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Abstract In this paper we investigate the numerical solution of Cauchy bisin-
gular integral equations of the first kind on the square. We propose two differ-
ent methods based on a global polynomial approximation of the unknown solu-
tion. The first one is a discrete collocation method applied to the original equa-
tion and then is a “direct”method. The second one is an “indirect”procedure
of discrete collocation-type since we act on the so-called regularized Fredholm
equation. In both cases, the convergence and the stability of the method is
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proved in suitable weighted spaces of functions, and the well conditioning of
the linear system is showed. In order to illustrate the efficiency of the proposed
procedures, some numerical tests are given.

Keywords Cauchy bisingular integral equations · cubature method ·
collocation method · Lagrange interpolation.

Mathematics Subject Classification (2000) 65R20 · 45E05 · 41A10.

1 Introduction

Singular integral equations with Cauchy kernels arise in the mathemati-
cal modelling of several problems of the Applied Sciences like aerodynamics,
elasticity, fluid flow problems and crack theory [1,11,30].

For the univariate case, a general theory on such type of equations is well
developed and described in the monographs [9,27,28,31] and several numerical
methods have been extensively investigated [3,5,7,12,14,15,17–19,23] in terms
of stability, convergence, well-conditioning and accuracy of the results.

Concerning the multivariate case, the theoretical analysis of these equations
is well studied in the books [20,26] and several authors focus their research
on bisingular integral equations arising from the 3D Helmholtz equations. An
example is the following bivariate singular integral equation of the first kind
which is strictly related to the stationary problem of a flow past a rectangular
airfoil of large span [8]

1

π2

∮ 1

−1

∮ 1

−1

F (x, y)

(x− t)(y − s)
dx dy = g(t, s),

where here and in the sequel the symbol
∮

means that the integral has to be
interpreted in the Cauchy Principal Value sense.

However, even if these equations are of applicative nature, according to our
knowledge, very few numerical methods are disposable in the literature [13,
16].

The principal aim of this paper is to investigate on the numerical treatment
of the more general bisingular integral equation of the first kind defined on
the square S = [−1, 1]× [−1, 1]

1

π2

∮
S

F (x, y)

(x− t)(y − s)
dx dy +

∫
S

k(x, y, t, s)F (x, y) dx dy = g(t, s), (1)

where F is the bivariate unknown function and k and g are given functions
defined on S2 and S, respectively.

According to [8,12], the solution of the above equation can be singular
along two o more edges of the square S and the behavior of the singularities
is known.
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In this paper we consider the case when the solution turns to be unbounded
at x = y = −1 and thus [8,12] it can be expressed as

F (x, y) = f(x, y)

√
1− x
1 + x

√
1− y
1 + y

,

where f has to be determined. In a nutshell, the function F has a behaviour
similar to that of the solution of the airfoil equation in the univariate case [31].

Hence, equation (1) can be rewritten as

(D +K)f = g, (2)

where D is the dominant operator

Df(t, s) =
1

π2

∮
S

f(x, y)

(x− t)(y − s)

√
1− x
1 + x

√
1− y
1 + y

dx dy (3)

and K is the perturbation operator

Kf(t, s) =

∫
S

k(x, y, t, s)f(x, y)

√
1− x
1 + x

√
1− y
1 + y

dx dy. (4)

In this paper, for the numerical treatment of (2), we propose two different
approaches, both based on a global polynomial approximation of the unknown
bivariate function f . The first one is a “direct”method since we act directly
on the equation, while the second one is an “indirect”procedure, since we go
to solve an equivalent regularized Fredholm equation.

In both cases, by using a suitable Lagrange interpolating operator, we
project the considered equation into the subspace of polynomials and we dis-
cretize the integrals by using a suitable Gaussian cubature formula and by
applying the fundamental invariance property of D on the orthogonal polyno-
mials. Then, by collocation on suitable nodes, we end up with a linear system
whose unknowns are the coefficients of the polynomial approximating the exact
solution.

For both methods, we give a complete analysis in suitable weighted L2

spaces. In details, we examine the stability, show the related convergence re-
sults and error estimates, and discuss the condition numbers of the systems
we get.

Comparing the presented two procedures, they are equivalent in terms
of convergence order and computational costs, at least when in the indirect
approach we can compute exactly the involved integrals. Otherwise the indirect
procedure is more expensive. Nevertheless the strategy of using the Fredholm
equation equivalent to the Cauchy singular one, can be much easier extended
to other functional spaces.

We underline that in order to achieve such theoretical analysis, we needed
to prove some auxiliary results concerning the mapping properties of the in-
volved integral operators and the bivariate Lagrange and Fourier operators.
These auxiliary results are new and can also be used elsewhere.
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The paper is structured into six sections. In Section 2, once the function
spaces in which we address our investigation have been introduced, we give
some preliminary results concerning the bivariate Fourier and Lagrange oper-
ators as well as the Gaussian cubature rule. In Section 3 we state the mapping
properties of the integral operators D and K. Sections 4 and 5 are devoted to
the two different methods we propose and whose numerical tests are showed
in Section 6. At the end, in Section 7 we give the proofs of our results.

2 Preliminaries

2.1 Function spaces

Let w(x, y) = w1(x)w2(y) the product of two Jacobi weights, wi(z) =
(1− z)αi(1 + z)βi , αi, βi > −1, i = 1, 2, z ∈ (−1, 1).

We define the weighted Hilbert space L2
w(S) as the set of all weighted

square integrable functions f : S → R equipped with the inner product

〈f, g〉w =

∫
S

f(x, y)g(x, y)w(x, y) dx dy

and the norm

‖f‖L2
w(S) = ‖f

√
w‖2 =

√
〈f, f〉w.

For brevity, from now on we set ‖f‖L2
w

:= ‖f‖L2
w(S).

For more regular functions and for a positive integer r ≥ 1, let us also
consider the following Sobolev-type subspace

W r
w = {f ∈ L2

w(S) : f (r−1) ∈ AC((−1, 1)2), ‖f‖W r
w

= ‖f‖L2
w

+Mr(f, w) <∞}

where the superscript (r − 1) denotes the (r − 1)-th derivative with respect
to each variable, AC((−1, 1)2) stands for the set of all functions f which are
absolutely continuous on every closed sub-domain of (−1, 1)2, and

Mr(f, w) = sup


(∫

S

∣∣∣∣∂rf(x, y)

∂xr
ϕr(x)

∣∣∣∣2 w(x, y)dx dy

)1/2

,

(∫
S

∣∣∣∣∂rf(x, y)

∂yr
ϕr(y)

∣∣∣∣2 w(x, y) dx dy

)1/2


with ϕ(z) =
√

1− z2.
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2.2 Bivariate Fourier and Lagrange operators

Let {pm(wi)}∞m=0 be the sequence of the orthonormal polynomials with
positive leading coefficients, w.r.t. the weight wi, i = 1, 2, i.e.

pm(wi, z) = γm(wi)z
m + terms of lower degree, γm(wi) > 0.

