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Abstract—Test suites tend to become large and complex after software evolution iterations, thus increasing effort and cost to execute

regression testing. In this context, test suite reduction approaches could be applied to identify subsets of original test suites that

preserve the capability of satisfying testing requirements and revealing faults. In this paper, we propose Multi-Objective test suites

REduction (namedMORE+): a three-dimension approach for test suite reduction. The first dimension is the structural one and

concerns the information on how test cases in a suite exercise the under-test application. The second dimension is functional and

concerns how test cases exercise business application requirements. The third dimension is the cost and concerns the time to execute

test cases. We defineMORE+ as a multi-objective approach that reduces test suites so maximizing their capability in revealing faults

according to the three considered dimensions. We have comparedMORE+ with seven baseline approaches on 20 Java applications.

Results showed, in particular, the effectiveness ofMORE+ in reducing test suites with respect to these baselines, i.e., significantly

more faults are revealed with test suites reduced by applyingMORE+.

Index Terms—Multi-objective approach, regression testing, testing, test suite reduction

Ç

1 INTRODUCTION

REGRESSION testing is conducted after software evolution
operations, e.g., enhancements and patching. Regres-

sion testing aims to: (i) guarantee that software evolution
operations do not compromise the expected behavior of a
software application and (ii) optimize an original/existing
test suite that tends to grow larger and to become complex
after the execution of these operations. During regression
testing, a software engineer conducts several technical and
business activities that affect the success or failure of a
software project [1]. Relevant activities are: (i) test case
prioritization; (ii) test case selection; and (iii) test suite
reduction [2], [3], [4]. Test case prioritization concerns the
identification of the ordering of test cases that maximizes
desirable properties, such as early fault detection. Test pri-
oritization aims to early detect the presence of faults but,
sometimes, it has been also combined with diagnosis to
speed-up the faults localization, e.g., [5]. Test case selection
approaches seek to identify test cases that are relevant to
test recent changes in an application. Test suite reduction
approaches seek to “minimize” the original test suite by
reducing the number of tests to be executed for testing
subsequent versions of the application (e.g., removing

redundant test cases) and, at the same time, to preserve test
requirements of the original test suite. Test suite reduction
is sometimes also called minimization, meaning that the
elimination of test cases from the original test suite is not
permanent [2].

Although test case selection and test suite reduction are
often (wrongly) used interchangeably, they are different [2].
One of the most remarkable difference is that test suite
reduction approaches reduce test suite by preserving the
test requirements of the original suite in the reduced one.
Test suite reduction approaches often use information about
the last-tested application version (e.g., code coverage, fault
locations and density) to identify test cases to be removed
(e.g., redundant test cases), thus preserving those test cases
that exercise the changed parts of a subsequent version of
an application. Instead, test case selection: (i) is temporary
and specific for a pair of application versions (e.g., the last-
tested application version and the subsequent to-be-tested
one); (ii) does not aim to preserve the test requirements of
the original test suite, but it focuses on the selection of test
cases that test the changed part of the application source
code; and (iii) often uses diff operations between the code of
last-tested and new to-be-tested application versions to
identify changes in the new to-be-tested application [2], [6].

A number of approaches for test suite reduction has been
proposed in the literature [2], [7], [8], [9], [10], [11], [12]. To
evaluate them and compare one another a number of empir-
ical studies have been also conducted [9], [10], [13], [14].
However, these studies achieved contrasting results. For
instance, Rothermel et al. [13] reported that fault-detection
capability of reduced test suites can be sensibly worse than
original test suites. Conversely, Wong et al. [14] and Zhang
et al. [9] showed that reduction approaches could produce
test suites quite competitive with respect to the original
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ones. Existing approaches (e.g., [7], [8], [9], [10], [11]) are
mostly based on a single dimension and exploit code cover-
age as a proxy for estimating the capability of a suite in
detecting faults. Instead, only a few attempts exist to reduce
test suites on the basis of multiple dimensions [2]. These
approaches [2], [7], [12] mainly consider structural informa-
tion (e.g., code coverage) and cost (e.g., time) to execute
test cases and ignore functional information (e.g., business

requirements1 coverage). However, recent results show that:
(i) the use of code coverage as proxy measure for estimating
the capability in finding faults of a test suite is not always ade-
quate as expected [15] and (ii) considering multiple dimen-
sions is quite promising [16], [17], [18], [19], [20]. In our view,
these results suggest that explicitly considering low-level
information (e.g., structural information about the applica-
tion such as code coverage and cost) and high-level informa-
tion (e.g., coverage of functional information such as the ones
described in application requirements) could be promising to
overcome the results achieved by traditional test suite reduc-
tion approaches. To preliminarily investigate on this view,
we have proposed MORE (Multi-Objective test suite REduc-
tion) [21]. It uses the Non-dominated Sorting Genetic Algo-
rithm-II (NSGA-II) [22] to reduce a test suite by applying a
three-dimensional analysis of test cases: (i) structural dimen-
sion concerns information regarding how test cases exercise
the source code of the application under test, (ii) functional
dimension concerns coverage of application requirements,
and (iii) cost dimension is about the time to execute test cases.
To establish a relationship among these three dimensions,
MORE exploits Latent Semantic Indexing (LSI) [23] to com-
pute lexical similarity among application code, test cases,
and application requirements. LSI is an indexing and
retrieval method that discovers existing patterns in the rela-
tionship between terms and concepts contained in textual
documents. The underlying concept of LSI is that terms that
are used in the same context have similar meanings.We have
also reported in [21] a proof of concept in which MORE was
applied to three Java applications and compared it with three
baseline approaches. Obtained results were promising.

In this paper, we present and evaluate an extended version
of MORE, we named it MORE+. Several are the differences
betweenMORE andMORE+. The most important one is that
MORE+ considers the fault-proneness of different parts of
both application code and application requirements, when
reducing test suites. In otherwords,MORE+ reduces test suite
by focusing on those test cases that better test fault-prone
parts of the application under testing. Fault-prone parts of the
application are automatically identified inMORE+ by apply-
ing some maintainability indexes. To assess whether test
suites reduced by MORE+ may be effective as whole test
suites, we have conducted a large experimental evaluation on
20 Java applications (MOREwas originally evaluated on only
three small Java applications).We have also comparedMORE
+with seven baseline approaches. The trends observed in the
results suggest thatMORE+ outperforms existing approaches
since it findsmore faults, at the cost of more time for its execu-
tion. For example, MORE+ outperforms existing reduction

approaches in preserving a high capability to discover faults.
In particular, it is able to find in between 5.9 and 13.4 percent
(with an average of 10.2 percent) more faults than baseline
approaches. A possible drawback of MORE+ is that it might
be costly since it computes lexical similarity and we observed
that this operation requires on average 2.7 minutes, but it
ranges from 0.2 seconds to 14 minutes, depending on the con-
sidered application. Although our approach tends to be costly
with respect to others, it is able to find more faults than them,
thus we observed that it is cost-effective with respect to the
existing approaches even if it is applied to one version of the
application to-be tested. This might be acceptable in many
regressions testing scenarios, e.g., in all those cases where a
reduced test suite is frequently reused to test several versions
of a given application.

We can summarize the main contributions provided in
this new paper as follows:

� MORE+ uses NSGA-II [22] and adopts a binary-
vector encoding, rather than a permutation of a fixed
size as well as done by the original version of the
algorithm, and a set of genetic operators for better
exploring the solution space. Thanks to the new algo-
rithm, MORE+ could also provide the reduced test
suites without the need of pre-specifying the size of
the reduced test suite (e.g., 30 percent of the size of
the original test suite), as well as requested instead
by our originalMORE .

� The approach adopted by MORE+ performs a three-
dimensional analysis of test cases and additionally
exploits software metrics to estimate the most fault-
proneness parts of the application source code and
requirements. By means of software metrics, MORE
+ weights application code and requirements aiming
to preserve test cases that better exercise fault-prone
parts of the application.

� An extensive evaluation of MORE+ through a large
empirical study with 20 Java applications, seven
baseline approaches for comparison, and a number
of criteria representing the standard in the literature
for the assessment of test suite reduction approaches.

Paper Structure. Related work and background are
highlighted in Section 2, while MORE+ is presented in
Section 3. The design of our empirical study and possible
validity threats are shown in Section 4. The obtained results
are reported in Section 5, additional analysis documented in
Section 6, while outcomes and their practical implication are
discussed in Section 7. Final remarks conclude the paper in
Section 8.

2 RELATED WORK AND BACKGROUND

A number of approaches have been suggested to aid regres-
sion testing. The three major branches include test case pri-
oritization, test case selection, and test suite reduction. As
mentioned before, these branches are different one another
because they address different concerns related to regres-
sion testing. Since we are proposing a test suite reduction
approach, we focus the discussion on approaches conceived
for the reduction/minimization of test suites. In the survey
by Yoo and Harman [2], the interested reader can find infor-
mation on test case prioritization and on test case selection

1. The term business (application) requirements indicates all
requirements that are driven by business needs, e.g., product and
process requirements.
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approaches. We conclude this section by presenting back-
ground information on LSI and research work on the recov-
ery of traceability links.

2.1 Traditional Approaches

As for test suite reduction, a number of techniques and
approaches have been proposed [2]. Most of the traditional
approaches use heuristic-based criteria to identify and dis-
card redundant test cases. If a test case satisfies a subset of
the test specifications of another test case, it could be consid-
ered a redundant test case. For instance, Chen and Lau [24]
proposed heuristics to identify essential test cases of a
suite, those test cases minimizing the number of unsatisfied
test specifications. Other traditional approaches reduce test
suites considering code and data-flow coverage information
(e.g., lines of code, statements, definition-use associa-
tions) [7], [8], [9], [10], [11]. For example, Campos and
Abreu [11] encoded existing relationships between test cases
and testing requirement (i.e., code coverage) in a coverage
matrix. This informationwas then used to derive a set of con-
straints and compute a collection of optimal minimal sets
(preserving code coverage capability of original suites as
much as possible). Traditional approaches tend to focus
on one aspect (e.g., code coverage) to reduce test suite.
Malishevsky et al. [25] introduced the notion of cost-
cognizant for test case prioritization, other researchers
introduced and evaluated traditional test suite reduction
approaches for allowing them to explicitly consider two
aspects (e.g., code coverage and execution cost) at the same
time. For instance, Smith et al. [8], [26] empirically compared
four traditional test suite reduction approaches that consider
code coverage to reduce test suite and extended them for
considering also test cost. In particular, they consider:
(i) traditional greedy approach (GRD) that reduces test
suites by identifying redundant test cases according to the
relationships among test cases in terms of code coverage;
(ii) Harrold Gupta Soffa (HGS); and (iii) the Delayed greedy
(DGR) approaches that represent two variants of the greedy
approach that perform additional analysis of the coverage
information before making any greedy choice; and (iv) the 2-
optimal greedy (2OPT) that is another variant that conduces
all-pairs comparison of test cases. Their results show that by
incorporating test case cost (two-objective) in the suite opti-
mization, other than code coverage, the greedy-based
approaches outperform their traditional (single-objective)
implementations.

Other approaches take into account test execution pro-
files (e.g., [12]) or focus on execution costs to reduce test
suites (e.g., [27]). These approaches execute test cases to col-
lect information on the code they exercise [12] or on the exe-
cution cost [27]. This information is then used to profile test
cases and identify the ones that largely exercise the applica-
tion [12] or that lower the cost of the reduced suites [27].

Few approaches exist that reduce test suites considering
how test cases exercise application requirements. For
instance, Selvakumar and Ramaraj [28] proposed a specifi-
cation based approach. They assumed that each change in
the specifications raises the need of regression testing. To
reduce test suites, authors adopted a specification-depen-
dency analysis generated from specifications. Later, Gotlieb
and Marijan [29] suggested a test suite reduction approach

that considers connection with the coverage of require-
ments. Specifically, a flow network is formed by using a
given test suite and requirements this suite covers. Then the
Ford-Fulkerson method and Constraint Programming tech-
niques are applied to compute maximum flows and to
search for optimal flows.

Recently, Shi et al. [30] showed that even if test selection
and test suite reduction are implicitly different they can be
potentially combined. Indeed, authors suggested that if there
is a need to speed up testing, then combining both test suite
reduction and test selection is worthwhile. This combination
can save in the number of tests as long as one a loss in fault-
detection capability is not amajor issue for the tester.

With respect to the approaches highlighted, MORE+
instances an evolutionary algorithm to balance among three
different objectives when reducing test suites. This allows us
to better explore the solution space by equally considering
these three objectives to choose test cases when reducing test
suites.

A recent trend related to regression testing concerns the
reduction of individual test cases instead of entire test suites.
Reducing a test case means to identify its atomic parts and
remove some of them, according to an adequacy criterion. For
example, typically a unit test case is composed of a sequence
of function calls and then test case reduction approaches
remove some of these function calls according to some crite-
ria. Test case reduction approaches, e.g., Groce et al. [31] and
Alipour et al. [32], aim to reduce a test casewhile trying to pre-
serve its fault-detection capability. Groce et al. [31] proposed
cause reduction, an approach to reduce test cases by preserv-
ing the coverage capability of the original test cases, namely
reduced test cases completely cover all the code elements
originally covered by the test cases. Alipour et al. [32] pro-
posed a test-case reduction approach that allows them to only
partially preserve a property (e.g., code coverage). That is,
reduced test cases partially cover code elements originally
covered by the test cases.

2.2 Multi-Objective Approaches

The largest part of the approaches for test suite reduction is
single-objective (e.g., [2], [7]). However, multi-objective tech-
niques have been proposed. For instance, Mirarab et al. [33]
presented an approach to reduce a test suite by selecting a
predefined number of test cases. The approach codified test
case selection as an Integer Linear Programming problem by
applying a function based on two criteria (code coverage and
coverage of changed code) to get final solutions. Differently,
Shi et al. [17] presented an approach that reduces test suites
by considering two objectives: code coverage and number of
killed mutants. They reduced test suites by considering:
(i) how test cases cover source code and (ii) their capability to
detect automatically injected faults. In most cases, evolution-
ary algorithms were exploited by formulating test suite
reduction as an optimization problem [16], [18], [19]. An evo-
lutionary algorithm is a population-basedmetaheuristic opti-
mization algorithm [34], [35] that uses mechanisms inspired
by biological evolution, such as reproduction, mutation,
recombination, and selection for discovering (sub-)optimal
solutions of a problem within a reasonable time. In specific
evolutionary algorithms, such as in the 1+1 evolution strat-
egy, the population could be composed of 1 or few elements.
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Generally speaking, an evolutionary algorithm manipulates
population of solutions for generating such optimal solutions.
The algorithm iteratively evolves an initial population, that is
a set of candidate solutions of the problem under consider-
ation, for searching over the solution space of the problem.
The evolution of the population is conducted by applying
specific genetic operators (e.g., reproduction, mutation) for
changing the population and a fitness function that has to be
customized for determining the quality of the solutions. In
the population evolution, solutions with higher fitness values
are more likely to be preserved and evolved. Often, the algo-
rithm iterations terminate when either a maximum number
of generations have been produced, or a satisfactory fitness
level has been reached for the population. Evolutionary algo-
rithms are broadly applicable and easily tailored to specific
problems. Existing approaches for test suite reduction based
on an evolutionary algorithm often consider either code or
requirement coverage information and try balancing that
information with execution cost of test cases as follows: (i)
explicitly optimizing them as two objectives (e.g., code cover-
age and execution cost) and (ii) redefining a multi-objective
optimization problem to a single-objective by using optimiza-
tion functions conflating more objectives into one. For
instance, Yoo and Harman [16] showed benefits of Pareto
optimality for test case selection and test suite reduction (i.e.,
test suite minimization because the elimination of test case is
not permanent), respectively. The authors presented a two-
objective approach in which code coverage and execution
cost are explicitly considered. To reduce test suites, MA
et al. [18] adopted an objective function that conflates code
coverage and execution cost information. Furthermore, de
Souza et al. [19] exploited the Particle Swarm Optimization
(PSO) algorithm and considered two objectives: requirements
coverage and test case execution cost.

A recent study by Costa [36] proposed a three-objective
approach that reduces test suites and, at the same time, tries
to produce suites that maximize their capability of locate
faults. To this aim, they consider code coverage, execution
time and ’, a metric related to the capability of a test suite to
locate faults by adopting autonomic fault localization tech-
niques. This work presents a number of differences with
respect to MORE+. The most remarkable difference is that
our MORE+ focuses on application requirements to reduce
test suites.

