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There is something to be learned from a rainstorm.
When meeting with a sudden shower, you try not
to get wet and run quickly along the road. But
doing such things as passing under the eaves of
houses, you still get wet. When you are resolved
from the beginning, you will not be perplexed,
though you still get the same soaking.
This understanding extends to all things.
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To those who have been here and those who are gone. 





A b s t r a c t

In the last 50 years, flooding has figured as the most frequent and
widespread natural disaster globally. Extreme precipitation events
stemming from climate change could alter the hydro-geological regime
resulting in increased flood risk. Near real-time precipitation moni-
toring at local scale is essential for flood risk mitigation in urban and
suburban areas, due to their high vulnerability. Presently, most of the
rainfall data is obtained from ground-based measurements or remote
sensing that provide limited information in terms of temporal or spatial
resolution. Other problems may be due to the high costs. Furthermore,
rain gauges are unevenly spread and usually placed away from urban
centers. In this context, a big potential is represented by the use of
innovative techniques to develop low-cost monitoring systems. De-
spite the diversity of purposes, methods and epistemological fields, the
literature on the visual effects of the rain supports the idea of camera-
based rain sensors but tends to be device-specific. The present thesis
aims to investigate the use of easily available photographing devices as
rain detectors-gauges to develop a dense network of low-cost rainfall
sensors to support the traditional methods with an expeditious solu-
tion embeddable into smart devices. As opposed to existing works, the
study focuses on maximizing the number of image sources (like smart-
phones, general-purpose surveillance cameras, dashboard cameras,
webcams, digital cameras, etc.). This encompasses cases where it is not
possible to adjust the camera parameters or obtain shots in timelines or
videos. Using a Deep Learning approach, the rainfall characterization
can be achieved through the analysis of the perceptual aspects that
determine whether and how a photograph represents a rainy condition.
The first scenario of interest for the supervised learning was a binary
classification; the binary output (presence or absence of rain) allows the
detection of the presence of precipitation: the cameras act as rain detec-
tors. Similarly, the second scenario of interest was a multi-class classifi-
cation; the multi-class output described a range of quasi-instantaneous
rainfall intensity: the cameras act as rain estimators. Using Transfer
Learning with Convolutional Neural Networks, the developed models
were compiled, trained, validated, and tested. The preparation of the
classifiers included the preparation of a suitable dataset encompassing
unconstrained verisimilar settings: open data, several data owned by
National Research Institute for Earth Science and Disaster Prevention -
NIED (dashboard cameras in Japan coupled with high precision multi-
parameter radar data), and experimental activities conducted in the
NIED Large Scale Rainfall Simulator. The outcomes were applied to a
real-world scenario, with the experimentation through a pre-existent

iii



surveillance camera using 5G connectivity provided by Telecom Italia
S.p.A. in the city of Matera (Italy). Analysis unfolded on several levels
providing an overview of generic issues relating to the urban flood
risk paradigm and specific territorial questions inherent with the case
study. These include the context aspects, the important role of rainfall
from driving the millennial urban evolution to determining present
criticality, and components of a Web prototype for flood risk communi-
cation at local scale. The results and the model deployment raise the
possibility that low-cost technologies and local capacities can help to
retrieve rainfall information for flood early warning systems based
on the identification of a significant meteorological state. The binary
model reached accuracy and F1 score values of 85.28% and 0.86 for the
test, and 83.35% and 0.82 for the deployment. The multi-class model
reached test average accuracy and macro-averaged F1 score values
of 77.71% and 0.73 for the 6-way classifier, and 78.05% and 0.81 for
the 5-class. The best performances were obtained in heavy rainfall
and no-rain conditions, whereas the mispredictions are related to less
severe precipitation. The proposed method has limited operational
requirements, can be easily and quickly implemented in real use cases,
exploiting pre-existent devices with a parsimonious use of economic
and computational resources. The classification can be performed on
single photographs taken in disparate conditions by commonly used
acquisition devices, i.e. by static or moving cameras without adjusted
parameters. This approach is especially useful in urban areas where
measurement methods such as rain gauges encounter installation dif-
ficulties or operational limitations or in contexts where there is no
availability of remote sensing data. The system does not suit scenes
that are also misleading for human visual perception. The approxima-
tions inherent in the output are acknowledged. Additional data may
be gathered to address gaps that are apparent and improve the accu-
racy of the precipitation intensity prediction. Future research might
explore the integration with further experiments and crowdsourced
data, to promote communication, participation, and dialogue among
stakeholders and to increase public awareness, emergency response,
and civic engagement through the smart community idea.
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S i n o s s i

Negli ultimi 50 anni, le alluvioni si sono confermate come il
disastro naturale più frequente e diffuso a livello globale. Tra
gli impatti degli eventi meteorologici estremi, conseguenti ai
cambiamenti climatici, rientrano le alterazioni del regime idro-
geologico con conseguente incremento del rischio alluvionale. Il
monitoraggio delle precipitazioni in tempo quasi reale su scala
locale è essenziale per la mitigazione del rischio di alluvione
in ambito urbano e periurbano, aree connotate da un’elevata
vulnerabilità. Attualmente, la maggior parte dei dati sulle pre-
cipitazioni è ottenuta da misurazioni a terra o telerilevamento
che forniscono informazioni limitate in termini di risoluzione
temporale o spaziale. Ulteriori problemi possono derivare dagli
elevati costi. Inoltre i pluviometri sono distribuiti in modo non
uniforme e spesso posizionati piuttosto lontano dai centri urbani,
comportando criticità e discontinuità nel monitoraggio. In questo
contesto, un grande potenziale è rappresentato dall’utilizzo di
tecniche innovative per sviluppare sistemi inediti di monitor-
aggio a basso costo. Nonostante la diversità di scopi, metodi e
campi epistemologici, la letteratura sugli effetti visivi della pi-
oggia supporta l’idea di sensori di pioggia basati su telecamera,
ma tende ad essere specifica per dispositivo scelto. La presente
tesi punta a indagare l’uso di dispositivi fotografici facilmente
reperibili come rilevatori-misuratori di pioggia, per sviluppare
una fitta rete di sensori a basso costo a supporto dei metodi
tradizionali con una soluzione rapida incorporabile in dispositivi
intelligenti. A differenza dei lavori esistenti, lo studio si con-
centra sulla massimizzazione del numero di fonti di immagini
(smartphone, telecamere di sorveglianza generiche, telecamere
da cruscotto, webcam, telecamere digitali, ecc.). Ciò comprende
casi in cui non sia possibile regolare i parametri fotografici o
ottenere scatti in timeline o video. Utilizzando un approccio
di Deep Learning, la caratterizzazione delle precipitazioni può
essere ottenuta attraverso l’analisi degli aspetti percettivi che de-
terminano se e come una fotografia rappresenti una condizione
di pioggia. Il primo scenario di interesse per l’apprendimento
supervisionato è una classificazione binaria; l’output binario (pre-
senza o assenza di pioggia) consente la rilevazione della presenza
di precipitazione: gli apparecchi fotografici fungono da rivela-
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tori di pioggia. Analogamente, il secondo scenario di interesse è
una classificazione multi-classe; l’output multi-classe descrive un
intervallo di intensità delle precipitazioni quasi istantanee: le fo-
tocamere fungono da misuratori di pioggia. Utilizzando tecniche
di Transfer Learning con reti neurali convoluzionali, i modelli
sviluppati sono stati compilati, addestrati, convalidati e testati.
La preparazione dei classificatori ha incluso la preparazione di
un set di dati adeguato con impostazioni verosimili e non vinco-
late: dati aperti, diversi dati di proprietà del National Research
Institute for Earth Science and Disaster Prevention - NIED (tele-
camere dashboard in Giappone accoppiate con dati radar multi-
parametrici ad alta precisione) e attività sperimentali condotte nel
simulatore di pioggia su larga scala del NIED. I risultati sono stati
applicati a uno scenario reale, con la sperimentazione attraverso
una telecamera di sorveglianza preesistente che utilizza la con-
nettività 5G fornita da Telecom Italia S.p.A. nella città di Matera
(Italia). L’analisi si è svolta su più livelli, fornendo una panoram-
ica sulle questioni relative al paradigma del rischio di alluvione
in ambito urbano e questioni territoriali specifiche inerenti al
caso di studio. Queste ultime includono diversi aspetti del con-
testo, l’importante ruolo delle piogge dal guidare l’evoluzione
millenaria della morfologia urbana alla determinazione delle
criticità attuali, oltre ad alcune componenti di un prototipo Web
per la comunicazione del rischio alluvionale su scala locale. I
risultati ottenuti e l’implementazione del modello corroborano
la possibilità che le tecnologie a basso costo e le capacità locali
possano aiutare a caratterizzare la forzante pluviometrica a sup-
porto dei sistemi di allerta precoce basati sull’identificazione
di uno stato meteorologico significativo. Il modello binario ha
raggiunto un’accuratezza e un F1-score di 85, 28% e 0, 86 per il
set di test e di 83, 35% e 0, 82 per l’implementazione nel caso
di studio. Il modello multi-classe ha raggiunto un’accuratezza
media e F1-score medio (macro-average) di 77, 71% e 0, 73 per il
classificatore a 6 vie e 78, 05% e 0, 81 per quello a 5 classi. Le
prestazioni migliori sono state ottenute nelle classi relative a forti
precipitazioni e assenza di pioggia, mentre le previsioni errate
sono legate a precipitazioni meno estreme. Il metodo proposto
richiede requisiti operativi limitati, può essere implementato
facilmente e rapidamente in casi d’uso reali, sfruttando disposi-
tivi preesistenti con un uso parsimonioso di risorse economiche
e computazionali. La classificazione può essere eseguita su sin-
gole fotografie scattate in condizioni disparate da dispositivi di
acquisizione di uso comune, ovvero da telecamere statiche o in
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movimento senza regolazione dei parametri. Questo approccio
potrebbe essere particolarmente utile nelle aree urbane in cui i
metodi di misurazione come i pluviometri incontrano difficoltà
di installazione o limitazioni operative o in contesti in cui non
sono disponibili dati di telerilevamento o radar. Il sistema non si
adatta a scene che sono fuorvianti anche per la percezione visiva
umana. I limiti attuali risiedono nelle approssimazioni intrin-
seche negli output. Per colmare le lacune evidenti e migliorare
l’accuratezza della previsione dell’intensità di precipitazione,
sarebbe possibile un’ulteriore raccolta di dati. Sviluppi futuri
potrebbero riguardare l’integrazione con ulteriori esperimenti in
campo e dati da crowdsourcing, per promuovere comunicazione,
partecipazione e dialogo aumentando la resilienza attraverso
consapevolezza pubblica e impegno civico in una concezione di
comunità smart.
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I n t r o d u c t i o n

This research was supported by Regione Basilicata, within the
School of Engineering (University of Basilicata) Ph.D. Program
“Engineering for Innovation and Sustainable Development” (cur-
riculum: Methods and Technologies for Environmental Monitor-
ing and Protection) - Industry 4.0, topic: Enhancing flood risk
management, through near real-time methods and technologies,
for risk communication at local scale.

The Ph.D. here presented and entitled A Deep Learning approach
for monitoring severe rainfall in urban catchments using consumer
cameras. Models development and deployment on a case study in Mat-
era (Italy) aims to trace a scientific-technical innovative scenario,
using digital technologies (such as 5th Generation Mobile Net-
works and Artificial Intelligence) applied to an environmental
domain as flood risk mitigation.

The process of investigation interfaced with experimental ac-
tivities, contextualization, and theoretical references. The stages
took place in Italy and Japan, particularly in Potenza, Matera
and Tsukuba.

The study was performed in continuous collaboration with
the Storm, Flood and Landslide Research Unit of the NIED - Na-
tional Research Institute for Earth Science and Disaster Resilience
防災科学技術研究所, that applies advanced sensing technology
developing precise observation and prediction techniques to
mitigate damage from water and sediment disasters. The ex-
periments involved the use of the NIED Large-scale Rainfall
Simulator, the largest simulator in the world in terms of rainfall
area and sprinkling capacity.

In order to get in touch with the production environment, the
training path comprised a collaboration with TIM S.p.A. - Tele-
com Italia. The company offers datasets, advanced information
and communication technologies, and 5G connectivity.

The extent and the cumulative aspects of impacts from natural
and man-made calamitous events demonstrate the importance
of disaster management, meant as a set of policies and strategies
to prevent, reduce or manage the risk. For over five decades,
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flooding has been the most frequent and widespread natural dis-
aster globally (EM-DAT 2019; Pesaresi et al. 2017). The extreme
weather events stemming from climate change may alter the
hydro-geological regime increasing flood frequency and magni-
tude (de Moel et al. 2009; IPCC 2012; Autorità di Bacino della
Basilicata 2010). Urban and suburban contexts present altered
hydrology (Fletcher et al. 2013; Griffiths and Singh 2019). Their
proper representation requires near real-time and fine-grained
information retrieved from rainfall measurements at local, fine
scales with low latency (Schilling 1991; Einfalt, Arnbjerg-Nielsen,
et al. 2002; Einfalt, Krejci, et al. 1998). Presently, most of the rain-
fall data is obtained from ground-based measurements or remote
sensing that may present some limitations (limited temporal or
spatial resolution, high costs, underrepresentation of urban ar-
eas). In this context, one of the biggest potential is represented
by low-cost opportunistic sensors. Several studies developed
unprecedented techniques to retrieve precipitation information
with low operational costs that can be effectively combined with
conventional systems despite their inaccuracy (Tauro et al. 2018).

