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In this paper we propose a numerical procedure in order to approximate the solution 

of two-dimensional Fredholm integral equations on unbounded domains like strips, half- 

planes or the whole real plane. We consider global methods of Nyström types, which are 

based on the zeros of suitable orthogonal polynomials. One of the main interesting aspects 

of our procedures regards the “quality” of the involved functions, since we can successfully 

manage functions which are singular on the finite boundaries and can have an exponen- 

tial growth on the infinite boundaries of the domains. Moreover the errors of the methods 

are comparable with the error of best polynomial approximation in the weighted spaces 

of functions that we go to treat. The convergence and the stability of the methods and the 

well conditioning of the final linear systems are proved and some numerical tests, which 

confirm the theoretical estimates, are given. 
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1. Introduction 

This paper deals with the numerical approximation of the solution of bivariate Fredholm integral equations of the second

kind 

f (x, y ) − μ

∫ 
S 

k (x, y, s, t) f (s, t) w (s, t) ds dt = g(x, y ) , (x, y ) ∈ S, (1.1)

defined on the set S = (a, b) × (c, d) , where the ranges ( a , b ) and ( c , d ) can be bounded intervals or unbounded ones, the

function w ( x , y ) is the product of two weights functions w 1 (x ) , w 2 (y ) defined on ( a , b ), ( c , d ) respectively and μ is a real

parameter. k and g are given functions defined on S × S and S respectively, while f is the unknown. 

We will discuss two cases in details: (1) S is the first quadrant in the coordinate plane, i.e. S = (0 , + ∞ ) × (0 , + ∞ ) and

w 1 , w 2 are two Generalized Laguerre weights; (2) S is defined as the horizontal strip of the plane between the axes y = ±1 ,

i.e. S = (−∞ , + ∞ ) \{ 0 } × (−1 , 1) and w 1 , w 2 are a Generalized Freud type weight and a Jacobi weight, respectively. However,

the numerical schemes we are going to propose could be successfully applied in order to handle, mutatis mutandis, other

different unbounded domains like the entire plane, the half-plane, other kinds of strips etc. 
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Fredholm integral equations, both in the univariate and in the bivariate cases, appear in several problems arising in

many different areas, like computer graphics, engineering, mathematical physics etc. Moreover some differential schemes 

with boundary conditions can be reduced to Fredholm integral equations. 

While the numerical solution of the Fredholm integral equation in the univariate case was extensively studied and dis-

cussed (see for instance [1,2] ), the bivariate problem was investigated only recently. The interested reader can consult the

bibliography in [3] which gives an overview on the numerical methods appearing in the literature for solving the problem

in the case of finite domains of the plane (see also [4,5] ). 

To our knowledge, the problem of unbounded domains has not been treated so far. On the other hand, the methods

based on the reduction of the problem to finite ranges, usually require non linear changes of variables, which can make

poor the smoothness of the known functions, and consequently of the solution. For instance by means of the transformation

ψ(x ) = 

x 
1 −x the interval [0 , + ∞ ) is mapped into [0, 1], but a regular function like log (1 + y ) on [0 , + ∞ ) , by the change

y = 

x 
1 −x is transformed into a weakly singular one on [0, 1]. In addition, the new known functions of the equation could

contain not suitable or non standard weight functions, for which the main tools of the approximation theory are unknown. 

Following an approach already used by the authors in [4] for S = [ −1 , 1] 2 , in the present paper we propose a global

method in order to approximate the solution of equations of the type (1.1) by means of a suitable Nyst röm method. The

latter is essentially based on a tensor product of univariate Gaussian rules, like Gauss–Laguerre rules in the first case and

Gauss–Freud, Gauss–Jacobi rules in the second one. In both of the cases we are able to treat equations whose solutions

belong to some spaces of weighted continuous functions which can be singular along the finite boundaries of S . To be more

precise, in the first case the solution can have singularities of algebraic type on one or both the positive semi-axes, and an

exponential growth at infinity at most. In the second case, the solution can be singular along the straight lines of equations

y = ±1 , algebraically diverging on the internal line { (x, y ) : x = 0 , y ∈ (−1 , 1) } and exponentially growing for x → ± ∞ . 

The unboundedness of the domains add difficulties to the numerical approach that need suitable truncation techniques

(see for instance [6] ) in order to avoid a slow convergence. 

We prove that under suitable assumptions on the known functions and the weights, the proposed procedures are stable

and convergent and that the involved linear systems are well conditioned. We underline that, under the same conditions

the rate of convergence of the methods is comparable with the error of best polynomial approximation in the functional

space where the solution lives. 

Moreover, since we use “truncated” Gaussian rules, the dimension of the corresponding linear systems is smaller than

the classical ones and therefore the computational costs can be significantly reduced. 

We remark that, due to the global nature of the approximation, our method requires that the kernel function k and the

right–hand side g of the equation have to be analytically known and therefore the method cannot be used if these functions

are only point wisely given. 

We organized the outline of the paper as follows. In Section 2 we introduce the notations, recall some auxiliary results

and give an estimate of the bivariate best polynomial approximation error in weighted uniform norm, in terms of the best

polynomial approximation w.r.t. the single variables. Therefore, for a better readability of the paper, we decided to separate

the description of the numerical method and the statements of the main results from the proofs. Hence in Sections 3

and 4 we show the Nyström method in the case S is the first quadrant of the plane, by stating the convergence and stability

results of the method, by giving computational details for the implementation and some numerical tests which confirm the

theoretical estimates. Similarly Sections 5 and 6 are devoted to an analogous study in the case of the strip S = R − { 0 } ×
(−1 , 1) . All the proofs of the main results stated in Sections 3 and 5 can be found in Section 7 . Finally Section 8 contains

the conclusions. 

2. Notations and basic polynomial approximation results 

Along all the paper the constant C will be used several times, having different meaning in different formulas. Moreover

from now on we will write C � = C(a, b, . . . ) in order to say that C is a positive constant independent of the parameters

a, b, . . . , and C = C(a, b, . . . ) to say that C depends on a, b, . . . . Moreover, if A , B ≥ 0 are quantities depending on some

parameters, we write A ∼ B , if there exists a positive constant C independent of the parameters of A and B , such that 

B 

C ≤ A ≤ CB. 

The notations f x and f y will be used when the function f ( x , y ) is considered as a function of the only variable y or x ,

respectively. Moreover, k ( s , t ) (respectively k ( x , y ) ) will mean that the function of four variables k ( x , y , s , t ) is considered as a

function of only ( x , y ) (respectively ( s , t )). Finally P ≡ ( x , y ) will denote a generic point of the domain S . 

Denoting by P m 

the space of the univariate polynomials of degree m , let P m,m 

be the space of all algebraic polynomials

of two variables of degree at most m in each variable. Setting 

ω 1 (z) = (1 − z) ρ(1 + z) σ , z ∈ I 1 := [ −1 , 1] , ρ, σ ≥ 0 , 

ω 2 (z) = e −
z 
δ1 
2 z ζ (1 + z) ν, z ∈ I 2 := [0 , + ∞ ) , ζ , ν ≥ 0 , δ1 > 

1 

2 

, 

ω 3 (z) = e −
| z| δ2 

2 | z| ξ (1 + | z| ) η, z ∈ I 3 := R , ξ , η ≥ 0 , δ2 > 1 . (2.1) 
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let us introduce the following space of functions 

C ω 1 (I 1 ) = { h ∈ C(−1 , 1) : lim 

x →±1 
h (x ) ω 1 (x ) = 0 } , (2.2)

C ω 2 (I 2 ) = { h ∈ C(0 , ∞ ) : lim 

x → 0 + 
h (x ) ω 2 (x ) = 0 = lim 

x → + ∞ 

h (x ) ω 2 (x ) } (2.3)

C ω 3 (I 3 ) = { h ∈ C(R − { 0 } ) : lim 

x → 0 ±
h (x ) ω 3 (x ) = 0 = lim 

x →±∞ 

h (x ) ω 3 (x ) } . (2.4)

Then, for any function h ∈ C ω j (I j ) , j = 1 , 2 , 3 , let 

E m 

(h ) ω j := inf 
p∈ P m 

‖ (h − p) ω j ‖ ∞ 

= inf 
p∈ P m 

max 
x ∈ I j 

| (h (x ) − p(x )) ω j (x ) | 
denote the error of best polynomial approximation of h in weighted uniform norm. 

