# MINIMAL SUPERALGEBRAS GENERATING MINIMAL SUPERVARIETIES 

Onofrio Mario DI VINCENZO - Viviane Ribeiro Tomaz da SILVA Ernesto SPINELLI ${ }^{1}$


#### Abstract

It has been showed that in characteristic zero the generators of the minimal supervarieties of finite basic rank belong to the class of minimal superalgebras introduced by Giambruno and Zaicev in 2003. In the present paper the complete list of the minimal supervarieties generated by minimal superalgebras whose maximal semisimple homogeneous subalgebra is sum of three graded simple algebras is provided. As a consequence, we negatively answer the question of whether any minimal superalgebra generates a minimal supervariety.


Classification MSC 2010: 16R10, 16R50, 16W55. Keywords: Superalgebras, Graded Polynomial Identities, Superexponent, Minimal Supervarieties.

## 1. Introduction

Let $F$ be a field of characteristic zero. An actual quantitative measure of the polynomial identities satisfied by an associative $F$-algebra $A$ is given by the sequence of its codimensions $\left\{c_{n}(A)\right\}_{n \geq 1}$, whose $n$-th term is the dimension of the space of multilinear polynomials in $n$ variables in the corresponding relatively free algebra of countable rank. It was introduced by Regev in the seminal paper [11], where it was proved that when $A$ satisfies a non-zero polynomial identity (in the sequel we shall refer to these algebras as PI algebras) $\left\{c_{n}(A)\right\}_{n \geq 1}$ is exponentially bounded. Later a fundamental contribution of Giambruno and Zaicev ([6] and [7]) has showed that

$$
\exp (A):=\lim _{m \rightarrow+\infty} \sqrt[m]{c_{m}(A)}
$$

exists and is a non-negative integer, which is called the exponent of $A$.
This provides an integral scale allowing to measure the growth of any variety and in a natural manner has addressed the research towards a classification of varieties according to the asymptotic behaviour of their codimensions. Along this direction, among varieties of some fixed exponent a prominent role is played by the minimal ones, namely those varieties of exponent $d$ such that every proper subvariety has exponent strictly less than $d$. In [8] it has been proved that a variety of exponential growth is minimal

[^0]if, and only if, it is generated by the Grassmann envelope of a so called minimal superalgebra.

More in general, superalgebras are a key ingredient in the structure theory of PI algebras, as shown by Kemer in the solution of the Specht Problem ([10]). From his work also the relevance of their graded polynomial identities appears clear and this has deeply motivated their study. The point of view we are going to explore here consists into asking information about the set of graded identities of a $F$-algebra $A$ endowed with a $\mathbb{Z}_{2}$-grading, which we denote by $T_{\mathbb{Z}_{2}}(A)$. From an algebraic point of view, it is a $T_{\mathbb{Z}_{2}}$-ideal of the free $F$-superalgebra $F\langle Y \cup Z\rangle$, namely a two-sided ideal of $F\langle Y \cup Z\rangle$ invariant under every graded endomorphism, which is completely determined by multilinear polynomials it contains (as we are working in characteristic zero). In particular, extending into this setting the approach of Regev, we are interested to the graded codimensions $\left\{c_{n}^{\mathbb{Z}_{2}}(A)\right\}_{n \geq 1}$ of $A$, whose $n$-th term is defined as the dimension of the space of multilinear $\mathbb{Z}_{2}$-graded polynomials in $n$ variables in the corresponding relatively free $\mathbb{Z}_{2}$-graded algebra of countable rank.

In [5] it was proved that this sequence is exponentially bounded if, and only if, $A$ is a PI algebra. Under the extra assumption that $A$ is also finitely generated, in [1] the authors stated that

$$
\exp _{\mathbb{Z}_{2}}(A):=\lim _{m \rightarrow+\infty} \sqrt[m]{c_{m}^{\mathbb{Z}_{2}}(A)}
$$

exists and is a non-negative integer, which is called the $\mathbb{Z}_{2}$-graded exponent or superexponent of $A$.

By virtue of this result, as in the ordinary case, it becomes natural and interesting to investigate minimal varieties of PI associative superalgebras (or supervarieties) of finite basic rank (that is, generated by a finitely generated superalgebra satisfying an ordinary polynomial identity) of fixed graded exponent. The starting point for the problem we are going to focus in the present paper on is the following statement in which minimal superalgebras come again into the picture.
Theorem 1.1 (Proposition 3.2 of [4]). Let $\mathcal{V}^{\text {sup }}$ be a supervariety of finite basic rank. If $\mathcal{V}^{\text {sup }}$ is minimal of superexponent $d \geq 2$, then $\mathcal{V}^{\text {sup }}$ is generated by a suitable minimal superalgebra.

According to it, the complete characterization of minimal supervarieties of finite basic rank of exponential growth is reduced to decide whether any minimal superalgebra generates a minimal supervariety. This problem is still open and its possible solution seems to be more involved than that of the ungraded case. In more detail, a minimal superalgebra $A$ is finitedimensional and defined on an algebraically closed field. Hence, by the generalization of the Wedderburn-Malcev Theorem we can write $A=A_{s s}+$ $J(A)$, where $A_{s s}$ is a maximal semisimple subalgebra of $A$ homogeneous in the $\mathbb{Z}_{2}$-grading and $J(A)$ is its Jacobson radical (which is homogeneous as well). Also $A_{\text {ss }}$ can be written as the direct sum of graded simple algebras which can be of two types: either simple or non-simple as algebras. It has been proved that in the case in which the sequence of the graded simple
components of $A_{s s}$ has in some sense a regular distribution, the supervariety generated by $A$ is minimal (Theorems 4.7 and 5.4 of [4] and 3.6 of [3]).

In spite of this positive result, in the present article we provide a family of minimal superalgebras not generating minimal supervarieties. This is done by characterizing all minimal supervarieties generated by minimal superalgebras whose maximal semisimple homogeneous subalgebra has three graded simple summands.

## 2. Preliminaries and Announcement of the Main Results

Throughout the rest of the paper, unless otherwise stated, $F$ is a field of characteristic zero and all the algebras are assumed to be associative and to have the same ground field $F$. For any pair of positive integers $s$ and $t$ the symbol $M_{s \times t}$ means the space of all rectangular matrices with $s$ rows and $t$ columns over $F$ and set $M_{s}:=M_{s \times s}$; whereas, if $m_{1}, \ldots, m_{n}$ is a sequence of positive integers, let $U T\left(m_{1}, \ldots, m_{n}\right)$ be the upper block triangular matrix algebra of size $m_{1}, \ldots, m_{n}$. Finally, if $F\langle X\rangle$ is the free associative algebra on a countable set $X:=\left\{x_{1}, x_{2}, \ldots\right\}$ over $F$, for any positive integer $q$ the Standard polynomial in $q$ variables $\mathrm{St}_{q}\left(x_{1}, \ldots, x_{q}\right)$ is the element of $F\langle X\rangle$ defined as

$$
\sum_{\sigma \in S_{q}} \operatorname{sgn}(\sigma) x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(q)}
$$

An algebra $A$ is a $\mathbb{Z}_{2}$-graded algebra or a superalgebra if it has a vector space decomposition $A=A^{(0)} \oplus A^{(1)}$ such that $A^{(i)} A^{(j)} \subseteq A^{(i+j)}$. The elements of $A^{(0)}$ are called homogeneous of degree 0 and those of $A^{(1)}$ homogeneous of degree 1. An element $w$ of $A$ is homogeneous if it is homogeneous of degree 0 or 1 (and denote its degree by $|w|$ ), whereas a subalgebra or an ideal $V \subseteq A$ is homogeneous if $V=\left(V \cap A^{(0)}\right) \oplus\left(V \cap A^{(1)}\right)$. The superalgebra $A$ is called simple (or $\mathbb{Z}_{2}$-simple) if the multiplication is non-trivial and it has no non-trivial homogeneous ideals. In this case, we shall also refer to $A$ as a graded simple algebra.

Let $F\langle Y \cup Z\rangle$ be the free associative algebra on the disjoint countable sets of variables $Y:=\left\{y_{1}, y_{2}, \ldots\right\}$ and $Z:=\left\{z_{1}, z_{2}, \ldots\right\}$. It has a natural superalgebra structure if we require that the variables from $Y$ have degree 0 and those from $Z$ have degree 1. The superalgebra $F\langle Y \cup Z\rangle$ is said to be the free superalgebra over $F$. An element $f\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)$ of $F\langle Y \cup Z\rangle$ is a $\mathbb{Z}_{2}$-graded polynomial identity for a superalgebra $A=A^{(0)} \oplus A^{(1)}$ if $f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=0_{A}$ for every $a_{1}, \ldots, a_{m} \in A^{(0)}$ and $b_{1}, \ldots, b_{n} \in$ $A^{(1)}$. Given a $T_{\mathbb{Z}_{2}}$-ideal $I$ of $F\langle Y \cup Z\rangle$, the variety of superalgebras or supervariety $\mathcal{V}^{\text {sup }}$ associated to $I$ is the class of all $F$-superalgebras whose $T_{\mathbb{Z}_{2}}$-ideals of graded polynomial identities contain $I$. The $T_{\mathbb{Z}_{2}}$-ideal $I$ is denoted by $T_{\mathbb{Z}_{2}}\left(\mathcal{V}^{s u p}\right)$. The supervariety $\mathcal{V}^{s u p}$ is generated by the superalgebra $A$ if $T_{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right)=T_{\mathbb{Z}_{2}}(A)$, and in this case we write $\mathcal{V}^{\text {sup }}=\operatorname{supvar}(A)$. Furthermore, set $\exp _{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right):=\exp _{\mathbb{Z}_{2}}(A)=\lim _{m \rightarrow+\infty} \sqrt[m]{c_{m}^{\mathbb{Z}_{2}}(A)}$, the $s u$ perexponent of the supervariety $\mathcal{V}^{\text {sup }}$ (we recall that the $m$-th $\mathbb{Z}_{2}$-graded codimension $c_{m}^{\mathbb{Z}_{2}}(A)$ of $A$ is the dimension of the vector space $\frac{P_{m}^{s u p}}{P_{m}^{s u p} \cap T_{\mathbb{Z}_{2}}(A)}$,
where $P_{m}^{s u p}$ is the space of multilinear polynomials of degree $m$ of $F\langle Y \cup Z\rangle$ in the variables $y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}$ ).