Our approach is inspired to that presented by Yoo and
Harman in [16]. The most remarkable difference is that they
reduced test suite by focusing on low-level information,
such as code coverage and test case execution cost. Con-
versely, we propose an approach to reduce test suites by
considering both low- (i.e., code coverage and execution
cost) and high- level information (i.e., application require-
ments coverage) of each test case. We fill the gap between
these kinds of information by using LSI [23].

Although test suite reduction and test case prioritization
are two formally different problems, they can be considered
related one another [2]. In a previous work, we have investi-
gated the possibility of considering test case prioritization as
a multi-objective optimization problem [3], [37]. We aimed
to determine the ordering of test cases that maximize the
number of detected faults that are both technical (implemen-
tation) and business critical (application requirements). To

this end, we adopted a customized version of the Non-domi-
nated Sorting Genetic Algorithm-II (NSGA-II) algorithm and
used code and requirements coverage information as well as
the cost to execute test cases. To increase the body of knowl-
edge on the usefulness of structural, functional, and cost
dimensions in software regression testing, we decided to use
our gained experience to define a new approach (i.e., the one
presented in this paper) for test suite reduction. Outcomes
further supported our initial hypotheses (i.e., technical and
business dimensions are both useful in regression testing)
and advanced the state-of-the-art in exploiting both low- and
high- level information to test suite reduction.

2.3 Empirical Investigations in the Context of Test
Suite Reduction

To evaluate costs and benefits of test suite reduction techni-
ques and approaches, a number of empirical studies has
been conducted [9], [10], [13], [14]. For example, Zhong
et al. [10] showed that different reduction approaches pro-
duced different test suites even if these approaches were
applied in the same context and reduction degree of test
suites was the same. The experiments documented in the lit-
erature achieved contrasting results. For instance, Rothermel
et al. [13] reported that fault-detection capability of reduced
test suites can be sensibly worse than whole test suites. Con-
versely, Wong et al. [14] showed that representative sets of
test cases had almost the same capability to reveal faults as
original test suites. Zhang et al. [9] showed that traditional
reduction approaches could be quite competitive in reducing
size of test suites, reasonably preserving their capability in
detecting faults. Contrasting results suggest further empiri-
cal investigations on this matter. This is also why we con-
ducted an extensively evaluation of MORE+ comparing it
with a number of baseline approaches for test suite reduc-
tion [8], [9], [10], [16], [26].

2.4 LSI and Traceability/Similarity Links

A traceability link is an association between two software
artifacts that represents the existence of a relationship (e.g.,
overlap, dependency, contribution, evolution, refinement, or
conflict) between such artifacts. Traceability links among
software artifacts provide important insights into the phases
of design, development, evolution, and testing [38], thus
allowing software engineers to understand relationships
that exist within and across different kinds of software arti-
facts (e.g., requirements specifications and code). Traceabil-
ity links are very often not well documented and aligned
with software implementation. Therefore, automated techni-
ques and tools might be needed to infer candidates of trace-
ability links among software artifacts of different kinds (e.g.,
[39], [40], [41], [42], [43], [44]). Fig. 1 shows an example of
two textual-based software artifacts associated one another:
(top) a Java class and (bottom) an application requirement.

Basically, approaches for the recovery of traceability links
compute the similarity among software artifacts. Informa-
tion retrieval (IR) techniques have been suggested to
compute the lexical similarity among textual-based repre-
sentations of software artifacts. For instance, among themost
well-know and used techniqueswe can find: Latent Semantic
Indexing [23], Vector Space Model (VSM) [45] and Latent
Dirichlet Allocation (LDA) [46]. These IR-based techniques,
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have been used to recovery links among software artifacts
such as application code and test cases, application require-
ments and test specifications, application code and require-
ments. Before applying IR-based techniques, software
artifacts have to be preliminary analyzed to prepare the cor-
pus to be analyzed. The preliminary analysis mainly consists
in: (i) defining textual representations of each software arti-
fact to analyze; and (ii) normalizing such textual representa-
tions by splitting words, removing stop words and applying
word stemming techniques [45]. This allows the creation of
textual-based documentation of software artifacts that have
to be compared bymeans of IR techniques.

Existing research is contradictory about which text
retrieval model and technique work best on source code.
For example, Marcus and Maletic [43] observed that LSI
performs at least as well as VSM [45] and in some cases LSI
outperforms VSM. Conversely, Abadi et al. [47] observed
that VSM provides better results than LSI. Similar results
were also obtained by Wang et al. [48]. Instead, other
authors advocate for the use of LDA [46].

In this work, we used LSI to compute the textual similar-
ity among different kinds of software artifacts. We opted for
LSI because it is efficient and has been widely used in trace-
ability recovery although the contrasting results mentioned
just before.

LSI assumes that there is some underlying or latent struc-
ture in word usage that is partially obscured by variability
in word choice. LSI uses statistical techniques to estimate
this latent structure. In particular, a Singular Value Decom-
position (SVD) is applied to a m� n matrix C (also named
term-by-document matrix), where m is the number of terms

and n is the number of documents (artifacts in our case).
SVD constructs a low-rank approximation Ck to a term-
document matrix, for a value of k (i.e., the dimensionality
reduction of the latent structure) that is far smaller than the
original rank of C. Thus, each row/column is mapped to a
k�dimensional space, which is defined by the k principal
eigenvectors (corresponding to the largest eigenvalues) of
CCT and CTC. The matrix Ck is itself still an m� n matrix,
irrespective of k. The choice for a value for k is critical; k
should be large enough to fit the real structure in the text,
but small enough so that we do not also fit the sampling
error.

To increase the performance of LSI, the term-by-
document matrix could be weighted by using the normal-
ized term frequency-inverse document frequency (tf-idf). This
schema allows weighting the relevance of each term with
respect to the set of documents under analysis. In particular,
tf-idf calculates a value for each term by determining its rel-
ative frequency in specific documents compared to the
inverse proportion of that term in the whole document set.
The core idea is that terms that are related to a topic will
appear in a limited number of documents, while common
terms will be frequently present in several documents of the
corpus. To compute similarities between vectors, often
cosine similarity between each pair of source and target
software artifacts represented in the k-dimensional
space [45]. The larger the cosine similarity value, the greater
the similarity between source and target artifacts is. All the
possible pairs are reported in a ranked list. Irrelevant pairs
of artifacts can be removed using a similarity threshold [50]
that allows selecting only a subset of top links, i.e., the
retrieved links. For example, we use a constant threshold in
our approach. Inferring links is clearly a difficult and expan-
sive task. In terms of time complexity, we can consider a
complexity of Oðm2�nþ n3Þ for the SVD computation on a
matrix having m and n as dimensions, i.e., terms and docu-
ments respectively. We have then to consider an additional
linear complexity due to the link inference operations that
requires the computation of cosine similarity.

It is worth noting that when inferring a set of candidates
traceability links by means of IR techniques, human effort is
required to validate these links to obtain actual traceability
links. This validation is costly and time consuming (e.g.,
[39], [41]), as well as it requires high knowledge about the
analyzed artifacts. Therefore, recovered candidate links
could be used without an actual validation. In such a case,
candidate links are simply similarity links.

3 MORE+: THE APPROACH

MORE+ exploits a multi-objective evolutionary algorithm
(NSGA-II) to reduce test suites according to three objectives:
source code coverage, application requirements coverage, and cost
to execute test cases. In this way, the evolutionary algorithm
aims to maximize the number of detected faults that are
both technical (fault at code-level, e.g., implementation and
coding faults such as data-flow fault, wrong logic imple-
mentation, wrong initializations, wrong code-structure
sequence) and business critical (fault at level of application
requirements, e.g., missing or improper core-requirements
implementation, incorrect input/output of core-require-
ments, and incorrect core-requirements integration).

Fig. 1. Example of a Java class (top) and application requirement
(bottom).
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- Input. Given an application A, MORE+ requires: (i) its
application code; (ii) a set of application requirements Reqs
written in natural language; (iii) a test suite S; and (iv) infor-
mation about test case coverage (which code statements are
covered by each test case) and execution cost (or also execu-
tion time, from here on). We suppose, without loosing in
generality, that the information on code coverage and exe-
cution cost is available from the last tested version of the
application. This assumption is the rule for test suite reduc-
tion approaches [2].

- Goal. MORE+ aims to produce a reduced test suite Sred,
a subset of S, by giving high priority to test cases that cover
application code and requirements with higher likelihood
to be effective in discovering faults. Then, Sred, eventually
integrated with new test cases, could be devoted to test sub-
sequent versions of A.

- Approach. MORE+ first collects the input information,
then it executes the overall process depicted in Fig. 2. This
process is composed of the following main steps:

1) Recovering Similarity Links. MORE+ recovers textual
similarity links (i.e., : SimilarityLinks in Fig. 2) that
identify relationships between application require-
ments (: Reqs) and source code (: Code) and between
application requirements and test cases (: TestCases).

2) Computing Weights.MORE+ identifies potential fault-
prone portions of code (: Code) and requirements
(: Reqs). This is automatically made via a metric-
based approach. Software metrics are measured for
each code class and application requirement. Similar-
ity links (: SimilarityLinks) between code and require-
ments are used to identify classes implementing each
requirement and then used in quality models for esti-
mating the fault-proneness of each code class and
requirement. The phase Computing Weights weights
(: Weights) code classes and requirements according
to their estimated fault-proneness.

3) Multi-Objective Reduction. MORE+ relies on the
NSGA-II algorithm [22] to identify optimal test suite
reductions of S. We opted for NSGA-II because it is
widely used for optimization problems in software
engineering (e.g., [51]). We used the algorithm to
obtain reduced suites by considering the information
collected during the test cases execution (covered
statements—: CoveredStatements—and execution
time—: ExecutionTime) and similarity links recovery
(: SimilarityLinks). In this phase, the test cases in the
original test suite : TestCases) are also needed to
identify : ReducedTestSuite.

In the following sections, we detail the main steps of our
approach.

3.1 Recovering Similarity Links

MORE+ uses LSI [23] (with a tf � idf schema) to recover
similarity links (: SimilarityLinks) among software artifacts
(: Reqs, : Code, and : TestCases). We opted for LSI because
it is efficient and widely used in several text retrieval prob-
lems [45] and in the traceability recovery field [43], [50], in
particular. The use of a different text retrieval model does
not alter our general approach, but it still represents a future
direction for our research.

As preprocessing step, we performed textual normaliza-
tion of software artifacts by removing non-textual tokens,
splitting terms composed of two or more words, and elimi-
nating all terms from a stop word list and with a length less
than three characters. Finally, a Porter stemmer [45] was
applied on the lexemes to reduce them to their root form
(e.g., designing and designer lead to the common radix design).

To compute similarities between vectors, we used cosine
similarity between each pair of source and target software
artifacts represented in the k-dimensional space [45]. All the
possible pairs are reported in a ranked list (pairs with a
higher similarity values appear first). Irrelevant pairs of arti-
facts are removed using a similarity threshold [50] that

Fig. 2. High-level view of the process implemented in MORE+ by means of a UML Activity Diagram [49] with object flow. Rectangles are objects,
while ellipses are steps/phases of the process.
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allows selecting only a subset of top pairs. We use a constant
threshold (threshold = 0.1). We used k = 300 and 0.1 as con-
stant threshold. These values were chosen on the basis of the
outcomes attained in our previous studies [21], [37], [52]

3.2 Computing Weights

MORE+ automatically weights both code wc and require-
ments wr of the application under testing (i.e., : Reqs
: Code, respectively). We adopted an approach inspired by
the one of Lincke et al. [53] to measure a Maintainability
Index (MIclass) for each class based on a set of code metrics
(e.g., Lines Of Code). We use this index as a proxy for esti-
mating the fault-proneness of each class, thus for prioritiz-
ing classes. Similarly, MORE+ computes a Maintainability
Index (MIreq) for each requirement and it uses this index to
prioritize requirements. That is, this index is used to esti-
mate more fault-proneness requirements. These orderings
are exploited to select test cases in the test suite that exercise
the most critical (fault-proness) classes and requirements,
i.e., top-ranked forMIclass andMIreq.

The MORE+ weighting schema also requires as input the
similarity links (: SimilarityLinks) between code (i.e., source
artifacts) and requirements (i.e., target artifacts). Code and
requirements are considered as plain text. Such links are
processed by our weighting schema in the following steps:
(i) Computing software metrics, (ii) Computing maintain-
ability indexes, and (iii) Prioritizing classes and require-
ments. We describe these steps in the following sections.

3.2.1 Computing Software Metrics

In Table 1, we report the software metrics MORE+ uses. In
particular, we report the name of each metric, the reference
to the paper that originally defined it, the software property
it measures, and its definition.

To measure MIclass for each class (in : Code) of the appli-
cation under test, we adopt the object-oriented class-level
metrics (see Table 1 top) adopted in [53]. Instead, to mea-
sure MIreq for each application requirement (: Reqs), we
adopt two sets of metrics working at different level of gran-
ularity: traditional object-oriented metrics working at class-
level (Table 1 top); and concern-oriented metrics working at
requirements-level (Table 1 bottom). These two sets of metrics
let us measure: (i) each class implementing a requirement in
isolation (class-level metrics), and (ii) each group of classes
implementing each requirement as-a-whole (concern-ori-
ented metrics).

3.2.2 Computing Maintainability Indexes

The maintainability index is computed identifying outliers
and using quality metrics as in the following steps:

1) Outliers identification. After computing code and
requirements-level metrics, outliers have to be identi-
fied [53]. Outliers are those elements (i.e., classes or
requirements) having metric values within highest/
lowest 15 percent of the value range defined by all ele-
ments of application [53]. For instance, if the value of
CBO ranges in between 0 and 56. Given two classes
having CBOðc1Þ ¼ 52 and CBOðc2Þ ¼ 35, then c1 is
an outlier for CBO (i.e., the value of c1 is in the range
85-100 percent of CBO), while c2 is not an outlier.

2) Software Quality model. In Table 2, we present our soft-
ware quality models (inspired to the one presented by
Lincke et al. [53]) to compute MI for each class c and
requirement r, starting from the metrics reported in
Table 1. In the models, metrics are weighted according
to the software property they measure. As for class-
level and consistently with Lincke, we chose: 2 for

TABLE 1
Metrics for the Automatic Weighting Used inMORE+

Metric Ref. Property Definition

Class-level Metrics

(CBO) Coupling Between Objects [54] Coupling It is the number of classes to which a class is coupled

(RFC) Response For a Class [54] Coupling It is the set of methods that can potentially be executed in response to a message received

by an object of the class

(LCOM) Lack Of Cohesion on Methods [54] Cohesion It describes the lack of cohesion among methods of a class

(LOCs) Lines Of Code - Size It counts the lines of code of a class

(NOM) Number of methods - Size It counts the number of methods of a class

(DIT ) Depth of Inheritance Tree [54] Inheritance It is the length of the class from the root of the inheritance tree

(NOC) Number of Children [54] Complexity It is the number of immediate subclasses of the class in the class hierarchy

(MCC) McCabe Cyclomatic Complexity [54] Complexity It is (median of) the number of flows thought the code of the method of a class

(WMC) Weighted Methods per Class [54] Complexity It is the sum of theMCC for all methods in a class

Requirements-level Metrics

(NC) Number of Classes [55] Size It is the number of classes implementing a requirement

(CDC) Requirements diffusion over

components

[55] Scattering It is the number of classes that contribute to the implementation of the target requirements,

among those of the application

(CDCþ) CDC with similarity - Scattering It is a variant of CDC in which the contribution of each class is weighted according to the

similarity of each class with the requirements definition

(ShR) Shared among Requirements [56] Tangling It expresses the degree of classes that implement a requirement and that are shared with,

at least, another requirements of the application

(ShRþ) ShRwith similarity - Tangling It is a variant of ShR in which the contribution of each class is weighted according to the

similarity of each class with the definition of the requirements under analysis

(IN) Contained Requirements [56] Inheritance It is the number of requirements whose implementation is entirely “contained” in

target requirements
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coupling, cohesion, and inheritance metrics, while 1
for other metrics. As for requirements-level, we chose:
2 for size and scattering,while 1 for othermetrics.

3) Maintainability index computation. By knowing out-
liers and using software quality models, we compute
the maintainability index for each application class
and requirement by aggregating metrics in Table 1
according to their weights as follows:

MIðelementÞ ¼
P

m2MetricsðWm �OmÞP
m2MetricsðWmÞ : (1)

Metrics is the set of metrics in the models, Wm is the
weight of the metric m and Om is 0 if element is not an
outlier for themetricm, while it is 1 if element is an out-
lier for m. For instance, if a class c1 is an outliers only
for CBO, LOCs, and DIT thenMIðc1Þ ¼ 5=13 ¼ 0:385.
Therefore, c1 has 0.385 (i.e., 38.5 percent) as index.
1) Maintainability index for classes. To compute the

maintainability index MIclassðcÞ, we use only
class-level metrics.

