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Abstract: Carbon (C) budget at cropping systems has not only agronomic but also environmental
relevance because of their contribution to both emissions and removals of greenhouse gases (GHGs).
Ideally, sustainable orchards are expected to remove atmospheric CO2 at a rate greater than that of
the emissions because of (i) optimized biology of the system and (ii) reduced on-site/offsite inputs
sourced by the technosphere. However, such a computation might produce inconsistent results
and in turn biased communication on sustainability of the cropping systems because C accounting
framework(s) are used under unclear context. This study examined the sustainability of orchards
in terms of impact on GHGs focusing its significance at the field, ecosystem and global dimension
analyzing some operational aspects and limitations of existing frameworks (e.g., net ecosystem
carbon balance (NECB), life cycle assessment (LCA)). Global relevance of sustainable orchard was
also discussed considering the C sequestration at cropland as instructed by Intergovernmental Panel
on Climate Change (IPCC). The uniqueness of olive tree lifespan duration and C sequestration is
discussed within the Product Environmental Footprint of agrifood product. The paper also highlighted
overlapping components among the NECB, LCA and IPCC frameworks and the need for an in-
tegrated C accounting scheme for a more comprehensive and detailed mapping of sustainability
in agriculture.
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1. Introduction

Sustainability in agriculture has recently gained renewed interest as a result of the
definition of Sustainable Development Goals by United Nations [1]. A comprehensive
assessment of sustainability of agricultural cropping systems should simultaneously refer
to its economic, environmental and social performance, making it a complex challenge [2].
Hence, any sustainable strategy should focus the preservation of agricultural productivity
and food security reducing greenhouse gases (GHGs) emissions and increasing atmospheric
CO2 removals.

Agricultural lands are natural ecosystems managed by farmers that play a relevant
role in emissions of the major GHGs (CO2, CH4 and N2O) involved in increasing radiative
forcing of Earth’s atmosphere [3,4]. The impact of agriculture on atmospheric GHGs
balance is intimately linked to farmers’ behavior in terms of management practices they
adopt. For example, mechanized and chemically fertilized crops significantly contribute to
GHGs emissions mainly due to fossil fuel consumption for increased use of some external
inputs (e.g., pesticides, irrigation water, mineral nutrients), machinery production and
maintenance, and field oxidation of minerals supplied [5,6].

In addition, cropland intensification leads to an overexploitation of natural capital
(e.g., soil, water). For example, the use of mineral fertilizers in place of organic ones
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and soil tillage contribute to soil organic carbon (SOC) depletion (and in turn that of the
SOC-mediated ecosystem services) [7,8]. Crop management also influences CH4 and N2O
fluxes mainly through soil tillage and mineral nutrition [9,10].

Within the agricultural sector there are several sustainable technologies and practices
able to support climate change mitigation which encompass the reduction (or avoidance)
of GHGs emissions and enhancement of atmospheric CO2 removals. For example, use of
organic fertilization, crop residues management (mulching them in loco rather than burn),
soil management (no tillage, use of cover crops), irrigation (use of localized irrigation and
renewable energy for pumping) and land use change (e.g., increase perennials) [10–12].

At the 2015 Paris UNFCCC-COP21 climate conference, the “4‰” initiative was
launched as tool for partial offset of global anthropogenic emissions boosting the sequestra-
tion of atmospheric CO2 into cultivated soil and soliciting further discussion on sustainable
management practices (e.g., agroforestry, biochar, improved grazing and restoration of
degraded soils) [13]. These practices collectively promote soil recarbonization at a variable
SOC rate ranging from approx. 0.2 to 5 Mg C ha−1 yr−1 [14] and contribute to restore
soil structure and function, and in turn the flow of related ecosystems services [8]. Hence,
while currently crop activities (on farm crop production and land use change category) are
indicted to be responsible for 8–20% of global anthropogenic GHGs emissions [15], after
the switch to a sustainable format they can be an ally in climate change mitigation mainly
because of the ability of plants to capture atmospheric CO2 and because of reduction of
practice-induced GHGs emissions.