Technology may have pivotal importance in improving rainfall-
related hazard forecasting and early warning systems. Urban
flood risk management can benefit from recent technological
advancements in data, communication, and computational algo-
rithms. Recent years have seen a vast rise in the amount of data
that are continuously being produced and collected for different
purposes that can opportunistically yield useful information.

The general goal of this thesis was disaster resilience enhance-
ment through a technological evolution of risk prevention.

The key idea is to combine alternative data sources and compu-
tation techniques, such as Deep Learning and Computer Vision
methods, to devise a method for near real-time heavy rainfall
monitoring at local scale for flood risk mitigation in vulnerable
urban and suburban areas.

The specific aim was to investigate the use of easily available
photographing devices as rain detectors-gauges to develop a
dense network of low-cost rainfall sensors to support the tradi-
tional methods with an expeditious solution embeddable into
smart devices.

Despite the diversity of purposes, methods and epistemologi-
cal fields, the literature on the visual effects of the rain supports
the idea of camera-based rain sensors but tends to be device-
specific. As opposed to existing works, the present study focuses

2



on maximizing the number of image sources (like smartphones,
general-purpose surveillance cameras, dashboard cameras, web-
cams, digital cameras, etc.). This encompasses cases where it is
not possible to adjust the camera parameters or obtain shots in
timelines or videos.

Using a Deep Learning approach based on Transfer Learning
with Convolutional Neural Networks, the rainfall information
was gathered from single photographs taken in very generaliz-
able conditions.

The first scenario of interest for supervised learning was a
binary classification whose outputs indicated the presence of
precipitation: cameras act as rain detectors.

The second scenario was multi-class classification whose out-
puts described ranges of quasi-instantaneous rainfall intensity:
cameras act as rain estimators.

The models for rainfall detection and intensity estimation were
compiled, trained, validated, and tested. They were shown to pro-
duce good outcomes encompassing unconstrained verisimilar
settings. The preparation of the classifiers included the prepara-
tion of suitable datasets mimicking real-world scenarios: crowd-
sourced images, dashboard cameras in Japan coupled with high
precision multi-parameter radar data (data owned by NIED),
and experiments conducted in the NIED Large Scale Rainfall
Simulator.

The outcomes were applied to a real use case, with the ex-
perimentation through a pre-existent surveillance camera using
5G connectivity provided by TIM. in the city of Matera (Italy).
The application on Matera case study took into account the in-
terrelations between the different urban and environmental is-
sues, using innovative technologies for investigation on water-
related phenomena at local scale, in order to create a matrix
of urban knowledge, sustainability, decision-making processes,
and risk resilience. Structural components of the territorial con-
text result from a balance between construction and destruction
across the time and dialogue with natural elements such as water-
courses, vegetation, exposure, geomorphology, revealing a struc-
ture made by flows and physical actions that can be read and
interpreted (Macaione and Sichenze 2013; Macaione, Ippolito,
et al. 2018). In the millennial history of Matera, water played
an important role in driving urban evolution as demonstrated
by historical changes in systems for water collection, storage,
drainage, and sewage flows. The hydrologic traits evolved across
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successive generations of urban ecosystems via adaptations over
the centuries, shifting according to the changes of pressures. The
context aspects contribute to creating some components of a Web
prototype for flood risk communication at local scale.

The results of tests and deployment were encouraging for both
the binary and multi-class classification problems. The case study
proved the immediate applicability at an operational level of the
theoretical variables considered and methodological components
chosen. The experimental activities within the “Bari Matera 5G”
project provided a promising perspective on the smart environ-
mental monitoring using 5G connectivity.

The best performances were obtained in heavy rainfall and
no-rain conditions, whereas the mispredictions are related to less
severe precipitation.

The results achieved surpass the earlier work in this area in
terms of flexibility, simplicity of application, comprehensiveness
of shooting tools. The proposed method relies on single image
classification, thus it has limited operational requirements, can be
easily and quickly implemented in real use cases, can exploiting
pre-existent devices (static or moving cameras without adjusted
parameters) with a parsimonious use of economic and computa-
tional resources. The model can be exposed locally, remotely or
via cloud by programming smart cameras or Internet of Things
devices.

Despite being a prototype, it offers a first operative tool that for
creating a low-cost sensors network for the characterization of
rainfall. It can contribute to the traditional monitoring networks
and forecast systems for building-up a hyperlocal information
infrastructure that suits the future needs in terms of spatial and
temporal resolution, scalability, heterogeneity, and dynamicity.
The retrieved rainfall information can have practical utility for
the studies on weather-hydrological information systems at local
scale in urban areas and warning systems based on the identifi-
cation of a significant meteorological state for flood triggering.

This approach is especially useful in urban areas where mea-
surement methods such as rain gauges encounter installation
difficulties or operational limitations or in contexts where there
is no availability of remote sensing data.

The major limitation concerns the approximations inherent
in the outputs. Additional data may be gathered to address the
apparent gaps and improve the accuracy of the precipitation
intensity prediction. Another limitation can stem from possible
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ambiguities in the visual appearance of pictures: the system does
not suit scenes that are also misleading for human perception.

The overall results suggest that Deep Learning methods of-
fer an efficient strategy for gathering rainfall information from
cameras-based low-cost sensors that can be replicated, updated,
fine-tuned, and extended.

New technologies and non-conventional data sources offer
great potential for engagement and co-production of knowledge
to improve the representation of urban precipitation fields and
build-up extreme events resilience.

Future directions might be related to the enhancement of
the observational capability through an increase in spatial den-
sity of rain observations by further experiments and applica-
tion to crowdsourced pictures. The integration of conventional
monitoring networks with opportunistic sensing (Dickinson et
al. 2010), voluntary geographic information (Goodchild 2007),
crowdsourced data can promote communication, participation,
and dialogue among stakeholders and increase public awareness,
emergency response, and civic engagement through the smart
city (Riva Sanseverino et al. 2017) and smart community idea.

The starting point of the research in this thesis is the risk
paradigm. The Part i gives a contextual summary of the theoret- Breakdown of the

thesisical and legal variables of the mitigation of the urban flooding
residual risk by non-structural measures, including a synoptic
conceptual background and an overview of some generic issues
relating to flood communication systems.

The Part ii concerns the problem of rainfall characterization
through the methods of Computer Vision and Deep Learning.
The Chapter 2 provides a concise review of the relevant contribu-
tions from the existing body of the literature on the visual effects
of the rain in digital still photography and video frames. For the
sake of clarity, the studies were divided into three main investiga-
tive strands: techniques for removing the visual effects caused
by rain, rain measurement techniques, and weather classification
techniques. The analysis of existing literature lead to the defini-
tion of the research specific goals, variables and components.

The Chapter 3 is concerned with the methodology used for this
study: a Deep Learning approach based on Transfer Learning
with Convolutional Neural Networks to perform single image
classification.
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The preparation of the Chapter 4 and of the Chapter 5 included:
a) preliminary stage for preparing datasets; b) experimental ac-
tivities conducted in the NIED Large-scale Rainfall Simulator;
c) creation of datasets for the employment of Deep Learning
techniques for characterization of rainfall and use of several data
owned by NIED; d) development, training, validation, and test
of the Convolutional Neural Networks. The outcomes were im-
mediately applied to a real-world scenario, as illustrated in the
Part iii.

The Part iii brings the prior knowledge in the case study: the
city of Matera (Italy). The analysis unfolded on several levels:
interpreting the context aspects and the important role of rainfall
from driving its unique millenial urban evolution to determining
present criticality; elaborating components for a Web prototyping
tool for flood risk communication at local scale; deploying the
elaborated models to experimentation with a pre-existent surveil-
lance camera using 5G network connectivity in Matera provided
by TIM to prove the applicability of the method proposed.

Chapter 7 delineates the significance of the main findings and
includes some suggestions for improvement and speculating on
future directions.

The Appendices presents the diachronic legal framework in
Italy (Appendix A), the technical characteristics of the NIED
Large-scale Rainfall Simulator (Appendix B), life saving tips
and rules for self-protection in case of landslides and floods
(Appendix C).
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Part I

T h e o r e t i c a l f r a m e w o r k





1
U r b a n F l o o d R i s k M a n a g e m e n t a n d C o m m u n i c a t i o n

1.1 the risk paradigm

The extent and the cumulative aspects of impacts from calami-
tous events (natural and man-made disasters) demonstrate the
importance of disaster management, meant as a set of policies
and strategies to prevent, reduce or manage the risk. The ac-
tions are aimed both at minimizing the losses and at augmenting
the resilience. These can be distinguished between prospective
disaster risk management, corrective disaster risk management,
and compensatory disaster risk management (residual risk man-
agement), depending on whether the risk is future, present or
residual (United Nations General Assembly 2016).

The perspective of environmental sustainability and disaster
risk reduction should be holistic: it requires the systematization
of several gnosiological fields and epistemological criteria.

There are involved issues related to crisis, resilience, smartness,
and ecology with complex relationships.

Effective risk mitigation must take the values and the quality
of different factors and heterogeneous phenomena into account
(Figure 1.1).

Figure 1.1: Determinants of risk.

The concept of risk is expressed by the formula:

Risk = hazard x exposure x vulnerability
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Thus, the risk from natural hazards can be considered as a
combination of three key components: hazard, exposure, and vul-
nerability, whose international agreed definitions, provided by
the United Nations General Assembly (2016), are:

hazard: a process, phenomenon or human activity that may cause loss
of life, injury or other health impacts, property damage, social
and economic disruption or environmental degradation. Natural
hazards are predominantly associated with natural processes and
phenomena.

exposure: the situation of people, infrastructure, housing, production
capacities and other tangible human assets located in hazard-
prone areas.

vulnerability: the conditions determined by physical, social, economic
and environmental factors or processes which increase the sus-
ceptibility of an individual, a community, assets or systems to
the impacts of hazards.

Typically, the natural hazards are illustrated in maps that are
produced using probabilistic models representing the potential
hazardous events that can occur in a certain area within a certain
return period. Both the disaster probability and the potentially
affected area depend on the time frame considered, so it may be
useful to provide different hazard maps corresponding to several
return periods.

The concept of return period is the most common, yet often
misunderstood (UNISDR 2015), metric for the occurrence of natu-
ral hazards. It describes the likelihood of a hazard event to occur
at (or above) a specific intensity within a time frame defined by
a probability.

return period: is the average frequency with which a particular loss is
expected to occur. It is usually expressed in years, such as 1 in X
number of years. This does not mean that a loss will occur once
every X numbers of years, but rather that it will occur once on
average every X number of years. It is another way of expressing
the exceedance probability: a 1 in 200 years loss has a chance of
0.5 percent to occur or be exceeded every year (UNISDR 2015).

In the last 50 years, flooding have figured as the most frequent
and widespread type of natural disaster, causing severe reper-
cussions in terms of both loss of human life and socio-economic
and environmental damage.
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Overall, the hazardous events related to extreme weather
make up the vast majority of natural disasters that were re-
ported worldwide in the Emergency Events Database (EM-DAT
2019), an international database maintained by the Center for
Research on the Epidemiology of Disasters (CRED) of the Uni-
versité Catholique de Louvain (Brussels, Belgium) containing
core data on technological and natural disasters from 1900 to the
present day collected from various sources. The criterion that
determines whether the event can be reported as a natural disaster
is the existence of at least one of the following conditions: 100 or
more affected people, 10 or more deaths, declaration of a state
of emergency or call for international assistance. Due to social,
political, and economical factors, a complete and homogeneous
representation of all regions of the World is impossible, so the
real disasters occurrence number is probably higher.

Floods alone account for an average of 37.8% of the total be-
tween 1970 and 2019, as shown in Figure 1.2, and 47.09% during
2019.

SHARE OF OCCURRENCE OF NATURAL DISASTERS BY TYPE 
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Figure 1.2: Share of occurrence of natural disasters by type, from 1970
to 2019. Data source: EM-DAT (2019)

Floods are considered major natural disasters globally and are
the most common natural disaster in the European Region (Pe-
saresi et al. 2017), furthermore, climate change may increase their
frequency and magnitude (de Moel et al. 2009; IPCC 2012) and
this trend is expected to continue. The impacts of extreme precip-
itation events, stemming from climate change in Mediterranean
Europe, include alterations in the hydro-geological regime which
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could increase the risk of flash floods (Autorità di Bacino della
Basilicata 2010).

