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Abstract: Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by
mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective
tissues. Compared to the other ABC transporters, very few studies are available to explain the
structural components and working of a full ABCC6 transporter, which may provide some idea
about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver
lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has
been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in
the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed
to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway.
Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with
probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well
as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in
cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target
for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs
functions that modify both the external and internal compartments of the cells.

Keywords: ABCC6; TNAP; NT5E; Pseudoxanthoma elasticum (PXE); cancer

1. Introduction

Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease, which was de-
scribed in 1881 by a French dermatologist. In 2000, it was first recognized that mutation
in ABCC6 is responsible for PXE [1]. It is affecting approximately 1:50,000 people world-
wide, with the prominent characteristic feature of ectopic mineralization of soft tissues
like skin, eyes, and arteries (Figure 1), for which no effective curative treatment is avail-
able [2,3]. Moreover, PXE shows similar phenotypic characteristics with other common
health problems like kidney diseases (chronic kidney disease (CKD) and nephrocalcinosis)
and cardiovascular diseases (coronary heart disease, cardiomyopathy, and dyslipidemia),
which makes PXE a complex disorder [4,5].

Different hypotheses were proposed for the factors pathologically involved with
PXE. The “Metabolic Hypothesis” stated that decrease or loss of ABCC6 functionality
especially in the liver may lead to a decrease in some circulating factors in the blood
stream, which should be responsible for preventing ectopic mineralization of soft tissues.
The “PXE Cell Hypothesis” stated that absence of ABCC6 in PXE tissues leads to an
alteration in cell proliferation due to changes in the biosynthetic pathway and alters cells
to extracellular matrix interactions. The most recent “ATP Release Hypothesis” stated that
ABCC6 mediates the efflux of ATP in extracellular milieu, where it is hydrolyzed into AMP
and pyrophosphate and prevents the mineralization of soft tissues [1].
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Previous studies of serum analysis either from the ABCC6 knock-down mouse model
or from PXE patients showed an inability to prevent calcium and phosphate deposition and
suggested that PXE is a metabolic disease with very slow onset [1,6,7]. It should be noted
that the tissues, which mostly express ABCC6, are the liver and, to some lesser extent, the
kidney and differ from those in which ectopic mineralization is mostly evident, namely soft
tissues of skin, eyes, and the cardiovascular system. The origin of this apparent paradox
has not been explained yet (Figure 1) [8].

On the basis of our previous studies of the ABCC6 transporter in hepatic cells, the
present review is focused on lightening changes in cellular function associated with ABCC6
transporter activity.
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Figure 1. Pictorial presentation of ABCC6 expression and affected tissues in Pseudoxanthoma
elasticum (PXE). The protein is expressed mainly in liver and kidney cells but the main areas
involved in ectopic calcification are the elastic tissues of heart, blood vessels, skin, and eyes.

2. Structural Properties of ABCC6 Transporter

The ATP-binding cassette (ABC) transporters are a well-known family and ubiqui-
tously found in all living organisms. About 50 different types of ABC transporters have
been recognized in humans, divided into seven subfamilies (ABCA to ABCG) based on
their structure and genetic sequences. Among them we can find both half transporters,
with only one transmembrane domain (TMD) and nucleotide-binding domain (NBD), and
full transporters, with two TMDs and NBDs [9,10]. ABCC6 belongs to the ATP-binding
cassette (ABC) transporter subfamily C and has been found to be highly expressed in
basolateral plasma membrane of hepatocytes and, to some lesser extent, in the proximal
tubules of the kidney [11].