Assume that $A$ is a finite-dimensional superalgebra and let $A=A_{s s}+$ $J(A)$ be its Wedderburn-Malcev decomposition. Furthermore the maximal semisimple homogeneous subalgebra $A_{s s}$ of $A$ can be written as the direct sum of graded simple algebras whose structure is well known, at least when the ground field is algebraically closed. In fact, they are one of the following types:
(a) $M_{k, l}:=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, where $k \geq l \geq 0, k \neq 0, A \in M_{k}, D \in M_{l}, B \in$ $M_{k \times l}$ and $C \in M_{l \times k}$, endowed with the grading $M_{k, l}^{(0)}:=\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right)$ and $M_{k, l}^{(1)}:=\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)$;
(b) $M_{m}(F \oplus t F)$, where $t^{2}=1_{F}$, with grading $\left(M_{m}, t M_{m}\right)$.

Giambruno and Zaicev in [8] introduced the definition of minimal superalgebra.

Definition 2.1. Let $F$ be an algebraically closed field. A superalgebra $A$ is called minimal if it is finite-dimensional and $A=A_{\text {ss }}+J(A)$ where
(i) $A_{s s}=A_{1} \oplus \cdots \oplus A_{n}$ with $A_{1}, \ldots, A_{n}$ graded simple algebras;
(ii) there exist homogeneous elements $w_{12}, \ldots, w_{n-1, n} \in J(A)$ and minimal homogeneous idempotents $e_{1} \in A_{1}, \ldots, e_{n} \in A_{n}$ such that

$$
e_{i} w_{i, i+1}=w_{i, i+1} e_{i+1}=w_{i, i+1} \quad 1 \leq i \leq n-1
$$

and

$$
w_{12} w_{23} \cdots w_{n-1, n} \neq 0_{A}
$$

(iii) $w_{12}, \ldots, w_{n-1, n}$ generate $J(A)$ as a two-sided ideal of $A$.

In Lemma 3.5 of [8] it was shown that the minimal superalgebra $A=$ $A_{s s}+J(A)$ has the following vector space decomposition

$$
\begin{equation*}
A=\bigoplus_{1 \leq i \leq j \leq n} A_{i j} \tag{1}
\end{equation*}
$$

where $A_{11}:=A_{1}, \ldots, A_{n n}:=A_{n}$ and, for all $i<j$,

$$
A_{i j}:=A_{i} w_{i, i+1} A_{i+1} \cdots A_{j-1} w_{j-1, j} A_{j}
$$

Moreover $J(A)=\oplus_{i<j} A_{i j}$ and $A_{i j} A_{k l}=\delta_{j k} A_{i l}$, where $\delta_{j k}$ is the Kronecker delta. Finally, as stressed in Chapter 8 of [9], the order of the components $A_{1}, \ldots, A_{n}$ of $A_{s s}$ is important. For this reason, in the sequel we shall tacitly agree that if $A_{s s}=A_{1} \oplus \cdots \oplus A_{n}$, then $A_{1} J(A) A_{2} J(A) \cdots A_{n} \neq 0_{A}$. According to the main result of $[1], \exp _{\mathbb{Z}_{2}}(A)=\operatorname{dim}_{F}\left(A_{s s}\right)$.

The aim of the paper is to contribute to the classification of minimal supervarieties of fixed graded exponent. We recall the definition.

Definition 2.2. A variety $\mathcal{V}^{\text {sup }}$ of PI associative superalgebras is said to be minimal of superexponent $d$ if $\exp _{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right)=d$ and $\exp _{\mathbb{Z}_{2}}\left(\mathcal{U}^{\text {sup }}\right)<d$ for every proper subvariety $\mathcal{U}^{\text {sup }}$ of $\mathcal{V}^{\text {sup }}$.

As observed in the Introduction, in the case of finite basic rank the question which remains still open is to characterize those minimal superalgebras generating minimal supervarieties. Along this direction the main contribution can be summarized in the following
Theorem 2.3 (3.6 of [3]). Let $A=A_{s s}+J(A)$ be a minimal superalgebra. If $A_{s s}=A_{1} \oplus \cdots \oplus A_{n}$ and there exists $1 \leq h \leq n$ such that $A_{1}, \ldots, A_{h}$ are non-simple graded simple and $A_{h+1}, \ldots, A_{n}$ are simple graded simple algebras (or conversely), then the supervariety generated by $A$ is minimal of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus \cdots \oplus A_{n}\right)$.

According to it, the possible smallest number of graded simple summands of the maximal semisimple homogeneous subalgebra of a minimal superalgebra $A$ such that $\operatorname{supvar}(A)$ is not minimal is $n=3$ (for the sake of completness, we recall that the cases $n=1$ and $n=2$ were originally settled in Corollary 3.5 and Theorem 5.4 of [4], respectively). For this reason it becomes interesting to investigate what happens when $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$. Obviously, by virtue of Theorem 2.3 , for our aims nothing is to do when either $A_{2}$ and at least one between $A_{1}$ and $A_{3}$ are both simple graded simple or they are both non-simple graded simple. Hence the unique situations we remain to deal with are when:

- $A_{1}$ and $A_{3}$ are non-simple graded simple and $A_{2}$ is simple graded simple;
- $A_{1}$ and $A_{3}$ are simple graded simple and $A_{2}$ is non-simple graded simple.
We shall show that in all these cases $A$ generates a minimal supervariety unless in the latter one. Indeed, the main result we prove, which is the core of the present paper and the starting point for further developments, shows that in such an event if the subspace $A_{13}$ appearing in the decomposition (1), which is a non-zero $\left(A_{1}, A_{3}\right)$-bimodule, is not irreducible, then $\operatorname{supvar}(A)$ is not minimal except for one case, namely

Theorem 2.4. Let $A=A_{\text {ss }}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ with

$$
A_{1}=M_{k, l}, \quad A_{2}=M_{m}(F \oplus t F) \quad \text { and } \quad A_{3}=M_{r, s}
$$

If $A_{13}$ is not irreducible as a $\left(A_{1}, A_{3}\right)$-bimodule, then $A$ generates a minimal supervariety (of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus A_{2} \oplus A_{3}\right)$ ) if, and only if, either $k=l$ or $r=s$.

## 3. The case in which $A_{1}$ and $A_{3}$ are non-Simple graded Simple

Assume throughout this Section that $A_{1}=M_{m}(F \oplus t F), A_{2}=M_{k, l}$ and $A_{3}=M_{r}(F \oplus s F)$ (where $\left.t^{2}=s^{2}=1_{F}\right)$. We aim to show that any minimal superalgebra whose maximal semisimple homogeneous subalgebra coincides with $A_{1} \oplus A_{2} \oplus A_{3}$ generates a minimal supervariety. To this end we need to investigate in more details the structure of such a superalgebra: this is done via the language of actions of automorphisms. In fact, it is well known that any superalgebra $A$ can be viewed as an algebra with action of an
automorphism $\phi$ of $A$ of order at most 2. Indeed, the homomorphism $\phi$ of $A=A^{(0)} \oplus A^{(1)}$ defined by $\phi\left(a_{0}\right):=a_{0}$ and $\phi\left(a_{1}\right):=-a_{1}$ for any $a_{0} \in A^{(0)}$ and $a_{1} \in A^{(1)}$ is an automorphism of $A$ of order at most 2. Conversely, if $A$ is an algebra with an automorphism $\phi$ of order at most 2 , then, setting $A^{(0)}:=\{a \mid a \in A, \phi(a)=a\}$ and $A^{(1)}:=\{a \mid a \in A, \phi(a)=-a\}, A$ is a superalgebra with grading $\left(A^{(0)}, A^{(1)}\right)$.

Let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus$ $A_{2} \oplus A_{3}$. By regarding $A$ as a $\phi$-algebra, for $i \in\{1,3\}$ we can write $A_{i}$ as $A_{i}=I_{i} \oplus \phi\left(I_{i}\right)$, where $I_{i}$ is a minimal two-sided ideal of $A_{i}$, and the corresponding homogeneous idempotents (of degree zero) $e_{i}$ appearing in the Definition 2.1 as $e_{i}=\rho_{i}+\phi\left(\rho_{i}\right)$ with $\rho_{i}$ a non-homogeneous minimal idempotent of $I_{i}$. For simplicity, set $\bar{\rho}_{i}:=\phi\left(\rho_{i}\right)$ and $\bar{I}_{i}:=\phi\left(I_{i}\right)$.