Let 

ˆ a m 

= 

ˆ a m 

(ω 2 ) ∼
[

2 

2 δ1 −1 �2 (δ1 ) 

�(2 δ1 ) 

] 1 
δ1 

(
1 + 

2 ζ + 1 

8 m 

) 1 
δ1 

m 

1 
δ1 = Cm 

1 
δ1 , C = C(ζ , ν) , C � = C(m ) (2.5)

be the Mhaskar–Rachmanov–Saff (from now on M-R-S number) w.r.t. ω 2 . We recall (see [7] ), that for any function h ∈
 ω 2 (I 2 ) , s.t. ‖ h ( r ) ϕr ω 2 ‖ ∞ 

< ∞ , ϕ(x ) = 

√ 

x , the following Favard-type estimate holds true 

E m 

(h ) ω 2 ≤ C 

( √ 

ˆ a m 

m 

) r 

‖ h 

(r) ϕ 

r ω 2 ‖ ∞ 

, C � = C(m, h ) . (2.6)

Let 

ā m 

= ā m 

(ω 3 ) ∼
[

2 

δ2 −1 �2 (δ2 / 2) 

�(δ2 ) 

] 1 
δ2 

(
1 + 

ξ + 1 

2 m 

) 1 
δ2 

m 

1 
δ2 = Cm 

1 
δ2 , C = C(ξ , η) , C � = C(m ) (2.7)

be the M-R-S number w.r.t. ω 3 . For any function h ∈ C ω 3 (I 3 ) , s.t. ‖ h ( r ) ω 3 ‖ ∞ 

< ∞ and if the exponent ξ is not an integer, the

following Favard-type estimate holds true (see [8,9] ) 

E m 

(h ) ω 3 ≤ C 
(

ā m 

m 

)r (‖ hω 3 ‖ ∞ 

+ ‖ h 

(r) ω 3 ‖ ∞ 

)
, C � = C(m, h ) . (2.8)

Now we recall that for any function h ∈ C ω 1 (I 1 ) , s.t. ‖ h ( r ) ϕ 

r ω 1 ‖ ∞ 

< ∞ , where ϕ (x ) = 

√ 

1 − x 2 , the following estimate

holds true 

E m 

(h ) ω 1 ≤ C ‖ h 

(r) ϕ 

r ω 1 ‖ ∞ 

m 

r 
, C � = C(m, h ) . (2.9)

Setting u (P ) = ω k (x ) ω j (y ) , where ω k ( x ), ω j ( y ) are two weights functions among those defined in (2.1) and P ∈ S = I k × I j ,

we define the following space of weighted continuous bivariate functions 

C u (S) = 

{ 
f ∈ C(S) : lim 

P → ∂S 
f (P ) u (P ) = 0 

} 
(2.10)

where the limit condition holds true independently from the directions. Moreover another limit condition for P tending to

the line x = 0 (or y = 0) must be added if one (or both) the weight(s) is(are) of the type ω 3 . 

Therefore for any f ∈ C u (S), 

E m,m 

( f ) u = inf 
P∈ P m,m 

‖ ( f − P ) u ‖ ∞ 

= inf 
P∈ P m,m 

max 
P ∈ S 

| ( f (P ) − P (P )) u | 
will denote the error of best bivariate polynomial approximation of f in C u (S). 

The next theorem allows us to estimate E m , m 

( f ) u by means of the univariate best approximation errors w.r.t. the single

variables x and y . 

Theorem 2.1. With k , j ∈ {1, 2, 3}, let u (P ) = ω k (x ) ω j (y ) , where ω k ( x ), ω j ( y ) are two weights functions chosen among those

defined in (2.1) . Then, 

E m,m 

( f ) u ≤ C 
[

sup 

x ∈ I k 
ω k (x ) E m 

( f x ) ω j + sup 

y ∈ I j 
ω j (y ) E m 

( f y ) ω k 

]
, (2.11)

where 0 < C � = C(m, f ) . 

Remark 2.1. In the case I k = I j = [ −1 , 1] and ω k , ω j are both Jacobi weights, we proved (2.11) in [4] . We remark that the
proof that we give here is based on a simpler and more general approach, which can be used also in other norms. 
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3. The case S = (0 , + ∞ ) × (0 , + ∞ ) 

Consider the Eq. (1.1) with S := (0 , + ∞ ) × (0 , + ∞ ) and w (x, y ) = w 1 (x ) w 2 (y ) where w 1 (x ) = e −x b x α1 , w 2 (y ) = e −y b y α2 ,

α1 , α2 > −1 , b > 

1 
2 . 

w 1 , w 2 are nonclassical weight functions, known as Generalized Laguerre weights . Many properties of the corresponding

orthonormal polynomials and the connected results in the univariate approximation of functions can be found in [7,10–12] . 

We start by introducing the spaces of functions in which we will study the equation and then we determine some

estimates of the corresponding best approximation error. Moreover, we introduce the “truncated” Gaussian cubature formula 

and we study the convergence. Then we show the Nyström method based on the above cubature rule, by determining the

assumptions under which the convergence and the stability of the method hold true. 

3.1. Functional spaces and preliminary results 

Fixing the weight u (P ) = u 1 (x ) u 2 (y ) with u 1 (x ) = x σ1 e −
x b 

2 (1 + x ) η1 , u 2 (y ) = y σ2 e −
y b 

2 (1 + y ) η2 , σ 1 , σ 2 , η1 , η2 ≥ 0, b > 

1 
2 ,

let C u be the space defined in (2.10) with u (P ) = u 1 (x ) u 2 (y ) , which means that the product f u vanishes as P approaches

the boundaries of S , independently from the direction. Equip C u with the weighted uniform norm on S 

‖ f ‖ C u = ‖ f u ‖ ∞ 

= max 
P ∈ S 

| f (P ) u (P ) | . 
Whenever one or more of the parameters σ 1 , σ 2 is greater than 0, the functions in C u can be singular on one or both

the positive x −axis and /or on the positive y − axis. Moreover the functions can have an exponential growth at infinity at

most. 

For smoother functions, we introduce the following Sobolev–type space 

W r (u ) = 

{
f ∈ C u : M r ( f, u ) := max 

{∥∥ f (r) 
y ϕ 

r 
1 u 

∥∥
∞ 

, 
∥∥ f (r) 

x ϕ 

r 
2 u 

∥∥
∞ 

}
< ∞ 

}
, 

where ϕ 1 (x ) = 

√ 

x , ϕ 2 (y ) = 

√ 

y and the superscript ( r ) denotes the r th derivative of the one-dimensional function f y or f x .

We equip W r ( u ) with the norm 

‖ f ‖ W r (u ) = ‖ f u ‖ ∞ 

+ M r ( f, u ) . 

One or more of the r partial derivatives of functions in W r ( u ) can present singularities on the positive x −axis and /or on

the positive y − axis. 

We remark that u 1 and u 2 are of the same type of ω 2 in (2.1) and then setting a m 

= max ( ̂  a m 

(u 1 ) , ̂  a m 

(u 2 )) where

ˆ a m 

(u 1 ) , ̂  a m 

(u 2 ) are defined as in (2.5) , by (2.11) and (2.6) we get 

E m,m 

( f ) u ≤ CM r ( f, u ) 

(√ 

a m 

m 

)r 

, ∀ f ∈ W r (u ) , (3.1)

where 0 < C � = C(m, f ) and 

√ 

a m 
m 

∼ m 

1 
2 b 

−1 . Therefore a Favard-type inequality holds true also for the bivariate error of best

approximation in C u . 