As orchards are part of wide natural ecosystems, anthropogenic interferences on field
carbon fluxes are influential on the overall ecosystems carbon budget. For example, to
accomplish the target of any cropping process C is exported from the orchard (and in turn
from ecosystems) as fruit or biomass. Similarly huge amounts of C are often exported
because crop (e.g., pruning) residues are burning outside the field [16]. By contrast,
ecosystems might store C when it is imported as organic fertilizers (e.g., manure, compost),
adopting cover crops, and mulch in loco of pruning residues [17]. In addition, adoption of
no-tillage strategy reduced soil CO2 respiration promoting SOC conservation [18]. Hence,
all these import-export C fluxes should be quantified if a more accurate sustainability have
to be determined at an ecosystem scale.

Agricultural production processes require external on-site inputs (e.g., machinery,
pesticides, fertilizers, plastic trays) supplied by the technosphere. In addition, there are
often others off-site inputs (e.g., transportation, packhouse processing) essential for the
whole agrifood production chain. The use of external inputs supplied by the technosphere
implies direct or indirect GHGs emissions [12] imputable to agriculture. Accounting for
these GHGs emissions would help to identify related sources and possible reduction
strategies contributing to reinforce sustainability of agriculture at “global” scale.

Figure 1 illustrates the agricultural production as part of a natural ecosystem and
interactions with various spheres identifying field, ecosystem and global dimensions. The
flow of ecosystem services (e.g., fruit/vegetable, soil erosion control, regulating atmo-
spheric CO2) from ecosystems to the society (anthroposphere) and the potential flow of
environmental protecting actions from society to ecosystems are also highlighted (Figure 1).

Climate change together with increasing food demand due to growing global popu-
lation and with changing of human diet towards plant-based food which are perceived
environmentally friendly [19] are collectively challenging agriculture, making the wide
adoption of sustainable practices urgent. However, sustainability assessments of an agri-
cultural product involving GHGs flux estimates might have different structures depending
on the target to be pursued (e.g., agronomical, ecological, societal) and on the boundaries
considered (i.e., field, ecosystem and global).

Despite growers being the key-factor for wide scale application of sustainable practices,
some growers’ perspective links the benefits of field sustainable practices to the expected
increased yield and to enhanced agronomic traits (e.g., soil water holding capacity, nutrient
release, pH buffer capacity) induced by increased soil C [20]. In view of the potential
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role of agriculture to support climate change mitigation, this view needs to be expanded,
embracing different levels of C benefits achievable at ecosystem and global dimensions.
However, the carbon balance of agrifood produce carried out in a life cycle perspective
could became a way to differentiate own production with respect to competitors. In this
context, the Carbon Footprint certification according to UNI EN ISO 14067:2018 could play
a very important role in increasing farm competitiveness and promote good sustainable
agricultural practices [21–23].

With this background, this study examines the carbon fluxes related to orchard pro-
duction systems at farm, ecosystem and global dimensions, and discusses possibilities of
integration of various accounting GHGs frameworks to improve the assessment of certain
aspects of environmental performance of sustainable agriculture.
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which are used both on-site and at field scale (e.g., pesticides, chemical fertilizers, machinery, transportation); field #5,6,
receive off-site technological inputs related to production steps occurring solely outside the field (e.g., transportation of olive
to the mill, crushing, extraction and bottling of the olive oil). Note that the field, ecosystem and global frameworks (dashed
box) have been drawn for orchard #5 for example purpose but they apply to all orchards. The flow of the ecosystems services
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and the potential flow of actions from society to ecosystems are reported as well. The broad arrows represent the emissions
(from orchard to atmosphere) or removals (from atmosphere to orchard) of CO2 or CO2 equivalent (CO2eq).

