+l | 1 ≤ i, j ≤ k + l〉 ∼= Mk,l,

Ǎ2 := 〈E(Ǎ)
ij + E

(Ǎ)
i+m,j+m, E

(Ǎ)
pq + E

(Ǎ)
p+m,q−m | 2(k + l) + 1 ≤ i, j, p ≤ 2(k + l) +m,

2(k + l) +m+ 1 ≤ q ≤ 2(k + l +m)〉 ∼= Mm(F ⊕ tF ),

Ǎ3 := 〈E(Ǎ)
ij +E

(Ǎ)
i+r+s,j+r+s | 2(k+l+m)+1 ≤ i, j ≤ 2(k+l+m)+r+s〉 ∼= Mr,s

and its Jacobson radical is generated as a two-sided ideal by the homoge-

neous elements of degree zero w
(Ǎ)
12 := E

(Ǎ)
1,2(k+l)+1 + E

(Ǎ)
k+l+1,2(k+l)+m+1 and

w
(Ǎ)
23 := E

(Ǎ)
2(k+l)+1,2(k+l+m)+1 + E

(Ǎ)
2(k+l)+m+1,2(k+l+m)+r+s+1. Finally, since

for w
(Ǎ)
12 and w

(Ǎ)
23 and the homogeneous (minimal) idempotents e

(Ǎ)
1 :=

E
(Ǎ)
11 +E

(Ǎ)
k+l+1,k+l+1 ∈ Ǎ1, e

(Ǎ)
2 := E

(Ǎ)
2(k+l)+1,2(k+l)+1+E

(Ǎ)
2(k+l)+m+1,2(k+l)+m+1 ∈

Ǎ2 and e
(Ǎ)
3 := E

(Ǎ)
2(k+l+m)+1,2(k+l+m)+1 +E

(Ǎ)
2(k+l+m)+r+s+1,2(k+l+m)+r+s+1 ∈

Ǎ3 the relations appearing in Definition 2.1 are satisfied, we have that Ǎ
is a minimal superalgebra. Furthermore Ǎ13 is not irreducible as (Ǎ1, Ǎ3)-
bimodule. Hence from the uniqueness, up to isomorphism, of the superalge-
bra A we conclude that A is isomorphic to Ǎ.

At this stage, take the polynomials f and g defined in (4) and (5), re-

spectively. We have shown there that g ∈ TZ2(Â) = TZ2(A′). We claim that
it is not a graded polynomial identity for the superalgebra Ǎ, and hence
for A. In fact, for every 1 ≤ i ≤ k and 2(k + l) + 1 ≤ j ≤ 2(k + l) + m
there exists a graded evaluation of St2(m+k)−1(y1, . . . , y2(m+k)−1) in Ǎ equal

to E
(Ǎ)
ij +E

(Ǎ)
i+k+l,j+m. Analogously, for every 2(k+ l) + 1 ≤ p ≤ 2(k+ l) +m

and 2(k + l + m) + 1 ≤ q ≤ 2(k + l + m) + r there is an evaluation of

St2(m+r)−1(y2(m+k), . . . , y2(2m+k+r−1)) equal to E
(Ǎ)
pq + E

(Ǎ)
p+m,q+r+s. Thus,

fixed integers i, j, p, q as above with the extra assumption that i > 1 if
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k > 1 and q < 2(k + l + m) + r if r > 1, evaluating the variable z1

at E
(Ǎ)
j+m,p + E

(Ǎ)
j,p+m, we have found a graded evaluation of the polyno-

mial f in Ǎ equal to E
(Ǎ)
i,q+r+s + E

(Ǎ)
i+k+l,q. Since we can find in any event

an evaluation of St2l(ŷ1, . . . , ŷ2l) equal to E
(Ǎ)
1i + E

(Ǎ)
k+l+1,k+l+i and one of

St2s(ŷ2l+1, . . . , ŷ2(s+l)) equal to E
(Ǎ)
q,2(k+l+m)+r + E

(Ǎ)
q+r+s,2(k+l+m+r)+s, the

claim is confirmed. Therefore g is in TZ2(A′) \ TZ2(A), and this completes
the proof. �
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