The ABCC6 gene has 31 exons and encodes a protein of 1503 amino acid residues,
MRP6. It is made-up of two nucleotide-binding domains (NBD1 and NBD2) and two
transmembrane domains (TMD1 and TMD2) with an additional auxiliary NH2-terminal
transmembrane domain known as TMD0, which is connected with the canonical compo-
nents through the cytoplasmic L0 loop [12,13]. The NBDs of ABC transporters consist
of different conserved motifs which bind and hydrolyze ATP. Like in other transporters,
ABCC6 NBDs domains have Walker A motif (P loop), Walker B motif (Mg2+ binding
site), histidine loop (Switch region), signature motif (C loop), Q loop (between Walker A
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and C-loop), and D loop (involved in the intermolecular interactions at the NBD dimmer
interface). In the general process of dimerization, the Walker A/B motifs of one NBD are
aligned with the C-loop of the other in a yin-yang fashion, forming a sandwich with two
molecules of ATP in the middle, which are hydrolyzed in the catalytic cycle. Dimerization
induces conformational changes in the TMDs, which are reversed by hydrolysis of ATP,
leading to efflux of molecules [1,14,15]. In this situation, the ATP should be sandwiched
between two sequence/structural motifs that are both rigorously conserved and form a
stable homodimer [16]; this is not always possible with the human transporters, because
one of the two NBDs is degenerate and the sequence of motifs which are responsible for
hydrolysis of ATP is not identical or canonical [14].

In this context to elucidate the role of NBDs, different experiments were conducted on
NBD1 of ABCC1/MRP1, which not only has a high level of homology with ABCC6/MRP6
but also shows a superposition of substrates [17]. Studies revealed that the NBDs of MRP1
are not functionally identical, as both the NBDs bind ATP but only NBD2 is involved
in hydrolysis. Moreover, the ATP binding affinity of NBD1 of MRP1 is not completely
dependent on NBD2 but the binding of ATP to NBD2 is highly dependent on NBD1 [18,19].
In respect of this, we have gone through by a series of experiments to identify the functional
roles of NBDs, TMD0, and L0 loop of ABCC6 (Figure 2).
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Figure 2. Topology of ABCC6 transporter [20].

In order to evaluate the functioning of NBDs, we have first characterized the NBD1 of
ABCC6/MRP6. In this experiment, by using the E748-A785 fragment of MRP6-NBD1, we
have compared the helical structure and ATP binding properties of wild type and the R765Q
mutated sequence, which is present in PXE patients. The study with circular dichroism
analysis revealed that, in both the wild type and mutated (R765Q) NBD1, E748-A785
peptides adopted α-helical conformations, and the helical content was almost the same
for both the peptides in aqueous solutions of trifluoroethanol (TFE). No differences in the
length of helices have been found between the peptides in NMR spectroscopy. Moreover,
Fluorescence Spectroscopy showed no significant difference in ATP binding capacity of
both the peptides. These findings suggest that occurrence of PXE symptoms in R765Q
mutated patients might be due to different kind of interactions [21].

In subsequent investigations, we have undergone two different experiments with
NBD1 and NBD2, because mutational studies of PXE patients showed that domain-domain
interaction is important for proper working of ABCC6 transporter and there is a functional
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difference between both NBDs of MRP6 [22]. In the first study, we constructed the full-
length NBD1 (residues from Asp-627 to Leu-851) and short-length NBD1 (residues from
Arg-648 to Thr-805) without some key residues; then differences in helical structure, ATP
binding, and hydrolysis of both polypeptides were analyzed. Interestingly, both the
polypeptides assumed predominantly α-helical conformation. However, only long-length
NBD1 showed β-strand conformation, while short-length NBD1 showed higher helix
content, which suggested that the sequences D627-H647 and T806-L851, which are only
present in the long-length polypeptide, assume a β-strand conformation, similarly to the
corresponding regions of MRP1. Although fluorescence quenching experiments revealed
that both the polypeptides have the affinity to bind nucleotides (ATP and ADP), the long-
length NBD1 showed a higher affinity to bind ATP than the short-length NBD. In addition,
no hydrolytic activity was found in short-length NBD1 compared to long-length NBD1
during spectrophotometric analysis of ATPase activity. These findings suggest that short-
length NBD1 lacks of some essential residues, which are responsible for ATP hydrolysis.
Whereas, long-length NBD1 form homodimer in the presence of ATP, which is the property
of half-transporters and physiologically, it is not possible with the full-transporter where
NBD1 interacts with NBD2 [12].