The Figure 1.3 plots the annual reported number of natural
disasters, categorized by type. It includes both weather and non-
weather related disasters. The represented accrual over time of
the number of calamitous events may indicate a critical under-
reporting of disasters in the past, due to incompleteness of histor-
ical data. Nonetheless, the ratio of hydrological events remains
steadily significant. The frequency of floods is growing in the
last three decades, a period in which the data can be considered
fairly reliable.

GLOBAL REPORTED NATURAL DISASTERS BY TYPE, FROM 1970 TO 2019
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Figure 1.3: Number of global reported disasters by type, from 1970 to
2019. Adapted from Ritchie (2014), data source: EM-DAT
(2019)

As thoroughly discussed by Parker (2000), floods can take
many forms, so the definition for the term varies among re-
searchers depending on the specific point of view.

Broadly speaking, we can define:

flooding: a temporary condition of partial or complete inundation
of normally dry land resulting from the overflow of inland or
tidal waters, or from unusual and rapid accumulation of surface
run-off from any source (Shabman et al. 2014).

There are many types of flood (Parker 2000), as shown in Ta-
ble 1.1, caused by different agents. The different flood types are
not mutually exclusive, as they can coexist, interact and create a
cascading chain of events. Thus, flood episodes are potentially
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triggered by a variety of hydrological processes and their dy-
namics are influenced by the combination of different natural
and anthropogenic driving factors. The leading cause of floods
is heavy rainfall of long duration or of high intensity.

AGENT DETAILS AND EXAMPLES

Rainfall riverine or non-riverine, slow-onset or flash flood,
conventional/frontal/orographic, torrential rainfall
floods.

Snowmelt riverine, overland flow

Icemelt glacial meltwater (rise in air temperature), glacial
meltwater (geothermal heat source), spate floods

Flooding during
freeze-up

riverine

Flooding by Ice
breakup

riverine (also called ice-jam floods)

Mudfloods floods with high sediment content

Coastal/sea/tidal
floods

storm surge (tropical or temperate induced), ocean
swell floods, percolation floods, tsunamis (induced by
geological process)

Dam dam-break flood, dam overtopping

Sewer/urban drain
flood

storm discharge to sewers and drains exceeds capacity

Rising water tables
(high groundwater
levels)

many causal factors including land subsidence, rising
sea levels, temporal reduction in water abstractions
from aquifers

Combined events examples include: riverine/tidal flooding; rain on snow
floods

Table 1.1: Flood types by agent (Parker 2000).

The vulnerability of urban structures demonstrates the ur-
gency of mitigation interventions to improve the risk knowledge,
dissemination and communication, response capability and mon-
itoring and warning service. The flood sensitivity of European
cities and towns is strictly linked to the potential material and hu-
man losses, which can be diminished heightening the protection
levels (Kompil et al. 2015).

The urban and suburban landscapes are usually dominated
by artificial impervious (or near impervious) surfaces, including
different structural elements: the urban fabrics are composed of
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paved areas (roads, sidewalks, parking lots, stations, industrial
areas, airports, ports etc.) and buildings (rooftops).

The presence of the aforementioned impervious surfaces and
drainage systems have a significant impact on the hydrological
cycle (Griffiths and Singh 2019, Figure 1.4).

(a) Natural Ground Cover. (b) 10%-20% Impervious Surface

(c) 35%-50% Impervious Surface (d) 75%-100% Impervious Surface

Figure 1.4: Impacts of urbanization on the hydrological cycle. Figures
redrawn from the original in FISRWG (1998).

The influence of urbanization can result in increased peak
flows, surface runoff volumes and flow variability, along with
decreased infiltration and shorter lag times (Fletcher et al. 2013).

As a result of the described altered hydrology, extreme precipi-
tation events are strongly relevant for urban and suburban areas,
even if of short duration.

In fact, events over urban areas with the same amount of
precipitation and the same duration can cause flooding faster and
more severe than in areas with lower degrees of anthropization.

The intensity, duration and spatial distribution characteris-
tics of the rainfall combined with the land use and topography,
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surface conditions, vegetation, soil type, and soil water-content
determine the dynamics and location of floods and related phe-
nomena.

In this context, the meteorological forcing characterization
becomes essential: the identification and monitoring of hydrolog-
ical state indicators, such as rainfall levels, are a prerequisite to
determine the critical thresholds for landslides or flood trigger-
ing. These indicators, together with the fragility of the system,
shape the event scenarios and the risk scenarios within the ter-
ritorial context and therefore the criticality and alert levels that
establish the indication or warnings to the exposed population
(A. Sole et al. 2013; Scarpino et al. 2018,Appendix C).

For example, the Figure 1.5 schematization represents an urban
pluvial flood scenario based on the theoretical framework by
Versace (2017) applied to a recent real event. The urban pluvial
flood was caused by the hydraulic overload of the drainage
network - due to severe weather - which occurred on 3 August
2018 in the city of Matera, Italy.
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BLOCK YOU.

Figure 1.5: Urban flood scenario based on the theoretical framework
by Versace (2017) applied on a real event in Matera.
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The extreme precipitation reached a maximum cumulative
precipitation in 1 h of 33 mm/h (rainfall data from the Centro
Funzionale Decentrato Basilicata, Protezione Civile Basilicata
n.d.), and overcame a critical threshold, triggering an event. Its
relation with the fragility of the system and the territorial con-
text determines the event and risk scenarios and therefore the
behavioral measures for users (Scarpino et al. 2018; A. Sole et al.
2013).

Hence, environmental monitoring, warning and communica-
tion are crucial issues in reducing the residual risk. Rainfall data
at scales of urbanized catchments is essential to evaluate the
urban rainfall-runoff response. For the purpose of representa-
tion of the territory, especially for urban pluvial flood studies,
the precipitation measurements are required at local, fine scales
with low latency to give near real-time and fine-grained informa-
tion (Schilling 1991; Einfalt, Arnbjerg-Nielsen, et al. 2002; Einfalt,
Krejci, et al. 1998). The urban flood risk management can be
enhanced by a local scale strategic system integrating near real-
time methods, innovative technologies and conventional systems
(Albano and Aurelia Sole 2018).

1.2 legal framework

Presently, the legislative framework of flood in European Union
member-state is the so-called Flood Directive: European Directive
no. 2007/60 on the assessment and management of flood risks.

The purpose of the European Flood Directive is to establish a
framework for the assessment and management of flood risks,
aimed at the reduction of the likelihood and/or the direct and
indirect impact of floods (i.e. the adverse consequences for hu-
man health, the environment, cultural heritage, and economic
activity). The main focus is floods from rivers, mountain torrents,
Mediterranean ephemeral water courses, and floods from the sea
in coastal areas. It considers all aspects of risk management and
in particular prevention, protection and preparation, including
flood forecasting and warning systems.

The improvement of the knowledge about hydro-morphological
processes connected with floods and the management of the
associated risk goes along with the rights of public access the
information and participation in the planning process.

Thus, the proposed approach to the flood risk management
programs incorporates the elements of prevention, protection
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(taking both structural and non-structural measures), prepared-
ness, emergency response, and recovery and lessons learned.

The European Floods Directive has stimulated the implemen-
tation of a diversified of flood risk management strategies in
member-state legislation.

The Directive has been transposed in the Italian national leg-
islative system through the Legislative Decree 23 February 2010.
no. 49 "Implementation of Directive 2007/60/EC on the assess-
ment and management of flood risks" (Decreto legislativo 23 feb-
braio 2010, n.49 “Attuazione della direttiva 2007/60/CE relativa alla
valutazione e alla gestione dei rischi alluvioni”).

Since the Unification of Italy, the legislative body on flood-
ing hazard and in general hydro-geological risk was gradually
constructed by many sectorial laws.

The shaping of policies and practices connected with natural
risks had been strongly influenced by the occurrence of emer-
gency events (e.g. the Decree Law no.180/1998, issued after the
landslides in the town of Sarno in Campania region, or the Law
no. 365/2000, which followed the flood of the town of Soverato
in Calabria region). An overview of diachronic legal framework
in Italy is given in Appendix A.

1.3 people-centered early warning systems and risk communication
at local scale

A number of structural and non-structural measures have been
implemented to reduce the adverse impacts of flood. The strategy
for risk management for prevention, protection and mitigation
can involve technical or non-technical solutions (Plate 2002):
actions on the areas of land-use planning, land management;
sustainable development; construction; private sector (e.g. insur-
ance); emergency planning; public awareness and preparedness;
social involvement of communities.

Among the non-structural measures for risk mitigation and
preparedness, Early Warning Systems provide an efficacious and
cost-effective tool for reducing the residual risk and enhancing
resilience (O’Sullivan et al. 2012) with multiple benefits.

The technical information is generated and disseminated dy-
namically and timely to the key actors (exposed communities,
local authorities, fire brigade, police, medical services, urban
planners and so on).
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The chain of information-communication systems concerns
all the capacities needed: networks of meteorological and hy-
drological sensors, model, event detection, decision subsystems
and so forth. It forms an integrated system with the purpose of
improve hazard monitoring, forecasting and prediction, disaster
risk assessment, communication and preparedness.

The International Strategy for Disaster Reduction Platform
for the Promotion of Early Warning (United Nations Office for
Disaster Risk Reduction (UNDRR) 2006) identifies four inter-
related elements in effective end-to-end and people-centered natural
hazard early warning systems:

1. Risk knowledge, based on systematic data collection, risk
assessments and its trends over time;

2. Monitoring and warning service, including detection, moni-
toring, analysis and forecasting of the hazards and potential
consequences;

3. Dissemination and communication;

4. Response capability, at all levels.

Best practice early warning systems have multiple levels, strong
interconnections and effective communication channels within
and across sectors.

The urban pluvial flood risk assessment and management
at the local scale may be a tool for providing guidance to de-
cision makers to define policies and strategies for improving
prevention, mitigation, resilience, as well as sustainability and
smartness, while supporting the process of prioritizing and tar-
geting investments for privates or public administrations and
promoting communication, participation and dialogue among
stakeholders to increase public awareness, emergency response,
and civic engagement.

To assess the urban pluvial flood risk at the local scale, the
integrated approach incorporates hazard modeling, social and
physical vulnerability assessment indices, and coping capacity
measures (Elboshy et al. 2018, Figure 1.6).
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Figure 1.6: Risk management at local scale: conceptual model, stages
and related factors. Reproduced from Elboshy et al. (2018).

The development of monitoring and early warning services is
built upon the foundation of risk knowledge.

The monitoring process consists of observation, measurement
and prediction of relevant hydro-meteorological parameters. De-
tection, analysis and combination from various sources (includ-
ing monitoring networks and specific innovative and/or low-
cost sensors, see Part ii) involves the harmonization of scientific
methods with novel technologies and local knowledge. A model
based on based on the co-production of knowledge, combining
local and expert knowledge, can improve the level of flooding de-
tails and institutionalize this local knowledge, thereby increasing
community resilience and trust (Orr et al. 2015).

As previously said in Section 1.1, in the context of precipitation-
induced disasters early warning systems, the characterization
of the meteorological forcing has a pivotal role. Proper rainfall
thresholds identify the precipitation values (in terms of rainfall
rate, duration and space extent) that may induce critical state
functioning as a trigger for the prevention and emergency system
alert (Georgakakos 1995; Montesarchio et al. 2009). It is possible,
depending on the associated event and risk scenarios, to define
schemes to use the rainfall thresholds for estimating criticality
levels (ordinary, moderate and severe), which are associated to
warning levels, according to Italian emergency plans (De Luca
and Versace 2017).

Several community-based early warning systems developed
for floods and natural disasters in general have proved effective
for the issuance of the warning, the response and feedback, es-
pecially when they benefit from available technologies and local
capacities (Macherera and Chimbari 2016).

Risk communication represents a continuous exchange of infor-
mation and data integrated into the assessment and management
process (Lang et al. 2001), with the main purposes of prepara-
tion – information, prevention and warning (Orr et al. 2015).
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The human processing and perception of technical data and un-
certainties surrounding risks benefit from design and linguistic
strategies, methods and theories derived from socio-hydrology
(Viglione et al. 2014; Di Baldassarre et al. 2013), psychology, neu-
roscience and evolutionary social sciences (Tucker et al. 2008;
Ratna Reddy and Syme 2014). The internal risk communication
between managers and assessors ensures that risks are fully eval-
uated, understood and managed. The external communication
facilitates the empowerment of the stakeholders and public in-
formedness, takes into account the emotional response and the
decision making process preventing negative behavior whereas
encouraging constructive responses to an event (Bell and Tobin
2007; F. Yamada et al. 2011; Fukuzono et al. 2006).

In a multi-disciplinary approach harmonizing methods from
natural and social sciences, the flood disaster risk assessment
should consider factors that influence the dynamics of risk per-
ception and behavioral dynamics, such as flood experience, risk
communication (Aerts et al. 2018; Thistlethwaite et al. 2018;
Poussin et al. 2014; Renn 1991; Covello 1991; Lichtenberg and
MacLean 1991, Figure 1.7).