For a function f ∈ L2
w(S), we define the bivariate Fourier sum as

Sm,m(f, w, x, y) =

m−1∑
i=0

m−1∑
j=0

cij(f, w)pi(w1, x)pj(w2, y) (5)

where

cij(f, w) =

∫
S

f(x, y)pi(w1, x)pj(w2, y)w(x, y)dx dy (6)

are the Fourier coefficients.
The next two propositions show the behaviour of Sm,m in the case when

f ∈ L2
w(S) or f ∈W r

w.
To this end, let us define the error of best polynomial approximation in

L2
w(S) as

Em,m(f)w = inf
P∈Pm,m

‖f − P‖L2
w

where Pm,m denotes the set of all algebraic polynomials of two variables of
degree at most m in each variable.

Moreover, in the sequel C denotes a positive constant which may have
different values in different formulas. We will write C(a, b, . . . ) to say that C
depends only on the parameters a, b, . . . and C 6= C(a, b, . . . ) to say that C is
independent of the parameters a, b, . . . .

Proposition 1 Let f ∈ L2
w(S). Then

E2
m,m(f)w = ‖f − Sm,m(f, w)‖2L2

w
= ‖f‖2L2

w
−
m−1∑
i=0

m−1∑
j=0

c2ij(f, w). (7)

Thus, according to the previous result, as in the univariate case (see [25]
and the reference therein), Sm,m is the best polynomial approximation of
f ∈ L2

w(S) and, since the Weierstrass Theorem holds true, by (7) we get
the Parseval identity

‖f‖L2
w

=

√√√√ ∞∑
i=0

∞∑
j=0

c2ij(f, w) (8)

and

Em,m(f)w =

√∑
i≥m

∑
j≥m

c2ij(f, w).
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Proposition 2 Let f ∈ W r
w and r1 and r be two positive integers such that

r1 ≤ r. Then there exists a positive constant C 6= C(m, f) such that the follow-
ing estimate holds true

‖f − Sm,m (f, w)‖W r1
w
≤ C
mr−r1

‖f‖W r
w
.

Now, for a function f ∈ C((−1, 1)2) (i.e. f is continuous on every closed
subset of the open square (−1, 1)2), let us consider the bivariate Lagrange
polynomial

Lm,m(f, w, x, y) =

m∑
i=1

m∑
j=1

`i(w1, x)`j(w2, y)f(zi, yj), (9)

where {zi}mi=1 and {yj}mj=1 are the zeros of pm(w1) and pm(w2), respectively
and `i(w1, x) and `j(w2, y) denote the i-th and j-th fundamental Lagrange
polynomial, respectively defined as

`i(w1, x) =
pm(w1, x)

p′m(w1, zi)(x− zi)
, `i(w2, y) =

pm(w2, y)

p′m(w2, yj)(y − yj)
. (10)

Hence Lm,m is a polynomial of degree m − 1 in each variable and by its
definition it follows that Lm,m(P,w, x, y) = P (x, y) if P ∈ Pm−1,m−1.

Next proposition shows the weighted-L2 convergence of the Lagrange in-
terpolating polynomial for every f ∈W r

w.

Proposition 3 Let f ∈W r
w. Then there exists a positive constant C 6= C(m, f)

such that the following estimate holds true

‖f − Lm,m (f, w)‖L2
w
≤ C
mr
‖f‖W r

w
. (11)

2.3 Gaussian cubature rule

Let us now introduce the tensor-product Gauss rule which will be essential
for our aims. The Gaussian cubature rule reads as [29]

∫
S

f(x, y)w(x, y)dx dy =

m∑
i=1

m∑
j=1

λi(w1)λj(w2)f(zi, yj) +Rm,m(f) (12)

where {zi}mi=1 and {yj}mj=1 are the zeros of pm(w1) and pm(w2), respectively,
λi(w1), λj(w2) are the corresponding Christoffel numbers and Rm,m(f) de-
notes the remainder term. We point out that Rm,m(f) = 0 if f ≡ P ∈
P2m−1,2m−1.
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3 Mapping properties of the operator D and K

In this section we investigate on the mapping properties of the operators
D and K involved in equation (2). To this end, let v be the product of two
fourth kind Chebyshev weight functions, i.e.

v(x, y) = u(x)u(y), with u(z) =

√
1− z
1 + z

. (13)

According to the above notation, we rewrite the operator D introduced in (3)
as

Df(t, s) =
1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y)dx dy. (14)

By using standard arguments, it is not hard to prove that the adjoint
operator of D has the following form

D̂f(t, s) =
1

π2

∮
S

f(x, y)

(x− t)(y − s)
v−1(x, y) dx dy. (15)

Now we recall the explicit expression for pm(u) and pm(u−1) (the fourth
and third kind Chebyshev orthonormal polynomials with respect to the weights
u and u−1, respectively), namely [10,21]

pm(u, z) =
sin
((
m+ 1

2

)
θ
)

sin
(
1
2θ
) , z = cos θ, 0 ≤ θ ≤ π, (16)

and

pm(u−1, z) =
cos
((
m+ 1

2

)
θ
)

cos
(
1
2θ
) , z = cos θ, 0 ≤ θ ≤ π. (17)

Next results state useful properties of the operators D, D̂ and K which are
basic for our methods.

Lemma 1 Let u be the weight introduced in (13), qm(t, s) = pm(u, t)pm(u, s)
and rm(t, s) = pm(u−1, t)pm(u−1, s). Then,

Dqm(t, s) = rm(t, s) (18)

and
D̂rm(t, s) = qm(t, s). (19)

Proposition 4 Let D and D̂ be the operators defined in (14) and (15), re-
spectively. Then

D : W r
v →W r

v−1 (20)

is continuous and invertible and its two-sided inverse is the continuous oper-
ator

D̂ : W r
v−1 →W r

v . (21)
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From now on we denote by k(x,y) and k(t,s) the kernel function k(x, y, t, s)
in (4) as a function of the only variables (t, s) and (x, y), respectively.

Proposition 5 Let K be defined in (4) and let us assume that the kernel
function k satisfies the following conditions

sup
(t,s)∈S

‖k(t,s)‖W r
v
<∞, sup

(x,y)∈S
‖k(x,y)‖W r1

v−1
<∞, (22)

for some positive integers numbers r and r1. Then the perturbation operator
K : L2

v(S)→W r1
v−1 is linear and bounded if r1 ≤ r. Moreover, K is a compact

operator for all r1 < r.

Let us remark that, in virtue of Proposition 4 and 5, we can claim that
under the assumptions (22) and if the null space Ker{D + K} is trivial in
L2
v(S), then the operator

D +K : W r1
v →W r1

v−1

is an invertible linear bounded operator for all 0 ≤ r1 < r. Hence, equation
(2) has a unique solution f ∈W r1

v , for each given right-hand side g ∈W r1
v−1 .