In order to explore how the ABCC6 transporter works in-vivo, we have constructed
long-length (Thr-1252 to Val-1503) and short-length NBD2 (Val-1295 to Arg-1468), and
we created homology models for homodimer of NBD1 and NBD2, and heterodimer of
(NBD1-NBD2) [23]. Circular dichroism spectra of long-length NBD2 revealed that it is more
structured and contains α-helical conformation. The nucleotide (ATP and ADP) binding
affinity of NBD1 and NBD2 were found to be the same during fluorescence quenching
analysis. The ATPase activity of both homo and heterodimer were different, as the amount
of inorganic phosphate (Pi) produced by NBD2 was lesser then NBD1. Moreover, addition
of NBD2 reduced the NBD1 hydrolytic activity. These findings suggest that NBD2 is well
structured (it contains α-helix and β-strands) and binds the nucleotides efficiently, but the
ATPase activity of NBD2 is lower compared to the NBD1; this reflects that NBD2 is not able
to form a functionally active homodimer, as supported by in-silico structural analysis. In
addition, decreased ATPase activity of combined NBD1-NBD2 compared to NBD1 alone
suggests that NBD1 and NBD2 work together to form a stable heterodimer and function
in a regulated manner, whereas NBD1 alone works in an uncontrolled manner. This can
be justified by the in-vivo functioning of the transporter [24], where ATP is hydrolyzed
after the binding of substrate on TMDs and leads to conformational changes in membrane
domains that activate the NBDs.

3. Roles of Additional TMD0 and L0 Domains

The functional role of TMD0 in other proteins like MRP1, MRP2, SUR1 is well defined,
which may be involved in stabilization and retention of the transporter in the plasma
membrane or in regulation of channel activities. By topological modeling of TMD0 of
MRP6, we demonstrated that it contains five transmembrane domains with the N- and
C-termini on the external and cytoplasmic side, respectively. These TMs are inserted into
the membrane individually on the basis of hydrophobicity and without affecting each
other. In addition, we have also found that disease-causing mutations did not affect the
membrane insertion of these TMs [25]. In a further study, we have done the structural and
functional characterization of L0 loop of ABCC6. We have found that L0 loop of ABCC6 is
well structured (Figure 3) as it contains aromatic residues, and three α-helical regions; it
resembles the homologous L0 loops of other MRPs and is responsible for plasma membrane
localization of TMD0 [13]. However, to understand the exact role of TMD0 and L0 loop
(N-terminal Region) of ABCC6, we have constructed two variants of N-terminal lacking
TMD0 (∆TMD0) and a variant lacking both TMD0 and L0 (∆TMD0L0). Interestingly, we
have found that ∆TMD0L0 not only failed to exhibit transport activity, but it was also not
able to localize at the basolateral side of the plasma membrane, which reflects that L0 loop
is important for both activities. Thus, these findings suggest that L0 not only contains
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a basolateral sorting signal but that L0 also contributes to folding ABCC6 into a cellular
sorting-competent state, which is necessary to pass the endoplasmic reticulum (ER) quality
control system and continue through the secretory pathway. In addition, we also found
that L0 loop of ABCC6 interacts with the ion channels like other members of ABCC family
and might be involved in the modulation of Ca2+ channels of plasma membrane [20].
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4. The Decrease or Loss of ABCC6 Functionality Changes Extracellular Environment