Let us consider the element $w_{13}:=w_{12} w_{23}$ and the subspace $A_{13}$ of the decomposition (1). As for the homogeneous radical elements $w_{j, j+1}$ defining $A$ the equality

$$
e_{j} w_{j, j+1} e_{j+1}=e_{j} w_{j, j+1}=w_{j, j+1} e_{j+1}=w_{j, j+1}
$$

is satisfied, one has that

$$
\begin{aligned}
w_{13} & =\left(\rho_{1}+\bar{\rho}_{1}\right) w_{12} w_{23}\left(\rho_{3}+\bar{\rho}_{3}\right) \\
& =\rho_{1} w_{12} w_{23} \rho_{3}+\bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3}+\bar{\rho}_{1} w_{12} w_{23} \rho_{3}+\rho_{1} w_{12} w_{23} \bar{\rho}_{3}
\end{aligned}
$$

and

$$
A_{13}=A_{1} w_{12} A_{2} w_{23} A_{3}=A_{1} w_{12} e_{2} A_{2} e_{2} w_{23} A_{3}=A_{1} w_{12} w_{23} A_{3}
$$

Thus

$$
\begin{aligned}
A_{13}= & I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \\
& I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3} .
\end{aligned}
$$

As by the definition of minimal superalgebra $w_{13} \neq 0_{A}$, we deduce that at least one of the homogeneous summands $\rho_{1} w_{12} w_{23} \rho_{3}+\bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3}$ and $\bar{\rho}_{1} w_{12} w_{23} \rho_{3}+\rho_{1} w_{12} w_{23} \bar{\rho}_{3}$ of $w_{13}$ is non-zero. Suppose that just one of those is non-zero. In such an event we shall say also in the sequel that $A_{13}$ is direct sum of two terms. In particular, if $\rho_{1} w_{12} w_{23} \rho_{3}+\bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \neq 0_{A}$, then

$$
A_{13}=I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3},
$$

otherwise

$$
A_{13}=I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3}
$$

Set $\mathcal{I}_{3}:=I_{3}$ and $\epsilon_{3}:=\rho_{3}$ if the first case occurs and $\mathcal{I}_{3}:=\bar{I}_{3}$ and $\epsilon_{3}:=\bar{\rho}_{3}$ otherwise; moreover, put $\mathcal{I}_{1}:=I_{1}$ and $\epsilon_{1}:=\rho_{1}$ (and, as before, $\bar{\epsilon}_{i}:=\phi\left(\epsilon_{i}\right)$ and $\overline{\mathcal{I}}_{i}:=\phi\left(\mathcal{I}_{i}\right)$ for $\left.i \in\{1,3\}\right)$, in any event we can write

$$
A_{13}=\mathcal{I}_{1} \epsilon_{1} w_{12} w_{23} \epsilon_{3} \mathcal{I}_{3} \oplus \overline{\mathcal{I}}_{1} \bar{\epsilon}_{1} w_{12} w_{23} \bar{\epsilon}_{3} \overline{\mathcal{I}}_{3}
$$

Furthermore let us define

$$
v_{12}:=\left\{\begin{array}{cl}
\epsilon_{1} w_{12}+\bar{\epsilon}_{1} w_{12} & \text { if }\left|w_{12}\right|=0 \\
\epsilon_{1} w_{12}-\bar{\epsilon}_{1} w_{12} & \text { otherwise } \\
6
\end{array}\right.
$$

and

$$
v_{23}:= \begin{cases}w_{23} \epsilon_{3}+w_{23} \bar{\epsilon}_{3} & \text { if }\left|w_{23}\right|=0 \\ w_{23} \epsilon_{3}-w_{23} \bar{\epsilon}_{3} & \text { otherwise }\end{cases}
$$

It is straightforward to check that the subalgebra of $A$ generated by $A_{1}, A_{2}, A_{3}$ and the homogeneous elements $v_{12}$ and $v_{23}$ is a minimal superalgebra coinciding with $A$. Hence we can always assume that the radical elements generating $J(A)$ are of degree 0 .
Claim. There exists one isomorphism-type for a minimal superalgebra $A=$ $\left(A_{1} \oplus A_{2} \oplus A_{3}\right)+J(A)$ such that $A_{13}$ is direct sum of two non-zero terms.

In fact, take another minimal superalgebra $B=B_{s s}+J(B)$ such that $B_{s s}=B_{1} \oplus B_{2} \oplus B_{3}$ with $B_{j}=A_{j}$ for every $1 \leq j \leq 3$ and $B_{13}$ is the direct sum of two summands. Let us call $z_{12}$ and $z_{23}$ the homogeneous radical elements defining $B$ (which we can suppose of degree zero) and let $f_{j} \in B_{j}$ be the minimal idempotents appearing in the Definition 2.1. Using the same above arguments one has that

$$
B_{13}=\mathcal{J}_{1} \nu_{1} z_{12} z_{23} \nu_{3} \mathcal{J}_{3} \oplus \overline{\mathcal{J}}_{1} \bar{\nu}_{1} z_{12} z_{23} \bar{\nu}_{3} \overline{\mathcal{J}}_{3}
$$

where, for $i \in\{1,3\}, B_{i}=\mathcal{J}_{i} \oplus \overline{\mathcal{J}}_{i}$, with $\mathcal{J}_{i}$ a minimal two-sided ideal of $B_{i}$, and $\nu_{i}$ is the non-homogeneous minimal idempotent of $\mathcal{J}_{i}$ such that $f_{i}=\nu_{i}+\bar{\nu}_{i}$ (here we are regarding $B$ as an algebra with action of an automorphism of order 2, we call $\phi_{B}$ to distinguish it from that of $A$, and set $\overline{\mathcal{J}}_{i}:=\phi_{B}\left(\mathcal{J}_{i}\right)$ and $\left.\bar{\nu}_{i}:=\phi_{B}\left(\nu_{i}\right)\right)$.

For $1 \leq j \leq 3$, let us consider the superalgebras isomorphisms

$$
\Psi_{j j}: A_{j} \longrightarrow B_{j}
$$

such that $\Psi_{j j}\left(\epsilon_{j}\right)=\nu_{j}\left(\right.$ and hence $\left.\Psi_{j j}\left(\bar{\epsilon}_{j}\right)=\bar{\nu}_{j}\right)$ if $j \neq 2$ and $\Psi_{22}\left(e_{2}\right)=f_{2}$. Since $\mathcal{I}_{1} \epsilon_{1} \otimes e_{2} A_{2}$ is irreducible as a ( $\mathcal{I}_{1}, A_{2}$ )-bimodule, the map

$$
\eta: \mathcal{I}_{1} \epsilon_{1} \otimes e_{2} A_{2} \longrightarrow \mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2}, \quad a_{1} \epsilon_{1} \otimes e_{2} a_{2} \longmapsto a_{1} \epsilon_{1} v_{12} e_{2} a_{2}
$$

is a bimodules isomorphism. In analogous manner we define an isomorphism from $\mathcal{J}_{1} \nu_{1} \otimes f_{2} B_{2}$ into $\mathcal{J}_{1} \nu_{1} z_{12} f_{2} B_{2}$. On the other hand the action of the maps $\Psi_{11}$ and $\Psi_{22}$ on $\mathcal{I}_{1} e_{1}$ and $e_{2} A_{2}$ respectively induces an isomorphism from $\mathcal{I}_{1} \epsilon_{1} \otimes e_{2} A_{2}$ into $\mathcal{J}_{1} \nu_{1} \otimes f_{2} B_{2}$. The final outcome of these deduction is that there exists a vector spaces isomorphism
$\psi_{12}: \mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2} \longrightarrow \mathcal{J}_{1} \nu_{1} z_{12} f_{2} B_{2}, \quad a_{1} \epsilon_{1} v_{12} e_{2} a_{2} \longmapsto \Psi_{11}\left(a_{1}\right) \nu_{1} z_{12} f_{2} \Psi_{22}\left(b_{2}\right)$.
Now, as

$$
A_{12}=\mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2} \oplus \overline{\mathcal{I}}_{1} \bar{\epsilon}_{1} v_{12} e_{2} A_{2}
$$

and

$$
B_{12}=\mathcal{J}_{1} \nu_{1} z_{12} f_{2} B_{2} \oplus \overline{\mathcal{J}}_{1} \bar{\nu}_{1} z_{12} f_{2} B_{2},
$$

the map

$$
\Psi_{12}: A_{12} \longrightarrow B_{12}, \quad h+k \longmapsto \psi_{12}(h)+\overline{\psi_{12}(\bar{k})}
$$

(where, obviously, $h \in \mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2}, k \in \overline{\mathcal{I}}_{1} \bar{\epsilon}_{1} v_{12} e_{2} A_{2}$ and $\overline{\psi_{12}(\bar{k})}:=\phi_{B}\left(\psi_{12}(\phi(k))\right)$ ) is a vector spaces isomorphism preserving the $\mathbb{Z}_{2}$-gradings.

The same argument yields that the map

$$
\psi_{23}: A_{2} e_{2} v_{23} \epsilon_{3} \mathcal{I}_{3} \longrightarrow B_{2} f_{2} z_{23} \nu_{3} \mathcal{J}_{3}, \quad \begin{aligned}
& a_{2} e_{2} v_{23} \epsilon_{3} a_{3} \longmapsto \Psi_{22}\left(a_{2}\right) f_{2} z_{23} \nu_{3} \Psi_{33}\left(a_{3}\right) \\
&
\end{aligned}
$$

induces a vector spaces isomorphism preserving the $\mathbb{Z}_{2}$-gradings, let us call $\Psi_{23}$, from $A_{23}=A_{2} e_{2} v_{23} \epsilon_{3} \mathcal{I}_{3} \oplus A_{2} e_{2} v_{23} \bar{\epsilon}_{3} \overline{\mathcal{I}}_{3}$ into $B_{23}=B_{2} f_{2} z_{23} \nu_{3} \mathcal{J}_{3} \oplus$ $B_{2} f_{2} z_{23} \bar{\nu}_{3} \overline{\mathcal{J}}_{3}$.