2) Maintainability index for requirements. To compute
the maintainability index MIreqðrÞ for each requi-
rement r, two (sub-) indexes have to be com-
puted, namely MICðrÞ and MIRðrÞ. The former is
computed by averaging the index MIclass of all
classes implementing r, while the latter is com-
puted by applying requirements-level metrics to
the classes implementing r. In both the cases,
similarity links (: SimilarityLinks) are needed.
Then, by averaging MICðrÞ and MIRðrÞ for each
requirement r, we compute the overall index by
considering, at the same time, the code imple-
menting r in isolation and its implementation
with respect to other requirements [52].

3.2.3 Prioritizing Classes and Requirements

Classes and requirements are prioritized according to their
estimated index (i.e.,MIclass andMIreq, respectively). Accor-
ding to this prioritization, we give a different weight to each
code class and requirement of the application when com-
puting their coverage for a test case. In detail, the weight we
use to prioritize the coverage of application code (see below
wc in Eq. (2)) and the weight we use to prioritize the cover-
age of application requirements (see below wr in Eq. (4)) are
related to the ranking of classes and requirements obtained
withMIclass andMIreq respectively.

3.3 Multi-Objective Reduction

The evaluation of all the possible test suite reductions
(: ReducedTestSuite) on several dimensions could be

expensive also in case of non-large test suites. Hence, we
adopted the formulation of test suite reduction as a multi-
objective optimization problem, introduced, e.g., by Yoo
et al. [16]. In a multi-objective optimization algorithm more
than one objective functions (concerning different dimen-
sions of the problem) have to be optimized simultaneously
to achieve reasonably good solutions. In this kind of prob-
lem, there is not a unique solution that optimizes each con-
sidered dimension, but a set of potentially (sub-)optimal and
equally good solutions exists. Such solutions compose Pareto
fronts [16], [57]. A Pareto front includes solutions that are
non-dominated, according to the considered dimensions, by
any other solution within the space of all possible solutions.
Given two solutions A and B, A dominates B if B is inferior to
A in at least one of the considered dimensions.

To face multi-objective optimization problems, a number
of evolutionary algorithms have been proposed: NSGA-
II [22], Strength Pareto Evolutionary Algorithm 2 (SPEA-
2 [58]), particle swarm optimization (PSO [59]), and simu-
lated annealing (SA [60]). Although different algorithms
could be used, we resort to the use of NSGA-II. We opted
for this algorithm because it optimizes conflicting objectives
and because it has been widely and successfully used in
software engineering and software testing (e.g., [16], [51],
[61], [62]). NSGA-II is founded on the following concepts:

� genetic modification, for changing (evolving)
solutions;

� elitism, for allowing the algorithm to converge
towards better solutions;

� non-domination, for ranking solutions according to
objective functions, thus selecting and evolving most
promising solutions;

� crowding distance, for increasing the diversification
of solutions.

NSGA-II applies a set of genetic operators (i.e., mutation,
crossover, selection, and replacement) to iteratively evolve
an initial population of reduced test suites. The evolution is
guided by an objective function that evaluates each reduced
test suite along the chosen objectives, three in our case. In
each iteration, the population of the best alternative solu-
tions is generated from an evolved population. In terms of
complexity, the time complexity of the NSGA-II algorithm
is Oðo�p2Þ, where o is the number of objectives and p is the
population size, while its space complexity is Oðp2Þ [22].
The obtained Pareto front contains non-dominated solu-
tions, in our case, it represents an optimal trade-off between
structural, functional, and cost dimensions. To reduce test
suites, the used implementation of the NSGA-II algorithm is
based on the JMetal framework [63]. This implementation
relies on the following steps:

1) A set (named initial population) of possible test suite
reductions are randomly selected among all the pos-
sible test suite reductions of S.

2) The population is then evolved by applying a set of
genetic operators, such operators change (i.e., evolve)
a bit the reduced suites of the population at each itera-
tion. The suites in the population are evaluated with
respect to each of the three objectives (code and
requirements coverage and execution time) and the fit-
ness of each generated suite is computed considering

TABLE 2
Software Quality Model (the Metrics and WeightsW )

Maintainability: Software Quality Models

Class-level Model
Metric CBO RFC LCOM LOCs NOM DIT NOC MCC WMC
W 2 2 2 1 1 2 1 1 1

Requirements-level Model
Metric NC CDC CDC+ ShR ShR+ IN
W 2 2 2 1 1 1
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the number of suites in the population dominated by
that suite. Solutions are ranked according to each
objective function. This allows the algorithm to pro-
mote the set of non-dominated suites in the popula-
tion, thus being able to identify and preserve the
“better” reduced suites of the population. Addition-
ally to the fitness value, the crowding distance is calcu-
lated for each solution. The crowding distance for a
solution is the average distance between the solution
and its neighbor solutions. In other terms, it measures
how close a solution is to all its neighbors. High
crowding distance value increases the population
diversity.

3) After a number of iterations, the evolution is con-
cluded and a set of optimal reduced suites are gener-
ated. That is, the population is expected to be stable
in terms of size. The user/tester has to select one of
these suites according to her testing needs and proj-
ect resources. In particular, the tester can inspect the
Pareto front to find the adequate trade-off by having:
a test suite that balance code coverage, requirements
coverage, and execution cost or a test suite that maxi-
mizes one/two dimension/s penalizing remaining
one/s.

The MORE+ set-up of the used NSGA-II instance can be
summarized as follows:

� Solution Encoding: A solution is a possible reduced
test suite (Sred) of the whole test suite S. The solution
space for test suite reduction is given by all Sred. For
instance, given a test suite S composed of the test
cases t1, t2, and t3, possible reduced suites Sred are:
t1; t2h i, t1; t3h i, t1h i, t2h i, and t3h i, respectively. A
reduced test suite is encoded as a vector of bits,
where each bit is 1 if the test case is part of the suite,
0 otherwise. The maximum number of test cases con-
tained in the reduced suite could be forced by testers,
i.e., it is a parameter the tester can customize (e.g., 30
percent of size of S), alternative it is determined by
the algorithm.

� Initialization: We randomly initialize the starting
population by selecting test suite reductions among
all the possible ones.

� Genetic Operators:We used the bit-flip mutation oper-
ator, where one randomly chosen element of the
solution is changed. The used crossover operator is
the conventional one-point crossover, in which the
crossover point is selected randomly in the two solu-
tion parents. The crossover point is the point from
which the two tails of parent solutions are then
recombined. Mutation and crossover operators are
adopted to find new candidate solutions having sim-
ilarities with selected solutions.

The adopted selection operator is the conven-
tional binary tournament, in which a solution is
selected if its ranking is better than the one of other
solutions or, in case the ranking is the same, if its
crowding distance is greater than the ones of other
solutions. The selection operator is adopted to possi-
bly improve the current population by exploiting the
better solutions it contains.

As replacement operator, we applied the replace
worst (elitism) strategy to incorporate new candidate
solutions into the current population.

� Objective Functions: The aim is to maximize the three
considered objectives. Each candidate solution in the
population (each reduced test suite) is evaluated by
our objective functions: the overall source code cover-
age of a reduced suite S (namely cumCCov(redS)), the
overall application requirements coverage of a reduced
suite S (namely cumRCov(redS)), and the overall tests
case execution cost of a reduced suite S (namely cum-
Cost(redS)); larger values of the functions are desired.
The fitness of a solution is evaluated based on the
number of other solutions it dominates as described
before.

In the next sections, we present in detail metrics just
mentioned.

3.3.1 Computing Metrics for Test Case Evaluation

- Code. Fault detection capability cannot be known before
executing test cases. Therefore, we have to resort to the
“potential” fault detection capability of a test suite. Tradi-
tionally, it can be estimated by considering the amount of
source code covered (: CoveredStatements) by the test
cases of a test suite at run-time [64], [65], [66]. A test case
that covers a larger set of code statements should have a
higher fault detection capability (i.e., potentially more
faults are revealed) than a test case that covers a smaller
set of statements. Hence, code coverage is largely used in
the literature as a proxy to estimate fault detection capa-
bility. However, a recent study [15] (conducted on 5 Java
applications) showed that a strong correlation exists
between code coverage and test suite effectiveness i.e.,
given two suites for a system, the one that better covers
the system code is expected to have higher fault revealing
capability. The study, however, showed also that this is
not completely true if the suite size is controlled/limited,
e.g., in case of test suites reduction. This result contrib-
uted to motivate us in considering code coverage and
additional dimensions, such as cost and functional cover-
age, when evaluating application coverage.

In this work, we assume to have implementations of
JUnit test cases (: TestCases) and define the Weighted Code
CoveragemeasureWCCov(t), for a given test case, as follows:

WCCovðtÞ ¼
X

s2Statements

wc s 2 CodeCovered

0 otherwise;

�
(2)

where the set Statements contains code statements (: Code);
CodeCovered is the set of statements covered by the test case
t; wc (0 � wc � 1) is a weight associated to code statements s
or blocks of them (e.g., all statements of a class). The weight
wc is defined according to testing needs. In our previous
work [21], this weight was 1 for all parts of the application
code, namely we equally weighted each code statement.
Conversely, we propose in this paper a metric-based
approach (see Section 3.2) to automatically identify such a
weight (: Weights) by estimating the maintainability of each
class. This allowed us to prioritize classes according to their
maintainability when computing coverage. In other terms,
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wc is related to the ranking defined by means of MIclass
(see Section 3.2).

We define the overall code coverage of a suite S, namely
cumCCov(S), as the sum of the code coverage of all the test
cases of the suite S

cumCCovðSÞ ¼
X
t2S

WCCovðtÞ: (3)

- Requirements. The capability of a test case to exercise appli-
cation requirements depends on: (i) the amount of require-
ments covered by a test case; (ii) the relevance of covered
requirements; and (iii) the existing dependency/relation-
ship among requirements. To deal with these aspects, we
defined the Weighted Requirements Coverage with Dependen-
ciesmeasureWRCovD(t) as

WRCovDðtÞ ¼
X

r2ReqsCovered

wr �
X

rb 6¼r2Reqs

wrDðr; rbÞ
0
@

1
A: (4)

Reqs is the set of requirements of the application under test
(: Reqs), ReqsCovered (i.e., � Reqs) is the set of requirements
covered by t, while r and rb are application requirements,
and wr is a weight associated to each requirement that
assumes values in between 0 and 1. In our previous
work [21], this weight was 1 for each application require-
ment, namely we equally weighted each requirement. Con-
versely, here, we propose a metric-based approach to
automatically identify such a weight (: Weights), thus being
able to order requirements according to their estimated
fault-proneness. In other terms, wr is related to the ranking
defined by means of MIreq(see Section 3.2). Finally, wrD

measures the strength of each requirement relationship
(rD) and, in particular, between r and other requirements of
the application rb. Given the pairs of requirements ra and
rb, this strength is computed as follows:

wrDðra; rbÞ ¼ wreqðra; rbÞ þ wcodeðra; rbÞ
2

; (5)

wrDðra; rbÞ tends to 1 if a strong relationship exists between
ra and rb, i.e., both textual description and implementation
strongly overlap. wrDðra; rbÞ tends to 0 if no relationship
exists between ra and rb. The functions wreqðra; rbÞ and
wcodeðra; rbÞ computes weights of the relationships of
requirements ra and rb and their code implementations

wreqðra; rbÞ ¼ IRSimilarityðra; rbÞ (6)

wcodeðra; rbÞ ¼ overlapClassesðra; rbÞ
totalClassesðra; rbÞ ; (7)

where wreqðra; rbÞ, inferred by LSI, provides an indication
about the possible link between requirements ra and rb,
while wcodeðra; rbÞ computes the ratio between the portion of
code that is in common between the implementations of ra
and rb (overlapClasses) and the whole code implementing
them (totalClasses). Similarity links (: SimilarityLinks) are
used to identify the portion of source code (: Code) that is
in common between the implementations of ra and rb.
WRCovDðtÞ is expected to give more relevance to the test
cases covering requirements having strong relationships

with a high number of other requirements that is to the test
cases exercising “key” requirements.

We define the overall requirement coverage of a suite,
cumRCov(S), as the sum of the requirements coverage of all
test cases of the suite

cumRCovðSÞ ¼
X
t2S

WRCovDðtÞ: (8)

- Execution Cost. It is approximated by the time required to
execute a given test case t (available in : ExecutionTime).
We defined: Cost(t) as the time to execute t, and Cost(S) as
the overall cost of S, computed as the sum of the executions
of all its test cases. In our case, for the way in which we
defined our optimization problem (i.e., as a maximization
problem,), we define RelativeCost(t), of a test t in the suite S,
as follows:

RelativeCostðtÞ ¼ CostðSÞ � CostðtÞ: (9)

Hence, the overall cost of a suite S, namely cumCost(S), is
the sum of the relative cost of its test cases

cumCostðSÞ ¼
X
t2S

RelativeCostðtÞ: (10)

4 DESIGN OF THE EMPIRICAL EVALUATION

We investigated the following two main research questions:

RQ1: IsMORE+ effective in reducing test suites?
RQ2: IsMORE+ efficient in reducing test suites?

To answer these research questions, we considered seven
baseline approaches to compare our proposal with. We
selected these baselines because they represent the standard
for comparison in the test suite reduction field (e.g., [2]).
These baselines are:

� The original test suite S (named Full).
� Four traditional test suite reduction approaches

named: Harrold Gupta Soffa, delayed greedy, tradi-
tional greedy, and 2-optimal greedy [8], [9], [10],
[26]. In our study, we adopted the two-objective
extension of these approaches that considers both
code coverage and execution time. In detail, the
adopted version of HGS, DGR, GRD and 2OPT uses
the following ratio metric to evaluate each test case
when reducing test suites

ratioðtÞ ¼ codeCoverageðtÞ
executionCostðtÞ ; (11)

where t is the test case under evaluation,
codeCoverageðtÞ is the code covered by t when and
executionCostðtÞ is the time required to execute t.
This metric allows the approaches to reduce test
suites by preserving test cases that cover the most
requirements per unit of cost. Smith et al. [8], [26]
observed, in fact, that such a variant outperforms the
traditional single-objective version.

� NSGA-II algorithm (named NSGAII2d). It is a stan-
dard NSGA-II approach that considers: code cover-
age and execution cost. The implementation of the
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NSGA-II algorithm we used is based on the JMetal
framework [63].

� An extended version of a traditional greedy
approach (named GR3D). It is a three-dimension
version of the traditional greedy approach (i.e.,
GRD) that considers: execution cost and code and
requirement coverage.

In our empirical study, we considered the following
quantitative criteria (or constructs) to assess MORE+ results
and to compare these results with those obtained by apply-
ing the baseline approaches.

� Reduction in test-suite size (RQ1) concerns the size of
reduction degree between the number of test cases
of S (original suite) and Sred (reduced suite).

� Reduction in fault-detection capability (RQ1) concerns the
capability of Sred in revealing faults with respect to S.

� Reduction in test-suite execution time (RQ1) concerns
the reduction factor in terms of execution time
between S and Sred.

� Diversity (RQ1) concerns the difference among
reduced test suites (with respect to their test cases).

� Artifact coverage (RQ1) indicates the capability of Sred to
cover applications artifacts. It gives an idea about how
well a test suite covers both code and requirements.

� Reduction Approach Cost (RQ2) concerns the cost to
reduce test suite.

� Cost-Effectiveness (RQ2) concerns the cost-benefits of
a test suite reduction approach.

To complete our data analysis, we additionally analyzed:
the impact of the suite size in the achieved results (“Are
large reduced suites more effective than small ones?”), the
composition of Pareto fronts produced by MORE+ (“What
is the test effectiveness of different suites in Pareto fronts
built by MORE+?”), and the possible effect of co-factors on
obtained results (“Is there any co-factor impacting on the
achieved results?’). In this last analysis, we considered:
(i) application artifacts, (ii) distribution of faults; and
(iii) capability of test cases in revealing faults.

4.1 Experimental Objects and Measures

We used 20 Java applications from different domains as
experimental objects. In Table 3, we report descriptive statis-
tics of these applications: LOCs (excluding comments and
blank lines) and number of test cases, requirements, and
(real) faults. These Java applications were chosen because
representative of open-source software and because the
availability of the artifacts needed to execute MORE+. The
size of these applications ranges in between small and large.