2. Farm Dimension

Most of the 20th century has been dominated by the dependence of agriculture on
mineral fertilization as legacy of Liebig’s discovery of the role of mineral elements and
thanks to the growing chemical fertilizers industry [24]. Since the 1940s, soil organic matter
has been progressively associated to various agronomic benefits leading to improved pro-
ductivity and soil resilience [25]. Nowadays, there are evidences on the limited perception
by group of farmers concerning the benefits linked to increased soil organic matter (e.g.,
climate change effects) apart from its capacity of increasing productivity [20].

Soil fertility is associated to productivity often because it is tailored to the capability
of soil to supply nutrients to meet plant demand, however other factors (e.g., soil moisture,
soil temperature, pH, toxic elements, salts) might limit productivity [26]. Hence, soil
fertility should not be limited to productivity but embrace a large bundle of soil functions
including physical and biological fertility and buffering capacity. Soil carbon is behind
these fertility types and related services [8,17] to the extent that they have been proposed
as key factor for the assessment of economic value of SOC [27].



Sustainability 2021, 13, 8750 4 of 14

The increase of soil organic matter (and in turn SOC) is affected by several factors,
including quality/quantity of organic input, environmental conditions (e.g., soil moisture,
texture, temperature), and the initial content of SOC to the extent that these factors are the
core of most SOC models [28]. In addition, how the soil microbial community processes
C influences its sequestration. Microbial carbon use efficiency (CUE) (microbial biomass
C increment during growth per amount of organic C used) impacts C accumulation to
the extent that integrating multi-enzyme stoichiometry and C balance approaches are
emerging [29]. A recent perspective study [30] highlights the various ecological unknowns
influencing CUE and in turn CUE management limitations in agricultural soils for greater
soil C storage.

Carbon inputs are the main driver for increasing C stocks, although at a variable
rate depending also on eventual combination with other sustainable practices adopted
(e.g., cover crops, no-tillage). The meta-analysis proposed by Aguilera et al. [14] showed
that approx. 50% of the C input is sequestered as SOC and that the highest sequestration
rate (~5.1 Mg C ha−1 yr−1) was generated by C inputs exceeding 10 Mg C ha−1 yr−1. A
significant correlation between SOC storage and yield increment was reported for winter
wheat and summer maize [31], however, increasing soil organic matter per se does not
necessarily increase the yield especially when nutrients are supplied through mineral
fertilizers [32].

At perennial crops carbon might be sequestered also in others compartments of the
orchard ecosystems such as above-belowground biomass and litter [33]. Hence, orchards
might act as carbon sink contributing to climate change mitigation and to the achievement
of a low carbon society. Awareness of such “societal” sustainability have been recently
embedded in a European legislation package to the extent that estimates of the C pools
variation at perennial crops have been included in the Cropland category of the LULUCF
domain within the annual GHGs monitoring and reporting national procedures compiled
to fulfil the Kyoto Protocol commitments [34]. The biogeochemical cycle of SOC is pivotal
for plant production also because native soil nitrogen (the most important nutrient for
yield) is available through soil organic matter mineralization. Therefore, the mineralization
rate along with the season should be characterized to check for adequate NO−3 availability
for the crop, keeping in mind that NO−3 is leached or emitted in atmosphere as N2O when
exceeding plant uptake. Within a GHG balance, soil N2O emissions partly offset the
benefits from soil organic carbon storage [35].

3. Ecosystem Dimension

The lack of a clear cause→ effect of increasing SOC on yield discussed above empha-
sizes that to gain more relevance carbon management should be re-examined within the
whole C fluxes at orchard systems within an agroecology context. For this purpose it is
mandatory to disentangle field C fluxes at ecosystem scale and the potential impact of
some manageable options on that fluxes. The main focus at ecosystem dimension towards
the definition of orchard sustainability would be the net ecosystem productivity (NEP)
which might be positive (sink) or negative (source) assuming the ecosystem as the reference
system. From basic ecology it results that:

NEP = NPP − Rh (1)

where NPP (net primary productivity) is the total carbon removed (and partly sequestered)
by the plants through photosynthesis, and Rh is the heterotrophic component of the soil
respiration. It follows that maximize sustainability crop management should maximize
NPP and minimize Rh in order to achieve a NEP value as high as possible. For this purpose,
the adoption of cover crops is a relevant strategy to significantly increase the amount
of atmospheric C captured as NPP by the ecosystem. For example, in a peach orchard
cover crop biomass might help to remove from the atmosphere approx. 155 g C m−2 yr−1

(approx. 25% of the total NPP) (Figure 2). The amount of C derived from cover crops
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might vary from approx. 80 g C m−2 yr−1 in traditional olive plantation [36] up to
200–500 g C m−2 yr−1 in vineyard [37,38].
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Figure 2. Values of annual trees and cover crop net primary productivity (NPP) measured at a
Mediterranean peach orchard under different management options. Bars are SE and refers to the
sum of tree and cover crop NPP; comparing the total NPP values for sustainable and conventional
plot. * indicates significant differences (Student’s t-test, α = 0.05). Redrawn from [39].

Soil respiration (Rs) is a significant C flux from cropping system to the atmosphere
ranging from ~0.2 to ~1.6 kg C m−2 yr−1 depending of various soil and environmental
conditions [40]. Hence, efforts to minimize Rs would contribute to reduce the impact of
agriculture on atmospheric CO2 and to maintain the soil C stock. Avoidance (or reduction)
of soil disturbance through zero (or minimum) tillage is an essential management option to
reduce soil CO2 emissions [41]. The CO2 emission might flush for approx. 2–25 days after
soil disturbance depending mainly on the deep of tillage. Afterwards, emissions reach a
base level similar to that of no tilled soil [18,41]. A meta-analysis covering different soil,
climate types and time-scale (season, years) concluded that tillage on average increases
CO2 emissions by approx. 20% compared to no-tillage [42].

The main effect of soil disturbance on CO2 emissions is the disruption of soil aggre-
gates and in turn the exposure of SOC to microbial decomposition [18] highlighting that
the Rh component is the most relevant one. Hence, it is not surprising that soil respiration
might be up to 20% higher in a sustainable peach orchard (no tillage, cover crops, compost
application and mulching of crop residues) compared to that of the paired tilled field
because of the higher C inputs and SOC [43]. Increased Rs due to increasing organic matter
decomposition is fueling the debate on the sustainability of organic inputs [44]. Further
management efforts (e.g., disposal of C inputs in deep soil layer, use of in situ catalyzed
oxidative polymerization) [45,46] might be of assistance to reduce CO2 emissions due to
high C content. However, Rs (and specifically the Rh component) needs to be considered
within the whole ecosystem dimension (i.e., in combination with NPP as per Equation (1))
if its agroecology significance is to be defined.

Farmer’s fields conform to an ecosystem where pools of material and energy are
supplied not only by the biosphere and atmosphere but also by the anthroposphere to the
extent that the ecosystem approach applies to it [47]. An ecosystem approach linking biotic,
physics and anthropogenic C imports/exports is essential for sustainable management of
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cropland [47] and it has been conceptualized through the Net Ecosystem Carbon Balance
(NECB) framework [48]. The NECB might be schematized as follow:

NECB = NEP − LTC (2)

where the LTC represents the lateral transport of carbon related to anthropogenic im-
ports/exports such as fruit harvest, removing of pruning residuals and import of organic
fertilizers. A schematic of the NECB is proposed in Figure 3.
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The NECB framework has been implemented in various tree crops resulting in net sink
(NECB > 0) (Figure 4). Values of NECB within tree crops are greatly variable and, in some
cases, it could be vulnerable and easily fall in the negative territory, becoming a source
(see peach_2 and apple_2 in Figure 4) just in case of increased C export due, for example,
to an increased yield [49]. Upon the application of a set of sustainable practices (compost
supply, recycling of pruning residuals, cover crops), C budget values might increase up to
approx. 750 g C m−2 yr−1 and be in the magnitude of that reported for a forestry species
under woody ash and nitrogen application (see peah_1 and poplar in Figure 4). The NECB
framework simultaneously captures C fluxes related to human activity and to the biome
photosynthesis (NPP) and soil respiration (Rh). However additional C fluxes (e.g., leaching,
volatile organic compounds, CH4, CO, CO2 emissions from fire) might be accounted within
the NECB framework [48].
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Figure 4. Values of annual Net Ecosystem Carbon Balance (NECB) in various tree species. Peach
data are redrawn from [39]; apple and grape from [50,51].