Finally, the same conclusion holds for

$$
\Psi_{13}: A_{13} \longrightarrow B_{13}
$$

$a_{1} \epsilon_{1} v_{12} v_{23} \epsilon_{3} a_{3}+a_{1}^{\prime} \bar{\epsilon}_{1} v_{12} v_{23} \bar{\epsilon}_{3} a_{3}^{\prime} \longmapsto \Psi_{11}\left(a_{1}\right) \nu_{1} z_{12} z_{23} \nu_{3} \Psi_{33}\left(a_{3}\right)+\Psi_{11}\left(a_{1}^{\prime}\right) \bar{\nu}_{1} z_{12} z_{23} \bar{\nu}_{3} \Psi_{33}\left(a_{3}^{\prime}\right)$.
But $A=\oplus_{1 \leq i \leq j \leq 3} A_{i j}$ and $B=\oplus_{1 \leq i \leq j \leq 3} B_{i j}$, hence, gluing the maps $\Psi_{i j}$, we have actually constructed a vector spaces isomorphism from $A$ into $B$ preserving the $\mathbb{Z}_{2}$-gradings, which is easily seen to be a superalgebras isomorphism.

If we drop the assumption on the decomposition of $A_{13}$ we are able to show that non-isomorphic minimal superalgebras with the same semisimple part satisfy the same $\mathbb{Z}_{2}$-graded polynomial identities.

Theorem 3.1. Let $A_{1}=M_{m}(F \oplus t F), A_{2}=M_{k, l}$ and $A_{3}=M_{r}(F \oplus s F)$ (where $t^{2}=s^{2}=1_{F}$ ). Any minimal superalgebra whose maximal semisimple homogeneous subalgebra coincides with $A_{1} \oplus A_{2} \oplus A_{3}$ has the same $T_{\mathbb{Z}_{2}}$-ideal of graded polynomial identities.

Proof. Let $A=A_{\text {ss }}+J(A)$ be a minimal superalgebra such that $A_{s s}=$ $A_{1} \oplus A_{2} \oplus A_{3}$ and $A_{13}$ is sum of four distinct terms, namely (using the same above notations)

$$
\begin{aligned}
A_{13}= & I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \\
& I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3} .
\end{aligned}
$$

Set $H:=I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3}$, which is a two-sided homogeneous ideal of $A$, let us consider the superalgebra $A^{\prime}:=A / H$. We observe that its maximal semisimple subalgebra $A_{s s}^{\prime}$ coincides with $A_{s s}$ and, as $H \subseteq J(A)$, its Jacobson radical $J\left(A^{\prime}\right)$ is equal to $J(A) / H$. As a consequence, the homogeneous elements $w_{12}+H$ and $w_{23}+H$ of $A^{\prime}$ generate $J\left(A^{\prime}\right)$. Furthermore

$$
\left(w_{12}+H\right) \cdot\left(w_{23}+H\right)=w_{12} w_{23}+H \neq 0_{A^{\prime}}
$$

otherwise also $I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3}$ should be in $H$, which contradicts the original assumption on $A_{13}$. Therefore we conclude that $A^{\prime}$ is a minimal superalgebra such that $A_{13}^{\prime}=A_{13} / H$ is direct sum of two summands.

Now, take the homogeneous two-sided ideal $K:=I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus$ $\bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3}$ of $A$. Proceeding in the same way, we obtain that $A^{\prime \prime}:=$ $A / K$ is a minimal superalgebra such that $A_{s s}^{\prime \prime}=A_{s s}$ and $A_{13}^{\prime \prime}$ is the direct sum of two non-zero terms. Thus, according to the claim, $A^{\prime}$ is isomorphic to $A^{\prime \prime}$.

Looking at the identities satisfied by these superalgebras, it is easily seen that

$$
\begin{equation*}
T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)=T_{\mathbb{Z}_{2}}\left(A^{\prime \prime}\right) . \tag{2}
\end{equation*}
$$

On the other hand, let $f \in F\langle Y \cup Z\rangle$ be a graded polynomial identity for $A^{\prime}$. Since $T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)=T_{\mathbb{Z}_{2}}\left(A^{\prime \prime}\right)$, for any graded evaluation $\mu: F\langle Y \cup Z\rangle \longrightarrow A$ one has that

$$
\mu(f) \in H \cap K=0_{A} .
$$

Therefore $f$ is a graded polynomial identity for $A$. Hence $T_{\mathbb{Z}_{2}}\left(A^{\prime}\right) \subseteq T_{\mathbb{Z}_{2}}(A)$ and, by virtue of (2), the equality holds.

Easy consequence of the above result is the following
Theorem 3.2. Let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ with

$$
A_{1}=M_{m}(F \oplus t F), \quad A_{2}=M_{k, l} \quad \text { and } \quad M_{r}(F \oplus s F)
$$

Then $A$ generates a minimal supervariety of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus A_{2} \oplus\right.$ $A_{3}$ ).
Proof. Set $\mathcal{V}^{\text {sup }}:=\operatorname{supvar}(A)$ and let us consider a subvariety $\mathcal{U}^{\text {sup }} \subseteq \mathcal{V}^{\text {sup }}$ such that $\exp _{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right)=\exp _{\mathbb{Z}_{2}}\left(\mathcal{U}^{\text {sup }}\right)$. Since $\mathcal{V}^{\text {sup }}$ satisfies some Capelli identities, $\mathcal{U}^{\text {sup }}$ has finite basic rank (see Theorem 11.4.3 of [9]). Hence, by a result of Kemer, $\mathcal{U}^{\text {sup }}$ is generated by a finite-dimensional superalgebra $\tilde{B}$. According to Lemma 8.1.4 of [9], there exists a minimal superalgebra $B$ such that $T_{\mathbb{Z}_{2}}(\tilde{B}) \subseteq T_{\mathbb{Z}_{2}}(B)$ and $\exp _{\mathbb{Z}_{2}}(\tilde{B})=\exp _{\mathbb{Z}_{2}}(B)$. Therefore $T_{\mathbb{Z}_{2}}(A) \subseteq$ $T_{\mathbb{Z}_{2}}(B)$ and $\exp _{\mathbb{Z}_{2}}(A)=\exp _{\mathbb{Z}_{2}}(B)$ as well. Furthermore from Lemma 3.3 of [4] we know that $B_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$.

At this point, Theorem 3.1 yields that $T_{\mathbb{Z}_{2}}(A)=T_{\mathbb{Z}_{2}}(B)$, and this concludes the proof.

## 4. The case in which $A_{1}$ and $A_{3}$ are simple graded simple

Throughout this Section let $A_{1}=M_{k, l}, A_{2}=M_{m}(F \oplus t F)$ and $A_{3}=M_{r, s}$ and consider a minimal superalgebra $A$ such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ (for the elements defining $A$ we use the notations of Definition 2.1). As before, regarding $A$ as a $\phi$-algebra, write $A_{2}=I_{2} \oplus \phi\left(I_{2}\right)$, where $I_{2}$ is a minimal twosided ideal of $A_{2}$, and its corresponding homogeneous idempotents (of degree zero) $e_{2}$ as $\rho_{2}+\phi\left(\rho_{2}\right)$ with $\rho_{2}$ a non-homogeneous minimal idempotent of $I_{2}$. For simplicity, set $\bar{\rho}_{2}:=\phi\left(\rho_{2}\right)$ and $\bar{I}_{2}:=\phi\left(I_{2}\right)$. Using the usual arguments, one has that

$$
A_{13}=A_{1} w_{12} \rho_{2} w_{23} A_{3}+A_{1} w_{12} \bar{\rho}_{2} w_{23} A_{3}
$$

is a $\left(A_{1}, A_{3}\right)$-bimodule such that each of its summands is an irreducible ( $A_{1}, A_{3}$ )-bimodule.

We make a preliminary observation.
Remark. If the elements $w_{12} \rho_{2} w_{23}$ and $w_{12} \bar{\rho}_{2} w_{23}$ are linearly dependent, then they coincide.
Proof. Assume that there exist $\alpha, \beta \in F \backslash\left\{0_{F}\right\}$ such that

$$
\alpha w_{12} \rho_{2} w_{23}+\beta w_{12} \bar{\rho}_{2} w_{23}=0_{A}
$$

Consequently

$$
(-1)^{\left|w_{12}\right|+\left|w_{23}\right|}\left(\alpha w_{12} \bar{\rho}_{2} w_{23}+\beta w_{12} \rho_{2} w_{23}\right)=0_{A}
$$

as well. The combination of the above equalities yields

$$
\left\{\begin{array}{l}
\alpha w_{12} \rho_{2} w_{23}+\beta w_{12} \bar{\rho}_{2} w_{23}=0_{A} ; \\
\beta w_{12} \rho_{2} w_{23}+\alpha w_{12} \bar{\rho}_{2} w_{23}=0_{A} .
\end{array}\right.
$$

Now, if $\alpha^{2}-\beta^{2} \neq 0_{F}$ then $w_{12} \rho_{2} w_{23}=w_{12} \bar{\rho}_{2} w_{23}=0_{A}$, and hence

$$
w_{12} w_{23}=w_{12} e_{2} w_{23}=w_{12}\left(\rho_{2}+\bar{\rho}_{2}\right) w_{23}=0_{A},
$$

which is not allowed since, according to Definition 2.1, that element is nonzero. Thus suppose that $\alpha^{2}=\beta^{2}$. If $\alpha=\beta$ one has again that $w_{12} w_{23}=0_{A}$, which is not allowed. Therefore it must be $\alpha=-\beta$, and this implies that $w_{12} \rho_{2} w_{23}=w_{12} \bar{\rho}_{2} w_{23}$.