We considered the following measures (or dependent/
response variables) to estimate the constructs of interest in
our empirical study. For readability reason, we report the
name of each construct and the measure/s used to estimate
such a construct.

- Reduction in Test-Suite Size. Given a test suite S and a
reduced suite Sred, we compute RS as follows:

RSðSredÞ ¼ Sj j � Sredj j
Sj j � 100: (12)

RSðSredÞ represents the percentage of test cases of S that are
not in Sred. RS values range in between 0 and 100. A value
close to 0 indicates that in Sred there are almost the same test
cases as those in S. A value close to 100 indicates that the
greater part of test cases of S have been removed.

- Reduction in Fault-Detection Capability. For this construct,
we used two measures: RF and F . RF measures the reduc-
tion in the capability of detecting faults. It is computed as
the ratio of fault-detection capability of Sred on fault-detec-
tion capability of S. In particular, given a reduced suite Sred

of S, RF is computed as follows:

RF ðSredÞ ¼ Fj j � Fredj j
Fj j � 100; (13)

where F denotes the set of faults revealed by a suite S and
Fred the set of faults detected by the reduced test suite Sred.
Therefore, RF ðSredÞ indicates the percentage of faults not
detected. RF ranges in between 0 and 100. If RF assumes 0
as the value, it means that all faults detected by S are also
detected by Sred. That is, there is no reduction capability of
Sred in revealing faults. On the other hand, if RF assumes
100 means as the value it means that no faults were detected
by Sred. The lower the RF value, the better it is.

We also consider F, the suite effectiveness in detecting
faults. F is the absolute number of faults a given test suite is
able to reveal. The higher the value of F , the greater the
effectiveness of the test suite is.

- Reduction in Test-Suite Execution Time. For this construct,
we used the measure RT . It measures the reduction factor
for the execution time of test cases in Sred with respect to S.
RS and RT could be related one another. However, it could
happen that two reduced suites of S having the same num-
ber of test cases (i.e., size) require different execution times
(e.g., test cases in a reduced test suite need more time to be
executed). RT of a reduced suite Sred is computed as follows:

RT ðSredÞ ¼ timeðSÞ � timeðSredÞ
timeðSÞ � 100; (14)

where timeðSÞ is the time needed to execute S and timeðSred)
is the execution time of Sred. The values of RT range in

TABLE 3
Objects Under Study

App. Size (LOCs) Test Cases Reqs Faults

LaTazza 2 k 33 10 12
AveCalc 2 k 47 10 15
CommonsProxy 5 k 179 10 10
DBUtis 5 k 225 12 14
iTrust 15 k 919 15 21
CommonsCodec 17 k 608 19 20
JTidy 20 k 289 25 15
Woden 22 k 263 24 19
Log4J 25 k 1,029 24 20
JXPath 25 k 386 20 20
CommonsIO 25 k 859 18 20
CommonsBcel 30 k 75 20 20
CommonsBeanUtils 32 k 1,556 26 22
xmlGraphics 34 k 196 24 15
xmlSecurity 40 k 92 23 15
CommonsCollections 50 k 798 17 20
Pmd 55 k 698 20 20
CommonsLang 60 k 2,307 16 20
Jabref 70 k 213 31 20
Xerces 138 k 376 20 20
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between 0 and 100. The higher the value, the grater the
reduction of time to execute regression testing with respect
to S is. Therefore, the greater the value the better it is.

- Diversity. To estimate this construct we used Div. It
measures the diversity of test cases composing a pair of
(reduced) test suites S1 and S2. It is computed as the ratio of
the number of test cases shared between two reduced suites,
with respect to the number of test cases in Full. High value
of DivðS1; S2Þ means that suites have a high number of test
cases in common. The higher the DivðS1; S2Þ value, the
lower the diversity between S1 and S2 is.

- Artifact Coverage. We exploit two measures to assess the
construct Artifact coverage of a suite S: Code CovðSÞ and
Reqs CovðSÞ. The former measures the number of executed
code statements exercised at least once by test cases of S,
while the latter the number of requirements exercised at
least once. The higher the Code Cov value, the higher the
code coverage is. Similarly, the higher the Reqs Cov,
the higher the requirements coverage is. For both measures,
the higher the values, the better it is.

- Cost of the Reduction Approach. Test suite reduction
approaches might be effective in reducing test suites but
they can be expensive to use, thus not reducing regression
testing cost. For instance, in the case of the proposed reduc-
tion approach a concern can be related to the cost of the
recovery of similarity links among software artifacts: how
much it influences both viability and efficiency of our
approach? We hence evaluated and measured Cost Red, the
absolute cost of applying reduction approaches in terms of
time required to apply each approach.

- Cost-Effectiveness. The absolute cost of each reduction
approach needs to be considered with respect to the actual
use of the reduction approach in realistic scenarios, thus being
able to evaluate the cost-effectiveness degree of the reduction
approach (CostEff). To this respect, cost models have been
proposed in the literature to evaluate the cost of a test suite
reduction approach (e.g., [67], [68]). In our study, we
exploited the cost model proposed by Malishevsky et al. [68].
In this model, the cost-effectiveness of a reduced suite is char-
acterized by two main aspects: on the one hand the cost of
executing the reduced suite and on the other hand the cost of
omitting the detection of some faults that are not identified by
the reduced suite. Low values for a given reduced suite with
respect to other suites represent a better cost-effectiveness for
that suite. In particular, given S and Sred (used to test g ver-
sions of an application), we can define: (i) CaðSÞ as the cost of
the analysis conducted to prepare test suite execution and
reduction (e.g., textual-based similarity recovery links);
(ii) CeðSÞ as the execution cost of test cases; (iii) CcðSÞ as the
cost of result checking; (iv) CrðSÞ as the cost for the execution
of a test suite reduction approach (i.e., effort/time required to
obtain the reduced suite); (v) CmðSÞ as the maintenance cost
of a test suite (e.g., effort and time for fixing a suite); and
(vi) CfðFkðSÞ n FkðSredÞÞ as the cost of omitting faults by not
selecting the set S n Sred, where Fk is the set of faults detected
in the release k. Hence, the cost C to retest-all strategy is the
cost to execute Full, check results, and perform maintenance
operations. This cost is computed as follows:

C ¼ g � CeðSÞ þ g � CcðSÞ þ g � CmðSÞ: (15)

Instead, the cost of a given reduction approach (i.e., where
only a subset of S is executed and preserved to test next
application releases) is

CostEff ¼ CaðSÞ þ g � CeðSredÞ þ g � CcðSredÞ þ CrðSÞ

þ
X
1�k�g

ðCfðFkðSÞ n FkðSredÞÞÞ þ g � CmðSredÞ:

(16)

We excluded from our analysis the cost of: (i) results check-
ing CcðSÞ and (ii) suite maintenance CmðSredÞ. This was
needed because this information was not available. Further-
more, we computed the cost of omitting faults
CfðFkðSÞ n FkðSredÞÞ ¼ fc � Fndkj j, where Fndk is the set of
faults a reduced suite does not detect and fc is the cost of
omitting such faults. We measured such a cost function as a
constant time (120 seconds) required to detect and fix bugs
in a post-release version of an application. This is customary
in the literature [67], [68].

4.2 Procedure

For each experimental object, we applied the following
procedure:

1) Collecting artifacts. We collected the following arti-
facts: application requirements, source code, and test
cases.

2) Recovering textual similarity. To recover similarity
links among software artifacts, we used the follow-
ing set-up for LSI: k = 300; constant threshold = 0.1.

3) RunningMORE+ and baseline approaches. We ranMORE
+ and NSGAII2d with the following set-up: population
size = 2*“test suite size”; crossover probability=0.9;
mutation probability = 1/“test suite size”; number of itera-
tions = 1000. SinceMORE+ and NSGAII2dhave a non-
deterministic behavior, we ran them 10 times and col-
lected all the generated solutions.

4) Reproducing actual faults. In the last column of Table 3,
we report the number of faults we injected/seeded
in each experimental object. Fault injection was
accomplished by a researcher involved neither in the
approach definition nor in the study execution. Each
seeded fault reproduced an actual fault described by
actual users and developers in the application issue
tracking system and it has been reproduced into the
original source code of the application. Therefore,
we had a faulty version of an application for each
seeded fault. The number of versions for each appli-
cation is that shown in the column Faults of Table 3.

For each application, we randomly selected the
faults to be seeded taking into account among the
ones inserted in the issue tracking system. In detail,
we analyzed failures described in a bug-tracker and
used information describing a fault associated to
that failure to analyze the code of the application
and to get information about how to restore that
fault. For instance, Fig. 3a shows an example of a
fault description posted in the DbUtils bug-tracker2

2. http://issues.apache.org/jira/browse/DBUTILS
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(bug id = DbUtils-114) and raising a bug (in DbUtils
version 1.5) concerning the order of the information
result of a query. While Fig. 3b shows the patch
(code fragment) used to fix it (in DbUtils version
1.6). By the analysis of this information we observed
that the fault compromises the behavior of a relevant
application requirement (classified as “Major bug”)
and we got information about the place where this
fault occurred in the application code. We could
then reproduce the fault in the application. The
approach used to inject faults is very costly in terms
of man-hours. However, it has the merit to repro-
duce actual faults in source code. This is why this
approach is well known and widely adopted in the
literature (e.g., [69], [70]).

5) Executing test suites and collecting data. We executed
test suites (reduced and whole) on the faulty versions
of the experimental objects and collected values for
estimating the considered quantitative criteria. It is
worth noting that, in this phase, we consider at least
20 reduced test suites for each approach.

6) Analyzing data. We analyzed collected data. We per-
formed statistical analyses when needed. In the case
of the evolutionary approaches (i.e., MORE+ and
NSGAII2d), sets of solutions in each run were pro-
duced (solutions composing Pareto fronts). We con-
sidered all these solutions in our data analysis.

4.3 Null Hypotheses and Statistical Tests

We tested the following hypothesis:

NHm - there is no difference in values of m (e.g., RS,
RF, RT and F) computed on test suites reduced by apply-
ingMORE+ and baselines.

This hypothesis is described as a single parametrized
null hypothesis and it is two-sided because we could not do
any postulation on which approach is the best on each con-
sidered dependent variable. Our parametrized null hypoth-
esis corresponds to a number of null hypotheses, one for
each variable (e.g., NHRS). In case the statistical test will
reject a null hypothesis, we can accept the alternative one
(e.g., there is a statistically significant difference in values of RS
computed on test suites reduced by applying MORE+ and
the baseline under analysis).

To test the null hypotheses, we applied the Kruskal-Wallis
test [71]. This statistical test is a non-parametric test that
allows checking whether a set of observed independent sam-
ples originate from the same distribution, i.e., the null
hypothesis is that medians of samples are equal, while the
alternative hypothesis is that at least one sample median
among the considered ones is different. The Kruskal-Wallis
Test is analogous to the parametric one-wayAnalysis of Vari-
ance (ANOVA) test, but it does not assume a normal distri-
bution of the sample residuals (being it a non-parametric
test). If the Kruskal-Wallis test reveals a statistically signifi-
cant difference (i.e., the null hypothesis is rejected), we per-
formed a post-hoc analysis. In particular, we perform a
pairwise comparisons among the results achieved for test
suites reduced by applying MORE+ and each baseline
approach (e.g., there is no significant difference in values of a
variable m between MORE+ and one of the baselines). To
this aim, we used a non-parametric two-sided Mann-Whit-
ney test. TheMann-Whitney test is a non-parametric test that
allows comparing two samples of ordinal data to check the
null hypothesis that samples come from the same population
against an alternative hypothesis, that samples come from
different distributions. We opted for a two-sided Mann-
Whitney test because we could not support any specific
direction of alternative hypotheses. By means of the Mann-
Whitney test we evaluated the statistical significance of the
difference between two approaches, i.e., if the observed dif-
ference is actual or due by chance. To have an indication of
the relevance or such observed difference, however, we also
measured the effect size by applying theVargha andDelaney
test (Â12), as presented by Arcuri [72]. Â12 ranges between 0
and 1: 0.5 indicates that two approaches under test are sto-
chastic-equivalent, while values closer to 0 or 1 indicate that
a stochastic difference exists. In our case, we used Â12 to com-
pare the probability of achieving better results for two suite
reduction approaches A (i.e., MORE+) and B (i.e., a baseline
approach). For instance, for each pair of reduction
approaches A and B, we applied Â12 for F and RF. For F, that
we aim to maximize, Â12 equal to 0.5 indicates that the two
approaches are equivalent; and Â12 > 0:5 indicates that A
has higher probability of getting better solutions than B.
Instead, for RF that we shouldminimize, Â12 < 0:5 indicates
that A has higher chances of getting better solutions than B.
To further analyze the relationship between the two meas-
ures, in specific cases, we adopted the Chi-squared test of
independence. The Chi-squared test of independence inves-
tigates the existing independence between two variables x
and y: “they are independent if the probability distribution
of one variable is not affected by the presence of another”.

To evaluate the impact of possible co-factors, we applied
a two-way permutation test [73]. Our null hypothesis is:

Fig. 3. DbUtils: Description of the bug DbUtils-114 (a) and the patch to fix
it (b).
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NHco�factors - there is not a significant impact of the
considered co-factor/s on measured values for each depen-
dent variable.

The two-way permutation test is a non-parametric equiva-
lent of the two-way ANOVA. This test allows us to identify
the presence of any dependency or interaction among the con-
sidered variables. The permutation test does not make any
assumptions about the sample distribution and gives away to
compute the sampling distribution of statistic tests. The
underlying idea is that if the null hypothesis is true, changing
the exposure (e.g., by randomly shuffling it) will have no
effect on results. Permutation tests are especially used when
data are sampled from unknown distributions, when the size
of samples is small and when outliers could be present. In
case of number of the variables are small and their variability
is low, permutation tests can exhaustively consider all permu-
tations. However, more frequently, number and variability of
variables are not trivial, thus permutation tests could be
applied considering a subset of all possible permutations by
adopting some stopping criteria. The number of considered
permutations is relevant to have enough confidence on the
achieved results. It is worthmentioning that an increase of the
number of permutation increases the effort required to get the
output of the test, thus “confidence” and “effort” have to be
balanced. Two approaches can be adopted: (i) stopping when
a maximum number of permutation has been considered
(often this number is 1,000 or 5,000) and (ii) stopping when
the estimated standard deviation of the p-value is under a
given amount, often 10 percent, of the estimated p-value,
namely theAnscombe’s criterion [74].We stopped the permu-
tations according to the Anscombe’s criterion or, in any case,
when 5,000 permutations have been reached. Additionally,
for the co-factors analysis, we also performed a Spearman cor-
relation test [75]. It is a non-parametric test and measure rank
correlation to check if the relationship between two variables
can be described by using amonotonic function.

In all performed statistical tests, we decided to accept a
probability of 5 percent of committing a Type-1-Error [71],
the incorrect rejection of a true null hypothesis (a “false pos-
itive”). A null hypothesis is hence rejected only if the p-
value of a statistical test is less than 0.05. However, when
repeating tests, we are increasing the risk of finding signifi-
cant differences between samples by chance. Therefore, in
such a case, a compensation method of repeated statistical
tests has to be applied. We used the Benjamini-Hochberg
correction [76]. This method lets us control the false discov-
ery rate (proportion of false positives among the set of
rejected hypotheses) and it is well known and widely used
in empirical studies (e.g., [77]). Among the correction meth-
ods (e.g., Bonferroni and Holm), the Benjamini-Hochberg is
the least stringent method and it is known to provide a bal-
ance between discovery of statistically significant results
and limitation of false positive [76].

4.4 Threats to Validity

Despite our efforts to mitigate as many threats to validity as
possible, some are unavoidable. For example, a possible
threat to the validity of our results is the set of faults and
their distribution in the source code of the experimental
objects. Different sets of faults could lead to different
results. To deal with this kind of threat, we reproduced

actual faults. The used experimental objects represent
another possible threat to the validity of the results: all of
them are applications developed in open-source projects.

The set-up of the study represents another possible threat
to the validity of the results. For instance, the number of
runs as well as the tuning parameter values chosen for both
the recovery of links among software artifacts and the
multi-objective algorithms could potentially affect results
(in positive or negative fashion).

Threats to the validity of the results could be due to the
performed statistical tests. We used statistical tests that
were well known for their robustness and sensitiveness.
When computing repeated tests, we apply compensation.

5 RESULTS

In the following sections, we present the obtained results
according to the considered constructs.