4. Global Dimension

The global warming potential (GWP) has been introduced, as an environmental impact
category, to normalize the contribution of a GHG to the radiative forcing of atmosphere
relative to that of CO2 which is by definition equal to 1. For example, at a 20-year time
horizon the GWP related to the emission of one molecule of CH4 and N2O is equivalent
to 84 and 264 molecules of CO2, respectively [4]. Agriculture might affect several impact
categories (e.g., acidification, eutrophication, toxicity, ozone depletion) including GWP
whose indicator is the emitted amount of CO2 or CO2-eq when non-CO2 GHG gases are
considered [52]. Application of sustainable practices benefits the overall atmospheric
CO2 removal capacity of orchards contributing to the ecosystem resilience. However,
some components (e.g., leaf, twigs, weed, most of annual root) of the annually produced
ecosystem biomass have a relatively fast turnover (6–12 months) and therefore they have
no net positive impact on the GWP. By contrast, according to IPCC agricultural carbon
pools belonging SOC, the dead organic matter (litter and dead wood) and crop above
and belowground coarse biomass has a long turnover and therefore is considered as CO2
sequestration rather than removal (Figure 5) [33]. Based on the durable feature of C
stored in these pools (soil, coarse biomass, litter) they can be monitored for GHGs national
accounting purposes by Kyoto Protocol signatory countries [33] clearly underlying a global
dimension of the sustainable practices adopted. The stock variation of these C pools is
also tracked by the NECB framework, hence the ecosystem and global dimension (sensu
IPCC) share some common features (Figures 3 and 5) that are to be considered to avoid
any double accounting.
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As an orchard is a managed ecosystem, the production cycle requires external inputs
that imply GHGs emissions to be accounted if the assessment of orchard impact on GWP at
a global dimension is to be determined. The use of machinery, pesticides, fertilizers, plastic
trays for harvest, iron wire and plastic pipes for irrigation system, water pumping energy,
etc. are roughly common on-site inputs supplied by the technosphere. In addition, there
are often other off-site inputs (e.g., transportation, packhouse processing) essential for the
whole agrifood production chain (Figure 6). The use of external inputs supplied by the
technosphere implies direct or indirect GHGs emissions [12] which are not related to the
biological ability of a crop system to sequester/release C and therefore not tracked by the
NECB framework.
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production used at field (on-site) or off-site. Note that the GHGs associated to these inputs are
accounted within the life cycle assessment (LCA) framework.

Accounting for these direct and indirect GHGs emissions is mainly achieved through
product-based life-cycle assessment (LCA) whose standards have been developed by ISO
14067 [21], contributing to a “global” assessment of sustainability. Recently, increasing
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demand for sustainable food and goods by consumers have further stimulated the need to
quantify their environmental impact, which is increasingly communicated by suppliers
through LCA-based labels [53,54].

LCA methodology is often applied to the agrifood sector [55] but it brings uncertain-
ties due to the interacting ecological and anthropogenic activities. The accuracy of LCA
methodology in providing the environmental performance of a crop system is debated
because of its limitations in accounting for ecosystem-based GHGs flux closely linked
to management practices (e.g., soil quality, soil C sequestration and N emissions) [55].
Comparing the various frameworks for accounting C fluxes at similar orchard production
contexts (Figure 7), it emerges that the LCA approach is tracking only the “bad” face
(i.e., emissions) of agricultural practices in terms of GWP impact. In addition, comparing
sustainable and conventional orchards biomass might not be greatly influenced by the
management technique while soil and litter C sequestration might significantly differ (see
IPCC columns in Figure 7).
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Figure 7. Mean annual carbon net removals and sequestrations (positive values) and emissions
(negative values) determined at sustainable and conventional Mediterranean peach orchards by
means of Net Ecosystem Carbon Balance (NECB), IPCC and Life Cycle Assessment (LCA) operational
frameworks. Data are reworked from [39] (NECB, IPCC) and [12] (LCA). Note that LCA carbon data
were from CO2 equivalent conversion.