Examples of factors influencing
behaviour and perception in DRR 

Disaster risk reduction

Risk assessment

Culture
such as heritage and language

Economic 
such as income and equity

Geographic 
Scale and distance to flood zone  

Social
such as age and literacy rate

…Information
Media and data availability

Risk information or
flood events  

Influence risk or
 risk components  

Government

Households

Business

Flood proofing, 
buying insurance, and

deciding whether to buy
a property in flood zone

Protection, spatial 
planning, forecasting

and evacuation  

Insurance and
 risk mapping

Stakeholders

HAZARD
(events and flood extent

depth, and so on)

VULNERABILITY
(damage function)

EXPOSURE
(people and assets)

RISK
(Expected annual damage)

Figure 1.7: Extended risk assessment framework including behavioural
factors and disaster risk reduction. Reproduced from Aerts
et al. (2018).

The effectiveness of risk communication messages and strate-
gies requires to establish trust and credibility (Peters et al. 1997;
Slovic 1999; Renn and Levine 1991), in advance of the actual
event. The basic factors that determine trust and credibility in en-
vironmental risk communication are: knowledge and expertise;
openness and honesty; and concern and care (Peters et al. 1997).
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The interplay of psychological, social, cultural, and political
factors (e.g. emotions, egalitarian or individualist worldview,
etc.) can amplify or attenuate public perception of risk and shape
behavioral patterns (Slovic 1999; Renn 1991).

For example, risk probability can be rendered in different for-
mats (return periods, frequencies, rates, percentages, verbal ex-
pressions, etc.). Thus, communicating risk probability informa-
tion to the general public may be difficult and affect the risk
perception, understanding, attitude, and behavioral response
(Visschers et al. 2009).

User-centered design and visualizations are a powerful tool to
convey information about unfamiliar and complex subject matter,
resulting in enhanced dissemination, knowledge exchange and
user engagement (Grainger et al. 2016; Henstra et al. 2018; Char-
rière et al. 2012; Hagemeier-Klose and Wagner 2009, Table 1.2).
The attributes of hazard maps play a fundamental role in the
transition from visual to cognitive and emotional representation
and comprehension which determines beliefs, intentions, and
decision-making processes, according to laws ranging from semi-
otics to Gestalt to visual psychology. The meaning derived from
maps and the response to risk information (monitoring and miti-
gation intentions) are substantially influenced by socio-cultural
conventions, e.g. the commonly understood meaning of stoplight
color system, together with personal characteristics of the viewer,
e.g. the gender: females tend to have stronger risk beliefs and
intentions to mitigate risk (Slovic 1999), degree of numeracy: the
ability to use numbers and mathematical approaches for real life
problem solving; prior beliefs and experiences (Severtson 2013;
Palka et al. 2013, Figure 1.8).

Figure 1.8: Representational and behavioral framework: from the vi-
sual stimuli to response. Reproduced from Aerts et al.
(2018).

The warnings and all the information are effective when they
comprise the following characteristics: informativeness, under-
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CRITERION DESCRIPTION

Personalized experience enables users to find information specific to their property (e.g.,

postal code search to locate property in relation to flood hazard)

Local context contains identifiable places or landmarks (e.g., major and minor

roads; public buildings; neighborhood names) that help an

individual visualize the likely spatial extent of flooding

Historical context depictions of past flood events (e.g., photographs; victim

testimonials) to help users understand potential impacts

Legend legibility clear explanation of lines, symbols, colors and terminology

Flood zone legibility easy for the user to distinguish the extents of the flood hazard zone

Explanation of technical

terms

meaning of terms is understandable to a lay audience

Risk reduction advice paired with information about the consequences of flooding and

preventative or precautionary actions that residents can take (e.g.,

install a backwater valve; buy flood insurance)

Transparency about

limitations and uncertainty

provides information about types of flooding depicted and/or

potential exposure of areas adjacent to the flood lines

Depiction of multiple flood

hazards

depicts all forms of flooding to which a property is exposed (e.g.,

coastal, riverine, and pluvial)

Table 1.2: Map assessment criteria. Adapted from Henstra et al. (2018).

standability, accurateness, unambiguousness, trustworthiness,
audience, reach varying audience capacity, timeliness, reliable-
ness. The content desired by users (Rollason et al. 2018) should
include details on timing, location, scale, impact, probability and
response. An effective and participated communication seeks to
develop a local flood literacy (Rollason et al. 2018) that can give
rise to the build-out of resilience at a community level, increase
in awareness, and/or behavioral change.

Near real-time methods and technologies are crucial to en-
hance flood risk management and risk communication at local
scale. Digital data tools and novel technologies have expanded
and developed rapidly in recent years, setting up a potential sup-
port for flood disaster risk reduction. Tools such as geographical
information systems, automated gauges, volunteered geographic
information, crowsourced data can aid flood disaster risk reduc-
tion by intervening on its components hazard, vulnerability and
exposure (McCallum et al. 2016).
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Part II

R a i n f a l l e s t i m a t i o n t h r o u g h D e e p L e a r n i n g





2
B a c k g r o u n d a n d A i m

As was mentioned in the previous chapter, for the purpose of
representation of the territory, especially for urban pluvial flood
studies, the precipitation measurements are required at local, fine
scales with low latency to give near real-time and fine-grained
information. To move from point measurements to a spatially
accurate distribution it may be useful to build a high-density
monitoring network system.

Research into precipitation measurement has a long history.
Traditionally, rainfall has been assessed by employing several
kinds of rain gauges (Strangeways 2010). Presently, most of the
available data is obtained from ground-based measurements or
remote sensing that provide limited information in terms of res-
olution (temporal or spatial). Other problems with this kind of
data are related to their high costs. Rain gauges are unevenly
spread and frequently placed away from the urban centers. Not
all gauge observations are continuous and available to the public
and often have their limitation due to the variability of the precip-
itation (Kidd et al. 2017). To overcome these limitations and pro-
vide a more detailed overview, it may be useful to employ a form
of aggregation of data obtained from a dense network whose
nodes are represented by numerous low-cost inaccurate sensors.
Thus, several studies developed unprecedented approaches to
retrieve precipitation information with low operational costs.
Despite their inaccuracy, novel techniques could furnish valu-
able additional information in combination with conventional
systems (Tauro et al. 2018).

2.1 rainfall and computer vision: state of art

The first discussions of a camera designed to photograph rainfall
emerged during the 1950s with the Raindrop camera (Jones and
Dean 1953), constructed with the specific purpose of measur-
ing the dimensions of precipitation particles to support radar
investigations. The film photography based system incorporated
optical devices and electronic flash equipment and was capable
of measuring raindrops larger than 0.5 mm to an accuracy of 0.3
mm.
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The idea of a Camera Based Rain Gauge was suggested by
Nayar and Garg (2005). In their pioneering investigation, they
conducted systematic studies of the visual effects of the rain in
pictures and video sequences setting the key theoretical frame-
work (Garg and Nayar 2007) for all later research.

In fact, the presence of rain produces local variations in the
pixel’s intensity value of digital images. The appearance of rain
streaks and the stationary drops depends on the intrinsic char-
acteristics of the raindrops (shape, size, velocity, density), but
also on the camera parameters (namely exposure time, F-number,
depth of field, etc.) and the environment characteristics (scene
brightness, background, etc.).

The literature on the perceptual properties of atmospheric
precipitation in images has highlighted different approaches.
The most recent advances in the field of Computer Vision (CV)
and Machine Learning (ML), the new methods of analysis of
digital photography and image processing, have facilitated the
study of novel rain detection systems aimed at enhancing the
visual aspects to increase the rainfall detection or to remove the
raindrops and rain streaks from images and video frames.

For the sake of clarity and without any claim to exhaustiveness,
three main investigative strands can be identified:

A. techniques for removing the visual effects caused by rain

B. rain measurement techniques

C. weather classification techniques.

2.1.1 Rain removal techniques

A considerable amount of literature has been published on rain
removal techniques (Shorman and Ali Pitchay 2016; Tripathi and
Mukhopadhyay 2014) to enhance the adverse weather degradedDigital Image

Processing and
Machine Learning

approach

outdoor images or videos for different applications, such as im-
age or video editing, surveillance vision system and Vision-based
Driver Assistance Systems (Hassim and Bade 2015).

A monocular raindrop detection system in single images based
on a photometric raindrop model approach to improve image reg-
istration in rainy weather condition was presented by Roser and
Geiger (2009). The applicability of the method to real-world sce-
narios was proven with the experimentation on video sequences
taken from a moving vehicle.
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An Intelligent Transport System oriented study identifies the
unfocused raindrops on a transparent screen using a spatio-
temporal approach to achieve real-time detection (Nashashibi
et al. 2010). The rainfall was evaluated according to the number
of detected raindrop laying on the windscreen and discretized
in four states: no rain, light rain, medium rain, and heavy rain.
The algorithm was tested within the ICADAC French-German
project which objective is to Improve Camera based Detection
under Adverse Conditions.

Classical Computer Vision techniques were applied for the
detection of dynamic weather phenomena (snow and rain) in
videos (Bossu et al. 2011). The rain detection process applied to a
video comprised several stages: background subtraction for fore-
ground moving objects detection, segmentation of potential rain
streaks, and selection by dimension. The computation Histogram
of Orientation of rain or snow Streaks (HOS) allows to distin-
guish the rain or snow pixels and to estimate the precipitation
intensity value.

DerainNet is a Convolutional Neural Network (CNN) archi-
tecture aimed to remove rain streaks from a single image (Fu
et al. 2016). The used training data set contains random clean
outdoor images from the UCID data set (Schaefer and Stich 2003)
and Google Images Search to represent the absence of adverse
meteorological conditions and the same images edited with an
Adobe Photoshop™ effect to simulate the presence of rain.

Also in further studies, the rain removal problem from a single
image was addressed by developing a deep learning architecture
(W. Yang et al. 2016). In this case, the multi-task model is trained
to learn the binary rain streak map, the appearance of rain streaks,
and the clean background (the desired output).

Katre and Dodkey (2017) proposed a single-image rain detec-
tion and removal algorithm based on subsequent operation of
orientation filter, entropy maximization and background estima-
tion taking advantage of the abrupt local changes between the
intensity of the pixels corresponding to the raindrops and the
background intensity.

Haurum et al. 2019 implemented a system based on a 3D
CNN for the stand-alone rainfall detection from video-frames
sequences with a temporal stride of 8 frames. They aimed at
using existing surveillance cameras as rain detector to decide
whether to apply removal algorithms.

In comparison with image sequences or video, single images
comprise information about the recorded scene per se as they can
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stand on their own, with consequent decrease in the amount of
data that needs to be processed, stored, and transferred.

2.1.2 Rain measurement techniques

Whereas the existing literature on techniques for removing the
visual effects caused by rain is fairly extensive, bearing in mind
the recentness of major advances in digital photography, there
is a smaller body of literature that is concerned with the field of
rain measurement techniques.

Parajka et al. (Parajka et al. 2011) proposed a monitoring sys-
tem through pictures for hydrological purposes at the small
catchment scale. Their approach, however, as well as previous
studies, focus on snow characteristics gathered from time-lapse
photography and the snow precipitation visual features are sig-
nificantly different from those of the rain precipitation.

A fully analytical measurement technique, based on fundamen-
tals of camera optics and intrinsic rain characteristics, allowed to
estimate the rain rate in terms of expected values and associated
uncertainty with errors of the order of ±25% from pictures taken
at adjacent time steps with stationary background (Allamano
et al. 2015).

Image Processing based Rain Drop Parameter Estimation system
(IPRDPE) is an image processing tool that process video frames
collected from a high definition camera to measure the rainfall
according the number of drop and its volume (Kolte et al. 2016).

Dong et al. (2017) proposed a classical image processing based
method for real-time rainfall rate measurement from videos,
counting the focused raindrops in a small depth of field to cal-
culate a raindrop size distribution curve and estimate the cor-
responding rainfall rate. The raindrop detection was achieved
through gray-tone functions and and direction of rain streaks; the
focused raindrop selection was based on average colour tensor
response and average intensity difference. The algorithm was
tested on videos taken by a SONY DSR-PD198P video camera
with fixed parameters adjustment.

Recently, Jiang et al. (2019) proposed an opportunistic sensing
(i.e. unconventional data collection) in hydrology by measur-
ing rainfall intensity in videos acquired by surveillance cameras
under specific settings. Their approach employs a convex op-
timization algorithm to decompose an image into a pure rain-
streak layer and a rain-free background layer. Then, it estimates
the instantaneous rainfall intensity via geometrical optics and
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photographic analyses. The effectiveness and robustness was
evaluated on synthetic numerical experiments (i. e. images pro-
cessed in Adobe Photoshop™) and field tests, reaching a mean
absolute error of 21.8%.

These techniques strongly rely on the image resolution, tem-
poral information, acquisition device characteristics and proper
setting of its parameters in order to obtain shootings suitable for
the image processing that depicts accurately detectable raindrops
and rain streaks.