4 A direct numerical method

The aim of this section is to present a “direct”numerical approach for the
solution of equation (2). Inspired by the discrete collocation method proposed
for the univariate case [18,23], we first approximate operator K by means of

Kmf(t, s) =

∫
S

Lm,m
(
k(t,s), v, x, y

)
f(x, y) v(x, y) dx dy. (23)

Hence we project equation (2) with Km instead of K by means of the inter-
polating operator Lm,m(v−1) and we search for a polynomial solution fm ∈
Pm−1,m−1, i.e. we solve the finite dimensional equation

Lm,m
(
(D +Km)fm, v

−1, t, s
)

= Lm,m(g, v−1, t, s),

namely

Lm,m
(
(D +Km)fm − g, v−1, t, s

)
= 0. (24)

Equation (24) is equivalent in the weighted space L2
v−1 to

‖Lm,m
(
(D +Km)fm − g, v−1

)
‖L2

v−1
= 0

that is ∫
S

∣∣Lm,m ((D +Km)fm − g, v−1, t, s
)∣∣2 v−1(t, s) dt ds = 0.
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Thus, by approximating the integral by means of the Gaussian cubature
rule (12) with wi = u−1, i = 1, 2, that in this case turns out to be exact, we
have

m∑
i=1

m∑
j=1

λi(u
−1)λj(u

−1)
∣∣Lm,m ((D +Km)fm − g, v−1, ti, tj

)∣∣2 = 0 (25)

where [10,21]

ti = cos

((
m− i+ 1

2

)
π

m+ 1
2

)
, i = 1, . . . , m

are the nodes of the m-th third kind Chebyshev polynomial pm(u−1) defined
in (17) and

λi(u
−1) =

π

m+ 1
2

(1 + ti), i = 1, . . . , m

are the corresponding Christoffel numbers.
From (25) we deduce√
λi(u−1)λj(u−1) [Dfm(ti, tj) + Kmfm(ti, tj)] (26)

=
√
λi(u−1)λj(u−1)g(ti, tj), i, j = 1, . . . ,m.

Now we develop the terms Dfm(ti, tj) and Kmfm(ti, tj) involved in the
previous equations, in order to construct the approximated polynomial solu-
tion fm in the form

fm(t, s) = Lm,m(fm, v, t, s). (27)

About the second term Kmfm(ti, tj), by using again the cubature formula
(12) now with wi = u, i = 1, 2, which is once again exact , we have

Kmfm(ti, tj) =

m∑
h=1

m∑
k=1

λh(u)λk(u)k(xh, xk, ti, tj)fm(xh, xk), i, j = 1, . . . ,m,

(28)

where [10,21]

xh = cos

(
(m− h+ 1)π

m+ 1
2

)
, h = 1, . . . , m (29)

are the nodes of the m-th fourth kind Chebyshev polynomial pm(u) defined in
(16) and

λh(u) =
π

m+ 1
2

(1− xh), h = 1, . . . , m (30)

are the corresponding Christoffel numbers.
Concerning to the first term Dfm(ti, tj), we have the following proposition.
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Proposition 6 Let fm be the polynomial defined in (27) and let {ti}mi=1 and
{xh}mh=1 be the zeros of pm(u−1) and pm(u), respectively. Then,

Dfm(ti, tj) =
1

π2

m∑
h=1

m∑
k=1

λh(u)λk(u)
fm (xh, xk)

(xh − ti)(xk − tj)
(31)

for i, j = 1, ...,m.

Hence, by replacing (31) and (28) in (26), we get√
λi(u−1)λj(u−1)

m∑
h=1

m∑
k=1

√
λh(u)λk(u)

[
π−2

(xh − ti)(xk − tj)
+ k(xh, xk, ti, tj)

]
ahk

=
√
λi(u−1)λj(u−1)g(ti, tj), i, j = 1, . . . ,m, (32)

where we set ahk =
√
λh(u)λk(u) fm(xh, xk).

This is a linear system of m2 equations in the m2 unknown ahk that, once
solved, allow us to approximate the solution we are looking for

fm(t, s) =

m∑
h=1

m∑
k=1

`h(u, t)√
λh(u)

`k(u, s)√
λk(u)

ahk. (33)

Let us remark that system (32) is well-defined, since min |xh−ti| = O(1/m),
h, i = 1, . . . , m, [23] , and that it can be rewritten in a matrix form as

Pm (Dm + Km) Pma = Pm (gPm)
T
. (34)

Here Pm is a m-blocks matrix in which each block is given by

P = diag
(√

λ1(u−1), · · · ,
√
λm(u−1)

)
,

the matrices Dm and Km are the m-blocks matrix defined as

Dm =


D(1,1) D(1,2) . . . D(1,m)

D(2,1) D(2,2) . . . D(2,m)

. . . . . . . . .
D(m,1) D(m,2) . . . D(m,m)

 , Km =


K(1,1) K(1,2) . . . K(1,m)

K(2,1) K(2,2) . . . K(2,m)

. . . . . . . . .
K(m,1) K(m,2) . . . K(m,m)


with

D(h,k) =
[
D(h,k)

]m
i,j=1

=
√
λh(u)λk(u)

π−2

(xh − ti)(xk − tj)
,

K(h,k) =
[
K(h,k)

]m
i,j=1

=
√
λh(u)λk(u)k(xh, xk, ti, tj),

and a ∈ Rm2

and g ∈ Rm2

are the arrays of the unknown function and the
right-hand side which have been obtained by reordering column by column the
matrices G and A, respectively defined as

G = [gij ]
m
i,j=1 = g(ti, tj) ∈ Rm×m, A = [ahk]

m
h,k=1 = fm(xh, xk) ∈ Rm×m
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namely,

g(j−1)m+i = gij , a(k−1)m+h = ahk.

Next proposition, concerning with the operator introduced in (23), is es-
sential for the analysis of the method.

Proposition 7 Under the assumptions (22), the estimate

‖Kf − Lm,m(Kmf, v
−1)‖L2

v−1
≤ C
mr1
‖f‖L2

v

holds true with C 6= C(m, f).

Next theorem assures that the proposed discrete collocation method is
stable and convergent. It also states that, in the case when the right-hand
side g belongs to a certain class of functions, namely the Sobolev-type space
W r1
v−1 , then the solution f of (2) belongs to W r1

v . Moreover the theorem gives
an estimate of the error of the approximate solution. Finally it shows that the
condition number in the spectral norm of system (34)

cond(Pm(Dm + Km)Pm) = ‖Pm(Dm + Km)Pm‖ ‖(Pm(Dm + Km)Pm)−1‖

is independent of the dimension of the matrix and uniformly bounded by the
condition number of the operator D +K.

Theorem 1 Assume that equation (2) has a unique solution f ∈ L2
v and the

kernel function k satisfies (22). Then, for sufficiently large m, say m ≥ m0,
the system of equations (34) has a unique solution fm. Moreover if the right-
hand side g ∈ W r1

v−1 then the solution f ∈ W r1
v and the following estimate

holds true

‖f − fm‖L2
v
≤ C
mr1
‖f‖W r1

v
(35)

with C 6= C(m, f, g). Furthermore,

lim sup
m

cond(Pm(Dm + Km)Pm) ≤ C cond(D +K), (36)

where here C 6= C(m).

5 An indirect numerical method

In this section we propose an alternative numerical method still based on
a polynomial approximation of the unknown solution written in the form

fm(t, s) = Lm,m(fm, v, t, s), fm ∈ Pm−1,m−1.

The method takes advantages of the smoothness properties of the operators
D and K stated in Section 3. In fact, thanks to the compactness of K and the
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invertibility of D, following [7], we can move from the equation (2) into the
equivalent regularized Fredholm equation

(I + D̂K)f = D̂g, (37)

where I is the identity operator in L2
v.

Then, if we assume that the null space Ker{I+D̂K} is trivial, by applying
the Fredholm Alternative Theorem, equation (37) has a unique solution for

each given right hand side D̂g ∈ L2
v.

For our convenience, let us rewrite (37) as

(I +K)f = G, (38)

where G = D̂g and K = D̂K i.e.