Information on the (positive) impact of agricultural process at ecosystem dimension
might favor a wider perception of the GWP mitigation of agriculture. Comparison of LCA
based assessment of GWP impact of orchards under different managements is difficult
because of variability in parameters such as the functional unit (e.g., land surface unit, fresh
yield unit, bottled product, single tray), or the system boundaries (e.g., from extraction of
raw materials constitutive of all productive tools and inputs to farm gate, or to supply chain
hub or to consumer table) or time boundaries (e.g., from cradle to grave). For example,
the impact of olive oil production might differ in relation to the boundary of the system
defined (compare [55,56]).

Despite this, LCA is a powerful methodology to identify specific process/material to
be improved/replaced to benefit the environmental impact [12], and it should be integrated
with data relying on the ecosystem dimension of agriculture [27,57–59]. This would
help to get a more powerful assessment of sustainable agriculture. However, ecosystem
parameters potentially related to LCA have a higher site-to-site variability, hampering its
use, barring the development of a regionalized LCA offering region-specific inventories
and characterization factors [54]. It emerges that the current assessment of sustainability in
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cropping systems might be implemented at field, ecosystem and global dimensions using
various CO2 accounting frameworks which partly share common components (Figure 8).
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5. Product Environmental Footprint: The Uniqueness of the Olive Sector

With the aim to harmonize the LCA-based methodology carried out for commu-
nicating the environmental performance of European agrifood products, the European
Commission proposed a multi-criteria measure of the environmental performance of goods
and services named Product Environmental Footprint [60]. The PEF was also intended
to avoid confusion for consumers. Within agricultural systems, all tree crops (durably)
sequester C into above- and belowground coarse biomass to the extent that biomass repre-
sents an accountable pool for climate change mitigation purposes according to IPCC [33].
For the purposes of PEF, the general timeframe of 100 years is considered for the GWP
calculation, hence the mean lifespan of tree crops (15–40 years) limits the inclusion of
tree biomass to gain C credits in case of GWP100 calculation. However, among tree crops
olive trees might stand for >100 years, deserving attention within product (e.g., olive oil)
environmental footprint procedures.

Olive is among the most cultivated tree crop in Mediterranean countries which
nowadays suffers land abandonment because of environmental and socio-economic con-
straints [61]. Olive crops might capture CO2 at a NEP rate as high as approx. 45 t CO2
ha−1 yr−1 (227 tree ha−1) representing a key valuable crop for climate change mitigation
purpose [61]. The synergy between environmental and economic sustainability of olive
groves has been the subject of recent researches depicting limitations and potentiality of the
main existing LCA-based environmental certification processes of olive oil (for review [62]).
Olive trees have some specific features which might help to introduce a novel integration
among various environmental impact assessment frameworks, including the accounting of
the biological capability of trees to sequester CO2.
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The PEF initiative included Product Environmental Footprint Category Rules (PEFCR)
projects, launched by the European Commission in 2014 and now available in its last
version [63]. The projects covered various animal and plant-based products, including
olive oil within a context of “cradle to grave” assessments of final products footprint with
a lifetime beyond 100 years.

In principle the PEFCR project was intended to account for emissions/removals
occurring also at the field stage of each product considered. However, the biological
function of plants to absorb atmospheric CO2 during the field stage was allowed only
for the olive oil (and cork) product category, accounting for the olive tree biomass carbon
sequestration occurred during the olive production. Explanation for that uniqueness was
grounded on the evidence that an olive grove lifespan is greater than 100 years, justifying
carbon credits for olive oil.