TABLE 4
Descriptive Statistics and Statistical Analysis Results (* Indicates
a Statistical Significant Difference by Applying the Benjamini-
Hochberg Correction When Using the Mann-Whitney Test)

Min Med. Mean Max sd Mann-Whitney
p� value

Â12

RS (Reduction in test-suite size)

MORE+ 32.7 64 65 90.6 15.9 - -
2OPT 43.4 79.2 75.0 97.9 17.2 0.008* 0.32
DGR 49.3 80.4 78.2 97.9 14.7 0.003* 0.3
GRD 46.9 79.8 76.9 97.9 15.8 0.007* 0.32
HGS 48.8 80.4 78.1 97.5 14.7 0.003* 0.3
NSGAII2d 50 65.3 67.8 84.8 10.1 0.712 0.49
GR3D 43.6 78.7 75.9 88.6 16.7 0.012* 0.33

Kruskal-Wallis p-value < 0.001

F (Faults)

MORE+ 1 9 9.7 18 3.4 - -
2OPT 1 8.5 7.9 19 4.3 0.04* 0.63
DGR 1 7 7.9 18 4.2 0.032* 0.64
GRD 1 7.5 7.5 19 4.4 0.011* 0.66
HGS 1 6.5 7.5 18 4.1 0.007* 0.67
NSGAII2d 2 8 8.8 19 3.1 < 0.001* 0.57
GR3D 1 7.5 7.4 19 4.6 0.014* 0.66

Kruskal-Wallis p-value < 0.001

RF (Reduction in fault-detection capability)

MORE+ 0 46.6 45.1 93.3 18.9 - -
2OPT 5 52.5 55.2 95 22 0.056 0.37
DGR 10 60 56.1 91.6 21.7 0.021* 0.34
GRD 5 57.5 58.1 95 22.8 0.013* 0.33
HGS 10 60 58.37 91.6 20.4 0.004* 0.31
NSGAII2d 0 53.3 51 90 17.6 < 0.001* 0.41
GR3D 5 57.5 58.4 95 25.2 0.019* 0.34

Kruskal-Wallis p-value < 0.001

RT (Reduction in test-suite execution time)

MORE+ 13.9 61.4 59.2 94.8 19.7 - -
2OPT 26.5 73.2 69.1 98.9 23.5 0.036* 0.36
DGR 26.9 74.3 69.4 98.4 23.1 0.037* 0.36
GRD 26.6 73.4 69.4 98.9 23.6 0.034* 0.36
HGS 27 74.8 70 98.6 23 0.028* 0.35
NSGAII2d 30.1 61.4 62.5 82.7 10.5 0.338 0.47
GR3D 25.7 73.3 68.5 98.7 24.1 0.046 0.36

Kruskal-Wallis p-value = 0.0036
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5.1 Reduction in Test-Suite Size

In Table 4, we report descriptive statistics for RS and the
results of the statistical analyses. The p-values obtained by
applying the Kruskal-Wallis and the Mann-Whitney tests
are also reported, as well as the Â12 effect size.

The Kruskal-Wallis test allowed rejecting NHRS (p-
value < 0.001). MORE+ and NSGAII2d obtain comparable
RS values, i.e., no statistical difference was present. MORE
+ identified test suites larger than those identified by HGS,
DGR, GRD, 2OPT and GR3D. Descriptive statistics show
that the median value for MORE+ of RS is 64 percent (see
Table 4) and the (average) RS medians for other approaches
(HGS, DGR, GRD, 2OPT, GR3D) is 79.7 percent. This result
is also confirmed by the Â12 effect size (about 0.3 in favor of
traditional reduction approaches). Among the traditional
approaches, GR3D tends to reduce slightly less than others.
Results confirm that, since test suite reduction approaches

based on evolutionary algorithms (MORE+ and NSGAII2d)
are explicitly balancing among different dimensions when
reducing a test suite, they have a less suite reduction capa-
bility with respect to traditional approaches focused on two
(HGS, DGR, GRD, and 2OPT) and three (GR3D) dimen-
sions. Table 5 (top-left) details the (mean) values of RS
obtained for each experimental object and test suite reduc-
tion approach. We can see that only on 8 out of 20 applica-
tions, approaches based on evolutionary algorithms tend to
achieve better RS values as compared with traditional
approaches. MORE+ achieved results better than other
(non-evolutionary) approaches on 5 applications, while it
obtained results similar to those ofNSGAII2d.

5.2 Reduction in Fault-Detection Capability

Results for the faults F (see Table 4) suggest that we can
reject the null hypothesis NHF (the Kruskal-Wallis test

TABLE 5
RS, RF, RT and F Detailed Values per Application

APP 2OPT DGR GRD GR3D HGS MORE+
(mean)

NSGAII2d
(mean)

2OPT DGR GRD GR3D HGS MORE+
(mean)

NSGAII2d
(mean)

RS RF

AveCalc 87.2 87.2 87.2 87.2 87.2 78.7 78.7 33.3 26.7 33.3 33.3 33.3 13.8 22
CommonsBcel 69.3 69.3 69.3 68 69.3 61.3 64.2 65 65 65 65 65 56.9 65.8
CommonsBeanUtils 80.8 82.1 81.3 80.2 82 73.8 73.8 31.8 31.8 31.8 36.4 31.8 33.5 36.6
CommonsCodec 92.1 93.3 93.3 92.9 93.3 64.5 64.5 90 80 90 95 85 48 50
CommonsCollections4 49.1 52 50 45.9 52 60 60 45 40 45 40 45 52.6 43.3
CommonsIO 49.2 59.5 55.4 53.9 59.4 60.1 50.1 50 55 55 55 55 48.3 44

CommonsLang 94.2 96.2 96.2 96.1 96.2 83.3 70 95 75 95 95 80 61.1 51.5

CommonsProxy 78.8 79.3 78.8 76.5 79.3 79.9 83.2 40 30 40 20 40 44.4 26.6
DbUtils 77.8 78.7 77.8 77.3 78.7 43.1 64.4 42.9 50 42.9 50 57.1 10.1 31.6
iTrust 79.8 82.8 81.7 80.5 82.7 71.8 52.9 71.4 66.7 71.4 71.4 71.4 59.7 40.8

Jabref 45.5 49.3 46.9 43.7 48.8 41.3 70.9 50 35 50 45 50 35.1 71.1
Jtidy 97.9 97.9 97.9 96.9 97.6 90.3 50.2 80 80 80 80 80 70.9 48.1

JXPath 80.3 81.6 80.8 81.1 81.6 82.9 82.9 55 60 60 60 60 59.7 57
LaTazza 93.9 97 97 97 97 73.1 78.8 66.7 91.7 91.7 91.7 91.7 18.5 25
Log4j 72 72.9 72.5 71.2 72.9 90.9 77.1 5 10 5 5 10 50 15.7
Pmd 83.5 86.2 85.8 85.5 86.2 69.7 69.8 75 60 75 80 60 68.5 78.3
Woden 58.9 59.7 59.3 57.4 59.7 32.7 61.7 47.4 47.4 47.4 47.4 42.1 22.4 58.3
Xerces 92 93.9 93.9 93.9 94.4 84.8 84.8 55 65 65 65 70 57.6 58.7
xmlGraphics 74.5 74.5 74.5 73.5 74.5 74.5 57.1 73.3 73.3 73.3 86.7 73.3 57.8 51.1

xmlSecurity 43.5 70.7 59.8 59.8 70.7 60.9 60.9 33.3 80 46.7 46.7 66.7 48.4 57

RT F

AveCalc 79.8 79.3 79.8 79.3 79.8 64.4 64.1 10 11 10 10 10 12.9 11.6
CommonsBcel 70.4 70.4 70.4 69.3 70.4 61.9 65.9 7 7 7 7 7 8.6 6.8
CommonsBeanUtils 73.3 73.4 73.3 73.2 73.4 62.3 55.9 15 15 15 14 15 14.61 14
CommonsCodec 93.2 91.8 93.4 91.8 93.3 60.8 60.4 2 4 2 1 3 10.4 10
CommonsCollections4 45.4 45.4 45.4 42.6 45.9 57.8 56.5 11 12 11 12 11 9.4 11.3
CommonsIO 47.1 48.9 47.3 48.4 50.6 60.2 48.8 10 9 9 9 9 10.33 11.2

CommonsLang 98.9 98.4 98.9 98.7 98.6 83.2 73.5 1 5 1 1 4 7.76 9.7
CommonsProxy 34.9 35.3 34.9 28.2 35.7 39.9 49.1 6 7 6 8 6 5.56 7.3

DbUtils 87.6 87.5 87.6 87.4 87.7 19.1 59.4 8 7 8 7 6 12.5 9.57
iTrust 93.2 93.3 93.2 91.9 93.4 69.9 50.8 6 7 6 6 6 8.44 12.4

Jabref 47.3 46.5 47.6 46.9 50.7 42.4 70.8 10 13 10 11 10 13 5.7
Jtidy 97.3 97.3 97.3 96.3 96.9 90.2 50.7 3 3 3 3 3 4.35 7.7

JXPath 45.91 47.70 46.2 46.7 47.7 72.1 74.3 9 8 8 8 8 8.5 8.6
LaTazza 92.4 96.1 96.2 96.1 96.1 65.1 72.9 4 1 1 1 1 9.78 9
Log4j 26.5 26.9 26.6 25.7 27.1 84.3 41.1 19 18 19 19 18 10 16.8
Pmd 88.3 86.4 88.3 87.9 88.1 71.6 70.8 5 8 5 4 8 6.2 5.2
Woden 58.5 57.4 58.5 57.7 58.7 30.5 61.4 10 10 10 10 11 14.7 7.9
Xerces 73.1 75.1 73.5 73.5 76.2 67.21 69.3 9 7 7 7 6 8.4 8.29
xmlGraphics 87.9 86.8 87.9 87.2 87.6 81.1 55.3 4 4 4 2 4 6.3 7.3

xmlSecurity 41.4 44.1 41.9 41.9 44.3 55.4 50.4 10 3 8 8 5 7.7 6.4
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returned 0.001 as the p-value), while the results of both the
Mann-Whitney and the Â12 (> 0.57) tests suggest thatMORE
+ achieved better results than other approaches (NSGAII2d
included). Table 5 (down-right) details the (mean) values of
F obtained for each application and suite reduction
approach. Table 4 reports also results obtained for RF. We
can observe that results of the Kruskal-Wallis and the Â12

tests suggest that RF values had also independent distribu-
tions (p-value < 0.001) and that a significant effect (> 0.3) in
favor ofMORE+ exists. Test suites reduced byMORE+ signif-
icantly revealedmore faults than those test suites reduced by
applying most of the baseline approaches (see descriptive
statistics in Table 4 and the results of the Mann-Whitney test
as well as of the Benjamini-Hochberg correction). The unique
exception is 2OPT that achieves results not statistically differ-
ent from those obtained by applying MORE+. However, we
can observe that the median values of RF for MORE+ is 46.6
percent, for 2OPT is 52.5 percent, while the average of
median values for HGS, DGR, GRD NSGAII2d and GR3D is
56,7 percent. Table 5 (top-right) details the (mean) values of
RF obtained for each application and considered suite reduc-
tion approach. We see that MORE+ achieved the lowest RF
on 7 out of 20 applications, while NSGAII2d on 5 out of 20
applications. Among the traditional approaches, 2OPT
achieved better results. In detail, 2OPT achieved the lowest
RF on 5 applications, DGR and GR3D respectively on 4 and 3
applications, and, finally, GRD and HGS on 2 applications.
The results shown in Table 5 also suggest that all traditional
approaches obtained comparable results for two applications
(i.e., CommonsBcel and Jtidy), while for 14 applications at
least three of these approaches obtained comparable results.

5.3 Reduction in Test-Suite Execution Time

The Kruskal-Wallis test returned 0.0036 as the p-value for RT
(see Table 4), thus rejecting the null hypothesis NHRT . For
the pairs:MORE+ -NSGAII2dandMORE+ - GR3D, no statis-
tical difference was observed (the Mann-Whitney test
returned 0.338 and 0.046 as p-values, respectively). The time
to execute suites reduced by MORE+ was greater than the
time needed to execute suites reduced by HGS, DGR, GRD,
2OPT. The median value of RT is 61.4 percent for our
approach, while the (average) median value for these
approaches is 73.9 percent. Results are confirmed by the Â12

test (> 0.3) in favor of traditional approaches. This result is
mainly related to the larger number of test cases in the test
suites reduced by the evolutionary approach. That is, the
larger the test suite (see results about the reduction in test-
suite size), the greater the time to execute that suite is. Table 5
(down-left) shows the (mean) values of RT obtained on each
application and the studied test suite reduction approaches.

5.4 Diversity

In Table 6, we show descriptive statistics for Div. We can
observe that 36 percent is the (average) median value of test
cases shared between test suites reduced by MORE+ and
those reduced by the baseline approaches. This result might
suggest that by considering more dimensions at the same
time, we can obtain substantially different reduced test
suites with respect to those obtained with traditional reduc-
tion approaches. Furthermore, GR3D is the approach that
identified test suites having the highest percentage of test
cases in common with suites produced by MORE+. In fact,
MORE+ and GR3D share in average 47.2 percent of test
cases in contrast to 36.4 percent shared between MORE
+ and NSGAII2d and 29.5 percent (in average) of test cases
shared between MORE+ and the other traditional reduction
approaches. This outcome confirms that MORE+ and both
GR3D and NSGAII2d have commonalities (respectively
related to the considered objectives and algorithm), but also
it suggests that the differences between these three
approaches might have an impact on the reduced test suites.

5.5 Artifact Coverage

In Table 7, we report the results of the Kruskal-Wallis test on
the coverage of both code and requirements. Results sug-
gest that no relevant difference existed in the observed cov-
erage measures. In Table 7 and Table 8, we report
descriptive statistics (the coverage expressed in percentage)
and raw data values (expressed in terms of lines of code
and number of covered requirements) of the variables to
estimate the coverage of both source code and application
requirements. We can see some trend for which MORE
+ generated suites less effective in terms of code coverage
than traditional approaches, while it achieved comparable
results with respect to NSGAII2d. This outcome was
expected because MORE+ and NSGAII2d are based on evo-
lutionary algorithms that balance among different objec-
tives. While MORE+ achieved a better requirements

TABLE 6
Summary of Statistics for Div

Min Median Mean Max sd

MORE+/ 2OPT 4.6 34 30.1 60 17.2
MORE+/ DGF 0 34.3 30.8 60 17.1
MORE+/ GRD 0 34 28.4 56.8 17.1
MORE+/ HGS 0 33.3 28.5 58.4 17.9
MORE+/NSGAII2d 13.2 33.5 36.4 75.5 15
MORE+/ GR3D 22.4 46.9 47.2 100 16

TABLE 7
Summary of Statistics for Code_Cov and

Reqs_Cov (Percentage)

Min Median Mean Max sd

Code_Cov (%)

MORE+ 47.5 91.1 88.0 100 11.3
2OPT 74.3 100 98.7 100 5.7
DGF 74.3 100 98.7 100 5.7
GRD 74.3 100 98.7 100 5.7
HGS 74.3 100 98.7 100 5.7
NSGAII2d 38.9 91.4 88.9 100 11.8
GR3D 74.3 100 98.7 100 5.6

Kruskal-Wallis (p� value ¼ 0:69)

Reqs_Cov (%)

MORE+ 65.2 100 96.8 100 7.3
2OPT 16.6 100 91.1 100 19.7
DGF 0.0 100 90.0 100 23
GRD 0.0 100 90.3 100 23.1
HGS 0.0 100 91.4 100 23
NSGAII2d 66.6 100 95.1 100 7.5
GR3D 0.0 100 90.3 100 23.1

Kruskal-Wallis (p� value ¼ 0:706)
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coverage with respect to traditional approaches, it was
again comparable to NSGAII2d. For instance, for MORE+,
the mean values of Code_Cov is 88 percent and Reqs_Cov is
96.8 percent (see Table 7), for NSGAII2d it was respectively
88.9 and 95.1 percent, while the (average) mean values of
Code_Cov and Reqs_Cov for other traditional approaches
were 98.7 and 90.6 percent respectively.

As a further analysis, for each application object of the
study, we compared both code and requirement coverage
of test suites reduced by MORE+, NSGAII2d, and tradi-
tional approaches and their test effectiveness (e.g., “Are test
suites with high code/requirements coverage more effective
in discovering faults?”). To this aim, we used the Chi-
squared test of independence to investigate the existing
independence between code/requirements coverage and
number of faults discovered. The conducted Chi-squared
tests let us obtain always p� value > 0:05.