3.2. The “Truncated” Gauss–Laguerre cubature formula 

Let { p m 

(w 1 ) } m 

and { p m 

(w 2 ) } m 

be the sequences of the orthonormal polynomials, with positive leading coefficients,

w.r.t. the weight functions w 1 (x ) = x α1 e −x b and w 2 (y ) = y α2 e −y b , α1 , α2 > −1 , b > 

1 
2 . Denote by { x i } m 

i =1 
, { y j } m 

j=1 
the zeros

of p m 

(w 1 ) and p m 

(w 2 ) , respectively. 

For any fixed 0 < θ < 1, q 1 and q 2 will denote the indexes of the minimal zeros of p m 

(w 1 ) and p m 

(w 2 ) greater than

a m 

θ

x q 1 = x q 1 (m ) = min 

1 ≤i ≤m 

{ x i : x i ≥ a m 

θ} , 
y q 2 = y q 2 (m ) = min 

1 ≤ j≤m 

{
y j : y j ≥ a m 

θ
}
. 

Hence let 

q = q (m ) = max { q 1 , q 2 } . (3.2) 

Setting w (P ) = w (x, y ) = w 1 (x ) w 2 (y ) , consider the following Gauss-type cubature rule ∫ 
S 

F (P ) w (P ) dP = 

q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 
F (P i, j ) + E m 

( f ) , (3.3) 

where P i, j ≡ (x i , y j ) , i, j = 1 , 2 , . . . , m and { λw 1 
i 

} m 

i =1 
, { λw 2 

j 
} m 

j=1 
denote the Christoffel numbers related to the weights w 1 and

w 2 , respectively. We recall that the univariate Truncated Gauss–Laguerre rules were introduced in [6,13] and [14] and that

(3.3) has been obtained as the tensor product of two univariate Truncated Gauss–Laguerre rules. 
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About the error estimate, the following Proposition holds true: 

Proposition 3.1. For any F ∈ C u 2 , under the assumption ∫ 
S 

w (P ) 

u 

2 (P ) 
dP < + ∞ , (3.4)

it results 

|E m 

(F ) | ≤ C 
(
E M,M 

(F ) u 2 + e −A m ‖ F u 

2 ‖ ∞ 

)
, (3.5)

where M = 

⌊ (
θ

1+ θ
)b 

m 

⌋ 
∼ m and the positive constants C, A are independent of m and F. 

3.3. A Nyström method 

Now we are able to introduce the Nyström method based on the above defined Gauss–Laguerre cubature formula. 

Denoting by 

K f (x, y ) = μ

∫ 
S 

k (x, y, s, t) f (s, t) w (s, t) ds dt 

and by I the identity operator on C u , the Eq. (1.1) can be rewritten as 

(I − K) f = g. (3.6)

At first we determine suitable assumptions on the kernel k such that the Fredholm Alternative holds true in C u . 

Proposition 3.2. Assume that (3.4) holds true and that for some r ∈ N 

sup 

(s,t) ∈ S 
u (s, t) ‖ k (s,t) ‖ W r (u ) < + ∞ . (3.7)

Then the operator K : C u → C u is compact and Kf ∈ W r ( u ) for any f ∈ C u . 

Now starting with the Gaussian formula (3.3) and using the same notation, we define the following discrete operator 

K m 

f (P ) = μ
q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 
k (P , P i, j ) f (P i, j ) , (3.8)

and consequently the operator equation 

(I − K m 

) f m 

= g, (3.9)

where f m 

is unknown. 

Setting a i j = f (P i, j ) u (P i, j ) , i, j = 1 , . . . , q, by multiplying both sides of Eq. (3.9) by the weight u and by collocating it on

the pairs ( x h , y � ): ≡ P h , � , h, � = 1 , . . . , q, we achieve the following linear system in the unknowns a i j , i, j = 1 , . . . , q, 

a h� − μu (P h,� ) 

q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u (P i, j ) 
k (P h,� , P i, j ) a i j = (gu )(P h,� ) , h, � = 1 , . . . , q. (3.10)

The matrix solution (a ∗
i j 
) i, j=1 ... ,q of this system (if it exists) allows us to construct the weighted Nyström interpolant in two

variables 

( f m 

u )(P ) = μu (P ) 

q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u (P i, j ) 
k (P , P i, j ) a 

∗
i j + (gu )(P ) (3.11)

which will approximate the unknown f u . Denoting by A m 

the coefficient matrix of system in (3.10) and by cond ( A m 

) its

condition number in infinity norm, we can state the following result about the convergence and stability of the method. 

Theorem 3.1. Assume that k satisfies (3.7) , that Ker{ I − K} = { 0 } in C u and the weights w and u verify (3.4) . Denote by f ∗ the

unique solution of (3.6) in C u for a given g ∈ C u . If in addition, with the same r ∈ N in (3.7) , it results 

g ∈ W r (u ) (3.12)

and 

sup 

(x,y ) ∈ S 
u (x, y ) ‖ k (x,y ) ‖ W r (u ) < + ∞ , (3.13)

then, for m sufficiently large, the system (3.10) is uniquely solvable and well conditioned, since 

cond(A m 

) ≤ C, C � = C(m ) , (3.14)
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and there results 

‖ ( f ∗ − f m 

) u ‖ ∞ 

≤ C 
(√ 

a m 

m 

)r 

‖ f ∗‖ W r (u ) , (3.15) 

where C � = C(m, f ∗) . 

Comparing (3.15) with (3.1) we remark that the proposed Nyström method converges as the best polynomial approxima-

tion of the solution f ∗ ∈ W r ( u ). 

Moreover since we are using a “truncation” of a complete tensor product cubature formula, this allow to use, for a fixed

m , a linear system of reduced size with an evident computational saving. 

Finally the condition numbers of the involved linear systems are bounded in virtue of (3.14) . The magnitude of the

constant C depends on the condition number of the operator I − K in (3.6) as an operator defined in C u . 

4. Computational details and numerical tests 

First we observe that for b � = 1 the coefficients in the three-term recurrence relation for the polynomial sequences

{ p m 

(w 1 ) } m 

, { p m 

(w 2 ) } m 

are not always known. However, the computation of the zeros of the Generalized Laguerre poly-

nomials, as well as the Christoffel numbers can be performed by using the Mathematica package Orthogonal Polynomials

(see [15] ). 

4.1. The matrix A m 

Let q be defined in (3.2) . The matrix A m 

is a q × q block matrix, the entries of which are q × q matrices: 

A m 

= 

⎛ ⎜ ⎝ 

A 

(1 , 1) A 

(1 , 2) . . . A 

(1 ,q ) 

A 

(2 , 1) A 

(2 , 2) . . . A 

(2 ,q ) 

. . . . . . . . . . . . 

A 

(q, 1) A 

(q, 2) . . . A 

(q,q ) 

⎞ ⎟ ⎠ 

and the blocks are defined as 

A 

(h,i ) = δh,i I q − μD h K 

(h,i ) 
q U i , h, i = 1 , 2 . . . , q, 

where 

D h = diag ( u (x h , y 1 ) , u (x h , y 2 ) , . . . , u (x h , y q ) ) , 

U i = diag 

(
λw 1 

i 
λw 2 

1 

u (x i , y 1 ) 
, 

λw 1 

i 
λw 2 

2 

u (x i , y 2 ) 
, . . . , 

λw 1 

i 
λw 2 

q 

u (x i , y q ) 

)
, 

I q denotes the identity matrix of order q and K 

(h,i ) 
q are matrices defined as follows 

K 

(h,i ) 
q (�, j) = k (x h , y � , x i , y j ) , �, j = 1 , 2 , . . . , q. 