Assume now that $A_{13}$ is irreducible as a $\left(A_{1}, A_{3}\right)$-bimodule. Then

$$
A_{13}=A_{1} w_{12} \rho_{2} w_{23} A_{3}=A_{1} w_{12} \bar{\rho}_{2} w_{23} A_{3} .
$$

This means that there exist an integer $k$ and, for every $1 \leq i \leq k$, elements $a_{i} \in A_{1}$ and $b_{i} \in A_{3}$ such that $w_{12} \bar{\rho}_{2} w_{23}=\sum_{i=1}^{k} a_{i} w_{12} \rho_{2} w_{23} b_{i}$. It follows that

$$
\begin{aligned}
w_{12} \bar{\rho}_{2} w_{23} & =e_{1} w_{12} \bar{\rho}_{2} w_{23} e_{3}=\sum_{i=1}^{k} e_{1} a_{i} w_{12} \rho_{2} w_{23} b_{i} e_{3}=\sum_{i=1}^{k} e_{1} a_{i} e_{1} w_{12} \rho_{2} w_{23} e_{3} b_{i} e_{3} \\
& =\sum_{i=1}^{k} \alpha_{i} e_{1} w_{12} \rho_{2} w_{23} \beta_{i} e_{3}=\gamma w_{12} \rho_{2} w_{23},
\end{aligned}
$$

since $e_{1} a_{i} e_{1}=\alpha_{i} e_{1}$ and $e_{3} b_{i} e_{3}=\beta_{i} e_{3}$ for suitable $\alpha_{i}, \beta_{i} \in F$ and $\gamma:=$ $\sum_{i=1}^{k} \alpha_{i} \beta_{i}$ is in $F \backslash\left\{0_{F}\right\}$. By the above remark, we conclude that

$$
\begin{equation*}
w_{12} \rho_{2} w_{23}=w_{12} \bar{\rho}_{2} w_{23} \tag{3}
\end{equation*}
$$

and it is a homogeneous element of degree $\left|w_{12}\right|+\left|w_{23}\right|$.
Before of proceeding, we construct two examples of minimal superalgebras belonging to the class we are considering. To this end, we recall that a $\mathbb{Z}_{2}$-grading on the complete matrix algebra $M_{n}$ is called elementary if there exists a $n$-tuple $\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}_{2}^{n}$ such that the matrix units $E_{i j}$ of $M_{n}$ are homogeneous and $E_{i j} \in M_{n}^{(\tau)}$ if, and only if, $\tau=g_{j}-g_{i}$. In an equivalent manner, we can say that it is defined a map $\left|\mid:\{1, \ldots, n\} \longrightarrow \mathbb{Z}_{2}\right.$ inducing a grading on $M_{n}$ by setting the degree of $E_{i j}$ equal to $|j|-|i|$. Obviously the algebra of upper block triangular matrices also admits elementary gradings. In fact, the embedding of such an algebra into a full matrix algebra with an elementary grading makes it a homogeneous subalgebra.

Now, let us consider the subalgebra of $U T(k+l, 2 m, r+s)$ consisting of matrices of the form

$$
\left(\begin{array}{cccc}
C & J_{1} & J_{2} & J_{3} \\
0 & D & E & J_{4} \\
0 & E & D & J_{5} \\
0 & 0 & 0 & H
\end{array}\right),
$$

where $C \in M_{k+l}, D, E \in M_{m}, H \in M_{r+s}, J_{1}, J_{2} \in M_{(k+l) \times m}, J_{3} \in$ $M_{(k+l) \times(r+s)}, J_{4}, J_{5} \in M_{m \times(r+s)}$. We endowe it with two gradings induced
by the $(k+l+2 m+r+s)$-tuples $(\underbrace{0, \ldots,}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }}, \underbrace{0, \ldots, 0}_{m \text { times }}, \underbrace{1, \ldots, 1}_{m \text { times }} \underbrace{0, \ldots, 0}_{r \text { times }} \underbrace{1, \ldots, 1}_{s \text { times }})$ and $(\underbrace{0, \ldots, 0}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }}, \underbrace{0, \ldots, 0}_{m \text { times }}, \underbrace{1, \ldots, 1}_{m \text { times }}, \underbrace{1, \ldots, 1}_{r \text { times }}, \underbrace{0, \ldots, 0}_{s \text { times }})$. Let us denote these superalgebras by $\left(\hat{A},| |_{\hat{A}}\right)$ and $\left(\hat{B},| |_{\hat{B}}\right)$ (and their matrix units by $E_{i j}^{(\hat{A})}$ and $\left.E_{i j}^{(\hat{B})}\right)$ respectively. It is easily seen that the maximal semisimple homogeneous subalgebra of $\hat{A}$ is equal to $\hat{A}_{1} \oplus \hat{A}_{2} \oplus \hat{A}_{3}$ where

$$
\hat{A}_{1}:=\left\langle E_{i j}^{(\hat{A})} \mid 1 \leq i, j \leq k+l\right\rangle \cong M_{k, l}
$$

$$
\begin{aligned}
\hat{A}_{2}:= & \left\langle E_{i j}^{(\hat{A})}+E_{i+m, j+m}^{(\hat{A})}, E_{p q}^{(\hat{A})}+E_{p+m, q-m}^{(\hat{A})}\right| k+l+1 \leq i, j, p \leq k+l+m, \\
& k+l+m+1 \leq q \leq k+l+2 m\rangle \cong M_{m}(F \oplus t F), \\
\hat{A}_{3}:= & \left\langle E_{i j}^{(\hat{A})} \mid k+l+2 m+1 \leq i, j \leq k+l+2 m+r+s\right\rangle \cong M_{r, s}
\end{aligned}
$$

and its Jacobson radical is generated as a two-sided ideal by the homogeneous elements of degree zero $w_{12}^{(\hat{A})}:=E_{1, k+l+1}^{(\hat{A})}$ and $w_{23}^{(\hat{A})}:=E_{k+l+1, k+l+2 m+1}^{(\hat{A})}$. Finally, since for $w_{12}^{(\hat{A})}$ and $w_{23}^{(\hat{A})}$ and the homogeneous (minimal) idempotents $e_{1}^{(\hat{A})}:=E_{11}^{(\hat{A})} \in \hat{A}_{1}, e_{2}^{(\hat{A})}:=E_{k+l+1, k+l+1}^{(\hat{A})}+E_{k+l+m+1, k+l+m+1}^{(\hat{A})} \in \hat{A}_{2}$ and $e_{3}^{(\hat{A})}:=E_{k+l+2 m+1, k+l+2 m+1}^{(\hat{A})} \in \hat{A}_{3}$ the relations appearing in Definition 2.1 are satisfied, we have that $\hat{A}$ is a minimal superalgebra. Moreover the subspace $\hat{A}_{13}$ is irreducible as a ( $\hat{A}_{1}, \hat{A}_{3}$ )-bimodule.

The same conclusion holds for the superalgebra $\hat{B}$, which has semisimple part $\hat{B}_{s s}=\hat{B}_{1} \oplus \hat{B}_{2} \oplus \hat{B}_{3}$ coinciding with that of $\hat{A}$ (for the elements defining $\hat{B}$ it is sufficient to replace the supscpript $(\hat{A})$ with $(\hat{B})$ and observe that, in this case, $w_{23}^{(\hat{B})}$ is homogeneous of degree 1).
Lemma 4.1. If $k>l$ and $r>s$, for the minimal superalgebras $\left(\hat{A},| |_{\hat{A}}\right)$ and $\left(\hat{B},| |_{\hat{B}}\right)$ one has that $T_{\mathbb{Z}_{2}}(\hat{A}) \nsubseteq T_{\mathbb{Z}_{2}}(\hat{B})$ and $T_{\mathbb{Z}_{2}}(\hat{A}) \nsubseteq T_{\mathbb{Z}_{2}}(\hat{B})$. Consequently, $\hat{A}$ and $\hat{B}$ are not isomorphic as graded algebras.
Proof. As a first step, we prove that $T_{\mathbb{Z}_{2}}(\hat{A}) \nsubseteq T_{\mathbb{Z}_{2}}(\hat{B})$. To this end, let us consider the element of $F\langle Y \cup Z\rangle$
$f:=\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right) z_{1} \operatorname{St}_{2(m+r)-1}\left(y_{2(m+k)}, \ldots, y_{2(2 m+k+r-1)}\right)$
and observe that any non-zero graded evaluation of the Standard polynomials $\mathrm{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right)$ and $\mathrm{St}_{2(m+r)-1}\left(y_{2(m+k)+1}, \ldots, y_{2(2 m+k+r)-1}\right)$ in $\hat{A}$ is in $J(\hat{A}) \oplus \hat{A}_{3}$ and $\hat{A}_{1} \oplus J(\hat{A})$, respectively. Therefore any nonzero graded evaluation of $f$ in $\hat{A}$ is in $J(\hat{A})^{2}$. In particular, it has to be a linear combination of the matrix units $E_{i j}^{(\hat{A})}$ with either $1 \leq i \leq k$ and $k+l+2 m+r+1 \leq j \leq k+l+2 m+r+s$ or $k+1 \leq i \leq k+l$ and $k+l+2 m+1 \leq j \leq k+l+2 m+r$. Now, take the polynomial