Kf(t, s) =

∫
S

φ(ξ, η, t, s)f(ξ, η)v(ξ, η) dξ dη,

with
φ(ξ, η, t, s) = D̂k(ξ,η)(t, s). (39)

In order to approximate the solution of (38), let us project the equation on
the finite dimensional space Pm−1,m−1 by means of the interpolating operator
Lm,m(v) and then let us consider the following finite dimensional equation

Lm,m ((I +Km) fm, v, t, s) = Lm,m (G, v, t, s) , (40)

where

Kmf(t, s) =

∫
S

Lm,m (φ(t, s), v, ξ, η) f(ξ, η)v(ξ, η) dξ dη.

Equation (40), considered in L2
v, means that∫

S

|Lm,m ((I +Km)fm − G, v, t, s)|2 v(t, s) dt ds = 0

that is, for i, j = 1, . . . ,m,√
λi(u)λj(u) [fm(xi, xj) +Kmfm(xi, xj)] =

√
λi(u)λj(u)G(xi, xj),

where xi and λi(u) were introduced in (29) and (30), respectively. Hence by
approximating the operator Km by means of the Gaussian cubature rule (12)
we get the following linear system√

λi(u)λj(u)

m∑
h=1

m∑
k=1

[
δijhk +

√
λh(u)λk(u)φ(xh, xk, xi, xj)

]
ahk (41)

=
√
λi(u)λj(u)G(xi, xj), i, j = 1, . . . ,m,

where ahk =
√
λh(u)λk(u)fm(xh, xk) and δijhk =

{
1, i = h and j = k

0, otherwise
.
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Once solved (41), the solution allows us to compute the approximate solu-
tion

fm(t, s) =

m∑
hi=1

m∑
k=1

`hu, t)√
λk(u)

`h(u, s)√
λk(u)

ahk. (42)

Note that the polynomial solution fm just defined has the same expression
of the solution fm given in (33), obtained applying the method described in
Section 4.

Let us also remark that in order to implement system (41) we need to
evaluate the integrals

φ(ξ, η, t, s) =
1

π2

∮
S

k(x, y, ξ, η)

(x− t)(y − s)
v−1(x, y) dx dy

G(t, s) =
1

π2

∮
S

g(x, y)

(x− t)(y − s)
v−1(x, y) dx dy

whose analytical expressions are not always known. Then, in the case when we
do not have such expressions, we propose to approximate the known involved
functions k and g with

k(x, y, ξ, η) ' Lm,m
(
k(ξ,η), v, x, y

)
, g(x, y) ' Lm,m (g, v, x, y)

and then by proceeding as in the proof of Proposition 6, in virtue of Lemma
1, we end up to approximate φ(ξ, η, t, s) and G(t, s) with

φm(xh, xk, xi, xj) =
1

π2

m∑
ι=1

m∑
ζ=1

λι(u
−1)λζ(u

−1)
k(tι, tζ , xh, xk)

(tι − xi)(tζ − xj)
,

and

Gm(xi, xj) =
1

π2

m∑
ι=1

m∑
ζ=1

λι(u
−1)λζ(u

−1)
g(tι, tζ)

(tι − xi)(tζ − xj)
.

Let us now rewrite (41) in a matrix form as

Pm (Im +Km)Pma = Pm (gPm)
T
, (43)

where Pm is a m-blocks matrix in which each block is given by

P = diag
(√

λ1(u), · · · ,
√
λm(u)

)
,

the matrices Im and Km are the m-blocks matrix defined as

Im =


I 0 . . . 0
0 I . . . 0
. . . . . . . . .
0 0 . . . I

 , Km =


K(1,1) K(1,2) . . .K(1,m)

K(2,1) K(2,2) . . .K(2,m)

. . . . . . . . .

K(m,1) K(m,2) . . .K(m,m)

 ,
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where I denotes the identity matrix of order m,

K(h,k) =
[
K(h,k)

]m
i,j=1

=
√
λh(u)λk(u)φ(xh, xk, xi, xj)

and a ∈ Rm2

and g ∈ Rm2

are the arrays of the unknown function and the
right-hand side which have been obtained by reordering column by column the
matrices G and A respectively

G = [Gij ]mi,j=1 = G(xi, xj) ∈ Rm×m, A = [ahk]
m
h,k=1 = fm(xh, xk)Rm×m

namely,
g(j−1)m+i = Gij , a(k−1)m+h = ahk.

Next proposition is essential for the stability and the convergence of the
described method stated in Theorem 2.

Proposition 8 Assume that kernel k satisfies the conditions (22). Then

‖Kf − Lm,m(Kmf, v)‖L2
v
≤ C
mr
‖f‖L2

v

where C 6= C(m).

Theorem 2 Assume that Ker{I + D̂K} = {0}, the assumptions of Proposi-
tion 8 are satisfied and the function g belongs to W r1

v−1 . Then, for sufficiently
large m, say m ≥ m0, system (43) has a unique solution fm and the following
estimate holds true

‖f − fm‖L2
v
≤ C
mr1
‖f‖W r1

v
(44)

with C 6= C(m, f, g). Moreover

lim sup
m

cond(Pm(Im +Km)Pm) ≤ C cond(I +K),

where C 6= C(m).

6 Numerical Tests

In this section, by means of some numerical tests, we show the performance
of the methods described in the previous sections. In each example, for the
direct method, we solve system (32) and compute the approximate solution fm
given in (33). For the indirect method through the unique solution of system
(41) we compute fm defined in (42).

Since the exact solutions of the equations we will consider are unknown,
we assume as exact those obtained for a fixed value of m = M that we will
specify in each test and we compute the relative errors

εM,m(t, s) =
|fM (t, s)− fm(t, s)|

|fM (t, s)|

in different points (t, s) ∈ S.
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Table 1 Numerical results of Example 1 via the direct method.

m ε64,m(0.5, 0.8) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Dm + Km)Pm)

4 2.89e-03 1.27e-03 6.73e-03 1.3931498886229416e+01
8 1.19e-08 1.24e-07 2.53e-08 1.3931550518318879e+01
16 6.24e-15 4.88e-15 4.08e-15 1.3931550518335689e+01
32 8.73e-16 5.75e-15 4.80e-16 1.3931550518335690e+01

Table 2 Numerical results of Example 1 via the indirect method.

m ε64,m(0.5, 0.8) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Im +Km)Pm)

4 2.89e-03 1.27e-03 6.73e-03 1.3931498886229420e+01
8 1.19e-08 1.24e-07 2.53e-08 1.3931550518318886e+01
16 1.25e-16 3.50e-15 3.12e-15 1.3931550518335696e+01
32 2.87e-15 2.38e-15 3.72e-15 1.3931550518335680e+01

Table 3 Numerical results of Example 2 via the direct method.

m ε64,m(0.7, 0.2) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Dm + Km)Pm)

4 2.14e-04 1.63e-06 4.76e-04 2.2455715459596859e+00
8 2.57e-06 1.62e-06 9.27e-07 2.2455977174082378e+00
16 6.13e-12 4.14e-16 3.58e-12 2.2455977175654063e+00
32 3.45e-16 0.00e+00 3.20e-16 2.2455977175654054e+00

Example 1. Let us consider the equation

1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y)dxdy +

∫
S

log (4 + sx+ ty)f(x, y)v(x, y)dxdy = ets.