2.1.3 Weather classification techniques

Adopting a ML approach, researchers have been able to devise
robust algorithms for weather classification from single outdoor
images, considering different weather categories. Machine Learning

approach and
datasets

The analysis of pictures captured by in-vehicle vision system
was found to be useful to recognize weather conditions (Yan et al.
2009). Three main features were the determinant of discrimina-
tive information: the Histogram of Gradient Amplitude (HGA)
that represents the degree of sharpness of an image; the Hue Sat-
uration Intensity Value (HSV) colour histogram that indicates the
brightness and contrast of the pixels, and Road Information that
detects the Region of Interest (ROI). The Recognition Algorithm
based on Real AdaBoost, employing the category structure to
achieve the task of classification. The output consisted in three
weather categories: Sunny, Cloudy, Rainy. The model reached an
an overall accuracy of 91.92% (96.00% for sunny images, 89.35%
for cloudy images, and 90.41% for rainy images).

The Two-Class Weather Classification (Lu et al. 2014) relies on
a collaborative learning approach for labelling single outdoor
images as either sunny or cloudy. The obtained data set (Weather
Image Dataset) comprises 10000 pictures belonging to the two
aforementioned classes.

The mentioned data set was used to fine-tune a Weather-CNN
Architecture (Elhoseiny et al. 2015) based on the same weather
classes, achieving a 82.2% normalized classification accuracy.

A scene-free multi-class weather classification based on Mul-
tiple Kernel Learn (MKL) algorithm identifies as weather fea-
tures were both local (i.e. sky, shadow, rainstreak, snow flake,
dark channel) and global (i.e. contrast, saturation) image features
(Zhang et al. 2016). Rain and snow were detected, respectively, as
Histogram of Oriented Gradients (HOG) and as a kind of noise.
The approach was evaluated on the Multi-class Weather Image
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(MWI) set, containing 20000 outdoor images (Sunny labelled:
10815, Rainy labelled: 2342, Snowy labelled: 2226, Haze labelled:
5004).

Image2Weather (Chu et al. 2017) is a large-scale image data set
associated with weather information aimed to facilitate weather
property estimation from a single image. It is freely available for
research purposes. The different weather conditions are repre-
sented by 183798 images in JPG format. Starting from the URL
and photo ID available in an existing image collection (i. e. the
European City 1 Million EC1M dataset), the Chu et al. web crawler
associates images with heterogeneous metadata. In the first step
the picture are collected from the web using the Flickr API with
their metadata containing information about capture time, loca-
tion (latitude and longitude) and tags. The images were collected
through the Flickr Application Programming Interface (API),
then characterized with the Google Maps API and finally asso-
ciated with meteorological information using the Weather Un-
derground API: each given picture taken at time t is labelled
as sunny, cloudy, snowy, rainy, foggy or other according to the
temporally closest meteorological information measured by the
spatially closest station (the distance between the meteorological
station and the shot location is less than 4 km).

Additional set of data are available, such as the Cerema AWR
Adverse Weather Rain and the Cerema AWP Adverse Weather Pedes-
trian data set which were originally designed for the assessment
of the effect of adverse weather condition (i. e. the presence
of rain and fog) in terms of loss of performance of Intelligent
Transport Systems. These data sets include pictures containing
both digitally simulated rain and rain obtained in a controlled
laboratory environment.

Despite the diversity of purposes, methods and epistemologi-
cal fields, all the studies on the visual effects of the rain support
the hypothesis that photographs can provide useful information
on precipitation and that digital image acquisition devices can
function as rain sensor.

However, the literature focused on the use of a single image
source: dashboard camera, i.e. cameras mounted under the wind-
shield of a vehicle (Nashashibi et al. 2010; Roser and Geiger 2009;
Yan et al. 2009); surveillance cameras (Haurum et al. 2019; Jiang
et al. 2019; Dong et al. 2017; Bossu et al. 2011); outdoor scenes
(Chu et al. 2017; Elhoseiny et al. 2015; Katre and Dodkey 2017;
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W. Yang et al. 2016; Zhang et al. 2016; Lu et al. 2014); devices with
adjustable shooting setting, like exposure time, F-number, depth
of field, etc. (Allamano et al. 2015; Dong et al. 2017; Jiang et al.
2019; Kolte et al. 2016; Parajka et al. 2011). Proposed methods
often exploit temporal information requiring videos, frames or
sequential still images (Allamano et al. 2015; Bossu et al. 2011;
Dong et al. 2017; Haurum et al. 2019; Jiang et al. 2019; Kolte et al.
2016; Nashashibi et al. 2010; Parajka et al. 2011; Roser and Geiger
2009). Thus, the literature focused on use cases with stringent
operational requirements, so it lacks heterogeneity and general-
izability and tend to be device-specific.

The final goal of this research is the characterization of rainfall
for creating a dense network of low cost sensors to support
the traditional data acquisition and collection methods with a Aim of the thesis
relatively expeditious solution, easily embeddable into smart
devices, benefiting from the aforementioned research progress
and the advances in available technology, using Deep Learnig
(DL) techniques.

The specific aim is to investigate the use of available pho-
tographing devices as rain detectors (Chapter 4) - gauges (Chap-
ter 5) in order to obtain a sensing network as dense as possible. It
is desirable, therefore, to maximize the number of image sources
to provide a large informative and reliable database. As opposed
to existing works, the focus of our model is the applicability on
all easily accessible image acquisition devices (like smartphones,
general-purpose surveillance cameras, dashboard cameras, we-
bcams, digital cameras, etc.), including the pre-existent ones.
This encompasses cases where it is not possible to adjust the
camera parameters to emphasize rainfall appearance or obtain
shots in timelines or videos. The proposed methodology has a
number of attractive features: application simplicity; adherence
to the physical-perceptual reality; cost-effective observational
and computational resources. In fact, the classification task was
performed on single photographs taken in extremely heteroge-
neous conditions by commonly used tools. The input data can
be gained from different acquisition device in different lighting
conditions and without special shooting settings, within the lim-
its of visibility (i.e. human visual perception). Shots in timelines
or videos are not required, so it can be possible to use also in
pre-acquired images taken for other purposes. In an attempt to
adhere physical-perceptual appearance of real rain, any form of
digitally simulated rain was excluded from the input data.
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3
M e t h o d o l o g y d e s i g n

The field of Artificial Intelligence (AI) encompasses a huge vari-
ety of sub-fields (Figure 3.1) and addresses the challenging aim
of solving problems that are easy for humans to perform but
hard to describe formally mimicking the human intelligence in
completing tasks such as natural language processing, recogniz-
ing faces in images, sentiment analysis, and others (Goodfellow
et al. 2016; LeCun et al. 2015; Russell et al. 2010).

1950 1960 1970 1980 1990 2000 2010

ARTIFICIAL INTELLIGENCE
A field of science including techniques that 
enable computers to mimic human 
intelligence. 

MACHINE LEARNING
A set of AI algorithms that 
allow computers to learn from 
data without being explicitly 
programmed improving at 
tasks with experience

DEEEP LEARNING
A ML subset based on 
multi-layer neural networks

Figure 3.1: Timeline of Artificial Intelligence, Machine Learning, Deep
Learning.

The traditional programming paradigm requires the defini-
tion of a comprehensible mathematical model to describe the
phenomenon of interest, entailing data collection, formulation
of hypothesis on patterns in the data, and validation with re-
spect to the real data-generating process. The interpretation and
modeling may be problematic for problems involving multiple
complex or non-intuitive phenomena.

As opposed to this, ML is based on prediction: the training
system is fed a large set of data (inputs paired with the known de-
sired outputs), learns from the data, and matches the underlying
pattern that rules the phenomenon, forming a predictive model
which minimize the error between the actual and the predicted
outcome. The main advantage of ML method is that it uses algo-
rithms that iteratively learn from data and allows computers to
solve a problem without being explicitly programmed how to do
it (Samuel 1959).
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The flowchart representing the relation between different parts
of AI systems is schematically shown in Figure 3.2 (Goodfellow
et al. 2016); shaded boxes indicate the components able to learn
from data.

(Goodfellow 2016)

Input
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Input
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designed 
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Simple 
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Output

Additional 
layers of more 

abstract 
features
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systems

Classic
machine
learning Representation
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Deep
learning

Figure 3.2: AI system parts and components learning from data. Repro-
duced from Goodfellow et al. (2016).

Using ML approach, in particular DL techniques such as CNN
models, researchers have been able to provide robust algorithms
to solve new and complex problems in the domain of digital
image processing (LeCun et al. 2015), including image classifi-
cation in disparate contexts with greater accuracy compared to
traditional CV techniques (Mahony et al. 2020).
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3.1 deep learning for computer vision: convolutional neural
networks

DL is a subset of ML based on artificial neural networks with
representation learning. The artificial neural networks, inspired
by information processing and distributed communication nodes
in biological systems, are composed of layers of interconnected
artificial neurons. Each neuron can take simple decisions and
feed them to other neurons. The power and scalability of neural
networks derive from the complexity of the connections these
neurons can form. A shallow neural network has only three layers
of neurons (the input layer that accepts the independent variables
or inputs of the model, one hidden layer, and the output layer
that generates predictions), whereas a deep neural network has
two or more hidden layers of neurons that process inputs.

Thus, DL is characterized by deep stacks of computations that
grant the untangling of intricate and hierarchical patterns that
characterize real-world datasets. Deep architectures contain mul-
tiple levels of abstraction and possess the ability to learn complex,
non-linear, and high-dimensional functions. The processing lay-
ers learn representations of data with several levels of abstraction
(LeCun et al. 2015). Learning means finding a combination of
model parameters that minimizes a loss function (cost function)
for the given training data set samples and their corresponding
targets. The backpropagation (backward propagation of errors)
algorithm regulates the changes of the machine internal param-
eters that are used to compute the representation in each layer
from the representation in the previous layer.

The DL for CV techniques, namely CNN models (Khan et al.
2020), are widely used in as image-classification applications so
appeared especially suitable for this purpose as they are inspired
by the structural and the functional characteristics of the visual
cortex of the animal world. Using a semiotic perspective (Eco
1986), the photographs can be defined as iconic indexes and the
labels describing the desired object as symbols: CNN architectures
transform the photographs to symbols acting as an interpretant,
thus mimicking the functioning of the biological visual systems.
A CNN based approach was chosen since it is the state-of-art
among other image recognition methods (Srinivas et al. 2016;
Razavian et al. 2014; Khan et al. 2020).

Convolutional Neural Networks (CNNs) are artificial neural
networks that use convolution in place of general matrix multi-
plication in at least one of their layers (Goodfellow et al. 2016).
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The general CNN structure consists of a series of layers imple-
menting feature extraction and classification: the densely con-
nected layers learn global patterns in their input feature space
while the convolution layers learn local patterns (Chollet and
Allaire 2018).

One benefit of the CNN models is that they avoid the problem
of pre-processing input data since such algorithms recognize
visual patterns directly in images represented by pixels. A digital
raster image contains a fixed number of rows and columns of pix-
els, each with finite, discrete quantities of numeric representation
for its intensity or gray level. DL breaks the mapping from a set
of pixels to object identity into a deep sequence of nested simple
mappings, each described by a different layer of the model. The
transformation implemented in the layer is parameterized by is
weights. Each layer includes a linear transformation controlled
by learnable parameters (weight and biases) and a non-linear
transformation called activation function. The most used acti-
vation functions are usually non-linear functions like Sigmoid,
TanH (Tangent Hyperbolic), and ReLU (Rectified Linear Unit). A
loss function (objective function), matching the type of problem
addressed, measures the quality of the network’s output com-
puting a distance score between the predictions of the network
and the true targets. The loss score is used as a feedback signal to
adjust the weights in a direction that minimizes the loss function
(cost function). The magnitude of the move is defined by the
learning rate. The optimizer implements the backpropagation
algorithm, which computes the gradient of the loss function with
respect to the weights proceeding backward through the net-
work. The optimizer specifies how to use the gradient to tune the
parameters in order to minimize the cost function. It could be
Root Mean Square propagation (RMSProp) optimizer, Adaptive
Moment estimation (ADAM), Stochastic gradient descent (SGD)
with Nesterov momentum, and so on.

The image is presented at the input layer, so named because it
contains the variables that are visible to humans. Then series of
increasingly abstract hidden layers extract features from the im-
age. The intermediate layers in between input layers and output
layers are called “hidden” because their values are determined
by the model that learns which concepts are useful for explaining
the relationships in the observed data. Broadly speaking, the first
hidden layer identifies edges by comparing the values of the
neighboring pixels. Recognizing collections of edges in the first
image description, the second hidden layer search corners and
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extended contours. Starting from the image description in terms
of corners and contours, a third hidden layer detects the parts of
specific objects and so forth.

The final description of the data is obtained by learning ab-
stract representations that can be used to recognize the objects
present in the image.