4.2. Numerical tests 

Now we propose some numerical tests in order to show the performance of our method. The test equations were con-

structed to underline the efficiency of the method in the case of functions that can be singular along the boundaries of the

domain S (see Ex.2–3). We point out that in all the examples the involved parameter are chosen such that the assumptions

in Theorem 3.1 are satisfied. We remark that in particular the choice of the parameters of the weight u is made according to

the smoothness of the known functions. Usually the exponents of u which satisfy (3.4) can vary in an interval. There is no

particular reason to choose a value instead of another because the order of convergence is exactly the same. Nevertheless

we note that the norm of the function f in (3.15) usually is smaller for smaller value of the exponents of u . 

In any test we approximate the weighted solution f u by the weighted Nyström interpolant f m 

u given in (3.11) . The

q 2 −square linear system needed in order to construct f m 

u was solved by the Gaussian elimination, so the major compu-

tational effort is of order 
q 6 

3 
. In the tables, for each m , we give the maximum relative error attained in the computation of

f m 

u at a grid of equally spaced points. We remark that all the computations were performed in 16 −digits precision. 

Example 1. Consider the equation 

f (x, y ) −
∫ 

S 

(
x + y 

(15 + s 2 + t 2 ) 7 
+ 

| sin (x − y ) | 4 . 8 
(15 + s 2 + t 2 ) 5 

)
f (s, t) e −s −t d s d t 

= 1 + x + y. 
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In this case the involved parameters are 

b = 1 , μ = 1 , α1 = α2 = 0 

and the weight u , according to (3.4) , is chosen with 

σ1 = σ2 = 

1 

4 

, η1 = η2 = 0 . 3 . 

Therefore the known functions belong to W 4 ( u ) and the convergence rate of the method is 1 
m 

2 . 

The numerical results, for θ = 0 . 7 , are as follows: 

m q Max relative error 

4 4 0 . 55 × 10 −8 

8 8 0 . 10 × 10 −9 

16 14 0 . 75 × 10 −12 

32 27 0 . 42 × 10 −15 

64 53 eps 

that shows a fast speed of convergence, higher than the expected one. 

The condition numbers in infinity norm of the matrices are less than 1.0 0 06. 

Example 2. Consider the equation 

f (x, y ) − 1 

2 

∫ 
S 

[ 
1 

(25 + s 3 + t 3 ) 5 
+ 

π

(36 + x 3 + y 3 ) 7 

] 
e −s −t 

s 
1 
5 t 

3 
10 

f (s, t) ds dt 

= sin (x + y ) . 

In this case the integrand has singularities for s = 0 and for t = 0 , i.e. it is unbounded along the positive semi-axes. The

involved parameters are 

b = 1 , μ = 

1 

2 

, α1 = −1 

5 

, α2 = − 3 

10 

and the weight u is chosen with 

σ1 = σ2 = 

1 

4 

, η1 = η2 = 0 . 2 . 

In this way the known functions belong to W r ( u ) for any r > 0. From the theoretical results a fast convergence is expected.

The numerical results, for θ = 0 . 5 , are as follows: 

m q Max relative error 

4 4 0 . 45 × 10 −7 

8 8 0 . 31 × 10 −8 

16 14 0 . 56 × 10 −10 

32 27 0 . 73 × 10 −11 

64 53 0 . 22 × 10 −14 

80 66 0 . 27 × 10 −15 

100 82 eps 

Hence with a system of order 66 2 the machine precision is attained. 

Moreover we remark that the condition numbers of the matrices are less than 1.0 0 0 0 0 04. 

Example 3. 

f (x, y ) − 1 

2 

∫ 
S 

√ 

1 + y 
4 
√ 

x (25 + s 3 + t 3 ) 4 
e −s −t 

s 
1 

10 t 
1 
5 

f (s, t) d sd t = 

1 
4 
√ 

x 
+ 

1 
4 
√ 

y 

1 + x 2 + y 2 
. 

In this case 

b = 1 , μ = 

1 

2 

, α1 = − 1 

10 

, α2 = −1 

5 

, 

and u is chosen with 

σ1 = σ2 = 

1 

4 

, η1 = η2 = 0 . 3 . 

Therefore the solution is only in C u . We expect a very low convergence, but the numerical test give nice results 
Please cite this article as: D. Occorsio, M.G. Russo, Nyström methods for bivariate Fredholm integral equations on un- 

bounded domains, Applied Mathematics and Computation (2017), http://dx.doi.org/10.1016/j.amc.2017.07.035 

http://dx.doi.org/10.1016/j.amc.2017.07.035


8 D. Occorsio, M.G. Russo / Applied Mathematics and Computation 0 0 0 (2017) 1–16 

ARTICLE IN PRESS 

JID: AMC [m3Gsc; July 27, 2017;19:22 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m q Max relative error 

4 4 0 . 46 × 10 −6 

8 8 0 . 35 × 10 −6 

16 14 0 . 20 × 10 −6 

32 27 0 . 10 × 10 −6 

64 43 0 . 39 × 10 −7 

128 106 0 . 33 × 10 −8 

Moreover we remark that the condition numbers of the matrices are less than 1.0 0 01 and hence, if an higher accuracy

is needed, it is possible to increase the dimension of the linear system, without occurring in stability problems. 

5. The case S = (−∞ , + ∞ ) \{ 0 } × (−1 , 1) 

Consider the Eq. (1.1) with S := { (x, y ) : x ∈ R − { 0 } , y ∈ (−1 , 1) } and w (P ) = w 1 (x ) w 2 (y ) where w 1 (x ) = | x | γ e −| x | d ,
w 2 (y ) = (1 − y ) α(1 + y ) β , α, β, γ > −1 , d > 1. Hence we are considering the case in which w 1 is a Generalized Freud

weight, while w 2 is a Jacobi weight. 

Following the same scheme used in the previous case, first we introduce the spaces of functions and some estimates

of the corresponding best approximation error. Then we derive a cubature formula constructed as the tensor product of a

“truncated” Gaussian rule w.r.t. a Generalized Freud weight and a Gauss–Jacobi rule. Finally we discuss a Nyström method

based on this formula. The convergence and stability of the method will be showed. We remark that for a better readability

we have employed the same symbols S, to denote the domain, and u to denote the weight of the space of functions, that

we used in Sections 3 and 4 . 

5.1. Functional spaces and preliminary results 

Fixing the weight u (P ) = u 1 (x ) u 2 (y ) with u 1 (x ) = | x | ξ (1 + | x | ) ηe −
| x | d 

2 , u 2 (y ) = (1 − y ) ρ (1 + y ) σ , ξ , η, ρ , σ ≥ 0, ξ not an

integer, and setting L = { (0 , y ) , y ∈ (−1 , 1) } , we define the space C u , 

C u = 

{ 
f ∈ C(S) : lim 

P → ∂S 
f (P ) u (P ) = 0 = lim 

P → L ±
f (P ) u (P ) 

} 
. 

Equip C u as usual with the weighted uniform norm 

‖ f ‖ C u = ‖ f u ‖ ∞ 

= max 
P ∈ S 

| f (P ) u (P ) | . 
Whenever one or more of the parameters ρ , σ , ξ is greater than 0, the functions in C u can be singular on one or both

the axes y = ±1 or along the segment { (0 , y ) , −1 < y < 1 } , with a possible exponential growth for x → ± ∞ . 

For smoother functions, i.e. for functions having some derivatives which can be discontinuous on the finite boundaries

of S or along the segment { (0 , y ) , −1 < y < 1 } , we introduce the following Sobolev–type space 

W r (u ) = 

{
f ∈ C u : M r ( f, u ) := max 

{∥∥ f (r) 
y u 

∥∥
∞ 

, 
∥∥ f (r) 

x ϕ 

r u 

∥∥
∞ 

}
< ∞ 

}
, 

where ϕ(y ) = 

√ 

1 − y 2 and the superscript ( r ) denotes the r th derivative of the one-dimensional function f y or f x . We equip

W r ( u ) with the norm 

‖ f ‖ W r (u ) = ‖ f u ‖ ∞ 

+ M r ( f, u ) . 