$$
\begin{equation*}
g:=\operatorname{St}_{2 l}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l}\right) f \operatorname{St}_{2 s}\left(\hat{y}_{2 l+1}, \ldots, \hat{y}_{2(s+l)}\right) \tag{5}
\end{equation*}
$$

where $\hat{y}_{1}, \ldots, \hat{y}_{2(s+l)}$ are pairwise different variables of degree zero of $F\langle Y \cup$ $Z\rangle$ not involved in $f$. Let $\mu: F\langle Y \cup Z\rangle \longrightarrow \hat{A}$ be a non-zero graded evaluation of $g$ in $\hat{A}$. Since $g$ is multilinear, for our aims we can assume that such an evaluation is made at a homogeneous basis of $\hat{A}$ including the matrix units $E_{i j}^{(\hat{A})}$ of $\hat{A}_{1}$ and $\hat{A}_{3}$. According to the above discussion, $\mu\left(\operatorname{St}_{2 l}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l}\right)\right)$ must be in $\hat{A}_{1}$ and $\mu\left(\operatorname{St}_{2 s}\left(\hat{y}_{2 l+1}, \ldots, \hat{y}_{2(s+l)}\right)\right)$ must be in $\hat{A}_{3}$. Taking in account the homogeneous degree of these factors and the original assumption that $k>l$ and $r>s$, the Amitsur-Levitzki Theorem yields that $\mu\left(\operatorname{St}_{2 l}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l}\right)\right)$ is linear combination of the matrices $E_{\alpha \beta}^{(\hat{A})}$ and $\mu\left(\operatorname{St}_{2 s}\left(\hat{y}_{2 l+1}, \ldots, \hat{y}_{2(s+l)}\right)\right)$ of the matrices $E_{p q}^{(\hat{A})}$, where $1 \leq \alpha, \beta \leq k$ and $k+l+2 m+1 \leq p, q \leq k+l+2 m+r$. This fact combined with the previous observations on the graded evaluations of the polynomial $f$ allows to conclude that $g$ is an element of $T_{\mathbb{Z}_{2}}(\hat{A})$.

Finally, as $\left(\hat{B}_{1} \oplus \hat{B}_{12} \oplus \hat{B}_{2}\right)^{(0)}$ contains a subalgebra isomorphic to $U T(k, m)$, for every $1 \leq i \leq k$ and $k+l+1 \leq j \leq k+l+m$ there exists a graded evaluation of $\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right)$ in $\hat{B}$ equal to $E_{i j}^{(\hat{B})}$. Analogously, for every $k+l+m+1 \leq p \leq k+l+2 m$ and $k+l+2 m+1 \leq q \leq k+l+2 m+r$ there is an evaluation of $\operatorname{St}_{2(m+r)-1}\left(y_{2(m+k)}, \ldots, y_{2(2 m+k+r-1)}\right)$ equal to $E_{p q}^{(\hat{B})}$. Thus, fixed integers $i, j, p, q$ as above with the extra assumption that $i>1$ if $k>1$ and $q<k+l+2 m+r$ if $r>1$, since that in any case we can find an evaluation of $\mathrm{St}_{2 l}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l}\right)$ equal to $E_{1 i}^{(\hat{B})}$ and one of $\operatorname{St}_{2 s}\left(\hat{y}_{2 l+1}, \ldots, \hat{y}_{2(s+l)}\right)$ equal to $E_{q, k+l+2 m+r}^{(\hat{B})}$, evaluating the variable $z_{1}$ at $E_{j p}^{(\hat{B})}+E_{j+m, p-m}^{(\hat{B})}$ we have found a graded evaluation of the polynomial $g$ in $\hat{B}$ equal to $E_{1, k+l+2 m+r}^{(\hat{B})}$. Therefore $g$ is not a graded polynomial identity for $\hat{B}$, and the desired conclusion holds.

On the other hand, the same arguments used above allow to conclude that the polynomial

$$
\Gamma:=\operatorname{St}_{2 l}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l}\right) \delta \operatorname{St}_{2 s}\left(\hat{y}_{2 l+1}, \ldots, \hat{y}_{2(s+l)}\right),
$$

where
$\delta:=\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right) y_{2(m+k)} \operatorname{St}_{2(m+r)-1}\left(y_{2(m+k)+1}, \ldots, y_{2(2 m+k+r)-1}\right)$
and $\hat{y}_{1}, \ldots, \hat{y}_{2(s+l)}$ are pairwise different elements of degree zero of $F\langle Y \cup Z\rangle$ not involved in $\delta$, is in $T_{\mathbb{Z}_{2}}(\hat{B}) \backslash T_{\mathbb{Z}_{2}}(\hat{A})$, and this completes the proof.

We prove now that the graded algebras $\hat{A}$ and $\hat{B}$ are, up to isomorphisms, the unique elements of the class of minimal superalgebras we are dealing with (we continue to use the notations introduced at the beginning of the Section).

Lemma 4.2. For a minimal superalgebra $A=\left(A_{1} \oplus A_{2} \oplus A_{3}\right)+J(A)$ such that $k>l, r>s$ and $A_{13}$ is irreducible as a $\left(A_{1}, A_{3}\right)$-bimodule there exist two isomorphism-types (according to $\left|w_{12}\right|+\left|w_{23}\right|(\bmod 2)$ ).

Proof. Let us consider the elements

$$
u_{12}:=w_{12} \rho_{2}-w_{12} \bar{\rho}_{2} \quad \text { and } \quad u_{23}:=\rho_{2} w_{23}-\bar{\rho}_{2} w_{23}
$$

of $A$. When $\left|w_{12}\right|=\left|w_{23}\right|=1$, both of them are of degree 0 and, from the fact that $u_{12} u_{23}=w_{12} w_{23} \neq 0_{A}$, it is easily seen that the subalgebra of $A$ generated by $A_{1}, A_{2}$ and $A_{3}$ and $u_{12}$ and $u_{23}$ is a minimal superalgebra coinciding with $A$. In the same manner, if $\left|w_{12}\right|=1$ and $\left|w_{23}\right|=0, u_{12}$ has degree 0 , whereas $u_{23}$ has degree 1 . In this case if we replace the elements $w_{12}$ and $w_{23}$ with $u_{12}$ and $u_{23}$ respectively, we also obtain the superalgebra $A$. Therefore we conclude that it is always possible to assume that $\left|w_{12}\right|=0$, and hence we are left with two possibilities (according to $\left|w_{23}\right|$ ).

At this point, take a minimal superalgebra $B$ with maximal semisimple homogeneous subalgebra $B_{s s}=B_{1} \oplus B_{2} \oplus B_{3}$ coinciding with $A_{s s}$ and homogeneous radical elements $z_{12}$ (which, as $w_{12}$, we can assume of degree zero) and $z_{23}$ such that $\left|z_{23}\right|=\left|w_{23}\right|$ and $B_{13}$ is irreducible as a $\left(B_{1}, B_{3}\right)$-bimodule. We aim to show that $A$ and $B$ are isomorphic as graded algebras. Now, for every $1 \leq j \leq 3$, call $f_{j}$ the minimal idempotents (of degree zero) of $B_{j}$ and write $f_{2}$ as $f_{2}=\nu_{2}+\bar{\nu}_{2}$, where $\nu_{2}$ is the the non-homogeneous minimal idempotent of the minimal two-sided ideal $\mathcal{J}_{2}$ of $B_{2}$ such that $B_{2}=\mathcal{J}_{2} \oplus \overline{\mathcal{J}}_{2}$ (we are regarding $B$ as an algebra with action of an automorphism $\phi_{B}$ of order 2 and setting $\overline{\mathcal{J}}_{2}:=\phi_{B}\left(J_{2}\right)$ and $\left.\bar{\nu}_{2}:=\phi_{B}\left(\nu_{2}\right)\right)$. Let us consider the superalgebras isomorphisms

$$
\Psi_{j j}: A_{j} \longrightarrow B_{j}
$$

such that $\Psi_{j j}\left(e_{j}\right)=f_{j}$ if $j \neq 2$ and $\Psi_{22}\left(\rho_{2}\right)=\nu_{2}$ (and hence $\left.\Psi_{22}\left(\bar{\rho}_{2}\right)=\bar{\nu}_{2}\right)$. Applying the same arguments of the previous Section, for every $1 \leq i<j \leq$ 3 one constructs a vector space isomorphism $\Psi_{i j}$ from the subspace $A_{i j}$ of $A$ into the subspace $B_{i j}$ of $B$, which clearly preserves the $\mathbb{Z}_{2}$-grading when $(i, j) \neq(1,3)$. For what concerns the latter case, for the map
$\Psi_{13}: A_{1} w_{12} \rho_{2} w_{23} A_{3} \longrightarrow B_{1} z_{12} \nu_{2} z_{23} B_{3}, a_{1} w_{12} \rho_{2} w_{23} a_{3} \longmapsto \Psi_{11}\left(a_{1}\right) z_{12} \nu_{2} z_{23} \Psi_{33}\left(a_{3}\right)$ invoking (3) one has that

$$
\begin{aligned}
\Psi_{13}\left(\phi\left(w_{12} \rho_{2} w_{23}\right)\right) & =\Psi_{13}\left((-1)^{\left|w_{23}\right|} w_{12} \bar{\rho}_{2} w_{23}\right)=\Psi_{13}\left((-1)^{\left|w_{23}\right|} w_{12} \rho_{2} w_{23}\right) \\
& =(-1)^{\left|z_{23}\right|} z_{12} \nu_{2} z_{23}=(-1)^{\left|z_{23}\right|} z_{12} \bar{\nu}_{2} z_{23} \\
& =\phi_{B}\left(z_{12} \nu_{2} z_{23}\right)=\phi_{B}\left(\Psi_{13}\left(w_{12} \rho_{2} w_{23}\right)\right)
\end{aligned}
$$

from which it follows that the $\mathbb{Z}_{2}$-grading is still preserved.
Since $A=\oplus_{1 \leq i \leq j \leq 3} A_{i j}$ and $B=\oplus_{1 \leq i \leq j \leq 3} B_{i j}$, these maps induce a vector space isomorphism from $A$ into $B$, which is easily verified (the details are left to the reader) to actually be a superalgebras isomorphism.