A convolution layer uses filters that perform convolution oper-
ations on an input image; its hyperparameters include the filter
size and stride, the resulting output is the matrix formed by
sliding the filter over the image and computing the dot prod-
uct called feature map or activation map. The matrix of values
(weights) that is multiplied with the input is also called kernel.
Hence, a spatial convolution of the kernel is used to extract the
relevant feature from an input image. A feature is a piece of
information about the content of an image. Different filters act
as feature detectors from the original input image: operations
such as edge detection, sharpen, and blur can be performed just
by changing the numeric values of the filter matrix. Features
may be specific structures in the image (points, edges, or objects),
the result of a general neighborhood operation or feature detec-
tion applied to the image, related to motion in image sequences,
or to shapes defined in terms of curves or boundaries between
different image regions.

A pooling layer implements a downsampling operation of
feature maps to reduce the spatial size of the representation and
thus the number of parameters and amount of computation in the
network. It is typically applied after a convolution layer, resulting
in more robust down sampled feature maps introducing some
spatial invariance. Hereby small translations of the input don’t
produce a change in the values of most of the pooled outputs.
Max and average pooling take the maximum (most activated
presence of a feature) and average value, respectively.

A fully connected layer operates on a flattened input, each
input is connected to all neurons. Fully connected layers are
usually placed towards the end of CNN architectures and can be
used to optimize objectives such as class scores.

Traditional CV techniques use manually made feature descrip-
tors for object detection. The features must be informative, non-
redundant, and not susceptible to recall bias. Manual feature en-
gineering can become quite complex and cumbersome in novel
problems. It requires a meticulous trial and error process to de-
cide which features are more descriptive or informative for the
desired task. Moreover, the feature definition requires dealing
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with several manually fine-tuned parameters. CNN models au-
tomate the process of feature engineering, learning kernel values
that can extract latent features. The machine is trained on the
given data and discovers the underlying patterns in classes of
images, learning automatically the most descriptive and salient
features - that can be very subtle and inconspicuous - with re-
spect to the addressed task benefitting from the DL concept of
end-to-end learning (Mahony et al. 2020).

In addition to such simplicity, CNN models and frameworks
provide great scalability, versatility and flexibility because can be
re-trained and re-purposed using a custom dataset of arbitrary
size or any use case, whereas CV algorithms tend to be more
domain-specific (Mahony et al. 2020; Chollet and Allaire 2018).

The visual effects of rain presence in pictures are complex and
often inconspicuous due the unique physical properties of rain
(Garg and Nayar 2007). The supply of data inherent in the prob-
lem is limited due to the lack of public dataset of big dimensions
and the difficulties of data collection or creation. The non-trivial
nature of the task of interest and the small size of the available im-
age dataset meant that one of the most effective strategies to use
Convolutional Neural Networks (CNNs) it was the transfer learn-
ing approach (Pan and Q. Yang 2010; Yosinski et al. 2014; Weiss
et al. 2016) combining fine-tuning and freezing layers strategies.

transfer learning: This ML technique exploits the knowledge
acquired in one setting to improve generalization in an-
other setting: in the context of a supervised learning for
image classification, the semantics of the inputs are the
same but the target are of a different nature, as any vi-
sual categories share low-level notions of edges and visual
shapes, the effects of geometric changes, changes in light-
ing, etc. (Goodfellow et al. 2016). The available pre-trained
models are typically developed by research institutes for
standard computer vision benchmark datasets, such as the
ImageNet1 image recognition tasks. The first part of the net-
works pre-trained on a large-scale general dataset can be
employed as convolutional base (feature extraction) for a
new classifier trained on the new target dataset and new
task of interest; the transferred features can be frozen (the
weights are not updated during training) or fine-tuned

1 http://www.image-net.org/
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(Yosinski et al. 2014; Chollet and Allaire 2018). The convo-
lutional base pf the pre-trained model A major advantage
of re-purposing a network that was previously trained on a
large-scale image-classification dataset is the portability of
the learned features. The feature maps show the presence
of generic concepts over a picture that are likely to be useful
for the most computer-vision tasks. Thus, the spatial hier-
archy of features can work as a generic model of the visual
world for novel perceptual problems (Chollet and Allaire
2018). Transfer learning has the benefit of decreasing the
training time and can result in lower generalization error.

freezing layers: Deep networks trained on natural images all
tend to learn first-layer features that resemble either Gabor
filters or color blobs, independently from the chosen dataset
and task. On contrary, the last layer depend greatly on the
chosen dataset and task. So we can consider first-layer
features as general (applicable to many datasets and tasks)
and last-layer features as specific (Yosinski et al. 2014). The
freezing layer approach prevent the weights from being
updated during the training of the new network so as to
preserve the representations that were previously learned
and avoid overfitting that can result from training (fine-
tuning) on medium or small datasets and large number of
parameters.

fine tuning: The pre-trained model used as convolutional base
may need to be adapted or refined on the input-output pair
data available for the second task of interest. Fine-tuning
consists of jointly training both the new layers added to
the base and some part of the base (the last-layers con-
taining specific features). This strategy slightly adjusts the
more abstract representations of the model being reused,
for making them more relevant for the problem addressed,
while the other parts of the pre-trained convolutional base
remain frozen.

The choice of whether freeze or fine-tune the layers depends
on the size of the base and new dataset, the number of parame-
ters and the features characteristics to obtain a fair compromise
between goodness of fit and accuracy (Yosinski et al. 2014).

The task of detecting rainfall can be achieved through the anal-
ysis of the perceptual aspects that determine whether the single
photograph in heterogeneous scenes represents a condition of
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"presence of rain" or "absence of rain". For obvious reasons the
two conditions are mutually exclusive classes. The first scenarioBinary Classification

- Rain Detection of interest for the proposed study is a case of supervised learning
of binary classification type (Murphy 2012): the objective is to
learn a mapping from known inputs x (pictures) and outputs
yi (labels), where i ∈ {1, ..., C′}, with C′ being the number of
classes. In the binary case C′ = 2, so it’s assumed that there are
two classes corresponding to the considered weather conditions:
C1 and C2. The model aims to generalization, that is to say gener-
ating accurate predictions on novel unseen inputs, associating a
picture to a label.

The output result of the binary approach allows the detection
of the presence of precipitation (without a quantification), which
is a necessary condition but not sufficient for the creation of a
rain gauge network based on cameras.

Similarly, the task of quantifying the rainfall intensity can be
achieved through the analysis of the perceptual aspects that
determine whether the single picture represents a significant
weather condition (classifying the rainfall intensity into ranges).
In this case, the conditions form multiple mutually exclusive
classes. The second scenario of interest can be modeled as aMulti-Class

Classification - Rain
Estimation

case of supervised learning for multi-class classification, where
C′ > 2.

The deep learning model was entirely implemented with open
source tools, namely R2 programming language with the Inte-Used software
grated Development Environment RStudio3 using Keras4 frame-
work and Tensorflow5 engine backend (Chollet and Allaire 2018).

Tensorflow is free and open source library developed by Google
for numerical computation using data flow graphs, originally de-
veloped for building machine learning and deep learning models.
The graphs are composed of nodes (mathematical operations)
and edges (the multidimensional data arrays - tensors). commu-
nicated between them.

Keras is also free and open source library written in Python6,
a high-level neural networks API designed to enable fast experi-
mentation with deep neural networks and capable of running on
top of TensorFlow.

2 https://www.r-project.org/
3 https://rstudio.com/
4 https://keras.rstudio.com/
5 https://tensorflow.rstudio.com/
6 https://www.python.org/
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4
B i n a r y c l a s s i f i c a t i o n

It was stated in the previous chapters (Chapter 2, Chapter 3) that
the task of detecting rainfall can be achieved through the analy-
sis of the perceptual aspects that determine whether the single
photograph in heterogeneous scenes represents a condition of
"rain presence" or "rain absence". For obvious reasons the two
conditions are mutually exclusive classes.

The first scenario of interest for the proposed study is the
rainfall detection, namely a case of supervised learning of binary
classification type (Murphy 2012) in single images answering the
question:

Is it raining or not?

INPUT IMAGES OUTPUT PREDICTIONSPRE-TRAINED MODEL

CONVOLUTIONAL BASE

 VGG16

trained on Imagenet

NEW LAYERS

trained on new data

NEW TASK

4.1 dataset creation

The entire dataset used in the different stages of the creation of
the CNN model - training, validation and test - was produced on
the basis of the essential requirements inherent in the demanded
classification task.

The task of the detection of liquid precipitation was modeled
as a supervised binary classification in single images. Each input
instance was paired with exactly one output label describing the
class. The classes created for the dichotomization (according to
the presence or absence of visible rainfall) were With Rain (WR)
and No Rain (NR).

In realistic rainfall detection scenarios, the accessible images
are weather degraded and exhibit a large variability of the condi-
tions under which the images have been taken. The dataset was
meant to represent unconstrained and verisimilar image settings
for designing robust model capable of coping with the variations
in the given images. Criteria for building the dataset were as
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follows: availability, weather conditions representativeness, the
variety of the locations as well as the diversity of the capture time
and lightning conditions. Each photograph depicted an outdoor
scene; in the case of pictures belonging to the WR group, their vi-
sual appearance altered by the rainfall was perceptible by human
eye. The pictures with digitally synthesized rain were excluded.
In particular, raindrops or streaks were not generated through
processing with photo editing software (e.g. Adobe Photoshop,
GIMP, etc.) or through other computer graphics techniques, such
as 3d modeling or rendering with graphics engines (e.g. Blender,
Unity 3D, etc.). To increase the scene heterogeneity and have a
sufficiently large and balanced number of instances, different
datasets with the mentioned characteristics have been combined.

The first part of the dataset was obtained by selecting the im-
ages originally labeled as “sunny” and “rain” in the Image2Weather
set (Chu et al. 2017), which is a large-scale single images dataset
grouped by weather condition and freely available (Figure 4.1).
The total number of images in the original set was: 70,501 for
sunny class; 45,662 for cloudy class; 1,252 for snowy class; 1,369
for rainy; 357 for foggy class; 64,657 for “other” class (unclear
weather conditions). To use as many instances as possible and
have two balanced classes, the number of selected images was
chosen including all the available rainy pictures: 1,369 for WR
group and 1,369 for NR group.

(a) Picture labeled as rainy. (b) Picture labeled as sunny.

Figure 4.1: Examples from Image2Weather dataset (Chu et al. 2017).
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The second source for image collection is a set of pictures taken
by dashboard cameras mounted on vehicles moving around
Tokyo metropolitan area (Figure 4.2) from 2017.08.19 to 2017.08.20
(©National Research Institute for Earth Science and Disaster Pre-
vention (NIED), Japan).

The ground truth was obtained associating the rainfall rates
retrieved from the high precision multi-parameter radar data
(Hirano, Maki, et al. 2014; Hirano and Maki 2018) of XRAIN (eX-
tended RAdar Information Network) operated by the Ministry
of Land, Infrastructure, Transport and Tourism (MLIT), Japan,
to the images according to the capture time and GPS location.
The minimum rainfall threshold used for labeling images as be-
longing to rainy class was 4mm/h (A. Suzuki and T. J. Yamada
2015) for the veracity of the association of the radar data with the
position on the ground surface.

Figure 4.2: Geolocation of the images taken from the dashboard cam-
eras.

Finally, the third tranche of the data was built through exper-
imental activities in the Large-scale Rainfall Simulator of the
NIED located in Tsukuba (Ibaraki prefecture, Japan) shown in
Figure 4.3. The benefit of using a large scale rain simulator is
that it allows experimental tests to be carried out in a relatively
short time, reproducing events of different known intensities,
including those with a rather remote occurrence frequency, such
as rain showers and downpours with high return periods under
controlled and repeatable conditions.

This facility for hydro-geological processes simulation and
measurement is the largest simulator in the world in terms of
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rainfall area (approximately 3000 m2 ) and sprinkling capacity. It
can produce fairly accurate precipitation fields for rainfall inten-
sities between 15 and 300 mm/h. The nozzles, set up at a height
of 16 m above the ground surface, are capable of reproducing the
natural rainfall constant speed and generating raindrops with
a diameter ranging from 0.1 to 6 mm. An overview of the NIED
Large-scale Rainfall Simulator is presented in Appendix B.

Figure 4.3: NIED Large-scale Rainfall Simulator located in Tsukuba
(Ibaraki prefecture, Japan) ©NIED.

During the experiments, the nominal produced intensity ranged
from 20 mm/h to 150 mm/h and was assumed as ground truth.

For the purpose of the heterogeneity of the scenes, the pho-
tographs (Figure 4.4) were shot with 5 different devices: Canon
XC10, Sony DSC-RX10M3, Olympus TG-2, XiaoYI YDXJ 2, Xi-
aoMi MI8 (smartphone).

(a) Picture labeled as With Rain. (b) Picture labeled as No Rain.

Figure 4.4: Example of the dataset built during the NIED Large-scale
Rainfall Simulator experiments.

The total dataset consisted of 7968 color images (3984 for the
class WR and 3984 for the class NR) coming from the different
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devices saved in the JPEG format (pixel resolution ranged from
333× 500 up to 5472× 3648 pixels).