By a further manual inspection, we observed that for 17
out of 20 applications (85 percent), suites reduced by
MORE+ covered less code than traditional approaches,
but in 12 of such applications (70.5 percent) MORE+ dis-
covered more faults than traditional approaches. Similarly,
we observed that on 8 out of 20 applications (40 percent)
MORE+ covered more requirements than traditional
approaches and that in 7 of such applications (87.5 per-
cent) it allowed us to discover more faults. With respect to
suites reduced by NSGAII2d, the suites reduced by MORE
+ covered slightly less code on 13 out of 20 applications
(65 percent) and on 8 of these applications (61.5 percent) it
discovered more faults. Concerning the requirements,
MORE+ covered slightly more requirements on 11 out of
20 applications (55 percent) and on 7 of them (63.6 percent)
it discovered more faults. Even if these manual inspections
were not supported by statistical evidences (e.g., for what
concerns NSGAII2d and MORE+), results suggest the men-
tioned trend in the gathered data.

If we consider these outcomes (together with the ones
about RS and RF) related to code coverage (see Table 7), we
can argue that they are not surprising since, as highlighted
recently by Inozemtseva et al. [15], code coverage is not
always directly correlated to fault detection capability. We
can speculate that a similar observation could be drawn for
the coverage of requirements. By weighting both code and
requirements used to compute the artifact coverage, even
when a less coverage degree was achieved, MORE+ was
inclined to focus the suite reduction on those parts of code
and requirements that were more fault-prone, i.e., in which
the probability of finding fault was higher. Moreover, by
explicitly considering different types of information (low-
and high -level such as code coverage/cost and require-
ments, respectively) when reducing a suite,MORE+ reduced
test suites without focusing on a dominant information (e.g.,
low-level such as code coverage/cost).

5.6 Cost of the Reduction Approach

In Tables 9 and 10, we report descriptive statistics and val-
ues for Cost_Red (i.e., the execution time of MORE+ and
baselines). These values indicate the time to obtain Sred,
expressed in seconds. Results suggest that on average
Cost_Red varied from a few seconds to a few minutes.
2OPT required more time than other approaches. We can
assume that this was due to fact that 2OPT is a variant of
the greedy approach that conduces all-pairs comparison of
test cases to reduce test suite, i.e., it performs a high number
of comparison to reduce a test suite. We also observed that
in some cases (e.g., CommonsLang, Pmd, and Common-
sIO), 2OPT required an execution time notably greater than
other approaches (more than 30 seconds for 2OPT versus
less than 3 seconds for other approaches). However,
MORE+ and GR3D need information extracted by means of
textual-based similarity links to reduce test suites. In Table 9,
we also report the time (in seconds) to recover these links. In

TABLE 8
Code and Requirement Coverage Values per Application

APP 2OPT DGR GRD GR3D HGS MORE+
(mean)

NSGAII2d
(mean)

2OPT DGR GRD GR3D HGS MORE+
(mean)

NSGAII2d
(mean)

Code_Cov (Lines of code) Reqs_Cov (number of reqs.)

AveCalc 426 426 426 426 426 424.9 424.8 9 9 9 9 9 9 9
CommonsBcel 2,471 2,471 2,471 2,471 2,471 2,685.1 2,106.2 19 19 19 19 19 19.8 18.8
CommonsBeanUtils 3,948 3,948 3,948 3,948 3,948 3,506.3 3,520.2 24 24 24 24 24 23.5 21.8
CommonsCodec 2,539 2,539 2,539 2,539 2,539 2,504.2 2,507.2 15 15 15 15 15 16.9 17
CommonsCollections4 6,477 6,477 6,477 6,477 6,477 4,873 4,987.5 16 16 16 16 16 15.9 15.8
CommonsIO 4,098 4,098 4,098 4,098 4,098 3,189 3,526.2 18 18 18 18 18 18 18
CommonsLang 11,186 11,186 11,186 11,186 11,186 10,875.9 11,075 16 15 16 16 16 16 16
CommonsProxy 598 598 598 598 598 534.7 534.6 9 9 9 9 9 9 8
DbUtils 749 749 749 749 749 737.6 716.8 7 7 7 7 9 8.7 8.2
iTrust 1,951 1,951 1,951 1,951 1,951 1178.5 1536 14 14 14 14 14 14 14
Jabref 11,004 11,004 11,004 11,004 11,004 10,605 9,372.4 24 24 24 24 24 24 23.4
Jtidy 259 259 259 259 259 250.1 252 15 15 15 15 15 17.24 21
JXPath 4,755 4,755 4,755 4,755 4,755 3,882.6 4,010.9 19 19 19 19 19 20 20
LaTazza 69 69 69 69 69 69 69 1 0 0 0 0 6 6
Log4j 4,053 4,053 4,053 4,053 4,053 2,840.5 3,581.2 23 23 23 23 23 21.2 17
Pmd 7,529 7,529 7,529 7,529 7,529 6,944 7058 18 18 18 18 18 18 17.7
Woden 2,223 2,223 2,223 2,223 2,223 2,099.7 1,958.3 20 20 20 20 20 20.9 20.4
Xerces 12,676 12,676 12,676 12,676 12,676 12,410.5 12,463.6 20 20 20 20 20 20 20
xmlGraphics 4,230 4,230 4,230 4,230 4,230 3,360.7 3,846.9 19 19 19 19 19 17.9 17.2
xmlSecurity 2,830 2,830 2,830 2,830 2,830 2,531.4 2,682.4 14 14 14 14 14 13.4 12.8
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detail, the table reports the time to recover similarity
links between: (i) requirements and test cases and
(ii) requirements and source code. The first case was more
costly since it required on average 165.6 seconds. The recov-
ery of links between requirements and source code on aver-
age required 50.9 seconds. We argue that this finding was
due to the granularity of the analysis conducted to recover
similarity links: methods of JUnit classes (i.e., test cases)
and Java classes, respectively. Overall, MORE+ requires
more time than other approaches, depending on the ana-
lyzed application, the additional time required ranges from
0.2 seconds to 14 minutes while on average the additional
time corresponds to 2.7 seconds. The recovery of similarity
links could require a non-trivial amount of time, but we can
postulate that the time to recover links might be hidden to

an end-user given that the recovery process is executed in
background only when either requirements or source code
are added/modified. To further study the cost of the reduc-
tion approach, we measured the relationship between cost
and effectiveness, by means of CostEff (see next section).

5.7 Cost-Effectiveness

To compute CostEff values, we considered 3 subsequent
versions of each experimental object (i.e., g ¼ 3 in Eqs. (15)
and (16)). Table 11 reports descriptive statistics for CostEff.
We can observe that: (i) MORE+ was overall competitive
even if it was applied to only one version of the application
to-be-tested, in fact, the value of CostEff for MORE+ was
worse than DGR while it outperformed all the other
approaches; (ii) an increase in the number of consecutive
application releases showed an increase in competitiveness
(lower cost) of MORE+ with respect to other approaches
and more traditional ones. In other terms, an increased
number of application versions corresponded to a growing
competitiveness of MORE+ (i.e., lower cost and high

TABLE 9
Summary of Statistics for Cost Red

Algorithm Execution Time (in seconds)

Min Median Mean Max sd

MORE+ 0.0003 0.04 0.08 0.51 0.12
2OPT 0.05 3 48 720.5 159.8
DGF 0.003 0.17 0.25 0.76 0.22
GRD 0.009 0.41 0.77 3.38 0.8
HGS 0.0025 0.03 0.039 0.11 0.03
NSGAII2d 0.0003 0.04 0.09 0.8 0.18
GR3D 0.0005 0.33 0.94 5.2 1.33

Similarity Links Recovering (in seconds)

Reqs - TestCases Reqs - Code

Min 2 10
Median 82.5 19
Mean 165.6 50.9
Max 1505 430
sd 328.6 93.7

TABLE 10
Cost Red Values for Experimental Objects

Algorithm Execution Time (second)
Similarity Links Recovering

(second)
Total cost

APP MORE+
(mean)

GRD 2OPT DGR HGS NSGAII2d
(mean)

GR3D Reqs - TestCases Reqs - Code GR3D MORE+
(mean)

AveCalc 0.002 0.08 0.05 0.03 0.003 0.002 0.09 2 10 2.09 12
CommonsBcel 0.02 0.15 0.44 0.09 0.02 0.02 0.11 27 25 27.1 52
CommonsBeanUtils 0.25 2.18 36.09 0.76 0.03 0.17 3.24 220 10 223.2 230.5
CommonsCodec 0.04 0.18 6.25 0.13 0.02 0.04 0.26 75 10 75.2 85
CommonsCollections4 0.07 0.81 30.93 0.38 0.03 0.09 2.23 160 80 162.2 240
CommonsIO 0.09 0.83 55.11 0.34 0.04 0.08 0.81 130 30 130.8 160
CommonsLang 0.52 3.38 720.50 0.72 0.12 0.80 5.27 1505 74 1,510.2 1,579.5
CommonsProxy 0.00 0.12 0.07 0.04 0.06 0.002 0.01 6 28 6 34
DbUtils 0.01 0.14 0.50 0.12 0.01 0.01 0.06 13 10 13 23
iTrust 0.05 0.26 7.55 0.15 0.01 0.05 0.26 120 11 120 131
Jabref 0.07 0.77 3.64 0.45 0.04 0.07 1.03 200 104 201 304
Jtidy 0.01 0.05 0.23 0.02 0.01 0.01 0.01 20 13 20 33
JXPath 0.05 0.48 1.81 0.20 0.03 0.05 0.40 36 35 36.4 71
LaTazza 0.0003 0.0092 0.1537 0.0030 0.0026 0.0003 0.0005 3 10 3 13
Log4j 0.07 1.77 9.34 0.50 0.04 0.07 1.20 90 12 91.2 102
Pmd 0.20 1.81 91.34 0.42 0.06 0.30 2.05 300 75 302 375.2
Woden 0.04 1.14 2.39 0.20 0.02 0.04 0.63 90 10 90 100
Xerces 0.17 0.77 6.79 0.31 0.05 0.16 0.75 273 430 273.7 703.1
xmlGraphics 0.02 0.27 0.90 0.11 0.02 0.02 0.26 27 10 27.2 37
xmlSecurity 0.02 0.36 1.70 0.11 0.10 0.02 0.24 15 31 15.2 46

TABLE 11
CostEff: Statistics on the 20 Applications

App.#
Release

MORE+ 2OPT DGR GRD HGS NSGAII2d GR3D

Mean CostEff

1 1,254 1,262 1,214 1,268 1,261 1,274 1,446
2 2,291 2,475 2,427 2,535 2,522 2,331 2,725
3 3,328 3,689 3,640 3,802 3,783 3,388 4,005

Std.dev CostEff

1 689.6 641.4 4 62.5 539.7 458.0 674.1 788.8
2 1,111.1 1,182.1 925.1 1,079.1 915.9 1,089.2 1,342.7
3 1,551.7 1,727.1 1,387.6 1,618.6 1,373.8 1,525.2 1,910.5
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effectiveness with respect to other techniques), while 2OPT,
GRD and HGS decreased their competitiveness in terms of
CostEff (i.e., higher cost and less effectiveness with respect
to other techniques). It is worth mentioning that GR3D was
always worse than other approaches. It was due to the fact
that it was a quite simple and heavy algorithm (greedy) that
required a textual analysis (link recovery) among software
artifacts.

6 ADDITIONAL ANALYSIS

In the following, we present the results of additional analy-
ses on the gathered data. In particular, we present the
results of an analysis on the impact of the size of reduced
test suites and their capability in discovering faults. We also
show the results of an analysis on the Pareto fronts built by
MORE+ and conclude presenting the results of an analysis
of co-factors on the main results of our study.

6.1 The Impact of Suite Size in Fault Discovery

To additionally investigate the impact of the size (number of
test cases) of test suites on test effectiveness (capability of dis-
covery faults), we first compared the results achieved by
MORE+ with the ones obtained by randomly reducing test
suites (fixing the size of reduced suites according to the ones
generated byMORE+). In other terms, for each experimental
object, we applied a random reduction (named Rand) of its
test suite and measured the number of faults discovered by
such reduced suites. We considered the average of 20 ran-
dom reductions for each application. Table 12 details results

for the comparison: Rand versus MORE+/traditional
approaches (e.g., 2OPT, GRD), as well as descriptive statis-
tics and statistical tests. By comparing Table 12 with results
shown in Tables 4 and 5, we can observe that even if the ran-
domly reduced suites had the same size of the suites reduced
byMORE+, they had a lower capability to find faults and this
was statistically confirmed by the Mann-Whitney test
(p-value< 0.001) and by Â12 (> 0.19). The mean difference
wasmore than 4.2 (out of 17.9 on average) faults additionally
discovered per application byMORE+. Similarly, even if the
randomly reduced suites were larger than the suites reduced
by traditional approaches, they were not more effective in
terms of faults discovery.

Furthermore, we compared the suites reduced by
MORE+ and traditional approaches according to their size
and test effectiveness (e.g., “Are large suite more effective
in discovering faults than small ones?”). To this aim, we
adopted the one-way permutation test lets us identify any
interaction (impact) between two considered variables; in
our case: suite size and their effectiveness. While the
one-way permutation test computed for the traditional
approaches returned 0.02 as p� value, i.e., showing the exis-
tence of a given impact of suite size in suite effectiveness.
Conversely, the one-way permutation test computed for the
MORE+ returned 0.26 as p� value, thus it does not evidence
any impact of suite size in suite effectiveness.

By comparing the size of reduced suites obtained by tradi-
tional approaches with the ones of MORE+ and their test
effectiveness (see Table 13), we observed that, on one side,
for 11 out of 20 applications MORE+ generated larger suites
with respect to the ones generated by traditional approaches.
However, only in 6 cases, out of these 11 (55 percent), such
larger suites were actually more effective in finding faults
than the suites reduced by traditional approaches. On the
other side, we also observed that in the other 9 applications,
MORE+ generated suites smaller than their counterpart gen-
erated by traditional approaches. Nevertheless their smaller
size, in 7 out of such 9 applications (77 percent), these suites
weremore effective in finding faults.

Overall, the results of this analysis suggested that there is
still room to improveMORE+with respect to the effective of
the results, in fact, in a few cases we observed that tradi-
tional approaches competitively reduced test suites. How-
ever, results also clearly indicated that the suite size did not
play a fundamental role on test effectiveness.

6.2 Analysis of Pareto Fronts

To study the Pareto fronts built by MORE+, we plotted: the
mean effectiveness values of traditional approaches (the
black line in Fig. 4), and the number of faults discovered by
each suite per experimental object for both MORE+ (see the
blue boxplots in Fig. 4) and NSGAII2d (see the white box-
plots in Fig. 4). We recall that Table 13 reports the mean val-
ues of discovered faults for MORE+, NSGAII2d, and
traditional approaches.

By looking at the boxplots and and the (mean) trends in
Fig. 4, we can identify the following groups of applications
(experimental objects):

� Group (A): applications for which almost all suites
(more than 90 percent) in the Pareto fronts were

TABLE 12
Faults: Descriptive Statistics and the Mean Values per

Application for Random and Statistical Tests (in Bold Values
Significant at 5 Percent, While * Indicates Values Also

Significant by Applying the Benjamini-Hochberg Correction)

Fault

Min Median Mean Max sd

Random 0 4 5.2 12 17.2

Fault mean for application

App Fault

mean

App Fault

mean

AveCalc 8.7 Jabref 9.3

CommonsBcel 3 Jtidy 0.58

CommonsBeanUtils 8.2 JXPath 3.5

CommonsCodec 8 LaTazza 7.3

CommonsCollections4 5.6 Log4j 3.3

CommonsIO 4.5 Pmd 3.4

CommonsLang 3.5 Woden 9.8

CommonsProxy 4.6 Xerces 3

DbUtils 6 xmlGraphics 2.6

iTrust 6.4 xmlSecurity 3

Kruskal-Wallis p-value < 0.001

Mann-Whitney p-value Â12

Rand -MORE+ 0.001* 0.19

Rand - 2OPT 0.012* 0.32

Rand - DGR 0.012* 0.32

Rand - GRD 0.047 0.35

Rand - HGS 0.025* 0.34

Rand - GR3D 0.074 0.37
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more effective than the mean trend of traditional
approaches: 9 forMORE+ and 7 forNSGAII2d.

� Group (B): applications for which a large amount
(between 65 and 90 percent) of suites in the fronts
were more effective than the mean trend of tradi-
tional approaches: 5 for MORE+ and 4 for
NSGAII2d.