We remark that u 1 is of the same type of ω 3 in (2.1) and in what follows we set a m 

= ā m 

(u 1 ) , where ā m 

(u 1 ) is defined

as in (2.7) . Taking into account (2.11) , using (2.8) and (2.9) , we get 

E m,m 

( f ) u ≤ C 
(

a m 

m 

)r 

‖ f ‖ W 

r 
u 
, ∀ f ∈ W r (u ) , (5.1)

where 0 < C � = C(m, f ) and 

a m 
m 

∼ m 

1 
d 

−1 . Therefore a Favard-type inequality holds true also in strips of the plane. 

5.2. The “Truncated” Gauss–Freud–Jacobi cubature formula 

Fix w 1 (x ) = | x | γ e −| x | d and denote by { x k } � 
m 
2 

� 
k =1 

the positive zeros of p m 

(w 1 ) and by x m, −k the negative ones. If m is odd,

then x 0 = 0 is a zero of p m 

(w 1 ) . From now on we assume m even. 

For any fixed 0 < θ < 1 define 

x q̄ = x m, ̄q (θ ) := min 

{ 
x k : x k ≥ θa m 

, k = 1 , 2 , . . . , 
m 

2 

} 
(5.2) 
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Now set w 2 (y ) = (1 + y ) α(1 + y ) β and denote by { y i } m 

i =1 
the zeros of p m 

(w 2 ) . Setting w (x, y ) = w 1 (x ) w 2 (y ) we consider

the following semi-truncated Gaussian rule ∫ 
S 

F (P ) w (P ) dP = 

∑ 

1 ≤| i |≤q̄ 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 
f (P i, j ) + E m 

( f ) , (5.3)

where { λw 1 
i 

} m 2 

i = − m 
2 

and { λw 2 
j 

} m 

i =1 
denote the Christoffel numbers related to the weights w 1 and w 2 respectively. 

Truncated Gaussian rules for Freud weights appeared for the first time in [9,16] . In the next proposition an estimate of

the cubature error is given. 

Proposition 5.1. For any F ∈ C u 2 , under the assumption ∫ 
S 

w (P ) 

u 

2 (P ) 
dP < + ∞ (5.4)

it results 

|E m 

(F ) | ≤ C 
(
E M,m 

(F ) u 2 + e −A m ‖ F u 

2 ‖ ∞ 

)
(5.5)

where 

M = 

⌊ (
θ

1 + θ

)d 
m 

2 

⌋ 

∼ m (5.6)

and 0 < C � = C(m, f ) , 0 < A � = A (m, f ) . 

5.3. A Nyström method 

In this section we describe a Nyström method, based on the cubature formula described in the previous section. As done

in the case when S is the first quadrant of the plane, we can immediately prove that the Fredholm Alternative holds true

for the integral equation rewritten as in (3.6) , under the following assumption for the function kernel k ( x , y , s , t ) 

sup 

(s,t) 

u (s, t) ‖ k (s,t) ‖ W r (u ) < ∞ . (5.7)

Indeed mutatis mutandis, Proposition 3.2 can be reformulated for the case under consideration and holds true if we

assume that (5.7) is satisfied. 

Now starting with the Gaussian formula (5.3) and recalling the definition (5.2) , we can define the following discrete

operator 

K m 

f (P ) = μ
∑ 

1 ≤| i |≤q̄ 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 
k (P , P i, j ) f (P i, j ) , (5.8)

where we recall that P i, j = (x i , y j ) and x i , λ
w 1 
i 

, i = − m 

2 , . . . , 
m 

2 , are the zeros of the m th orthonormal polynomial w.r.t. the

weight w 1 and the corresponding Christoffel numbers, while y j , λ
w 2 
j 

, j = 1 , . . . , m, are the zeros of the m th orthonormal

polynomial w.r.t. the weight w 2 and the corresponding Christoffel numbers. 

Then we consider the operator equation 

(I − K m 

) f m 

= g, (5.9)

where f m 

is unknown. Since we are considering Eq. (3.6) in the weighted space C u we do the same with (5.9) . Therefore we

multiply both sides of Eq. (5.9) by the weight u and then we collocate it on the pairs ( x h , y � ), | h | = 1 , . . . , q̄ , � = 1 , . . . , m . In

this way we have that the quantities a i j = f (P i, j ) u (P i, j ) , | i | = 1 , . . . , q̄ , j = 1 , . . . , m, are the unknowns of the linear system 

a h� − μu (P h,� ) 
∑ 

1 ≤| i |≤q̄ 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u (P i, j ) 
k (P h,� , P i, j ) a i j = (gu )(P h,� ) 

| h | = 1 , . . . , q̄ , � = 1 , . . . , m (5.10)

The matrix solution (a ∗
i j 
) | i | =1 , ... , ̄q , j=1 , ... ,m 

of this system (if it exists) allows us to construct the weighted Nyström interpolant

in two variables 

( f m 

u )(P ) = μu (P ) 
∑ 

1 ≤| i |≤q̄ 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u (P i, j ) 
k (P , P i, j ) a 

∗
i j + (gu )(P ) 

which will approximate the unknown f u . Now denote by B m 

the coefficient matrix of system (3.10) and by cond ( B m 

) its

condition number in infinity norm. We can state the following theorem about the convergence and stability of the proposed

Nyström method. 
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Theorem 5.1. Assume that k satisfies (5.7) , that Ker{ I − K} = { 0 } in C u and w and u verify (5.4) . Denote by f ∗ the unique

solution of (3.6) in C u for a given g ∈ C u . If in addition, for the same r ∈ N in (5.7) , it results 

g ∈ W r (u ) (5.11) 

and 

sup 

(x,y ) ∈ S 
u (x, y ) ‖ k (x,y ) ‖ W r (u ) < + ∞ , (5.12) 

then, for m sufficiently large, the system (5.10) is uniquely solvable and well conditioned, since 

cond(B m 

) ≤ C, C � = C(m ) (5.13) 

and in addition 

‖ ( f ∗ − f m 

) u ‖ ∞ 

≤ C 
(

a m 

m 

)r 

‖ f ∗‖ W r (u ) , (5.14) 

where C � = C(m, f ∗) . 

Comparing (5.14) with (5.1) we remark that the rate of convergence of the proposed Nyström method is of the same

order of the error of best polynomial approximation of the solution f ∗ ∈ W r ( u ). 

Also in this case the condition numbers of the involved linear systems are uniformly bounded in virtue of (5.13) , where

the magnitude of the constant C depends on the condition number of the integral operator I − K in C u . 

6. Computational details and numerical tests 

6.1. The matrix of the linear system 

We note that the matrix B m 

is a 2 ̄q −blocks matrix, with blocks of order m , which takes the following expression 

B m 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

B 

(−q̄ , −q̄ ) B 

(−q̄ , −q̄ +1) . . . B 

(−q̄ , −1) B 

(−q̄ , 1) . . . B 

(−q̄ , ̄q ) 

B 

(−q̄ +1 , −q̄ ) B 

(−q̄ +1 , −q̄ +1) . . . B 

(−q̄ +1 , −1) B 

(−q̄ +1 , 1) . . . B 

(−q̄ +1 , ̄q ) 

. . . . . . . . . . . . . . . . . . . . . 

B 

(−1 , −q̄ ) B 

(−1 , −q̄ +1) . . . B 

(−1 , −1) B 

(−1 , 1) . . . B 

(−1 , ̄q ) 

B 

(1 , −q̄ ) B 

(1 , −q̄ +1) . . . B 

(1 , −1) B 

(1 , 1) . . . B 

(1 , ̄q ) 

. . . . . . . . . . . . . . . . . . . . . 