All the collected images were labeled and organized into the
necessary non-overlapping categories (Russell et al. 2010) as
shown in Table 4.1: the available data are split into a set for
training the model (60% of the total examples), a set for validation
(20%) and a set for the test on new data (20%). The training
dataset contains the labeled pictures to be used to fit the model.
The validation dataset is used to provide an unbiased evaluation
of the model goodness of fit during the training steps while
tuning the model’s hyperparameters. The test dataset serves to
evaluate the generalization ability of the final model, that is to
say the accuracy of the predictions on unseen inputs.

The number of instances of the two classes were properly
balanced.

LABEL DATASET # OF IMAGES

(Total) Train Validation Test

WR
(presence of
rainfall)

Image2weather 1369 823 273 273

NIED car pictures
dataset

1870 1123 374 374

NIED Rainfall
Simulator
Experiment
(14 June 2019)

744 448 148 148

WR
(absence of
rainfall)

Image2weather 1369 823 273 273

NIED car pictures
dataset

1870 1123 374 374

NIED Rainfall
Simulator
Experiment
(14 June 2019)

744 448 148 148

Table 4.1: Dataset creation: label division and number of labeled images
per dataset

Data augmentation based on basic image manipulations was
adopted as a strategy to artificially create new training examples
from the existing ones (Shorten and Khoshgoftaar 2019) in order
to mitigate overfitting caused by the small number of images, in
combination with the other strategies for increasing generaliza-
tion performance that focus on the model’s architecture itself.
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A data-specific design of augmentations guaranteed the safety
of the method, the preservation of the labels after the transforma-
tions (Shorten and Khoshgoftaar 2019). The random geometric
transformations were chosen so as to be isometric and guarantee
the physical compatibility with the natural appearance of mete-
orological phenomena. Other data augmentation methods (e.g.
color space transformations, random erasing, mixing images,
etc.) were avoided since they compromise the visual effects of
the rain in pictures.

The new pictures were generated by a mirror-reversal of an
original across a vertical axis (horizontal flip or reflection) and/or
a 2 degrees angle rotation as shown in Figure 4.5.

(a) (b)

(c) (d)

Figure 4.5: Generation of new pictures via random data augmentation.

4.1.1 Model architecture setup

The deep learning model was entirely implemented with open
source tools, namely R programming language with the Inte-
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grated Development Environment RStudio using Keras frame-
work and Tensorflow engine backend (Chollet and Allaire 2018).

A transfer learning approach was adopted for the extraction
of the features, choosing the VGG16 network (Simonyan and Zis-
serman 2014) as convolutional base because of its characteristics
of generality and portability of the learned features, excluding
the densely connected classifier on its top as shown in Figure 4.6;
the shaded box indicates the components able to learn from the
new data.

Prediction

Trained
classifier

Trained
convolutional

base

Prediction

Trained
classifier

Trained
convolutional

base

Prediction

Input Input Input

New classifier
(randomly initialized)

Trained
convolutional

base
(frozen)

Figure 4.6: Transfer learning approach: feature extraction with Convo-
lutional Base. Reproduced from Chollet and Allaire (2018).

The VGG16 network (Simonyan and Zisserman 2014), pro-
posed by the Visual Geometry Group in the University of Ox-
ford, was trained on 1.4 million labeled images of the ImageNet
dataset1 and 1, 000 different classes (mainly animals and everyday
objects) achieving a classification accuracy of 92.7, winning the
Large Scale Visual Recognition Challenge 2014 (ILSVRC2014)2.

It was retained only the feature extraction part of the model,
which includes the layers from the input layer to the last max
pooling layer, whereas the rest of the network (the classification
part of the model) was discarded.

Since the convolutional base obtained from VGG16 has a con-
siderable number of parameters (14 714 688), the layers were
frozen before the compiling and training of the new network.

Freezing was necessary to prevent the weights from being
updated during the training of the new network so as to pre-
serve the representations that were previously learned and avoid

1 http://www.image-net.org/
2 http://image-net.org/challenges/LSVRC/2014/results
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overfitting that can result from fine-tuning using a small dataset
(Yosinski et al. 2014).

Table 4.2 summarizes the architecture of the convolutional
base obtained from the VGG16 network.

LAYER (TYPE) OUTPUT SHAPE PARAMETERS #

input_39 (InputLayer) (None, 200, 200, 3) 0

block1_conv1 (Conv2D) (None, 200, 200, 64) 1792

block1_conv2 (Conv2D) (None, 200, 200, 64) 36928

block1_pool (MaxPooling2D) (None, 100, 100, 64) 0

block2_conv1 (Conv2D) (None, 100, 100, 128) 73856

block2_conv2 (Conv2D) (None, 100, 100, 128) 147584

block2_pool (MaxPooling2D) (None, 50, 50, 128) 0

block3_conv1 (Conv2D) (None, 50, 50, 256) 295168

block3_conv2 (Conv2D) (None, 50, 50, 256) 590080

block3_conv3 (Conv2D) (None, 50, 50, 256) 590080

block3_pool (MaxPooling2D) (None, 25, 25, 256) 0

block4_conv1 (Conv2D) (None, 25, 25, 512) 1180160

block4_conv2 (Conv2D) (None, 25, 25, 512) 2359808

block4_conv3 (Conv2D) (None, 25, 25, 512) 2359808

block4_pool (MaxPooling2D) (None, 12, 12, 512) 0

block5_conv1 (Conv2D) (None, 12, 12, 512) 2359808

block5_conv2 (Conv2D) (None, 12, 12, 512) 2359808

block5_conv3 (Conv2D) (None, 12, 12, 512) 2359808

block5_pool (MaxPooling2D) (None, 6, 6, 512) 0

Total parameters: 14 714 688

Table 4.2: Convolutional Base architecture

The model was extended by adding new layers on top (Ta-
ble 4.3), in order to obtain a new classifier capable of generating
predictions with the two desired output classes (predict whether
the picture represents rainy conditions WR or not NR). The train-
able weights are the variables to be included in backpropagation,
whereas the non trainable weights (frozen parameters) are not
included in backpropagation.
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The dropout layer, which randomly drops some input units
and their connections with probability 1− p, was used as a regu-
larization technique (Goodfellow et al. 2016; Chollet and Allaire
2018; Srivastava et al. 2014) to reduce possible data overfitting
problems in the learning phase so as to preserve the algorithm
generalizability. The dropout rate was set to 25, meaning one in
4 inputs was randomly excluded from each update cycle during
the training phase.

LAYER (TYPE) OUTPUT SHAPE PARAMETERS #

vgg16 (Model) (None, 6, 6, 512) 14714688

flatten (Flatten) (None, 18432) 0

dense (Dense) (None, 256) 4718848

dropout (Dropout) (None, 256) 0

dense_1 (Dense) (None, 1) 257

Total parameters: 19 433 793 (14 714 688 frozen)

Table 4.3: Model architecture

Hence, the chosen strategies implemented to mitigate the risk
of model overfitting and enhance generalization ability were as
follows:

• dataset construction: heterogeneity of acquisition devices,
comprehensive assortment of rainfall conditions, pictures
depicting the same place exposed to different conditions;

• partitioning of the data into training, validation, and hold-
out test sets;

• augmentation of the training data;

• transfer learning with freezing of the convolutional base
(feature extraction);

• dropout layer (dropout rate 25);

• low learning rate (lr = 1× 10−5);

• small batch training (batch size equal to 20);

• stopped training after the model convergence to desirable
values of the error (cost function) and the accuracy to avoid
overtraining.
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4.2 results and discussion

4.2.1 Training and validation

The labeled pictures of the training set (Table 4.1) constituted
known examples of ordered pairs of input (image) and output
(WR or NR class) to feed the network so that the final model can
make predictions starting from inputs.

The CNN was initialized with random values of the trainable
parameters. Then, the optimizer updated automatically - for each
elaborated instance - the weights values implementing the error
backpropagation algorithm. The optimization procedure modi-
fied the training parameters of the model in order to maximize
the prediction accuracy and minimize the cost function, updating
the parameters with the gradient multiplied by a learning rate
so that the model will perform better. The loss of binary cross
entropy between the training data and the model’s predictions
was used as the cost function (Goodfellow et al. 2016).

A disjoint validation set (Russell et al. 2010,Table 4.1) provided
an early unbiased evaluation of the model fit on the training
dataset while tuning the hyperparameters of the model, thus
preserving its generalization ability.

The training configuration setup can be summarized as fol-
lows:

• Data Augmentation: horizontal flip, 2◦ rotation.

• Loss: binary crossentropy as cost function for monitoring
and improving the model skills.

• Optimizer: RMSprop3 implementing the Root Mean Square
Propagation (RMSprop) algorithm (Tieleman and Hinton
2012) to update the neural network.

• Metric: accuracy. The amount of correctly classified in-
stances.

• Learning rate: lr = 1× 10−5.

Figure 4.7 illustrates the predictive effectiveness of the network
plotting the trends of the accuracy (acc) and loss (loss) values
over the subsequent iterations for training and for validation, in
order to monitor the training stability (constant improvements

3 keras.io/api/optimizers/rmsprop/
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without abrupt changes) and the presence of a possible overfit-
ting (graphically identifiable as a divergence between the values
calculated on the known data - training - and unknown ones -
validation).
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Figure 4.7: Training and validation: overall accuracy and loss values
for the binary model

During the 30 epochs - complete presentations of the entire
training and validation datasets - the learning rate was set to
a fairly low value (1× 10−5) to maintain stability (Goodfellow
et al. 2016; Bengio 2012). The trained model reached an accuracy
of 88.95% on the training set and 85.47% on the validation set
(Figure 4.7) and a loss (Murphy 2012) respectively of 0.27 and
0.33

The Loss (Binary Cross Entropy) was calculated as follows:

Cross Entropy = −
C′=2

∑
i=1

tilog( f (si))

= −t1log( f (s1))− (1− t1)log(1− f (s1))

Where ti and si are respectively the ground-truth and the raw
score for each class i in C and

f (si) =
1

1 + e−si

is the logistic sigmoid activation function which is necessary for
the output to be interpreted as a probability.
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The case of interest is a binary classification problem: given the
input x (picture) we need to predict its output yi (label), where
y ∈ {0, 1} (binary representation of {NR, WR}) and
i ∈ {1, ..., C′}, with C′ = 2 being the number of classes.

It’s assumed that there are two classes: C1and C2, so t1 ∈ [0, 1]
and f (s1) ∈ [0, 1] are the ground truth and the probability value
for C1 (output label y1 = 0). t2 = 1− t1 and f (s2) = 1− f (s1)
are the ground truth and the output score for C2 (output label
y2 = 1), as the classes are mutually exclusive.

The values are significantly far from a random prediction in a
balanced binary problem.

The random predictor can be metaphorically modeled as a fair
coin (Murphy 2012; Kerrich 1946), where the tossing is a discrete-
time stochastic process that takes only two values (0 or 1) that
are mutually exclusive. A single flip of a coin is an event (or trial)
that is not connected to or influenced by other events, each of the
two outcomes (head or tail, 0 or 1) is equally likely. The likelihood
of landing heads up (outcome 0) is 0.5 (50% chance). The same
value 0.5 (50% chance) express the probability of landing tail up
(outcome 0), since the coin is fair.

Hence, the non-informative values correspond to an accuracy
of 50% and loss of 0.69.

4.2.2 Testing and evaluation

In order to evaluate the performance measures of the proposed
algorithm, the trained model was applied on the test dataset
(holdout dataset) to give an unbiased estimate of model skill
(Russell et al. 2010).

The test set of data was disjoint from the training set and the
validation set, so it contained examples independent from the
data used for the previous steps.

The generalization ability of the model, i.e. how well the al-
gorithm performs on data that it has not seen before, provides
useful hints on the reliability of the predictive model deployed
in the real world.

In the test phase, predictions were gathered from the final
model on the inputs from the test dataset and then compared to
the withheld output values.

A random sample of 20 pictures from the test dataset showing
predicted class versus actual one on is given in Table 4.4, to allow
a manual control on the misclassified instances.
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IMAGE ACTUAL PREDICTED ERROR

1 20170820_00002699.jpg NR NR

2 20170819_00017352.jpg WR WR

3 20170819_00012555.jpg WR WR

4 3543121411.jpg WR WR

5 809423109.jpg WR WR

6 2364621619.jpg NR NR

7 2684425378.jpg WR WR

8 308068832.jpg NR NR

9 20170819_00012315.jpg WR WR

10 C1350611.JPG WR WR

11 20170819_00013587.jpg WR WR

12 20170819_00005405.jpg NR NR

13 20170819_00008640.jpg NR NR

14 IMG_20190614_115340.jpg WR WR

15 IMG_0260.JPG WR WR

16 20170819_00016647.jpg WR WR

17 20170819_00016297.jpg WR WR

18 CAMERA01 (142).jpg NR NR

19 2428240737.jpg WR WR

20 20170819_00001630.jpg NR WR <—

Table 4.4: Predicted classification on a sample of 20 pictures from the
test dataset

The test set is independent of the training and validation
datasets, but follows the same probability distribution. It con-
tains 1590 unseen examples, 795 for the WR class and 795 for the
NR class.