� Group (C): applications for which in a range between
50 and 65 percent of suites in the fronts were more
effective than the mean trend of traditional app-
roaches: 1 forMORE+ and 2 forNSGAII2d.

� Group (D): applications for which almost all (more
then 90 percent) of suites in the fronts were less effec-
tive than the mean trend of traditional approaches: 1
forMORE+ and 2 forNSGAII2d.

� Group (E): applications for which a large amount
(between 65 and 90 percent) of suites in the fronts
were less effective than the mean trend of tradi-
tional approaches: 3 for MORE+ and 2 for
NSGAII2d.

� Group (F): applications for which in a range between
50 and 65 percent of suites in the fronts were less

TABLE 13
F (Faults) versus Suite Size: Comparison Between Traditional Approaches,MORE+ and NSGAII2d

Suite Size (mean) Faults (mean)

Traditional MORE+ NSGAII2d Traditional MORE+ NSGAII2d

AveCalc 6 10 10 10.2 12.9 11.6
CommonsBcel 46.6 29 27 7 8.6 6.8
CommonsBeanUtils 234.2 408 408 14.8 14.6 14
CommonsCodec 95.8 216 216 2.4 10.4 10
CommonsCollections4 322.8 319 319 11.4 9.4 11.3
CommonsIO 389.6 343 429 9.2 10.3 11.2
CommonsLang 96.8 385 577 2.4 7.8 9.7
CommonsProxy 38.4 35.8 30 6.6 5.6 7.3
DbUtils 49.4 128 80 7.2 12.5 9.5
iTrust 170 259 433 6.2 8.4 12.4
Jabref 91 125 62 10.8 13 5.7
Jtidy 29 28 144 3 4.4 7.7
JXPath 73 66 66 8.2 8.5 8.6
LaTazza 1.2 8.8 7 1.6 9.8 9
Log4j 285 93.5 236 18.6 10 16.8
Pmd 100.4 209 206 6.0 6.2 5.2
Woden 107.8 177 99 10.2 14.7 7.9
Xerces 24 57 57 7.2 8.4 8.2
xmlGraphics 50.4 50 84 3.6 6.3 7.3
xmlSecurity 36 36 36 6.8 7.7 6.4

Fig. 4. Box-plots of faults discovered by all solutions in Pareto fronts ofMORE+ (blue filled boxplots) andNSGAII2d (white boxplots), mean effective-
ness of traditional approaches (continuous black line), and their groups (letters from A to F) forMORE+ andNSGAII2d.
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effective than the mean trend of traditional
approaches: 1 forMORE+ and 3 forNSGAII2d.

These groups indicated that on 18 out of 20 applications
forMORE+ and 15 out 20 forNSGAII2d (those in the groups
A, B, D, E), the mean trend of test effectiveness of all suite in
the Pareto fronts was representative of the effectiveness of
the reduced suites that compose such fronts. For instance,
we can observe that almost all suites of Pareto fronts of
MORE+ and NSGAII2d related to the 9 and 7 applications
of Group (A) respectively were superior, in terms of test
effectiveness, than those suites reduced with traditional
approaches. Hence, we can deduce that studying the aver-
age test effectiveness of these fronts is enough representa-
tive for all their suites. This did not hold for the 2 and
5 applications of Groups (C) and (F) of MORE+ and
NSGAII2d respectively, for which the mean test effective-
ness of suites in the fronts seemed to be not enough repre-
sentative, in fact, comparing different reduced suites of the
fronts with the mean effectiveness of traditional approaches
could led to different results.

Furthermore, boxplots for MORE+ and NSGAII2d in
Fig. 4 graphically expressed the statistical data already
shown in Table 4. Such data suggest thatMORE+ discovered
significantly more faults than NSGAII2d in several of the
considered experimental objects.

As a further analysis, Table 14 reports the difference, in
terms of average number of discovered faults (Eff.),
between suites in the Pareto fronts and the mean effective-
ness of traditional approaches per each group of experimen-
tal objects for MORE+ and for NSGAII2d. Focusing on the

upper part of Table 14 related to MORE+, we observed, for
instance, a clear trend in Group (A): by considering 252
reduced suites that had higher effectiveness than the suites
reduced by traditional approaches (i.e., “Eff(MORE+) > Eff
(Trad mean)” in Table 14), out of 255 suites in the Pareto
fronts produced by MORE+ (in group A), the mean number
of faults additionally discovered by MORE+ was 4.59 (row
3 in Table 14). Conversely, only for a few suites (3 out 255),
in the fronts for which traditional approaches achieved bet-
ter results (i.e., Eff(MORE+) < Eff(Trad mean) in Table 14),
the mean number of faults additionally discovered was 0.93
(row 4 in Table 14). In the groups (C) and (F), we could note
contrasting results. Looking at group (C), we observed that:
(i) by considering those suites reduced by MORE+ that had
higher effectiveness than suites reduced by traditional
approaches (24 out of 46 of Pareto fronts), the mean number
of faults additionally discovered by MORE+ was 1.26 (row
7 of Table 14); and (ii) by considering those suites reduced
by MORE+ that had achieved less effectiveness than the
ones reduced by traditional approaches (22 out of 46 of Par-
eto fronts), the mean of faults additionally discovered was
1.71 (row 8 of Table 14). Concerning the group (F), we
observed that: (i) by considering those suites reduced by
MORE+ that had higher effectiveness than the suites
reduced by traditional approaches (10 out of 22 of Pareto
fronts), the mean number of faults additionally discovered
by MORE+ was 1.5 (row 13 of Table 14); and (ii) by consid-
ering those suites reduced by MORE+ that had achieved
less effectiveness than the ones reduced by traditional
approaches (12 out of 22 of Pareto fronts), the mean of faults
additionally discovered was 1.53 (row num. 14 of Table 14).

The lower part of Table 14 show the results of the same
analysis on Pareto fronts produced by NSGAII2d. Similar
considerations to those reported for MORE+ can be done.
Also in this case Groups (C) and (F) provided contrasting
results. For example, in the group (C) we observed that:
(i) by looking at the 12 out of 20 suites reduced by
NSGAII2d they had higher effectiveness than the suites
reduced by traditional approaches, the mean number of
faults additionally discovered by NSGAII2d was 1.91 (row
20 of Table 14); and (ii) by considering those suites reduced
by NSGAII2d that have achieved less effectiveness than
those reduced by traditional approaches (8 out of 20 of the
Pareto fronts), the mean of faults additionally discovered
was 1.03 (row 21 in Table 14). A similar analysis could be
performed in the group (F).

Furthermore, to compare all the suites reduced by
MORE+ and those reduced by traditional approaches, we
built and compared two Pareto fronts for each application:
the first one was composed of all suites reduced by MORE
+ and the second one, namely reference Pareto front, com-
posed by the suites reduced by MORE+ and by the
traditional approaches. As described in the work of Yoo
et al. [16], taking advance of the Pareto optimality, a reference
Pareto front is a front specifically constructed and used when
comparing solutions produced by different algorithms
according to the dimensions of the reference front itself.
Specifically, among all the solutions from the union of the
different Pareto fronts (those from MORE+ and from the
traditional approaches), only the non-dominated ones, i.e.,
those solutions that are better then the others according to

TABLE 14
Faults: Test Effectiveness Difference Between Suites in the

Pareto Fronts and the Ones Reduced by Traditional Approaches

Group Eff Nr. suites

2 Pareto fronts

MinMedianMeanMax sd

MORE+

A Eff(MORE+) > Eff(Trad mean) 252 0 4.6 4.59 12.6 2.67

A Eff(MORE+) < Eff(Trad mean) 3 0.2 0.6 0.93 2 0.95

B Eff(MORE+) > Eff(Trad mean) 112 0 1.8 1.94 8 1.56

B Eff(MORE+) < Eff(Trad mean) 29 0.2 1 1.26 4 0.78

C Eff(MORE+) > Eff(Trad mean) 24 0.2 1.2 1.2 3.2 0.88

C Eff(MORE+) < Eff(Trad mean) 22 0.8 1.8 1.71 3.8 0.97

D Eff(MORE+) > Eff(Trad mean) 0 - - - - -

D Eff(MORE+) < Eff(Trad mean) 24 0.2 2.4 2.47 6.4 1.67

E Eff(MORE+) > Eff(Trad mean) 19 0.4 1.4 1.2 3.8 0.86

E Eff(MORE+) < Eff(Trad mean) 49 0.2 2.4 2.47 6.4 1.67

F Eff(MORE+) > Eff(Trad mean) 10 0.8 0.8 1.5 4.8 1.25

F Eff(MORE+) < Eff(Trad mean) 12 0.2 2.2 1.53 3.2 1.07

NSGAII2d

A Eff(MORE+) > Eff(Trad mean) 58 0.8 5 5.51 13.6 2.59

A Eff(MORE+) < Eff(Trad mean) 0 - - - - -

B Eff(MORE+) > Eff(Trad mean) 27 0 1.8 1.79 4.8 1.47

B Eff(MORE+) < Eff(Trad mean) 12 0.2 1.6 1.63 3.2 0.92

C Eff(MORE+) > Eff(Trad mean) 12 0.6 2.3 1.91 3.8 1.17

C Eff(MORE+) < Eff(Trad mean) 8 0.2 1.2 1.03 2.2 0.66

D Eff(MORE+) > Eff(Trad mean) 0 - - - - -

D Eff(MORE+) < Eff(Trad mean) 33 0.2 3.8 4.04 8.8 2.12

E Eff(MORE+) > Eff(Trad mean) 2 0.4 2.2 2.2 4 2.55

E Eff(MORE+) < Eff(Trad mean) 9 0.6 2.6 2.19 3.6 1.13

F Eff(MORE+) > Eff(Trad mean) 18 0.2 0.8 1.21 4.8 1.27

F Eff(MORE+) < Eff(Trad mean) 23 0.2 0.8 1.24 2.8 0.92
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the considered dimensions, were preserved and became
part of the final reference Pareto front. The construction of the
reference Pareto front, hence, helps in identifying the best
(sub)set of solutions, according to the adopted dimensions.
In this work, we built the Pareto fronts by considering the
“number of discovered faults”, “code coverage” and
“execution cost” of each suite as dimensions. The reason
behind the choice of these dimensions was that they are
often adopted to estimate the effectiveness of test suites.

By comparing such reference Pareto fronts per application,
we could observe that suites reduced by MORE+ were not
dominated (Mann-Whitney p-value = 1), instead, suites
reduced by traditional approaches were only partially not
dominated (p-value < 0.01). In fact, in the reference fronts,
on average, 100 percent of suites reduced by MORE+ were
not dominated by suites reduced by traditional approaches
(for all 20 applications, 100 percent of suites reduced by
MORE+were not dominated). Conversely, only 26 percent of
suites reduced by traditional approaches were not domi-
nated. We measured the Hypervolume (HV) metric [63], [78]
of each reference front and compared them by applying the
Mann-Whitney test and the Â12 test (see Table 15). HV is a
metric that computes the volume (i.e., size) covered by solu-
tions in a front obtained by considering an objective space.
The hypervolume is hence the space that is contained by all
solutions of a front with respect to a given reference point,
computed by considering the maximum possible objective
values. HV is a quality indicator for evaluating and compar-
ing Pareto fronts that measures the convergence and uniform
diversity of the front, i.e., a larger hypervolume is typical for
Pareto fronts having a better trade-offs among the considered
objectives than solutions having a smaller hypervolume. On
the obtained HV values, we computed the Mann-Whitney
test (p-value = 0.08) and Â12 (Â12= 0.34) for evaluating the

trend of all the experimental objects. Results suggest that by
additionally considering suites generated by traditional
approaches, no substantial improvements were obtained in
the set of suites reduced by MORE+. This seems to confirm
once again thatMORE+ is promising in reducing test suites.

Additionally, we compared all the suites reduced by
NSGAII2d and those reduced by traditional approaches, we
built and compared two Pareto fronts for each experimental
object: the first one was composed of all the suites reduced
by NSGAII2d and the reference Pareto front composed by
the suites reduced by NSGAII2d and by the traditional
approaches. By comparing such reference Pareto fronts
per application, we observed that suites reduced by
NSGAII2d were mainly not dominated (Mann-Whitney p-
value = 1), instead, suites reduced by traditional approaches
were only partially not dominated (p-value < 0.01). In fact,
in the reference fronts, on average, 100 percent of suites
reduced byNSGAII2d were not dominated by suites reduced
by traditional approaches (for all 20 applications, 100 percent
of suites reduced by NSGAII2d were not dominated). Con-
versely, only 28 percent of suites reduced by traditional
approaches were not dominated. On the obtained HV values
(see Table 15), we computed the Mann-Whitney test that
returned 0.01 as the p-value. The Â12 value was 0.75. Results
suggests that by additionally considering suites generated
by traditional approaches, no substantial improvements
were obtained in the set of suites reduced byNSGAII2d. This
outcome seems to suggest that NSGAII2d achieved good
results in reducing test suites.

Finally, we compared all the suites reduced by
MORE+ and NSGAII2d, we built and compared two Pareto
fronts for each application: the first one was composed of all
the suites reduced by MORE+ and the reference Pareto front
composed by the suites reduced by MORE+ and by

TABLE 15
HV Data Computed for the Built Reference Pareto Fronts

App MORE+ versus trad NSGAII2dversus trad MORE+ versus NSGAII2d

HVMOREþ HVall HVNSGAII2d HVall HVMOREþ HVall

AveCalc 0.0 0.0 0.2 0.2 7.3 0.0
CommonsBcel 2,198.6 901.1 249.6 249.6 3,827.9 901.1
CommonsBeanUtils 139,976.7 139,976.7 58.8 58.8 140,045.0 139,976.7
CommonsCodec 9,648.7 131.6 2,414.9 101.0 234.2 131.6
CommonsCollections4 36,777.6 4,467.4 2,445.4 48.0 4,467.4 4,467.4
CommonsIO 8,678.4 345.6 5,710.0 0.0 8,154.5 345.6
CommonsLang 179,978.5 1,113.3 14,976.5 0.0 52,878.3 1,113.3
CommonsProxy 377.6 225.1 0.0 0.0 225.1 225.1
DbUtils 1,092.1 30.4 807.1 1.9 499.0 30.4
iTrust 107.0 107.0 92,016.1 121.0 12,290.8 107.0
Jabref 155,385.2 2,527.6 25,554.1 25,554.1 106,791.2 2,527.6
Jtidy 1.6 1.6 230.9 0.3 206.4 1.6
JXPath 7,414.9 1,321.7 1,349.3 528.1 1,415.8 1,321.7
Latazza 0.0 0.0 0.0 0.0 0.0 0.0
Log4j 208,429.7 2,838.3 2,502.7 0.0 131,177.1 2,838.3
Pmd 2,352.6 2,352.6 481.7 481.7 2,509.8 2,352.6
Woden 7,454.4 105.3 1,220.6 39.2 4,289.1 105.3
Xerces 810.2 810.2 196.9 196.9 1,036.4 810.2
xmlGraphics 38,490.1 16,305.8 16,133.5 2,573.3 40,681.6 16,305.8
xmlSecurity 5,708.9 4,490.5 2,042.1 558.6 44,192.3 4,490.5

p� value 0.08 0.01 0.05
Â12 0.34 0.75 0.68
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NSGAII2d. By comparing such reference Pareto fronts per
application, we observed that the suites reduced by
MORE+ were mainly not dominated (Mann-Whitney
p-value < 0.01), instead, the suites reduced by NSGAII2d
were only partially not dominated (p-value < 0.01). In fact,
in the reference fronts, on average, 97.1 percent of suites
reduced by MORE+ were not dominated by suites reduced
byNSGAII2d (17 out of 20 applications, 100 percent of suites
reduced by MORE+ were not dominated). Conversely, only
66 percent of suites reduced by NSGAII2d were not domi-
nated (only for 8 applications, 100 percent of suites reduced
by NSGAII2d were not dominated). On the obtained HV
values (see Table 15), we computed the Mann-Whitney test
and Â12. The obtained values were 0.05 and 0.6825, respec-
tively. Results show that by additionally considering suites
generated by NSGAII2d, no substantial improvements were
obtained in the set of suites reduced by MORE+. This seems
to confirm once again that MORE+ is promising in reducing
test suites.