B 

( ̄q , −q̄ ) B 

( ̄q , −q̄ +1) . . . B 

( ̄q , −1) B 

( ̄q , 1) . . . B 

( ̄q , ̄q ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

with the blocks defined as 

B 

(h,i ) = δh,i I m 

− μD̄ h ̄K 

(h,i ) 
m 

Ū i , | h | , | i | = 1 , 2 . . . , q̄ , 

where 

D̄ h = diag ( u (x h , y 1 ) , u (x h , y 2 ) , . . . , u (x h , y m 

) ) , 

Ū i = diag 

(
λw 1 

i 
λw 2 

1 

u (x i , y 1 ) 
, 

λw 1 

i 
λw 2 

2 

u (x i , y 2 ) 
, . . . , 

λw 1 

i 
λw 2 

m 

u (x i , y m 

) 

)
, 

I m 

denotes the identity matrix of order m and K̄ 

(h,i ) 
m 

is defined as 

K̄ 

(h,i ) 
m 

(�, j) = k (x h , y � , x i , y j ) , �, j = 1 , 2 , . . . , m. 

6.2. Numerical tests 

We propose here three numerical examples, confirming the theoretical results stated in Section 5 . We point out that in

all the examples the involved parameter satisfy the assumptions in Theorem 5.1 . For the choice of the parameters the same

considerations made at the beginning of Subsection 4.2 hold true. 

Example 4. Consider the equation 

f (x, y ) − 1 
2 

∫ 
S 

(
cos (x + y ) 

(15 + s 2 + t 2 ) 5 
+ 

sin (x − y ) 

(15 + s 2 + t 2 ) 3 

)
f (s, t) e −s 2 d s d t 

= 

1 

π2 + x 2 + y 2 
. 
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In this case the involved parameters are the following 

μ = 

1 

2 

, α = β = γ = 0 , d = 2 

and the weight u can be chosen with 

ρ = 0 . 1 , σ = 0 . 2 , ξ = 0 . 4 η = 0 . 2 . 

According to the theoretical results we expect a fast convergence. 

The numerical results, for θ = 0 . 7 , are as follows: 

m 2 ̄p Max relative error 

4 4 0 . 85 × 10 −4 

8 8 0 . 77 × 10 −6 

16 16 0 . 29 × 10 −9 

32 28 0 . 12 × 10 −14 

64 54 eps 

The condition numbers of the matrices are less than 1.0 0 06. 

Example 5. Consider the equation 

f (x, y ) −0 . 3 

∫ 
S 

(
cosh (x + y ) | sin (s + t) | 

(π4 + s 2 + t 2 ) 5 

)
f (s, t) 

e −s 2 

√ 

1 − t 2 
| s | 1 2 d s d t 

= sin (x + y ) e 
x 
2 . 

In this case the involved parameters are the following 

μ = 0 . 3 , α = β = −0 . 5 , γ = 0 . 5 , d = 2 , 

and the weight u can be chosen with 

ρ = σ = 0 , ξ = 0 . 5 , η = 0 . 3 . 

In this case we expect a very low convergence since the solution is only in C u . Nevertheless the numerical results, for

θ = 0 . 7 , are as follows: 

m 2 ̄p Max relative error 

4 4 0 . 14 × 10 −8 

8 8 0 . 31 × 10 −10 

16 16 0 . 12 × 10 −10 

32 28 0 . 18 × 10 −10 

64 54 0 . 71 × 10 −11 

Also in this case the condition numbers of the matrices are less than 1.0 0 0 0 0 0 01, that means that if we are interested

in an higher precision we can improve m without occurring in instability problems. 

Example 6. Consider the equation 

f (x, y ) −0 . 4 

∫ 
S 

(
arctan (x + y ) sin (s 2 + t 2 ) 

(225 + s 2 + t 2 ) 8 

)
f (s, t) 

e −s 2 

√ 

1 − t | s | 1 2 

d s d t 

= 

1 

π2 + x 2 + y 2 
. 

In this case the integrand has singularities for s = 0 and for t = 1 , i.e. it is unbounded along the segment { (0 , y ) , −1 < y < 1 }
and on the upper boundary of the strip. Hence the involved parameters are the following 

μ = 0 . 4 , α = −0 . 5 , β = 0 , γ = −0 . 5 , d = 2 

and the weight u can be chosen with 

ρ = σ = 0 , ξ = 0 . 2 , η = 0 . 4 . 

According to the theoretical results we expect a very fast convergence. 

The numerical results, for θ = 0 . 75 , are as follows: 

m 2 ̄p Max relative error 

4 4 0 . 14 × 10 −13 

8 8 0 . 66 × 10 −14 

16 16 0 . 49 × 10 −14 

32 32 eps 
The condition numbers of the matrices are less than 1.0 0 0 0 0 0 01. 
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7. Proofs 

Proof of Theorem 2.1. For a given function f ∈ C u , fix ( x , y ) in I k × I j . Denote by P m , x and P m , y the polynomials of best

approximation of the functions f x and f y w.r.t. the weights ω k and ω j respectively, i.e. 

E m 

( f x ) ω j = max 
z∈ I j 

| ( f x (z) − P m,x (z)) ω j (z) | , 

E m 

( f y ) ω k = max 
z∈ I k 

| ( f y (z) − P m,y (z)) ω k (z) | . 

Then consider the bivariate polynomial P m,m 

= 

P m,x 

2 + 

P m,y 

2 . Thus, for any fixed ( x , y ) 

| [ f (x, y ) − P m,m 

(x, y )] u (x, y ) | 
≤ ω j (y ) 

2 

| ( f y (x ) − P m,y (x )) ω k (x ) | + 

ω k (x ) 

2 

| ( f x (y ) − P m,x (y )) ω j (y ) | 

= 

ω j (y ) 

2 

E m 

( f y ) ω k + 

ω k (x ) 

2 

E m 

( f x ) ω j . 

Therefore, taking the maximum on ( x , y ) ∈ I k × I j and then taking the infimum on P m,m 

the Theorem follows. 

�

In order to prove the main results of Section 3 , first of all we recall some results of the univariate case. Let ω 2 a Gener-

alized Laguerre weight defined as in (2.1) and let ˆ a m 

(ω 2 ) be the M-R-S number defined in (2.5) . 

If ˜ p ∈ P m 

is a polynomial of degree m it results [7] 

max 
x ≥0 

| ̃  p (x ) ω 2 (x ) | ≤ C max 
0 ≤x ≤ ˆ a m (ω 2 ) 

| ̃  p (x ) ω 2 (x ) | , (7.1)

and, for any δ > 0, 

max 
x ≥ ˆ a m (ω 2 )(1+ δ) 

| ̃  p (x ) ω 2 (x ) | ≤ Ce −A m max 
0 ≤x ≤ ˆ a m (ω 2 ) 

| ̃  p (x ) ω 2 (x ) | , (7.2)

where C and A are positive constants independent of m . 

Now let u (P ) = u 1 (x ) u 2 (y ) with u 1 (x ) = x σ1 e −
x b 

2 (1 + x ) η1 , u 2 (y ) = y σ2 e −
y b 

2 (1 + y ) η2 , σ 1 , σ 2 , η1 , η2 ≥ 0, b > 

1 
2 . We re-

mark that u 1 and u 2 are of the same type of ω 2 . 

Moreover let a m 

= max { ̂  a m 

(u 1 ) , ̂  a m 

(u 2 ) } and set D 0 = [0 , a m 

] 2 . By (7.1) , for any Q ∈ P m,m 

, it follows 

‖ Q u ‖ ∞ 

≤ C max 
P ∈ D 0 

| Q (P ) u (P ) | , C � = C(m ) . (7.3)

Next lemma extends the univariate infinite-finite range inequality (7.2) to the bivariate case. 

Lemma 7.1. Let δ > 0 be fixed and D δ = [ 0 , a m 

(1 + δ) ] 
2 
, S = (0 , + ∞ ) × (0 , + ∞ ) , u (P ) = u 1 (x ) u 2 (y ) with u 1 and u 2 defined

above. For any polynomial Q ∈ P m,m 

, 

max 
P ∈ S\ D δ

| Q(P ) u (P ) | ≤ Ce −A m max 
P ∈ D 0 

| Q(P ) u (P ) | , (7.4)

where 0 < C � = C(m, f ) , 0 < A � = A (m, f ) . 