In Tables 1 and 2 we report, for increasing value of m, the relative errors
we get in three different points of the square and the condition number in
the spectral norm of the systems we solve. As we can see the convergence
is very fast in virtue of the smoothness properties of the kernel and right-
hand side. Moreover, the sequence {cond(Pm(Dm + Km)Pm)}m as well as
{cond(Pm(Im +Km)Pm)}m is convergent as m goes to infinity.

Example 2. Let us apply our methods to the following equation

1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y)dx dy

+

∫
S

xt

5 + y2 + s2
f(x, y)v(x, y)dxdy = log(10− s− t).

Table 3 and 4 show the numerical results we get. As in the previous exam-
ple, in virtue of the presence of a kernel and a right-hand side very smooth,
by solving a system with m = 32, we get very accurate results.
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Table 4 Numerical results of Example 2 via the indirect method.

m ε64,m(0.7, 0.2) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Im +Km)Pm)

4 2.14e-04 1.63e-06 4.76e-04 2.2455715459596877e+00
8 2.57e-06 1.62e-06 9.27e-07 2.2455977174082391e+00
16 6.13e-12 3.73e-15 3.58e-12 2.2455977175654072e+00
32 5.17e-15 1.24e-15 7.99e-16 2.2455977175654058e+00

Table 5 Numerical results for Example 3 via the direct method.

m ε64,m(0.1,−0.4) ε64,m(0.3,−0.6) ε64,m(−0.1, 0.5) cond(Pm(Dm + Km)Pm)

4 5.71e-04 1.33e-03 2.96e-04 9.4647134096191934e+01
8 1.02e-08 1.38e-08 1.25e-08 9.4646712492247204e+01
16 3.24e-15 3.21e-15 3.76e-16 9.4646712492247048e+01
32 1.80e-16 5.13e-16 1.25e-16 9.4646712492247090e+01

Table 6 Numerical results for Example 3 via the indirect method.

m ε64,m(0.1,−0.4) ε64,m(0.3,−0.6) ε64,m(−0.1, 0.5) cond(Pm(Im +Km)Pm)

4 3.95e-04 2.62e-04 1.55e-03 9.4647134096192175e+01
8 6.74e-09 1.23e-08 5.76e-09 9.4646712492247545e+01
16 3.77e-15 3.58e-15 7.43e-16 9.4646712492246621e+01
32 2.32e-15 1.73e-15 8.91e-16 9.4646712492247204e+01

Example 3. Let us consider again an equation which present a kernel and a
right-hand side very smooth

1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y)dx dy +

∫
S

etsxyf(x, y)v(x, y)dxdy = sin(3 + st).

In Tables 5 and 6 we give the relative errors and the condition number in
the spectral norm. Once again, we get very accurate results.

Example 4. Let us test the performance of our methods to the equation
which present a convolution kernel

1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y)dx dy

+

∫
S

|x− t|3 |y − s|4f(x, y)v(x, y)dxdy =

√
ets

9 + ts
.

As we can see through Tables 7 and 8, the numerical results confirm the
theoretical estimates given in (35) and (44).
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Table 7 Numerical results for Example 4 via the direct method.

m ε175,m(0.4,−0.4) ε175,m(0.2,−0.6) ε175,m(−0.1, 0.8) cond(Pm(Dm + Km)Pm)

4 2.84e-01 7.73e-02 3.49e-01 5.8341767720850817e+02
8 4.36e-04 1.75e-04 8.60e-04 5.4307032442099785e+02
16 1.77e-05 9.38e-06 1.89e-05 5.4309967621958026e+02
32 1.05e-06 6.28e-07 8.45e-07 5.4310149342166687e+02
64 6.44e-08 3.99e-08 4.73e-08 5.4310161017935911e+02
128 2.95e-09 1.84e-09 2.11e-09 5.4310161764433553e+02

Table 8 Numerical results for Example 4 via the indirect method.

m ε175,m(0.4,−0.4) ε175,m(0.2,−0.6) ε175,m(−0.1, 0.8) cond(Pm(Im +Km)Pm)

4 2.85e-01 7.76e-02 3.50e-01 5.8341767720850714e+02
8 4.37e-04 1.75e-04 8.62e-04 5.4307032442101217e+02
16 1.78e-05 9.38e-06 1.90e-05 5.4309967621958094e+02
32 1.05e-06 6.28e-07 8.51e-07 5.4310149342166756e+02
64 6.46e-08 3.98e-08 4.77e-08 5.4310161017936002e+02
128 2.96e-09 1.84e-09 2.13e-09 5.4310161764433508e+02

Table 9 Numerical results for Example 5 via the direct method.

m ε175,m(0.5,−0.7) ε175,m(0.3, 0.6) ε175,m(0, 0) cond(Pm(Dm + Km)Pm)

4 1.33e-02 3.74e-03 2.06e-02 1.3576451986839258e+01
8 2.31e-04 6.08e-04 8.62e-04 1.3584012702947833e+01
16 5.45e-07 1.21e-06 4.92e-06 1.3584041062960397e+01
32 5.93e-09 1.46e-09 8.09e-08 1.3584041246139085e+01
64 2.18e-10 2.17e-12 1.69e-09 1.3584041247052387e+01
128 2.74e-12 8.31e-13 4.15e-11 1.3584041247056279e+01

Example 5. Let us test the performance of our method to the following
equation in which the kernel k(x, y, t, s) = | sin(xs)| 112 + yt belongs to the
Sobolev-type space of index r = 5,

1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y)dx dy

+

∫
S

(
| sin(xs)| 112 + yt

)
f(x, y)v(x, y)dxdy = cos(ts).

As shown in Tables 9 and 10, the two methods are equivalent in terms
of order of convergence and the numerical evidence confirms our theoretical
estimates.
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Table 10 Numerical results for Example 5 via the indirect method.

m ε175,m(0.5,−0.7) ε175,m(0.3, 0.6) ε175,m(0, 0) cond(Pm(Im +Km)Pm)

4 1.33e-02 3.74e-03 2.06e-02 1.3576451986839267e+01
8 2.31e-04 6.08e-04 8.62e-04 1.3584012702947835e+01
16 5.45e-07 1.21e-06 4.92e-06 1.3584041062960395e+01
32 5.93e-09 1.46e-09 8.09e-08 1.3584041246139078e+01
64 2.18e-10 3.11e-12 1.69e-09 1.3584041247052406e+01
128 2.13e-12 4.18e-12 4.23e-11 1.3584041247056248e+01

7 Proofs

Proof of Proposition 1. We only give the main idea of the proof since the thesis
can be proved, mutatis mutandis, in the same way of the univariate case (see
[25] and the reference therein).

Let Qm−1,m−1 be an arbitrary polynomial of degree m−1 in each variable:

Qm−1,m−1(x, y) =

m−1∑
i=0

m−1∑
j=0

bij pi(w1, x)pj(w2, y).

Then, by standard arguments, we get

‖f −Qm−1,m−1‖L2
w

= ‖f‖L2
w

+ ‖Qm−1,m−1‖L2
w
− 2

m−1∑
i=0

m−1∑
j=0

bijcij(f, w)

where cij(f, w) are the Fourier coefficients of the function f defined in (6). In
virtue of the orthogonality of {pm(w1)}m and {pm(w2)}m, we have

‖Qm−1,m−1‖2L2
w

=

m−1∑
i=0

m−1∑
j=0

b2ij .