6.3 Analysis of Co-Factors

In Table 16, we summarize the results concerning how the
considered faults impact on the requirements. This table
reports (first column) the percentage of requirements affected
by at least one fault. For instance, 40 percent (i.e., 4 out of 10)
of requirements considered for AveCalc were affected by at
least one fault. Table 16 also reports (second column) the per-
centage of faults not impacting on any requirements. For
instance, all considered faults affect application require-
ments. Moreover, this table reports (third column) the per-
centage of test cases that did not impact on requirements. For
examples, 3 out of 20 faults (15 percent) of CommonsCollec-
tions did not impact on the set of considered requirements. In
the fourth column of Table 16, we report fault density

(FaultDensity ¼ P
r2Reqs ðjNumFaultsr�meanðNumFaults

NumReqs
Þj

NumReqs Þ). High
values for fault density indicate applications with faults

concentrated in a few requirements, while low levels of fault
density indicate applicationswith faults spread amongmany
requirements.

From Table 16, we can also see that faults were evenly
distributed among application requirements (i.e., distrib-
uted in more than 51 percent of requirements—median
value for Reqs affected by faults—and with a fault density
lower or equal than 1.8—median value for FaultDensity) in
case of: LaTazza, CommonsProxy, DbUtils, iTrust, Com-
monsBeanUtils, and Xerces. Conversely, the faults were
concentrated in a few requirements (i.e., distributed in less
than 51 percent of requirements and with a fault density
higher or equal than 1.8) in: AveCalc, Woden, CommonsIO,
xmlSecurity, and CommonsCollections.

On the basis of the results shown in Table 16 (fourth col-
umn), a high number of requirements for LaTazza and DbU-
tils (4 out of 10 and 3 out of 12, respectively) were not linked
to any test case. This result suggests that test cases were
mainly focused on a subset of the considered requirements.
As for iTrust, Woden, JXPath, CommonsIO, CommonsBcel,
xmlSecurity, CommonsLang, andXerces, all the requirements
were linked to at least one test case, while for the other appli-
cations a few requirements (on average 7.7 percent for each
application)were not linkedwith test cases, even if some links
were present. This outcome suggests that the set of similarity
links used in the empirical study could be incomplete.

Results reported in the second column of Table 17 sug-
gest that test suites of AveCalc, LaTazza, CommonsBcel,
xmlSecurity, and Jabref had a non-trivial percentage of test
cases revealing at least one fault. Conversely, a large num-
ber of test suites (i.e., the ones of: iTrust, JTidy, Log4J, Com-
monsIO, CommonsBeanUtils, CommonsCollections, Pmd,
CommonsLang) had less than 5 percent of fault-revealing
test cases. For each application, the third column of Table 17
shows the percentage of test cases revealed more than one

TABLE 16
Impact of Faults on Requirements

App % Reqs
affected
by fault

% Faults not
impacting

reqs

% Not
tested
Req

Fault
Density

LaTazza 60 13 40 1.8
AveCalc 40 0 10 3.2
CommonsProxy 80 0 10 1.7
DBUtis 58 14 25 1.6
iTrust 80 23 0 1.8
CommonsCodec 57 35 10 2
JTidy 36 6 8 1.7
Woden 41 21 0 1.8
Log4J 41 0 4 1.7
JXPath 55 15 0 2
CommonsIO 50 0 0 3.4
CommonsBcel 25 0 0 1.6
CommonsBeanUtils 57 22 7 1.8
xmlGraphics 50 20 12 4.3
xmlSecurity 13 0 0 1.9
CommonsCollections 41 15 5 1.8
Pmd 50 10 10 2
CommonsLang 80 5 0 2.2
Jabref 51 50 22 1.5
Xerces 80 0 0 1.6

TABLE 17
Percentage of Test Cases Revealing: At Least One Fault, More
Than One Fault for Each Application; and the Functional Test

Case Redundancy

App TCS
revealing
	1 fault

TCS
revealing
> 1 fault

TCS
revealing
1 fault

TCS
Redundancy

LaTazza 68 51 17 8.2
AveCalc 53 49 4 11.7
CommonsProxy 8 7.8 7.8 5.6
DbUtils 8 1 7 10.5
iTrust 4 0.4 3.6 3.6
CommonsCodec 5 0.1 4.9 13.8
JTidy 4 0.3 3.7 14.4
Woden 8 0.8 7.2 4.2
Log4j 4 0.9 3.1 21
JXPath 7 0.4 6.6 6.5
CommonsIO 3 0.2 2.8 10.8
CommonsBcel 26 2 24 4.1
CommonsBeanUtils 3 0.2 2.8 15.8
xmlGraphics 8 0 8 3.3
xmlSecurity 18 0 18 3.2
CommonsCollections 3 0.2 2.8 4.3
Pmd 3 0.1 2.9 3.8
CommonsLang 1.4 0.3 1.1 20
Jabref 13 0 13 9.4
Xerces 7 0.7 6.3 8.5
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fault, respectively. We can observe that only in AveCalc and
LaTazza a large percentage of test cases (about 50 percent)
revealed more than one fault, while in other applications
almost all test cases revealed only one fault. The fourth col-
umn of Table 17 reports the percentage of test cases that
revealed only one fault, we can see that: in average less than
8 percent of test cases revealed only one fault, LaTazza had
the highest percentage 17 percent, while 10 applications had
less than 5 percent of test cases that revealed only one fault.

In the last column of Table 17, we report the results for
test case redundancy (TCSRedundancy). This measure was
computed as follows: TCSj j

Testclassesj j. TCS is the set of test cases
composing a suite and Testclasses is the set of JUnit classes
that functionally group test cases. We assume that JUnit
classes group functionally correlated test cases, i.e., JUnit
test methods. Results suggest that the test suites with high
redundancy are those of: AveCalc, Log4j, CommonsLang,
CommonsBeanUtils, JTidy, and CommonsCodec.

The results of a two-way permutation test indicated that
Reqs, NotTestedReqs, and TCSRevealing1fault had a statis-
tically significant effect on: RF, RS and RT (p-value is always
less than 0.001). A two-way permutation test showed that
TCSRedundancy and TCSRevealing 	 1fault had a statisti-
cally significant impact (p-value � 0.02) on RF/RT and RS,
respectively. No co-factors had a significant effect on the
interaction with studied reduction approaches/techniques.

The results of a two-way permutation test also suggested
that the observed outcomes depend on the experimental
objects: we obtained a p-value less than 0.001 for RF, RS,
and RT and also a statistically significant effect on the inter-
action with reduction approaches. We noted a non trivial
variability of achieved results (on average 89.5 percent for
RF, 52.4 percent for RS, and 69.8 percent for RT). In particu-
lar, 2OPT, GRD and GR3D had the highest variability for
RF (94.7 percent versus an average of 85.6 percent of other
approaches), while MORE+ had the highest variability for

RS (64 percent versus an average of 50.5 percent of other
approaches) and RT (78.7 percent versus an average of 68.3
percent of other approaches).

In Table 18, we report the results of the Spearman’s corre-
lation test obtained for such co-factors for MORE+, GR3D
and for other approaches. We could observe that Reqs, Not-
TestedReqs, TCSRedundancy, TCSRevealing geq 1fault and
TCSRevealing1fault had a positive impact on RF for both
MORE+ and GR3D, even if the results were not statistically
relevant in the case of GR3D. For the other approaches, Req,
TCSRedundancy, TCSRevealing geq 1fault had a negative
impact on RF, while NotTestedReqs, TCSRedundancy still
had a positive effect.

7 DISCUSSION

In this section, we first present overall considerations
according to the investigated research questions. We con-
clude delineating possible implications of our research and
its possible future extensions.

7.1 Overall Considerations

We observed that traditional test suite reduction approaches
identified test suites smaller than those identified by apply-
ing evolutionary (multi-objective) approaches. This might
be due to the fact that these approaches aim to better bal-
ance among different objectives. In other terms, even if all
the considered traditional approaches consider at least code
coverage and execution cost (while GR3D additionally con-
siders also requirements coverage), it seems that code cover-
age remains the predominant objective that drive test suite
reduction. Conversely, NSGA-II-based approaches aim to
explicitly and equally balance among the considering objec-
tive, thus producing a Pareto front of candidate solutions.
Among the traditional approaches, GR3D was the one that
reduces less, this might be due to the fact that it tries to
reduce according to three objectives instead of two, as well
as done, for instance, by GRD. MORE+ preserved the capa-
bility of reducing suites that characterize also traditional
evolutionary and multi-objective approaches, i.e., the one
that optimizes test suite reduction according to code cover-
age and execution cost. We observed thatMORE+ identified
test suite reductions that cover less application code that
other reduction approaches. However, giving more empha-
sis to the fault-prone parts of code and selecting suites that
better balanced low- (coverage of code and execution cost)
and high- level information (application requirement cover-
age), MORE+ outperformed other approaches in terms of
capability to detect faults, even if the achieved results was
not statistically confirmed in the case of 2OPT. MORE+ also
outperformed a traditional NSGA-II-based approach that
only considers low-level information (code coverage and
execution time). Hence, we can delineate the following
take-away outcomes: (i) automatic weighting of code and
requirements applied when computing the coverage allows
MORE+ to find reduced suites that cover less application
source code than traditional approaches, but these reduced
suites better focus on fault-prone source code; (ii) the
coverage of application (functional) requirements allows
MORE+ to find test suites that preserve the coverage of all
the relevant business aspects of the application under test-
ing; and (iii) the use of the NSGA-II-based algorithm tends

TABLE 18
Spearman’s Correlation of Co-Factors

Co-factor Correlation

RF RS RT

MORE+

Reqs �17% -2% -7%
NotTestedReqs �19% 9% -13%
TCSRedundancy �11% 34% 10%
TCSRevealing 	 1fault �11% -3% -20%
TCSRevealing1fault �4% -5% -22%

GR3D
Reqs -23 -22% -28%
NotTestedReqs -35 -3 -17
TCSRedundancy -23 5 -15
TCSRevealing 	 1fault -33 -15 -30
TCSRevealing1fault -23 -19 -33

Other approaches

Reqs 15% 22% 15%
NotTestedReqs -11% 23% 4%
TCSRedundancy -18% 38% 11%
TCSRevealing 	 1fault 4 27% 18%
TCSRevealing1fault 23% 21% 17%

Bold values are statistically significant at 95 percent.

386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 4, APRIL 2019

Authorized licensed use limited to: Universit&agrave; degli Studi di Bari. Downloaded on October 23,2020 at 08:09:40 UTC from IEEE Xplore.  Restrictions apply. 



to find reduced test suites that are more effective than those
the greedy algorithm with three objectives (i.e., GR3D)
finds.

On the basis of the observed results, we can state that test
suites reduced by applying approaches that fill the gap
between low- and high-level information (source code and
requirements) preserve their capability in detecting faults
as compared with corresponding unreduced test suites.
Among these approaches, it seems that MORE+ is generally
more effective than others. Therefore, we can positively
answer RQ1 stating that MORE+ is effective in reducing test
suites with respect to existing approaches.

Concerning the efficiency of the method (i.e., reduction
cost and cost-effectiveness), experimental results suggested
that the recovery of similarity links among software artifacts
was costly and time consuming, so negatively affecting the
overall suite reduction cost. On the other hand, we observed
that MORE+ was overall competitive with respect to the
baseline approaches in terms of cost-effectiveness. Further-
more, an increase of the number of consecutive versions of
the application under test indicated an increase in the com-
petitiveness of MORE+ in terms of cost-effectiveness. Sum-
marizing, we cannot provide conclusive results on the
efficiency of MORE+. Indeed, we could answer RQ2 stating
that considering the suite reduction cost MORE+ is not effi-
cient with respect to baseline approaches, but MORE+ is
cost-effective with respect to them when we consider the
reduction cost in relation to its fault detection capability.

Obtained results also highlighted some trends about
how application artifacts might influence the capability of
reduced test suites to detect faults. Even if not all these
trends were supported by statistically significant results, we
observed that if the number of test cases revealing at least
one fault increases, reduction approaches tend to preserve
the capability of the reduced test suites to detect faults. We
also observed that an increase of functional redundancy
decreases the capability of two-objectives traditional
approaches to reduce test suites that preserve their capabil-
ity to detect faults (as compared with the whole suites).
Two trends differentiate results achieved by the traditional
evolutionary and multi-objective approaches and MORE+.
The first trend concerns the impact of fault density, while
the second the size of test suites. Indeed, a trend seemed to
exist and we can summarize it as follows: an increase of
fault density (i.e., increase of the number of faults in few
application requirements) or test suite size negatively influ-
ences the capability of traditional evolutionary approach in
producing effective reduced test suites (i.e., that preserve
the capability of finding faults), while they did not nega-
tively impact on the results of our approach. We can postu-
late that the additional dimension (i.e., the functional) and
the adoption of an automatic weighting scheme give MORE
+ the chance to better focus on relevant application parts
(source code and application requirements).

7.2 Implications and Future Extensions

We focus on the researcher and the practitioner perspectives
to discuss implications and possible future extensions for
the research in the regression testing field.

� Test suite reduction might benefit from the use of
evolutionary and multi-objective algorithms and

automatic artifacts analysis and weighting appro-
aches. That is, a test suite reduction obtained by
applying MORE+ is able to reveal more faults than a
test suite reduced by applying baseline approaches.
This result is relevant for practitioners interested in
using MORE+ in their company. The researcher
could be interested in this result to better study
the use of structural, functional, and cost dimensions
in software regression testing. Definitely, the results
presented in this paper and those previously
shown [3], [37] pose the basis for future research on
this matter.

� Results indicated that our approach produces effec-
tive test suites, but it might be costly to apply if com-
pared with the studied baselines. However, we
observed a high cost-effectiveness of the suites
reduced by MORE+, in fact, its cost-effectiveness is
quite competitive even if it is applied to one version
of the application to-be tested and that MORE
+ becomes even more competitive when it is applied
on at least two subsequent versions of the same appli-
cation to-be tested. This is clearly relevant for the
practitioner interested in reducing the cost to perform
regression testing and improving detect fault capabil-
ity at the same time.

� This implication is related to the previous one since
the practitioner has to take into account the execu-
tion cost to reduce test suites, when choosing a new
approach. In our case, there is a cost due to the appli-
cation of LSI to compute similarity links among soft-
ware artifacts. Although this cost seems to be
adequately paid back (see RQ2), the researcher could
be interested in studying different text retrieval
models and techniques to reduce the time needed to
compute similarities among software artifacts.

� Different kinds of applications were considered in
our study. These applications were realistic enough
for small- to medium-sized software projects and
faults where differently distributed within code and
requirements. Although we are not sure that the
achieved results scale to real commercial projects,
obtained results seem to reassure us about their gen-
eralizability. Indeed, the magnitude of the benefits
deriving from the use of MORE+ suggests that our
outcomes could be generalized also to applications
from different application domains. These points
surely deserve further investigations and they are
relevant from both the practitioner and the resea-
rcher perspectives.

� More traditional reduction approaches are superior
to multi-objective approaches to identify smaller test
suites, while they are inferior with respect to their
capability in revealing faults. This result is clearly
relevant also for the practitioner, who has to choose
the most suitable approach to be used in his/her
company.

� An empirical assessment of a new technology/
method makes easier and faster its transfer to soft-
ware industry [79]. This might happen when
empirical results show that such a technology/
method effectively solves actual issues. This is the
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case of our proposed solution. We can also postu-
late that the use of MORE+ does not require a
radical process change in a given software com-
pany (e.g., similarity links are automatically recov-
ered and covered information is easy to obtain by
instrumenting source code). This point is of inter-
est primarily for the practitioner. On the other
hand, the researcher could be interested to conduct
users’ studies to assess how actual testers perceive
MORE+ and if they might have some benefits
from its use. This kind of investigation makes
sense because of our results and represents a
future direction for our research.

8 CONCLUSION

In this paper, we proposed and studied MORE+, a Multi-
Objective test cases REduction approach. It is a multi-
objective approach that reduces test suites by considering
coverage of both source code and application requirements.
The cost to execute test cases is also took into account. An
IR-based textual similarity approach was applied to link dif-
ferent kinds of application artifacts (i.e., requirements speci-
fications, source code, and test cases). A reduced test suite is
then determined by using a multi-objective optimization,
implemented in terms of NSGA-II. MORE+ has been evalu-
ated through a large empirical assessment on 20 open-
source Java applications. Results proved the effectiveness of
MORE+ in reducing test suites with respect to seven base-
line approaches well known in the regression testing field.
Results also suggested that MORE+ is not efficient in red-
ucing test suites as compared with the studied baseline
approaches but it is cost-effective with respect to these
approaches. This is especially true when reduced test suites
are used to test at least two subsequent versions of the same
application under test.
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