Proof. Let P 0 ≡ ( x 0 , y 0 ) s.t. 

max 
P ∈ S\ D δ

| Q(P ) u (P ) | = | Q(P 0 ) u (P 0 ) | . 
Using (7.2) we have 

| Q(P 0 ) u (P 0 ) | ≤ Ce −A 1 m max 
y ≤a m 

| Q(x 0 , y ) | u 1 (x 0 ) u 2 (y ) 

≤ Ce −(A 1 + A 2 ) m max 
x ≤a m 

max 
y ≤a m 

| Q(x, y ) | u 1 (x ) u 2 (y ) 

= Ce −A m max 
P ∈ D 0 

| Q(P ) u (P ) | , 
and the Lemma follows. �

Proof of Proposition 3.1. Let M = 

⌊ (
θ

θ+1 

)b 
m 

⌋ 
and Q M,M 

∈ P M,M 

be the polynomial of best approximation of F ∈ C u 2 . We can

write 

E m 

( f ) = E m 

(F − Q M,M 

) + E m 

(Q M,M 

) . 
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First we get 

|E m 

(F − Q M,M 

) | ≤ ‖ (F − Q M,M 

) u 

2 ‖ ∞ 

[ ∫ 
S 

w (P ) 

u 

2 (P ) 
dP + 

q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u 

2 (P i, j ) 

] 

Since 

λw 1 

i 
∼ w 1 (x i )�x i , λw 2 

j 
∼ w 2 (y j )�y j , �x i = x i +1 − x i , �y j = y j+1 − y j 

it can be easily deduced that 

q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u 

2 (P i, j ) 
≤ C 

q ∑ 

i =1 

�x i 
w 1 (x i ) 

u 

2 
1 
(x i ) 

q ∑ 

j=1 

�y j 
w 2 (y j ) 

u 

2 
2 
(y j ) 

≤ C 
∫ 

S 

w (P ) 

u 

2 (P ) 
dP , (7.5)

and then we obtain 

|E m 

(F − Q M,M 

) | ≤ CE M,M 

(F ) u 2 

∫ 
S 

w (P ) 

u 

2 (P ) 
dP . (7.6)

On the other hand 

|E m 

(Q M,M 

) | = 

∣∣∣∣∣∫ S Q M,M 

(P ) w (P ) dP −
q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 
Q M,M 

(P i, j ) 

∣∣∣∣∣
= 

∣∣∣∣∣ m ∑ 

i = q +1 

m ∑ 

j= q +1 

λw 1 

i 
λw 2 

j 
Q M,M 

(P i, j ) 

∣∣∣∣∣
≤ max 

P ∈ [ θa m , + ∞ ) ×[ θa m , + ∞ ) 
| Q M,M 

(P ) u 

2 (P ) | 
∫ 

S 

w (P ) 

u 

2 (P ) 
dP . 

Hence, we apply (7.4) to Q M , M 

, by replacing u 1 , u 2 with u 2 
1 
, u 2 

2 
respectively and with δ = θ and taking into account that

a m 

∼ a m 

( u 

2 ) and that M is the maximal value s.t. a M 

(1 + θ ) ≤ a m 

θ, we deduce 

|E m 

(Q M,M 

) | ≤ C 
(
E M,M 

(F ) u 2 + e −A m ‖ F u 

2 ‖ ∞ 

)∫ 
S 

w (P ) 

u 

2 (P ) 
dP (7.7)

and consequently the Proposition follows by (7.6) and (7.7) , under the assumption (3.4) . �

Proof of Proposition 3.2. Following [17] it is sufficient to show that 

lim 

m 

sup 

‖ f u ‖ ∞ ≤1 

E m,m 

(K f ) u = 0 . 

Let Q m 

( x , y , s , t ) be a polynomial of degree m in each variable, coinciding for any fixed ( s , t ) in S , with the polynomial of

best approximation of k ( s , t ) ( x , y ) in C u . For any f ∈ C u , define the bivariate polynomial 

K 

Q m f (x, y ) = 

∫ 
S 

Q m 

(x, y, s, t) f (s, t) w (s, t) ds dt. 

Then ∣∣K f (x, y ) − K 

Q m f (x, y ) 
∣∣u (x, y ) = 

= 

∣∣∣∫ 
S 

[ k (x, y, s, t) − Q m 

(x, y, s, t) ] f (s, t) w (s, t) ds dt 

∣∣∣u (x, y ) 

≤ ‖ f u ‖ ∞ 

∫ 
S 

∣∣k (s,t) (x, y ) − Q m 

(x, y, s, t) 
∣∣u (x, y ) u (s, t) 

w (s, t) 

u 

2 (s, t) 
d s d t 

≤ ‖ f u ‖ ∞ 

sup 

(s,t) ∈ S 
u (s, t) E m 

(k (s,t) ) u 

∫ 
S 

w (s, t) 

u 

2 (s, t) 
d s d t. 

Therefore 

E m,m 

(K f ) u ≤ ‖ [ K f − K 

Q m f ] u ‖ ∞ 

≤ ‖ f u ‖ ∞ 

sup 

(s,t) ∈ S 
u (s, t) E m 

(k (s,t) ) u 

∫ 
S 

w (s, t) 

u 

2 (s, t) 
d s d t. 

Hence the proposition follows by the assumptions (3.4) and (3.7) . �

From now on, when the context is clear, we will omit the subscript in the operator norms, i.e. we will simply denote

‖ · ‖ instead of ‖ · ‖ C u → C u . 

Proof of Theorem 3.1. First we prove that the Nyström method is convergent and stable in C u . This can be done by showing

that, 
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1. lim 

m 

‖ [ K f − K m 

f ] u ‖ ∞ 

= 0 for any f ∈ C u ; 

2. sup 

m 

lim 

n 
sup 

‖ f u ‖ ∞ 

≤1 

E n,n (K m 

f ) u = 0 . 

By virtue of the principle of uniform boundedness, if Step (1) holds, then 

sup 

m 

‖ K m 

‖ < + ∞ . 

On the other hand, Step (2) is equivalent to prove that the sequence { K m 

} m 

is collectively compact and consequently that

‖ (K − K m 

) K m 

‖ → 0 . Therefore (see for instance [1] ), under these assumptions and for m sufficiently large, I − K m 

is invertible

in C u and uniformly bounded, i.e. the method is stable, since 

‖ (I − K m 

) −1 ‖ ≤ 1 + ‖ (I − K) −1 ‖ ‖ K m 

‖ 

1 − ‖ (I − K) −1 ‖‖ (K − K m 

) K m 

‖ 

, 

and, in addition, 

‖ [ f ∗ − f m 

] u ‖ ∞ 

∼ ‖ [ K f − K m 

f ] u ‖ ∞ 

, (7.8)

where the constants in ∼ are independent of m and f ∗. 

Thus, we start proving Step (1). We note that 

‖ [ K f − K m 

f ] u ‖ ∞ 

= sup 

(x,y ) ∈ S 
|E m 

(k (x,y ) f ) | u (x, y ) . 

Therefore by (3.5) it follows 

‖ [ K f − K m 

f ] u ‖ ∞ 

≤ C sup 

(x,y ) ∈ S 
u (x, y ) E M,M 

(k (x,y ) f ) u 2 

+ e −A m sup 

(x,y ) ∈ S 
u (x, y ) ‖ k (x,y ) f u 

2 ‖ ∞ 

≤ C sup 

(x,y ) ∈ S 
u (x, y ) E M,M 

(k (x,y ) ) u ‖ f u ‖ ∞ 

+ C sup 

(x,y ) ∈ S 
u (x, y ) ‖ k (x,y ) u ‖ ∞ 

(
E M,M 

( f ) u + e −A m ‖ f u ‖ ∞ 

)
(7.9) 

and hence Step (1) follows by (3.13) . Estimate (3.15) follows by (7.8) and (7.9) , taking into account (3.1) . 