We can claim that

‖f −Qm−1,m−1‖L2
w

= ‖f‖L2
w

+

m−1∑
i=0

m−1∑
j=0

(bij − cij(f, w))2 −
m−1∑
i=0

m−1∑
j=0

c2ij(f, w).

Hence, by replacing bij with cij(f, w) we get the thesis.

In order to prove Proposition 2 and 3, let us note that the bivariate Fourier
and Lagrange operators defined in (5) and (9), respectively can be thought as
a composition of two univariate Fourier and Lagrange operators, namely

Sm,m (f, w, x, y) = Sm (Sm(fy, w1, x), w2, y) = Sm (Sm(fx, w2, y), w1, x)

Lm,m (f, w, x, y) = Lm (Lm(fy, w1, x), w2, y) = Lm (Lm(fx, w2, y), w1, x)

where Sm identifies the univariate Fourier sum, Lm denotes the univariate
Lagrange polynomial and fx and fy denote the function f as a univariate
function of the variable y and x, respectively.
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Let us also remind that if we consider a one dimensional function h be-
longing to the one dimensional Sobolev space, for i = 1, 2

Wr
wi

={h∈L2
wi

([−1, 1]): h(r−1)∈AC((−1, 1)) , ‖h‖Wr
wi

=‖h‖L2
wi

+‖h(r)ϕr‖L2
wi
<∞},

the following estimates hold true [4,6,22]

‖h− Sm(h,wi)‖Wr1
wi
≤ C
mr−r1

‖h‖Wr
wi
, r1 ≤ r, (45)

‖Sm (h− Sm(h,wi), wi) ‖Wr
wi
≤ C ‖h− Sm(h,wi)‖Wr

wi
, (46)

‖h− Lm(h,wi)‖L2
wi
≤ C
mr
‖h‖Wr

wi
, (47)

‖Lm(h,wi)‖L2
wi
≤ ‖h‖L2

wi
+
C
mr
‖h‖Wr

wi
, (48)

‖[h− Lm(h,wi)]
(r)ϕr‖L2

wi
≤ C

(
‖h(r)ϕr‖L2

wi
+mr‖h− Lm(h,wi)‖L2

wi

)
,

(49)

where in all the inequalities C 6= C(m,h).

Proof of Proposition 2. We write

‖f − Sm,m(f, w)‖W r1
w

≤ ‖f − Sm(f, w2)‖W r1
w

+‖Sm(f, w2)− Sm(Sm(fy, w1), w2)‖W r1
w

=

(∫ 1

−1
‖fx − Sm(fx, w2)‖2Wr1

w2
w1(x) dx

)1/2

+

(∫ 1

−1
‖Sm(fy − Sm(fy, w1), w2)‖2Wr1

w2
w1(x) dx

)1/2

.

Then, by applying (45) to the norm of the first term, (46) and again (45) to
the norm of the second one, we get

‖f − Sm,m(f, w)‖W r1
w
≤ C
mr−r1

(∫ 1

−1
‖fx‖2Wr

w2
w1(x) dx

)1/2

+
C

mr−r1

(∫ 1

−1
‖fy‖2Wr

w1
w2(y) dy

)1/2

≤ C
mr−r1

‖f‖W r
w
.

Proof of Proposition 3. As in the previous proof, we begin by writing

‖f − Lm,m(f, w)‖L2
w

≤ ‖f − Lm(f, w2)‖L2
w

+ ‖Lm(f, w2)− Lm(Lm(fy, w1), w2)‖L2
w

=

(∫ 1

−1
‖fx − Lm(fx, w2)‖2L2

w2
w1(x) dx

)1/2

+

(∫ 1

−1
‖Lm(fy − Lm(fy, w1), w2)‖2L2

w2
w1(x) dx

)1/2

.
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Hence by using (47) to the first term, (47), (48) and (49) to the second one,
we get

‖f − Lm,m(f, w)‖L2
w
≤ C
mr

(∫ 1

−1
‖fx − Lm(fx, w2)‖2Wr

w2
w1(x) dx

)1/2

from which we deduce the thesis.

Proof of Lemma 1. Taking into account the definition of the dominant operator
D, we write

Dqm(t, s) =
1

π2

∮
S

qm(x, y)

(x− t)(y − s)
u(x)u(y) dx dy

=

[
1

π

∮ 1

−1

pm(u, x)

(x− t)
u(x) dx

] [
1

π

∮ 1

−1

pm(u, y)

(y − s)
u(y) dy

]
= pm(u−1, t) pm(u−1, s)

= rm(t, s)

being [27,31]
1

π

∮ 1

−1

pm(u, z)

(z − η)
u(z) dz = pm(u−1, η).

Analogously,

D̂rm(t, s) =
1

π2

∮
S

rm(x, y)

(x− t)(y − s)
u−1(x)u−1(y) dx dy

=

[
− 1

π

∮ 1

−1

pm(u−1, x)

(x− t)
u−1(x) dx

] [
− 1

π

∮ 1

−1

pm(u−1, y)

(y − s)
u−1(y) dy

]
= pm(u, t) pm(u, s)

= qm(t, s)

since [27,31]

− 1

π

∮ 1

−1

pm(u−1, z)

(z − η)
u−1(z) dz = pm(u, η).

In order to prove Proposition 4, let us note that the dominant operator D
can be rewritten in terms of the Hilbert transform of a 1D function h

H(h, t) =
1

π

∮ 1

−1

h(x)

(x− t)
u(x) dx

as follows

Df(t, s) =
1

π2

∮
S

f(x, y)

(x− t)(y − s)
v(x, y) dx dy =

1

π

∮ 1

−1

H(fx, s)

(x− t)
u(x) dx

=
1

π

∮ 1

−1

H(fy, t)

(y − s)
u(y) dy = H (H(f)) (t, s)
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where fx and fy denote the function f as a univariate function of the variable
y and x, respectively. Let us also remind that for a univariate function h the
following estimates hold true [24,27]

‖(Hh)(r)ϕr‖L2
u−1
≤ ‖h‖Wr

u
, and ‖Hh‖L2

u−1
≤ ‖h‖L2

u
. (50)

Proof of Proposition 4. At first we note that, by definition, the operator D is
a linear operator. Moreover, by (8) we have

‖Df‖2L2
v−1

=

∞∑
i=0

∞∑
j=0

c2ij(Df, v
−1) =

∞∑
i=0

∞∑
j=0

c2ij(f, v) = ‖f‖2L2
v
<∞

being, in virtue of (19)

c2ij(Df, v
−1) =

(∫
S

Df(x, y) pi(u
−1, x) pj(u

−1, y) v−1(x, y) dx dy

)2

=

(∫
S

1

π2

∮
S

[
f(η, ξ)

(η − x)(ξ − y)
v(η, ξ)dη dξ

]
pi(u

−1, x)pj(u
−1, y) v−1(x, y) dx dy

)2

=

(∫
S

f(η, ξ)

[
1

π2

∮
S

pi(u
−1, x) pj(u

−1, y)

(x− η)(y − ξ)
v−1(x, y) dx dy

]
v(η, ξ) dη dξ

)2

=

(∫
S

f(η, ξ) pi(u, η) pj(u, ξ) v(η, ξ) dη dξ

)2

= c2ij(f, v).