Therefore we are left with at most two isomorphism-types for the superalgebras we are considering. From the fact that the previously constructed minimal non-isomorphic superalgebras, $\hat{A}$ and $\hat{B}$, satisfy all the assumptions of the Lemma, the desired conclusion follows.

We are now in a position to state the first main result of this Section.

Theorem 4.3. Let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ with

$$
A_{1}=M_{k, l}, \quad A_{2}=M_{m}(F \oplus t F) \quad \text { and } \quad A_{3}=M_{r, s}
$$

If $A_{13}$ is irreducible as a $\left(A_{1}, A_{3}\right)$-bimodule, then $A$ generates a minimal supervariety of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus A_{2} \oplus A_{3}\right)$.

Proof. Using verbatim the same arguments of the proof of Theorem 3.2, we reduce to considering a minimal superalgebra $B=B_{s s}+J(B)$ such that $B_{s s}=B_{1} \oplus B_{2} \oplus B_{3}$ with $B_{i}=A_{i}$ and homogeneous minimal idempotents $f_{i} \in B_{i}$ for every $1 \leq i \leq 3$, its Jacobson radical is generated by homogeneous elements $z_{12}$ and $z_{23}$ with $z_{12} z_{23} \neq 0_{B}$ and $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$. It is sufficient to show that $T_{\mathbb{Z}_{2}}(A)=T_{\mathbb{Z}_{2}}(B)$.

To this aim, we preliminarly observe that we can assume that $B_{13}$ is irreducible as well. In fact, suppose that this is not the case. Hence, writing as usual $f_{2}$ as $\nu_{2}+\bar{\nu}_{2}$, one has that

$$
B_{13}=B_{1} z_{12} \nu_{2} z_{23} B_{3} \oplus B_{1} z_{12} \bar{\nu}_{2} z_{23} B_{3} .
$$

Let $I$ be the ideal of $B$ generated by $z_{12} \nu_{2} z_{23}-z_{12} \bar{\nu}_{2} z_{23}$, which is obviously homogeneous. Now, for the superalgebra $B^{\prime}:=B / I$ it is easily seen that its maximal semisimple homogeneous subalgebra coincides with $B_{s s}$ and, since $I \subseteq B_{13}$, its Jacobson radical is equal to $J(B) / I$. Furthermore $\left(z_{12}+\right.$ $I) \cdot\left(z_{23}+I\right) \neq 0_{B^{\prime}}$, since $z_{12} z_{23}$ is not in $I$. Therefore $B^{\prime}$ is a minimal superalgebra such that $B_{13}^{\prime}$ is irreducible and

$$
T_{\mathbb{Z}_{2}}(B) \subseteq T_{\mathbb{Z}_{2}}\left(B^{\prime}\right)
$$

As $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$, for our aims it is sufficient to replace the superalgebra $B$ with $B^{\prime}$.

If $k>l$ and $r>s$ Lemma 4.1 and 4.2 yield that $A$ and $B$ are isomorphic either to $\hat{A}$ or to $\hat{B}$. In particular, from Lemma 4.1 it follows that the containment $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$ implies that $A$ is isomorphic to $B$ as a graded algebra and, consequently, $T_{\mathbb{Z}_{2}}(A)=T_{\mathbb{Z}_{2}}(B)$.

Finally, assume that $k=l$ (analogous arguments can be used when $r=s$, and for this reason we avoid to discuss it). We aim to show that all the superalgebras satisfying these hypothesis have the same $T_{\mathbb{Z}_{2}}$-ideal of graded polynomial identities, namely $T_{\mathbb{Z}_{2}}\left(A_{1}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{2}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{3}\right)$ (we could actually strenghten the conclusion of Lemma 4.2 and prove that in this case there exists only one isomorphism-type of minimal superalgebra with the required properties, but we have preferred to adopt this other startegy since it will be useful in the sequel). We notice that, as the first part of the proof of Lemma 4.2 does not depend on the assumption on the pairs of integers $(k, l)$ and $(r, s), A$ and $B$ are isomorphic either to $\hat{A}$ or to $\hat{B}$. In any case, both of these superalgebras can be written as

$$
\left(\begin{array}{cc}
V & U \\
0 & W
\end{array}\right)
$$

where $V=M_{k, l}, U=M_{(k+l) \times(2 m+r+s)}$ and $W \subseteq M_{2 m+r+s}$ is the subalgebra of $\hat{A}\left(\hat{B}\right.$, respectively) generated by $\hat{A}_{2}, \hat{A}_{3}$ and $w_{23}^{(\hat{A})}\left(\hat{B}_{2}, \hat{B}_{3}\right.$ and $z_{23}^{(\hat{B})}$,
respectively). Since $k=l$, from Proposition 5.3 of [2] we deduce that $V$ is $\mathbb{Z}_{2}$-regular and Theorem 4.5 of [2] yields that the ideal of graded polynomial identities satisfied by this algebra is equal to $T_{\mathbb{Z}_{2}}(V) \cdot T_{\mathbb{Z}_{2}}(W)=$ $T_{\mathbb{Z}_{2}}\left(A_{1}\right) \cdot T_{\mathbb{Z}_{2}}(W)$. But, according to the discussion of Section 2 of [3], in any event $W$ is a minimal superalgebra with maximal semisimple homogeneous subalgebra coinciding with $A_{2} \oplus A_{3}$. At this stage, from Theorem 5.3 of [4] one has that $T_{\mathbb{Z}_{2}}(W)=T_{\mathbb{Z}_{2}}\left(A_{2}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{3}\right)$, and this concludes the proof.

It remains to analyze what happens when the $\left(A_{1}, A_{3}\right)$-bimodule $A_{13}$ is not irreducible, namely to prove the main result of this paper which is claimed in Theorem 2.4.

Proof of Theorem 2.4. Using the previously presented arguments, replacing the element $w_{12}$ with $u_{12}:=w_{12} \rho_{2}-w_{12} \bar{\rho}_{2}$ if $\left|w_{12}\right|=1$ and $w_{23}$ with $u_{23}:=\rho_{2} w_{23}-\bar{\rho}_{2} w_{23}$ again if $\left|w_{23}\right|=1$, we can always assume that the radical elements of $A$ appearing in Definition 2.1 have degree zero (we notice that, since $A_{13}$ is not irreducible, we also have $u_{12} w_{23} \neq 0_{A}$ and $w_{12} u_{23} \neq 0_{A}$ ). Furthermore, the same lines of reasoning applied in the previous situations allow to conclude that there exists one isomorphism type for the minimal superalgebra $A$ when $A_{13}$ is not irreducible as a $\left(A_{1}, A_{3}\right)$ bimodule (the easy details are left to the reader).

Now, suppose first that either $k=l$ or $r=s$. We aim to show that $\operatorname{supvar}(A)$ is minimal. To this purpose, as in the proof of Theorem 3.2 take a minimal superalgebra $B=B_{s s}+J(B)$ such that $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$ and $B_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$. We have to prove that $A$ and $B$ satisfy the same graded polynomial identities. Now, if $B_{13}$ is not irreducible, by the above remark $A$ is isomorphic to $B$ as a graded algebra, and we are done. In the remaining case, in the proof of Theorem 4.3 we have established that

$$
T_{\mathbb{Z}_{2}}(B)=T_{\mathbb{Z}_{2}}\left(A_{1}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{2}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{3}\right)
$$

As the second term of the above equality is contained in $T_{\mathbb{Z}_{2}}(A)$, the desired conclusion holds.

Conversely, assume that $k>l$ and $r>s$. The final target is to construct a minimal superalgebra $A^{\prime}$ such that $T_{\mathbb{Z}_{2}}(A) \varsubsetneqq T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)$ and $\exp _{\mathbb{Z}_{2}}(A)=$ $\exp _{\mathbb{Z}_{2}}\left(A^{\prime}\right)$. To this end, let $I$ be the ideal of $A$ generated by the element $w_{12} \rho_{2} w_{23}-w_{12} \bar{\rho}_{2} w_{23}$, which is clearly homogeneous, and set $A^{\prime}:=A / I$. Obviously,

$$
T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)
$$

As seen in the proof of Theorem 4.3 (in that case for the algebra $B$ ), $A^{\prime}$ is a minimal superalgebra with maximal semisimple homogeneous subalgebra equal to $A_{1} \oplus A_{2} \oplus A_{3}$. Furthermore, if $\phi^{\prime}$ is the action induced by $\phi$ on $A^{\prime}$, one has that

$$
\phi^{\prime}\left(w_{12} \rho_{2} w_{23}+I\right)=w_{12} \bar{\rho}_{2} w_{23}+I=w_{12} \rho_{2} w_{23}+I
$$

(we have supposed that $\left|w_{12}\right|=\left|w_{23}\right|=0$ ). This means that $A_{13}^{\prime}$ is irreducible. Therefore, $A^{\prime}$ is isomorphic to the superalgebra $\hat{A}$.