In order to prove Step (2), we have to estimate E n , n ( K m 

f ) u , for all n . Let Q n ( x , y , s , t ) be a polynomial of degree n in each

variable, coinciding for any fixed ( s , t ) in S , with the polynomial of best approximation of k ( s , t ) ( x , y ) in C u . Define, for any

f ∈ C u , the polynomial 

K 

Q n f (x, y ) = μ
q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u (x i , y j ) 
Q n (x, y, x i , y j ) f (x i , y j ) u (x i , y j ) . 

Then ∣∣K m 

f (x, y ) − K 

Q n f (x, y ) 
∣∣u (x, y ) = 

= u (x, y ) 

∣∣∣∣∣μ q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u (x i , y j ) 

[
k (x, y, x i , y j ) − Q n (x, y, x i , y j ) 

]
f (x i , y j ) u (x i , y j ) 

∣∣∣∣∣
≤ ‖ f u ‖ ∞ 

| μ| 
q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u 

2 (x i , y j ) 

∣∣k (x, y, x i , y j ) − Q n (x, y, x i , y j ) 
∣∣u (x, y ) u (x i , y j ) 

≤ ‖ f u ‖ ∞ 

| μ| 
q ∑ 

i =1 

q ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u 

2 (x i , y j ) 
u (x i , y j ) E n,n (k (x i ,y j ) ) u . 

Taking into account (7.5) , we get 

E n,n (K m 

f ) u ≤ ‖ [ K m 

f − K 

Q n f ] u ‖ ∞ 

≤ C‖ f u ‖ ∞ 

sup 

(s,t) ∈ S 
E n,n (k (s,t) ) u 

∫ 
S 

w (s, t) 

u 

2 (s, t) 
d s d t, C � = C(m, n, f ) 

Therefore Step (2) follows by (3.4) and (3.7) . 

Finally (3.14) follows by standard arguments. The reader can consult the general framework in [1] or, referring to the

bivariate case and mutatis mutandis, the proof of Theorem 3.1 in [4] . �

Now we conclude the section with the proofs of the main results of Section 5 . 
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Let ω 3 be defined in (2.1) and ā m 

= ā m 

(ω 3 ) the corresponding M-R-S number. For any polynomial ˜ p ∈ P m 

and for any

fixed d > 0, it results (see [18, (4.3), (4.4)] ), 

max 
x ∈ R 

| ̃  p (x ) ω 3 (x ) | ≤ C max 
[ −ā m , ̄a m ] \ [ −d ā m m ,d 

ā m 
m ] 

| ̃  p (x ) ω 3 (x ) | , (7.10)

and, for any δ > 0, 

max 
| x |≥ā m (1+ δ) 

| ̃  p (x ) ω 3 (x ) | ≤ Ce −A m max 
x ∈ R 

| ̃  p (x ) ω 3 (x ) | , (7.11)

where C and A are positive constants independent of m . 

Now let u (P ) = u 1 (x ) u 2 (y ) with u 1 (x ) = | x | ξ (1 + | x | ) ηe −
| x | d 

2 , u 2 (y ) = (1 − y ) ρ (1 + y ) σ , ξ , η, ρ , σ ≥ 0. We remark that

u 1 is of the same type of ω 3 . 

Morever let a m 

:= ā m 

(u 1 ) and set D 0 = [ −a m 

, a m 

] 2 . By (7.10) , for any Q ∈ P m,m 

, it follows 

‖ Q u ‖ ∞ 

≤ C max 
P ∈ D 0 

| Q (P ) u (P ) | , C � = C(m ) . (7.12)

The next Lemma extends the univariate infinite–finite range inequality (7.11) to the case of the strip. 

Lemma 7.2. Let δ > 0 be fixed and D δ = [ −a m 

(1 + δ) , a m 

(1 + δ) ] × [ −1 , 1] . Moreover le t u (P ) = u 1 (x ) u 2 (y ) be defined as above.

Then, for any polynomial Q ∈ P m,m 

max 
P ∈ S\ ̄D δ

| Q(P ) u (P ) | ≤ Ce −A m max 
P ∈ D 0 

| Q(P ) u (P ) | , (7.13)

where 0 < C � = C(m, f ) , 0 < A � = A (m, f ) . 

Proof of Proposition 5.1. Let M = 

⌊ (
θ

θ+1 

)d m 

2 

⌋ 
and Q M,m 

∈ P M,m 

be the polynomial of best approximation of F ∈ C u 2 . 

We can write 

E m 

(F ) = E m 

(F − Q M,m 

) + E m 

(Q M,m 

) . 

First we get 

|E m 

(F − Q M,m 

) | ≤ ‖ (F − Q M,m 

) u 

2 ‖ ∞ 

[∫ 
S 

w (P ) 

u 

2 (P ) 
dP 

+ 

∑ 

1 ≤| i |≤q̄ 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 

u 

2 (P i, j ) 

] 

≤ CE M,m 

(F ) u 2 

∫ 
S 

w (P ) 

u 

2 (P ) 
dP . (7.14)

On the other hand, setting D m,θ = { (x, y ) : | x | ≥ θa m 

, −1 ≤ y ≤ 1 } 

|E m 

(Q M,m 

) | = 

∣∣∣∣∣∫ S Q M,m 

(P ) w (P ) dP −
∑ 

1 ≤| i |≤q̄ 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 
Q M,m 

(P i, j ) 

∣∣∣∣∣
= 

∣∣∣∣∣ ∑ 

q̄ +1 ≤| i |≤m 

m ∑ 

j=1 

λw 1 

i 
λw 2 

j 
Q M,m 

(P i, j ) 

∣∣∣∣∣
≤ max 

P ∈ ̄D m,θ

| Q M,m 

(P ) u 

2 (P ) | 
∫ 

S 

w (P ) 

u 

2 (P ) 
dP . 

Hence we apply (7.13) to Q M , m 

replacing u 1 , u 2 with u 2 1 , u 
2 
2 and δ = θ, and taking into account that a m 

∼ a m 

(u 2 1 ) and that M

is the maximal value s.t. a M 

(1 + θ ) ≤ a m 

θ . Therefore we get 

|E m 

(Q M,m 

) | ≤ C 
[
E M,m 

(F ) u 2 + e −A m ‖ F u 

2 ‖ ∞ 

]∫ 
S 

w (P ) 

u 

2 (P ) 
dP (7.15)

and consequently the Proposition follows by (7.14) and (7.15) and assumption (5.4) . �

Proof of Theorem 5.1. The proof can be lead as the proof of Theorem 3.1 , by using assumptions (5.7), (5.11) and (5.12) in-

stead of (3.7), (3.12) and (3.13) respectively and the estimate (5.5) instead of (3.5) . �

8. Conclusions 

We presented a global approximation method to approximate the solution of bivariate Fredholm equations defined on

unbounded domains by means of a suitable Nyström method. Among all the possible unbounded domains we have treated

in details the half-plane x ≥ 0, y ≥ 0 and the strip x ∈ R , y ∈ [ −1 , 1] . The procedure essentially uses the Gaussian cubature

rules, w.r.t. Generalized Laguerre and Freud weights which are of non standard type. According to the theoretical error
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estimates, accurate results have been achieved for “small” value of m also when the involved functions have derivatives

presenting algebraic singularities along the finite borders of the domain. Moreover smoother are the functions, faster is the

rate of convergence. Finally, the additional difficulties due to the unboundedness of the domains have been overcome by

using truncated Gaussian rules [6] , which lead to linear systems of reduced order (from order m 

2 to j 2 , being j = j(m ) � m ).

In conclusion we remark that, since in the previous paper [4] the analogous problem on the domain [ −1 , 1] × [ −1 , 1]

was treated, we have now a complete framework for a wide class of finite, semi-infinite and infinite rectangular domains. 
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