Moreover, by applying (50) and taking into account that (a+ b)2≤2(a2 + b2)
and
√
a+ b ≤

√
a+
√
b, we have(∫ 1

−1

∫ 1

−1

∣∣∣∣ ∂r∂trDf(t, s)ϕr(t)

∣∣∣∣2 v−1(t, s) dt ds

) 1
2

=

(∫ 1

−1

∫ 1

−1

∣∣∣∣H ( ∂r

∂tr
H(f)

)
(t, s)ϕr(t)

∣∣∣∣2 u−1(t)u−1(s) dt ds

) 1
2

≤ C

(∫ 1

−1
u(s)

∫ 1

−1

∣∣∣∣ ∂r∂trH(f)(t, s)ϕr(t)

∣∣∣∣2 u−1(t) dt ds

) 1
2

≤ C

∫ 1

−1
u(s)

[∫ 1

−1

∣∣∣∣ ∂r∂tr f(t, s)ϕr(t)

∣∣∣∣2 u(t) dt+

∫ 1

−1
|f(t, s)|2 u(t) dt

]2
ds

 1
2

≤ C


∫ 1

−1
u(s)

(∫ 1

−1

∣∣∣∣ ∂r∂tr f(t, s)ϕr(t)

∣∣∣∣2 u(t) dt

)2

ds

 1
2

+

+

[∫ 1

−1
u(s)

(∫ 1

−1
|f(t, s)|2 u(t) dt

)2

ds

] 1
2

 <∞
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which prove the boundedness of D : W r
v → W r

v−1 and consequently its conti-
nuity.
Now we show that D̂(Df) = f and D(D̂f) = f . Let f ∈ L2

v(S). By using the

Fourier sum, taking into account the linearity of the operators D and D̂, and
applying firstly (18) and then (19), we have

D̂(Df)= D̂

m−1∑
i=0

m−1∑
j=0

cij(f, v)pi(u
−1)pj(u

−1)

=

m−1∑
i=0

m−1∑
j=0

cij(f, u)pi(u)pj(u) = f.

Proceeding in the same way, we can show also that D(D̂f) = f and hence

D̂ ≡ D−1. As regards to the mapping property (21) of D̂, this can be proved
as done for the property (20).

Proof of Proposition 5. The linearity of the operator K is a trivial consequence
of its definition (4) while the boundedness follows by

‖Kf‖W r1
v−1

= ‖Kf‖L2
v−1

+Mr1(Kf, v−1) ≤ C ‖f‖L2
v
. (51)

In fact, by applying Schwarz’s inequality and taking into account the first
hypotheses on the kernel function k, we have

‖Kf‖2L2
v−1

=

∫
S

|Kf(t, s)|2v−1(t, s) dt ds

=

∫
S

∣∣∣∣∫
S

k(x, y, t, s)f(x, y)v(x, y)dx dy

∣∣∣∣2 v−1(t, s) dt ds

≤ ‖f‖2L2
v

sup
(t,s)∈S

‖k(t,s)‖2W r
v

∫
S

v−1(t, s) dt ds

≤ C‖f‖2L2
v
.

Moreover, by using again the Schwarz inequality we can write∣∣∣∣∂r1(Kf)(t, s)

∂tr1

∣∣∣∣2 =

∣∣∣∣ ∂r1∂tr1

∫
S

k(x, y, t, s)f(x, y) v(x, y) dx dy

∣∣∣∣2
= ‖f‖L2

v

(∫
S

∣∣∣∣∂r1k(x, y, t, s)

∂tr1

∣∣∣∣2 v(x, y) dx dy

)
from which we can deduce∫

S

∣∣∣∣∂r1(Kf)(t, s)

∂tr1
ϕr1(t)

∣∣∣∣2 v−1(t, s) dt ds

≤ ‖f‖L2
v

∫
S

(∫
S

∣∣∣∣∂r1k(x, y, t, s)

∂tr1

∣∣∣∣2 v(x, y)dxdy

)
ϕ2r1(t)v−1(t, s) dt ds

= ‖f‖L2
v

∫
S

(∫
S

∣∣∣∣∂r1k(x, y, t, s)

∂tr1
ϕr1(t)

∣∣∣∣2 v−1(t, s)dtds

)
v(x, y) dx dy

≤ C‖f‖L2
v

sup
(x,y)∈S

‖k(x,y)‖W r1
v−1

.
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Analogously

∫
S

∣∣∣∣∂r1(Kf)(t, s)

∂sr1
ϕr1(s)

∣∣∣∣2 v−1(t, s) dt ds ≤ C‖f‖L2
v

sup
(x,y)∈S

‖k(x,y)‖W r1
v−1

.

The only point remaining concerns the compactness. To this end let us note
that we have

Em,m(Kf)W r1
v−1
≤ ‖Kf − Sm,m(Kf, v)‖W r1

v−1
≤ C
mr−r1 ‖Kf‖W r1

v−1

≤ C
mr−r1 ‖f‖L2

v
.

Therefore, setting T = {f ∈ L2
v : ‖f

√
v‖2 ≤ 1}, we have

lim
m

sup
f∈T

Em,m(f)v = 0

from which we deduce [32] that K : L2
v → W r1

v−1 is a compact operator for all
r1 < r.

Proof of Proposition 6. By the definitions of the operator D and the function
fm, we get

Dfm(ti, sj) =
1

π2

∮
S

fm (x, y)

(x− ti)(y − sj)
v(x, y) dx dy

=
1

π2

m∑
h=1

m∑
k=1

fm (xh, yk)

∮
S

`(u, x)`(u, y)

(x− ti)(y − sj)
u(x)u(y) dx dy.

Moreover, by (10) we have

`(u, x)

(x− ti)
u(x) =

pm(u, x)u(x)

p′m(u, xh)(x− xh)(x− ti)

=
pm(u, x)u(x)

p′m(u, xh)(xh − ti)

[
1

x− xh
− 1

x− ti

]
,

and similarly

`(u, y)

(y − sj)
u(y) =

pm(u, y)u(y)

p′m(u, yk)(y − yk)(y − sj)

=
pm(u, y)u(y)

p′m(u, yk)(yk − sj)

[
1

y − yk
− 1

y − sj

]
.
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Then, setting qm(t, s) = pm(u, t)pm(u, s), rm(t, s) = pm(u−1, t)pm(u−1, s) and
taking into account Lemma 1, we can write

Dfm(ti, sj)

=

m∑
h,k=1

m∑
k=1

[
fm (xh, yk) {Dqm(xh, yk)−Dqm(xh, sj)−Dqm(ti, yk)}

q′m(xh, yk)(xh − ti)(yk − sj)

+
fm (xh, yk)Dqm(ti, sj)

q′m(xh, yk)(xh − ti)(yk − sj)

]
=

m∑
h=1

m∑
k=1

fm (xh, yk) {rm(xh, yk)− rm(xh, sj)− rm(ti, yk) + rm(ti, sj)}
q′m(xh, yk)(xh − ti)(yk − sj)

and consequently,

Dfm(ti, sj) =

m∑
h=1

m∑
k=1

fm (xh, yk) rm(xh, yk)

q′m(xh, yk)(xh − ti)(yk − sj)
.