In early pathological investigations of PXE, Iliás et al. in 2002 proposed that ABCC6 is
a transporter of organic anions and actively transports glutathione conjugates, including
leukotriene C4 and N-ethylmaleimide S-glutathione (NEM-GS), and their abolishment
due to missense mutation in ABCC6 gene is responsible for PXE [26,27]. In the same line
of thinking, Borst and co-workers in 2008 proposed that ABCC6 transporter mediates
the efflux of vitamin-K as a glutathione or glucuronide conjugate and is involved to
prevent calcification of soft tissues [28]. However, in the further investigations, it was
found that ABCC6 is not a transporter of vitamin-K, as its administration in PXE mouse
model (ABCC6−/−) was not able to prevent the mineralization [29,30]. As discussed
above, Jansen et al. in 2013 proposed that ABCC6 transporter mediates the efflux of ATP
and indirectly produces PPi to prevent ectopic mineralization [2]. However, we have
demonstrated that PXE is a complex metabolic disease with the reprogramming of crucial
genetic factors in the absence of ABCC6 transporter activity [31–33].

In order to better understand the pathomechanism of PXE (Figure 4), we stably
knocked down the ABCC6 gene in HepG2 cells by using shRNA, and its associated tran-
scriptional/genetic changes were studied. We first examined the production of reactive
oxygen species (ROS), which are supposed to increase according to the previous PXE
fibroblast studies [34]. On the contrary, in the ABCC6 knockdown HepG2 cells, the ratio of
GSH/GSSG has been found to be increased whereas a significant decrease in ROS level
was observed, which means that knockdown cells resembled the reductive stress, which is
also required by proliferating cells.

However, we found significant delay in G1 to S transition and slower cell growth in
ABCC6 knockdown HepG2 cells (Figure 5). In addition, expression of cyclin-dependent
kinase inhibitor (CDKI) p21, which negatively regulates the activity of CDK and is required
for the cell entry into the different cycle phases, was found increased in knockdown cells.
Moreover, the expression of lamin A/C, which is required to maintain the strength of the
nucleus and is pathologically involved in aging process, was decreased in those cells [33].
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β-galactosidase staining in control and ABCC6 knockdown cells. (C)—Quantitative analysis of 
positive β-galactosidase-stained cells. Data were generated from three independent experiments 
performed in triplicate and are shown as means ± SD. Statistical analysis was performed using 
unpaired Student’s t test: ** p < 0.01 and *** p < 0.001 [33]. 

Interestingly, knockdown HepG2 cells were shown to have a decreased expression 
of the ecto-5′-nucleotidase (NT5E or CD73), which regulates the conversion of AMP to 

Figure 4. Proposed pathomechanism of PXE. ABCC6 transporter mediates the efflux of ATP, which
is metabolized by some ecto-nucleotidases (such as ENPP1) in AMP, which in turn is converted in
adenosine and Pi by CD73. In the extracellular milieu, nucleotides regulate the activity of TNAP
through the purinergic pathway and prevent the ectopic mineralization [32]. ABCC6, ATP-binding
cassette, sub-family C, member 6; ENPP1, ecto-nucleotide pyrophosphatase/phosphodiesterase type
I; CD73, cluster of differentiation 73; TNAP, tissue non-specific alkaline phosphatase; Pi, inorganic
phosphate; PPi, inorganic pyrophosphate [35].
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Figure 5. Pictorial presentation of senescent-like phenotype in ABCC6 knockdown HepG2 cell.
(A)—For the cell cycle analysis, the cells were synchronized at the G1 phase by serum deprivation
for 24 h, restimulated with serum for 24 h, and analyzed using flow cytometry after BrDU and PI
staining. The percentage of control (scr-shRNA) and ABCC6 knockdown cells (ABCC6-shRNA) in
G0/G1 was recorded. (B)—Representative images (40 × magnification) of senescence-associated
β-galactosidase staining in control and ABCC6 knockdown cells. (C)—Quantitative analysis of
positive β-galactosidase-stained cells. Data were generated from three independent experiments
performed in triplicate and are shown as means ± SD. Statistical analysis was performed using
unpaired Student’s t test: ** p < 0.01 and *** p < 0.001 [33].
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Interestingly, knockdown HepG2 cells were shown to have a decreased expression
of the ecto-5′-nucleotidase (NT5E or CD73), which regulates the conversion of AMP to
adenosine and Pi (inorganic phosphate). Additionally, nonspecific alkaline phosphatase
(TNAP), whose activity normally maintains Pi/iPP ratio accelerating the mineralization,
was found to be increased in knockdown HepG2 cells. These results suggest that the
absence of transporter activity in the hepatic cells decreases the NT5E expression and
increases the pro-mineralizing TNAP activity, which is also clinically found in patients with
arterial calcifications due to deficiency in CD73 (ACDC) [31]. It is clear from the knockdown
study that the absence of transporter activity leads to alteration in gene expression, which
is required to provide PPi to prevent mineralization. However, in a further study, we
also found that ABCC6 plays a crucial role to activate the purinergic pathway, which is
important to maintain proper cellular function. In this study, pharmacological inhibition
of ABCC6 by probenecid down-regulated the expression of CD73. On the contrary, the
expression of CD73 was found increased after the application of adenosine and ATP, which
strengthens the idea that ABCC6 not only mediates the efflux of ATP but also regulates the
purinergic system [35].