To test the process for developing product- and sector-specific PEFCR, a series of pilots
(https://ec.europa.eu/environment/eussd/smgp/PEFCR_OEFSR_en.htm, accessed on 15
May 2021) study were implemented for various products including olive oil, producing a
screening report (PEFCR-OO) [64]). However, some issues still limit a systematic inclusion
of biogenic carbon of olive tree biomass in LCA-based procedures due to some differences
in olive grove cultivation systems among the main producing countries (i.e., Spain, Italy,
Greece) [65,66] and due to issue(s) not covered by the PEFCR-OO. For example, olive
cropping systems might vary according to the plantation density and in turn differ in
terms of carbon sequestration capability and lifespan duration. This in turn would impact
the environmental footprint but, as for Spain, the high- or super high-density systems
(> 1500 trees ha−1) were not considered within the PEFCR-OO pilots.

Despite the fact that annual carbon uptake by the tree biomass (e.g., leaves, pruning
residues, fruits) in super high-density systems is greater than that of low and medium
density groves [67], the potential C credits generated by the long-period biomass carbon
storage (i.e., sequestration) could not be considered due to their lifespan generally assumed
to be <100 years (i.e., ~20 years) [68]. However, the last (v.6.3) version of PEFCR (par.
7.10.2) [63] recommended to adopt crop-type and country-region or climate specific data
for all inputs referred to the crop management and yield. Hence, input data (e.g., pesticides,
fertilizers, soil management, biomass) should be also tailored to specific cropping systems
as defined by plantation density.

The PEFCR-OO project also considered the Italian and Greek olive cropping systems
which similarly presents a higher degree of complexity due to the coexistence of various cul-
tivation systems. Principally, approx. 60% of the total olive cropped area is covered by tradi-
tional (centuries-old) system (80–100 trees ha−1) and intensive (200–500 trees ha−1), while
40% is covered by a high-density system with a plantation density ranging from approx.
400 to 1500 trees ha−1. In these countries, super high-density plantations (>1500 tree ha−1)
share a minimal percentage (~1%). For centuries-old tree plantations the long-period carbon
sequestration has been allowed within the field stage, even though a specific calculation
methodology remains to be fully developed. According to the PEFCR, in all these different
olive cropping systems as for other tree crop species, the modelled long-term soil carbon
storage (e.g., through RothC) might be accounted for carbon credits [12,69]. Again, consid-
ering the variability of soil properties (e.g., texture, clay content, moisture), environmental
conditions (e.g., precipitation, temperature) and management practices (e.g., conventional
tillage, cover crops) which collectively impact soil carbon turnover, the application of such
a modelling procedure would be site-specific, limiting its generalization.

6. Conclusions

Agricultural crops are perceived as a large contributor to climate change but they also
have relevant mitigation potential due to the storage of C in the three pools belonging to
cropping systems (soil, above and belowground biomass, litter). This study examined the
carbon fluxes related to orchard production systems, considering the farm, ecosystem and
global dimension. The main outcomes show that carbon fluxes in and out of the field might

https://ec.europa.eu/environment/eussd/smgp/PEFCR_OEFSR_en.htm
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be defined and referred to at various dimensions through CO2 accounting frameworks (e.g.,
NECB, LCA, IPCC) which partly share common components and therefore might be used
to scale sustainability across these dimensions. LCA-based procedures for communication
of the environmental impact of an agrifood product reports only the GHG emissions
associated to the use of technosphere inputs while the CO2 removals due to the biome
remain hidden. Therefore, the influence of cropland activity on GWP impact category
as measured through CO2 (or CO2-eq) emissions might be assessed considering not only
emissions but also CO2 removals/sequestrations contributing to define sustainability of
cropping systems at a global scale. In conclusion, the harmonization of various frameworks
is desirable along with the integration of others ecosystem services components for a more
comprehensive and detailed mapping of sustainability in agriculture.
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