Thus, the thesis can be deduced by observing that by using property (18), we
have

rm(xh, yk) = Dqm(xh, yk)

=
1

π2
q′m(xh, yk)

∮ 1

−1
`h(u, x)u(x)dx

∮ 1

−1
`k(u, y)u(y)dy

=
1

π2
q′m(xh, yk)λh(u)λk(u)

where λh(u) denotes the h-th Christoffel number w.r.t. the weight u.

Proof of Proposition 7. We start by writing

‖Kf − Lm,m(Kmf, v
−1)‖L2

v−1
≤
∥∥Kf − Lm,m(Kf, v−1)

∥∥
L2

v−1

+
∥∥Lm,m((K −Km)f, v−1)

∥∥
L2

v−1

:= A+B.

By using Proposition 3 and (51) we can deduce that

A ≤ C
mr1
‖Kf‖W r1

v−1
≤ C
mr1
‖f‖L2

v
.

Moreover, by using the Gaussian cubature rule (12) with wi = u, i = 1, 2,
we have

B =

(∫
S

∣∣Lm,m ((K −Km)f, v−1, t, s
)∣∣2 v−1(t, s) dt ds

) 1
2

=

 m∑
i=1

m∑
j=1

λi(u
−1)λj(u

−1) |(K −Km) f(ti, tj)|2
 1

2

.
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Since one has

|(K −Km) f(t, s)|2≤ ‖f‖2L2
v

∫
S

∣∣k(x, y, t, s)− Lm,m
(
k(t,s), v, x, y

)∣∣2 v(x, y) dx dy

= ‖f‖2L2
v

∥∥k(t,s) − Lm,m (k(t,s))∥∥2L2
v

≤ C
m2r

‖f‖2L2
v

∥∥k(t,s)∥∥2W r
v
,

from the first assumption in (22), it follows

B ≤ C
mr
‖f‖L2

v

 m∑
i=1

m∑
j=1

λi(u
−1)λj(u

−1)
∥∥k(ti,tj)∥∥2W r

v

 1
2

≤ C
mr
‖f‖L2

v
sup

(ti,tj)∈S

∥∥k(ti,tj)∥∥2W r
v

 m∑
i=1

m∑
j=1

λi(u
−1)λj(u

−1)

 1
2

≤ C
mr
‖f‖L2

v

(∫
S

v−1(x, y) dx dy

) 1
2

≤ C
mr
‖f‖L2

v
.

Proof of Theorem 1. Taking into account Proposition 7, by standard argu-
ments (see, for instance, Theorem 3.3.1 in [2]), it follows that for sufficiently
large m, say m ≥ m0, the operators D + Lm,mKm : L2

v → L2
v−1 exist and are

uniformly bounded being

‖(D + Lm,mKm)−1‖ ≤ ‖(D +K)−1‖
1− ‖(D +K)−1‖ sup

m≥m0

‖K − Lm,mKm‖
<∞

(where the notation ‖ · ‖ denotes the norm of the operators), i.e. the method
is stable. In order to prove the convergence estimate (35), we note that

f−fm = (D+Lm,mKm)−1
[(
g − Lm,m

(
g, v−1

))
−
(
Kf − Lm,m

(
Kmf, v

−1))]
from which we deduce

‖f − fm‖L2
v
≤ C ‖g − Lm,m

(
g, v−1

)
‖L2

v−1
+ ‖Kf − Lm,m

(
Kmf, v

−1) ‖L2
v−1

.

Then, by applying Proposition 3 to the first term and Proposition 7 to the
second one we get (35). Let us now prove (36). To this end let us introduce an
arbitrary array c = [c11, . . . , c1m, . . . , cm1, . . . cmm]T of length m2, and let us

denote by ‖c‖2 =

 m∑
i=1

m∑
j=1

c2ij

1/2

its Euclidean norm. Then, the vector b =

[b11, . . . , b1m, . . . , bm1, . . . bmm]T satisfies the system Pm(Dm+Km)Pmc = b
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if and only if (D + Lm,mKm)fm = gm where fm and gm are the bivariate
polynomials defined as

fm(t, s) =

m∑
i=1

m∑
j=1

`i(u, t)√
λj(u)

`j(u, s)√
λj(u)

cij

and

gm(t, s) =

m∑
i=1

m∑
j=1

`i(u
−1, t)√

λi(u−1)

`j(u
−1, s)√

λj(u−1)
bij .

Being

‖gm‖2L2
v−1

=

∫
S

|gm(t, s)|2v−1(t, s) dt ds =

m∑
i=1

m∑
j=1

λi(u
−1)λj(u

−1)|gm(ti, tj)|2

=

m∑
i=1

m∑
j=1

b2ij = ‖b‖2

and analogously ‖fm‖L2
v

= ‖c‖2, we have

‖Pm(Dm + Km)Pm‖ = sup
c∈Rm2

c6=0

‖Pm(Dm + Km)Pmc‖2
‖c‖2

= sup
fm∈Pm−1,m−1

fm 6=0

‖(D + Lm,mKm)fm‖L2
v−1

‖fm‖L2
v

= ‖D + Lm,mKm‖L2
v→L2

v−1
.

Then, in virtue of Proposition 7, for m sufficiently large,

‖Pm(Dm + Km)Pm‖ ≤ C ‖D +K‖L2
v→L2

v−1
. (52)

In the same way we can prove that

‖(Pm(Dm + Km)Pm)−1‖ = ‖(D + Lm,mKm)−1‖L2
v−1→L2

v

from which, by applying again Proposition 7, we deduce that, for m sufficiently
large,

‖(Pm(Dm + Km)Pm)−1‖ ≤ C ‖(D +K)−1‖L2
v−1→L2

v
. (53)

Hence, the thesis (36) follows from (52) and (53).

Proof of Proposition 8. We can proceed analogously to the proof of Proposition
7. Therefore we only give the main sketch. We have

‖Kf − Lm,m (Kmf, v) ‖L2
v
≤ ‖Kf − Lm,m (Kf, v)‖L2

v

+ ‖Lm,m ((K −Km)f, v)‖L2
v
.
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By noting that in virtue of Proposition 4 one has Kf = (D̂K)(f) ∈ W r1
v and

taking into account (11) and (22), we get

‖Kf − Lm,m (Kf, v)‖L2
v
≤ C
mr1
‖Kf‖W r1

v−1
≤ C
mr1
‖f‖L2

v
.

Moreover,

|(K −Km) f(t, s)|2 ≤ C
m2r

‖f‖2L2
v

∥∥φ(t,s)∥∥2W r
v
,

and by (39) and Proposition 4, we can write∥∥φ(t,s)∥∥2W r
v

=
∥∥∥D̂k(ξ,η)∥∥∥2

W r
v

≤ ‖k(ξ,η)‖2W r
v−1

.

Consequently, from the assumption (22), we can deduce

‖Lm,m ((K −Km)f, v)‖L2
v
≤ C
mr
‖f‖L2

v

 m∑
i=1

m∑
j=1

λi(u)λj(u)
∥∥k(xi,xj)

∥∥2
W r

v−1

 1
2

≤ C
mr
‖f‖L2

v

from which the thesis follows.

Proof of Theorem 2. In order to prove this theorem it is sufficient to proceed
as in the proof of Theorem 1 with I, K, G in place of D, K and g, respectively.
Moreover the thesis on the condition number can be proved as done for (36).
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