5. Intracellular Consequences Associated with ABCC6 Transporter Activity in
HepG2 Cells

It is widely evident that changes in nuclear lamin expression are associated with cellu-
lar senescence and age-related diseases [36]. However, cells undergoing aging also adapt a
phenomenon to proliferate inappropriately, migrate, and colonize, which are the hallmarks
of cancer cells [37]. In both cases, changes in lamin expression traduce in morphological
changes in nuclei, which are known as “nuclear atypia”. Contrarily, induction of cellular
senescence is recognized as an important tumor-suppressive mechanism [38].

In previous studies with ABCC6 knockdown HepG2 cells, we have found decreased
cell growth and lamin A/C expression [33]. Interestingly, in the recent study, pharma-
cological inhibition of ABCC6 by probenecid or its knockdown in HepG2 cells not only
decreased the amount of extracellular ATP content but also decreased the expression of
CD73 and lamin A/C proteins. Lamins are the most important structural component
of the cytoskeleton and are required to maintain cells in a proper shape. In this context,
we examined whether down-regulation of lamin expression affected the actin filaments,
required for cytoskeleton rearrangement and cellular movement. In this study, a typical
organization of actin filament in filopodia, which is a hallmark of moving cells, was absent
in both probenecid-treated and ABCC6 knockdown HepG2 cells (Figure 6). However,
administration of adenosine or ATP restored the normal architecture of filopodia and
migration rate (Figure 7). This finding indicates that ABCC6 can be a potential therapeutic
target for anti-metastatic treatment and, with coordination of the purinergic system, also
regulates the intracellular functions [32].
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Figure 6. Representative confocal image of (A)—scrambled HepG2 cells; 
(B)—Abcc6-shRNA.HepG2 cells; (C)—Abcc6-shRNA HepG2 cells treated with 500 µM ATP; 
(D)—Abcc6-shRNA HepG2 cells treated with 100 µM adenosine. F-actin was stained with Texas 
Red-phalloidin. In the insets superposition of cytoskeleton (red) and EGFP (green) to monitor the 
infection efficiency. The scale bar in the inserts is 40 µm [32]. 

 
Figure 7. Effect of probenecid and ABCC6 silencing on the migration rate of HepG2 cells. Cells 
were treated with 250 µM probenecid for 48 h (gray plain bars, Probenecid+). DMSO-treated cells 
were used as the control (gray plain bars, Probenecid-). A total of 500 µM ATP was added to either 
the control cells (gray plain bars, Probenecid-, ATP+) or to probenecid-treated cells (gray plain bars, 
Probenecid+, ATP+). HepG2 cells were transduced with scrambled shRNA (grey-texturized bars, 
scr-shRNA) or with specific ABCC6-shRNA (black bars, ABCC6-shRNA). A sample of 500 µM ATP 
was added to either control cells (grey-texturized bars, scr-shRNA, ATP+) or to ABCC6 silenced 
cells (black bars, ABCC6-shRNA, ATP+). Data are expressed as mean ± standard error (SE) of three 
replicates from three independent experiments and were analyzed by one-way ANOVA followed 
by Dunnett’s post hoc: *** p < 0.001 probenecid-treated cells vs. control cells in the absence of ATP 
and ABCC6-shRNA vs. scr-shRNA in the absence of ATP; ### p < 0.001 probenecid + ATP-treated 
cells vs. probenecid-treated cells and ABCC6-shRNA cells + ATP vs. ABCC6-shRNA cells without 
ATP. NS, not significant [32]. 