On the other hand, let us consider the subalgebra of $U T(2(k+l), 2 m, 2(r+$ $s)$ ) consisting of matrices of the form

$$
\left(\begin{array}{cccccc}
K & 0 & I_{1} & I_{2} & I_{3} & I_{4} \\
0 & K & I_{2} & I_{1} & I_{4} & I_{3} \\
0 & 0 & L & P & I_{5} & I_{6} \\
0 & 0 & P & L & I_{6} & I_{5} \\
0 & 0 & 0 & 0 & Q & 0 \\
0 & 0 & 0 & 0 & 0 & Q
\end{array}\right)
$$

where $K \in M_{k+l}, L, P \in M_{m}, Q \in M_{r+s}, I_{1}, I_{2} \in M_{(k+l) \times m}, I_{3}, I_{4} \in$ $M_{(k+l) \times(r+s)}, I_{5}, I_{6} \in M_{m \times(r+s)}$. We endowe it with the grading induced by the $2(k+l+m+r+s)$-tuple

$$
(\underbrace{0, \ldots, 0}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }}, \underbrace{1, \ldots, 1}_{k \text { times }}, \underbrace{0, \ldots, 0}_{l \text { times }} \underbrace{0, \ldots, 0}_{m \text { times }}, \underbrace{1, \ldots, 1}_{m \text { times }}, \underbrace{0, \ldots, 0}_{r \text { times }}, \underbrace{1, \ldots, 1}_{s \text { times }}, \underbrace{1, \ldots, 1}_{r \text { times }}, \underbrace{0, \ldots, 0}_{s \text { times }}),
$$

which we denote by $\check{A}$. If $E_{i j}^{(\check{A})}$ are its matrix units, it is easily seen that the maximal semisimple subalgebra of $\check{A}$ is equal to $\check{A}_{1} \oplus \check{A}_{2} \oplus \check{A}_{3}$ where

$$
\check{A}_{1}:=\left\langle E_{i j}^{(\check{A})}+E_{i+k+l, j+k+l}^{(\check{A})} \mid 1 \leq i, j \leq k+l\right\rangle \cong M_{k, l}
$$

$$
\check{A}_{2}:=\left\langle E_{i j}^{(\check{A})}+E_{i+m, j+m}^{(\check{A})}, E_{p q}^{(\check{A})}+E_{p+m, q-m}^{(\check{A})}\right| 2(k+l)+1 \leq i, j, p \leq 2(k+l)+m
$$

$$
2(k+l)+m+1 \leq q \leq 2(k+l+m)\rangle \cong M_{m}(F \oplus t F)
$$

$\check{A}_{3}:=\left\langle E_{i j}^{(\check{A})}+E_{i+r+s, j+r+s}^{(\check{A})} \mid 2(k+l+m)+1 \leq i, j \leq 2(k+l+m)+r+s\right\rangle \cong M_{r, s}$ and its Jacobson radical is generated as a two-sided ideal by the homogeneous elements of degree zero $w_{12}^{(\breve{A})}:=E_{1,2(k+l)+1}^{(\breve{A})}+E_{k+l+1,2(k+l)+m+1}^{(\breve{A})}$ and $w_{23}^{(\check{A})}:=E_{2(k+l)+1,2(k+l+m)+1}^{(\check{A})}+E_{2(k+l)+m+1,2(k+l+m)+r+s+1}^{(\check{A})}$. Finally, since for $w_{12}^{(\check{A})}$ and $w_{23}^{(\check{A})}$ and the homogeneous (minimal) idempotents $e_{1}^{(\check{A})}:=$ $E_{11}^{(\check{A})}+E_{k+l+1, k+l+1}^{(\check{A})} \in \check{A}_{1}, e_{2}^{(\check{A})}:=E_{2(k+l)+1,2(k+l)+1}^{(\check{A})}+E_{2(k+l)+m+1,2(k+l)+m+1}^{(\check{A})} \in$ $\check{A}_{2}$ and $e_{3}^{(\check{A})}:=E_{2(k+l+m)+1,2(k+l+m)+1}^{(\check{A})}+E_{2(k+l+m)+r+s+1,2(k+l+m)+r+s+1}^{(\check{A})} \in$ $\check{A}_{3}$ the relations appearing in Definition 2.1 are satisfied, we have that $\check{A}$ is a minimal superalgebra. Furthermore $\check{A}_{13}$ is not irreducible as $\left(\check{A}_{1}, \check{A}_{3}\right)$ bimodule. Hence from the uniqueness, up to isomorphism, of the superalgebra $A$ we conclude that $A$ is isomorphic to $\check{A}$.

At this stage, take the polynomials $f$ and $g$ defined in (4) and (5), respectively. We have shown there that $g \in T_{\mathbb{Z}_{2}}(\hat{A})=T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)$. We claim that it is not a graded polynomial identity for the superalgebra $\check{A}$, and hence for $A$. In fact, for every $1 \leq i \leq k$ and $2(k+l)+1 \leq j \leq 2(k+l)+m$ there exists a graded evaluation of $\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right)$ in $\check{A}$ equal to $E_{i j}^{(\check{A})}+E_{i+k+l, j+m}^{(\check{A})}$. Analogously, for every $2(k+l)+1 \leq p \leq 2(k+l)+m$ and $2(k+l+m)+1 \leq q \leq 2(k+l+m)+r$ there is an evaluation of $\mathrm{St}_{2(m+r)-1}\left(y_{2(m+k)}, \ldots, y_{2(2 m+k+r-1)}\right)$ equal to $E_{p q}^{(\check{A})}+E_{p+m, q+r+s}^{(\check{A})}$. Thus, fixed integers $i, j, p, q$ as above with the extra assumption that $i>1$ if
$k>1$ and $q<2(k+l+m)+r$ if $r>1$, evaluating the variable $z_{1}$ at $E_{j+m, p}^{(\check{A})}+E_{j, p+m}^{(\check{A})}$, we have found a graded evaluation of the polynomial $f$ in $\check{A}$ equal to $E_{i, q+r+s}^{(\check{A})}+E_{i+k+l, q^{*}}^{(\check{A})}$. Since we can find in any event an evaluation of $\operatorname{St}_{2 l}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l}\right)$ equal to $E_{1 i}^{(\check{A})}+E_{k+l+1, k+l+i}^{(\check{A})}$ and one of $\mathrm{St}_{2 s}\left(\hat{y}_{2 l+1}, \ldots, \hat{y}_{2(s+l)}\right)$ equal to $E_{q, 2(k+l+m)+r}^{(\check{A})}+E_{q+r+s, 2(k+l+m+r)+s}^{(\check{A})}$, the claim is confirmed. Therefore $g$ is in $T_{\mathbb{Z}_{2}}\left(A^{\prime}\right) \backslash T_{\mathbb{Z}_{2}}(A)$, and this completes the proof.

## References

[1] F. Benanti, A. Giambruno, M. Pipitone, Polynomial identities on superalgebras and exponential growth, J. Algebra 269 (2003), 422-438.
[2] O.M. Di Vincenzo, R. La Scala, Block-triangular matrix algebras and factorable ideals of graded polynomial identities, J. Algebra 279 (2004), 260-279.
[3] O.M. Di Vincenzo, V.R.T. da Silva, E. Spinelli, Minimal supervarieties with factorable ideal of graded polynomial identities, J. Pure Appl. Algebra 220 (2016), 1316-1330.
[4] O.M. Di Vincenzo, E. Spinelli, On some minimal supervarieties of exponential growth, J. Algebra 368 (2012), 182-198.
[5] A. Giambruno, A. Regev, Wreath products and P.I. algebras, J. Pure Appl. Algebra 35 (1985), 133-149.
[6] A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155.
[7] A. Giambruno, M. Zaicev, Exponential codimension growth of PI algebras: an exact estimate, Adv. Math. 142 (1999), 221-243.
[8] A. Giambruno, M. Zaicev, Codimension growth and minimal superalgebras, Trans. Amer. Math. Soc. 355 (2003), 293-308.
[9] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, Vol. 122, Amer. Math. Soc., Providence, RI, 2005.
[10] A.R. Kemer, Ideals of identities of associative algebras, Translation of Math Monographs, Vol. 87, Amer. Math. Soc., Providence, RI, 1991.
[11] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152.

## ONOFRIO MARIO DI VINCENZO

Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata
Via dell'Ateneo Lucano, 10
85100-POTENZA (Italy)
e-mail: onofrio.divincenzo@unibas.it

## VIVIANE RIBEIRO TOMAZ DA SILVA

Departamento de Matemática, Instituto de Ciências Exatas
Universidade Federal de Minas Gerais
31270-901 BELO HORIZONTE (Brazil)
e-mail: viviane@mat.ufmg.br

## ERNESTO SPINELLI

Dipartimento di Matematica "G. Castelnuovo"

Università degli Studi di Roma "La Sapienza" Piazzale Aldo Moro 5
00185-ROMA (Italy)
e-mail: spinelli@mat.uniroma1.it


[^0]:    ${ }^{1}$ The first named author was supported by RIL of Università della Basilicata. The second named author was partially supported by CNPq - Brasil grant 305339/2013-3 and "Para mulheres na Ciência" (L'ORÉAL-ABC-UNESCO).