Figure 6. Representative confocal image of (A)—scrambled HepG2 cells; (B)—Abcc6-shRNA.HepG2
cells; (C)—Abcc6-shRNA HepG2 cells treated with 500 µM ATP; (D)—Abcc6-shRNA HepG2 cells
treated with 100 µM adenosine. F-actin was stained with Texas Red-phalloidin. In the insets
superposition of cytoskeleton (red) and EGFP (green) to monitor the infection efficiency. The scale
bar in the inserts is 40 µm [32].
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Figure 7. Effect of probenecid and ABCC6 silencing on the migration rate of HepG2 cells. Cells were
treated with 250 µM probenecid for 48 h (gray plain bars, Probenecid+). DMSO-treated cells were
used as the control (gray plain bars, Probenecid-). A total of 500 µM ATP was added to either the
control cells (gray plain bars, Probenecid-, ATP+) or to probenecid-treated cells (gray plain bars,
Probenecid+, ATP+). HepG2 cells were transduced with scrambled shRNA (grey-texturized bars,
scr-shRNA) or with specific ABCC6-shRNA (black bars, ABCC6-shRNA). A sample of 500 µM ATP
was added to either control cells (grey-texturized bars, scr-shRNA, ATP+) or to ABCC6 silenced
cells (black bars, ABCC6-shRNA, ATP+). Data are expressed as mean ± standard error (SE) of three
replicates from three independent experiments and were analyzed by one-way ANOVA followed by
Dunnett’s post hoc: *** p < 0.001 probenecid-treated cells vs. control cells in the absence of ATP and
ABCC6-shRNA vs. scr-shRNA in the absence of ATP; ### p < 0.001 probenecid + ATP-treated cells vs.
probenecid-treated cells and ABCC6-shRNA cells + ATP vs. ABCC6-shRNA cells without ATP. NS,
not significant [32].
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6. Involvement of ABCC6/MRP6 in Drug Resistance

It is well known that ABC transporters play an important role to maintain cellular
physiology by transporting different substrates. On the other hand, despite the patholog-
ical involvement in certain crucial diseases, these transporters are also involved in drug
resistance [39]. Similarly, ABCC family consisted of 13 members, which are involved in the
transportation of different substrates. Nine of them are also implicated in the resistance to a
variety of chemotherapeutic agents. Martin G. et al., in a study on Chinese hamster ovarian
cancer cells (CHO), demonstrated that ABCC6 is not only able to mediate the efflux of
glutathione conjugate but is also involved in resistance to some natural anti-cancer drugs,
like doxorubicin, etoposide, actinomycin D, daunorubicin, and cisplatin [27]. Tyrosine
Kinase Inhibitors (TKIs), like nilotinib and dasatinib, are effective treatments available
for Chronic Myeloid Leukaemia (CML) and found to interact with ABCB1 and ABCG2.
However, a recent study suggested that nilotinib and dasatinib might be substrates for
ABCC6, whose over-expression is responsible for resistance of both TKIs [40].

To investigate the possible involvement of different transporters in drug resistance,
we investigated the mRNA expression of ABCC6 and other ABC transporters mainly
involved in drug resistance, such as ABCB1, ABCC1, and ABCG2, in the bone marrow
samples obtained from acute myeloid leukemia (AML) patients. The samples obtained after
diagnosis revealed no difference in the expression level of ABCC6 and ABCB1 between
healthy control and AML patients. The expression of ABCC1 from AML patients was
higher compared to the healthy individual. Moreover, the expression of ABCG2 was
always found down-regulated in AML patients compared to controls. We also observed
the age- and gender-associated changes in the expression level of the genes. Interestingly,
ABCB1, ABCC1, and ABCC6 were less expressed in older patients compared to younger
ones, whereas ABCC6 and ABCC1 were highly expressed in female patients. Additionally,
only ABCG2 expression was found higher after chemotherapy, while no variation was
found in ABCC1, ABCB1, and ABCC6. However, the expression of ABCC6 and ABCB1 was
found to be up-regulated after the treatment with Trichostatin A (an inhibitor of histone
deacetylase) and 5-Aza-2′deoxycytidine (an inhibitor of DNA methyltransferase) in AML
cell line HL-60. These data reveal that changes in expression of ABCG2 before and after
the treatment can be related to disease or as a therapeutic marker. On the other hand, the
expression of ABCC6 and ABCB1 is transcriptionally or epigenetically controlled [41].

In addition, a study conducted by Jeon H-Metal [42] suggested that an inhibitor of
differentiation 4 (ID4) increases the SOX2-mediated expression of ABCC6 and ABCC3
in glioma stem cells (GSC), which have the potential to initiate a brain tumor, show
resistance to chemotherapy, and are responsible for higher recurrence rates of Glioblastoma
multiforme (GBM) [43].

Drug resistance is the biggest problem for cancer therapy, for which many molecules
have been synthesized and tested, but MDR in cancer therapy still persists. In order to
identify the promising molecules to inhibit MRP6 and mitigate marginal drug resistance,
we tested 8-(4-chlorophenyl)-5-methyl-8-[(2Z)-pent-2-en-1-yloxy]-8H-[1,2,4] oxadiazolo
[3,4-c][1,4] thiazin-3, also known as 2C and structurally similar to diltiazem. Surprisingly,
the efflux of doxorubicin was reduced in 2C-treated cells. Moreover, cell esterase activity
and H3 histone acetylation were reduced in 2C-treated cells, which suggests that 2C is
not only able to mitigate drug resistance but also able to inhibit nucleophilic substitution
reactions [44].

These findings confirm that ABCC6 is not only involved in the progression of the
genetic disease PXE but is also involved in resistance to many anti-cancer agents [45,46].

7. Conclusions

Different hypotheses were given to elucidate the physiological substrates for the
ABCC6 transporter and its pathological involvement in PXE. However, mechanistic details
for ABCC6 mutations leading to ectopic mineralization were yet to be resolved [6,47,48].
In our studies, we not only investigated the structural components of ABCC6 transporter
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but also lighten the mechanisms, which might be involved in ectopic mineralization. In
our experiments, knockdown of ABCC6 or its inhibition by probenecid decreased the
extracellular ATP concentration and altered the expression of NT5E and TNAP. By these
findings, we can propose that the lack of ABCC6 transport activity could lead to a pro-
mineralizing state through alteration of extracellular purine metabolites, which ultimately
affect TNAP enzymatic activity.

Moreover, in both knockdown and probenecid-treated HepG2 cells, the expression
of lamin was found decreased, which suggests that reduced ABCC6 transport activity
also leads to cell senescence in PXE and can be beneficial to prevent cancer progression.
Interestingly, in both the knockdown and probenecid-treated HepG2 cells, we found a
decrease in migration rate, which is restored after ATP administration.

Collectively, these findings suggest that the ABCC6 transporter is not only required
to maintain some important circulatory factors like PPi, but is also required to maintain
proper functioning of other factors, which are involved in the conversion of extracellular
nucleotides, and to feed purine pool to maintain homeostasis between Pi and PPi ratio.
Moreover, our studies strengthen the idea that the ABCC6 transporter is not only involved
in PXE pathophysiology, but can also be considered a target for anti-cancer therapy.
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