To assess the quality of the predictions on new pictures, the
confusion matrix was constructed over the entire test set, as
reported in Table 4.5.

Unlike overall accuracy, confusion matrix allows to show a
detailed breakdown of correct and incorrect classifications for
each class (Zheng 2015). The confusion matrix opposes instances
in a predicted class (model response) against instances in an
actual class. The correct predictions represented by values in the
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diagonal of the matrix while the prediction errors are located
outside the diagonal.

REFERENCE

Positive = WR Negative = NR

PREDICTION
Positive = WR 719 of TP 158 of FP

Negative = NR 76 of FN 637 of TN

Table 4.5: Confusion matrix for the binary classification problem

Given the WR label (presence of rain) as the positive class and
NR (absence of rain) as the negative class, it was counted the
number of True Positives (TP), False Positives (FP), True Nega-
tives (TN) and False Negatives (FN) to calculate useful metrics
(Goodfellow et al. 2016; Zheng 2015; Murphy 2012; Chicco and
Jurman 2020; McHugh 2012).

The accuracy, with a significant p-value (equal to 2x10−16),
and the loss of entropy calculated on the test set are respectively
85.28% and 0.34. The accuracy and loss are significantly differ-
ent from a random prediction and consistent with the metrics
obtained in the training and evaluation phase (Section 4.2.1).

In order measure the rain detection performance, several met-
rics are used and compared to reference values (Goodfellow et al.
2016; Zheng 2015; Murphy 2012; Chicco and Jurman 2020).

Overall accuracy =
(TP + TN)

(TP + FP + FN + TN)
= 85.25%

Reference values: worst=0%, best=100%.

Cross Entropy = −
C′=2

∑
i=1

tilog(si)

= −t1log(s1)− (1− t1)log(1− s1)

= 0.3400635

Reference values: perfect ≈ 0, good < 0.69, bad ≥ 0.69.

Sensitivity− Recall =
TP

(TP + FN)
= 90.44%
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Reference values: worst=0%, best=100%.

Speci f ity =
TN

(FP + TN)
= 80.13%

Reference values: worst=0%, best=100%.

Precision =
TP

TP + FP
= 81.98%

Reference values: worst=0%, best=100%.

F1 =
(1 + β2)× precision× recall
(β2 × precision) + recall

=
2× precision× recall

precision + recall
= 0.8600

Reference values: worst=0, best=1.
The β parameter was chosen to determine the weight of recall

in the harmonic mean: the recall was considered β (=1) times as
important as precision for the combined score.

Kappa value shows good consistency (McHugh 2012):

Cohen′s kappa = κ =
po − pe

1− pe
= 1− 1− po

1− pe

= 0.7057

where po is the relative observed agreement and pe is the hy-
pothetical probability of chance agreement (i.e. the accuracy ex-
pected by a random classifier, related to the number of instances
of each class).

The interpretation of Cohen’s kappa values can be summa-
rized as follows(Cohen 1960; McHugh 2012):

• κ ≤ 0 indicates no agreement;

• 0.01 < κ < 0.20 indicates no to slight agreement;

• 0.21 < κ < 0.40 indicates fair agreement;

• 0.41 < κ < 0.60 indicates moderate agreement;

• 0.61 < κ < 0.80 indicates substantial agreement;

• 0.81 < κ < 1 indicates almost perfect agreement.
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An effective and reliable metric in binary classifications is the
Matthews correlation coefficient (MCC). The MCC value ranges
from worst value −1 to best value +1 (Chicco and Jurman 2020).

MCC =
TP× TN − FP× FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

= 0.7094

Taken together, the metrics showed significant outcome. From
the results it is evident that the model exhibits good overall
predictive reliability.

The sensitivity, ≈ 90%, is higher than the specificity, ≈ 80%.
That means the model is responsive to rainy condition detec-
tion but also prone to the risk of reporting false positives. In the
application field of interest, i.e. urban flood risk management,
high sensitivity is desirable: missing cases of rainfall presence
could lead to delays in early warning systems. The detection will
easily mark rainy pictures, ensuring that dangerous pluviometric
forcing is recognized. On the other hand, the classification was
performed on balanced class although in reality a condition of
absence of rain is more likely to occur. Hence, specificity is im-
portant to avoid unnecessary alerts. The false positive occurrence
may be explained by the presence of lens flare caused by sun-rays
and artificial lighting which produces artifacts that may resemble
to raindrops accumulated on the lens. Closer examination of the
results reveals some ambiguity in the visual appearance of the
misclassified pictures and hence a limitation of our system: it
does not suit scenes that are also misleading for human vision.

The model for rain detection was also tested in a real-world
operational setting with completely different novel input images.
The results obtained from experiments on the real use case in
Matera city are described in the Chapter 6.

The major limitation of the proposed model is intrinsic to the
output results: in fact, the detection of the presence of precip-
itation (without a quantification) is a necessary condition but
not sufficient for the creation of a rain gauge network based on
cameras. In this regard, in the next chapter, it will be presented
another algorithm based on the proposed methodology in order
to allow the quantitative characterization of the precipitation
forcing. The development of other CNN networks based on the
proposed methodology involved several steps: the rainfall inten-
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sity was classified into ranges; the dataset was expanded and
improved according to criteria of availability of known rainfall
intensity values, while the model was properly readapted, fine-
tuned, and evaluated to serve the needs of hydro-meteorological
monitoring.
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5
M u l t i - c l a s s c l a s s i f i c a t i o n

As seen in previous chapters, the existing literature for rain mea-
surement from images (Section 2.1.2) strongly relies on acqui-
sition device characteristics and setting and exploits temporal
information, as it uses CV techniques based on optics and pho-
tographic analyses to retrieve rain drop information to estimate
the rainfall intensity.

In the previous chapter, a Transfer Learning with CNN ap-
proach has proved to be effective for the task of rainfall detection
in single images.

In this chapter, the goal is the effective usage of DL techniques
to provide an approximated but robust near real time quanti-
tative characterization of the precipitation forcing, through an
algorithm based on the same methodology. In comparison with
algorithms based on image sequences or video, single-image-
based algorithms require to process a lower amount of data and
are more robust in urban scenarios where the background con-
tains non-static elements, such as moving pedestrians or vehicles,
as they don’t depend on background subtraction techniques (Pic-
cardi 2004). The proposed methodology relies on CNN based
extraction of global or local key features and identification of
classes, focusing more on the rainfall perceptual effects on the
raw pictures than on the intrinsic characteristics of the raindrops
(shape, size, velocity, density, distribution).

In the context of precipitation-induced disasters early warning
systems, the meteorological forcing should be described by suit-
able threshold values that include duration, spatial extent and
intensity (Versace 2017). The duration and space extent can be
described by combining the presence of rain (Chapter 4) with
temporal and geographical data (i.e. time of capture, location of
the camera). The other fundamental quantity that may induce a
critical state is the rainfall intensity, so it can be useful to classify
it into ranges into non-overlapping ranges that will be the basis
for setting up the multi-class image classification. The discretiza-
tion of the quasi-instantaneous rain intensity values may reduce
the effects of minor observational errors; the desired outputs
for the model become categorical and not a positive real-valued
scalar.
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Hence, the second scenario of interest for the study is the rain-
fall intensity quantification, formalized as a case of supervised
learning of multi-class classification type (Murphy 2012) in single
images answering the question:

How much is it raining?

INPUT IMAGES PRE-TRAINED MODEL

CONVOLUTIONAL BASE VGG16

trained on Imagenet

partially fine-tuned

NEW LAYERS

trained on new data

NEW TASK OUTPUT PREDICTIONS

NO/LIGHT RAIN

HIGH MODERATE RAIN

LOW HEAVY RAIN

MEDIUM HEAVY RAIN

HIGH HEAVY RAIN

DOWNPOUR VIOLENT RAIN

5.1 rainfall intensity ranges

The thresholds for defining rainfall intensity classes are challeng-
ing to define because a generally accepted definition is lacking,
so the values vary considerably from one country to another.
A general classification system could be useful to provide a ba-
sis for defining critical values for flood triggering considering
the local conditions. The critical thresholds depend at a specific
scale on the considered watershed characteristics that impact
hydrological processes, such as topography, geomorphology, soil
properties, land cover, antecedent conditions, and so forth.

The Spanish Meteorological Institute defined rainfall-induced
risk scenarios on the basis of the thresholds of average hourly
intensity reported in Table 5.1 (Llasat 2001), during the Plan de
Predicción y Vigilancia Meteorológica PREVIMET specific meteoro-
logical surveillance of heavy rains campaign.

INTENSITY RANGE [mm/h] INTENSITY CLASS

I ≤ 2 Light rainfall

2 < I ≤ 15 Moderate rainfall

15 < I ≤ 30 Heavy rainfall

30 < I ≤ 60 Very heavy rainfall

I > 60 Torrential rainfall

Table 5.1: Thresholds for rainfall intensity classification used by Span-
ish Meteorological Institute (Llasat 2001).
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For synoptic purposes, the United Kingdom Meteorological
Office (Met Office, National Meteorological Library and Archive
2005) indicates the thresholds for rainfall intensity classification
listed in Table 5.2. In the report, the term rain refers to any liquid
atmospheric precipitation whose drops are larger than 0.5 mm
in diameter (whereas smaller drops, conventionally with diame-
ters between about 200 and 500 µm, are classed as drizzle). The
rainfall from a convective cloud (cumulus or cumulonimbus) is
described as a shower and is distinguished from the precipitation,
intermittent or continuous, from layer clouds. Showers often
present short duration and rapid fluctuations of intensity.

VARIABLE INTENSITY RANGE [mm/h] INTENSITY CLASS

Rain I < 0.5 Slight

(other than showers) 0.5 ≤ I < 4 Moderate

I ≥ 4 Heavy

Rain I < 2 Slight

(showers) 2 ≤ I < 10.0 Moderate

10.0 ≤ I < 50 Heavy

≥ 50.0 Violent

Table 5.2: Thresholds for rainfall intensity classification used by Met
Office, National Meteorological Library and Archive (2005).

In an attempt to establish internationally agreed standards
for the generation of data and information on weather, climate
and water, the World Meteorological Organization (WMO) regu-
larly publishes an updated version of the Guide to Meteorological
Instruments and Methods of Observation since 1954. Its purpose
is to furnish a comprehensive and up-to-date guidance on the
best practices for carrying out meteorological observations and
measurements. In the seventh edition of the guide, the World
Meteorological Organization (2014) established the Criteria for
light, moderate and heavy precipitation intensity on the basis of the
recommendation by the WMO Expert Meeting on Automation of
Visual and Subjective Observations (Trappes/Paris, France, 14–
16 May 1997) and the Working Group on Surface Measurements
(Geneva, Switzerland, 27–31 August 2001). The light, moderate
and heavy precipitation are defined with respect to the type
of precipitation and to I intensity values based on a 3 minutes
measurement period (Table 5.3).
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VARIABLE INTENSITY RANGE [mm/h] INTENSITY CLASS

Drizzle I < 0.1 Light

0.1 ≤ I < 0.5 Moderate

I ≥ 0.5 Heavy

Rain I < 2.5 Light

(also showers) 2.5 ≤ I < 10.0 Moderate

10.0 ≤ I < 50 Heavy

≥ 50.0 Violent (Intense/Extreme)

Snow I < 1.0 (water equivalent) Light

Table 5.3: Thresholds for precipitation intensity classification used by
World Meteorological Organization (2014).

Table 5.4 discloses the rainfall intensity classification by Japan
Metereological Agency (2017) used in messages for severe weather
preparedness (emergencies warnings, warnings, advisories and
bulletin systems). The messages are issued by Local Meteorologi-
cal Offices to their respective prefectures and disseminated to the
public through administrative organs and a wide variety of me-
dia, blending technical details and more user-friendly provision
of meteorological information.

INTENSITY RANGE [mm/h] INTENSITY CLASS

10 ≤ I < 20 Slightly heavy rain やや強い雨

20 ≤ I < 30 Heavy rain 強い雨

30 ≤ I < 50 Intense rain 激しい雨

50 ≤ I < 80 Very intense rain 非常に激しい雨

I ≥ 80 Torrential rain 猛烈な雨

Table 5.4: Thresholds for rainfall intensity classification used by Japan
Metereological Agency (2017).

To enable the users to understand and use correctly the weather
information, each class is clearly described with different per-
ceptual aspects, direct effects on people, indoor effects, outdoor
effects, effects when driving in a car. A pictorial illustration asso-
ciated with each aspect allows users to quickly gain an empiric
understanding of the rain intensity (Figure 5.1). Although be-
ing a well-developed method, there are still gaps between the
transmission and reception of information on rainfall amounts,
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expressed either as a quantitative value or using qualitative lan-
guage (Shimazaki et al. 2018).

HOURLY 
PRECIPITATION 

[mm/h] 
INTENSITY 

CLASS

IMAGE 
THAT 

PEOPLE 
RECEIVE

INFLUENCE ON PEOPLE INDOOR 
(wooden  houses)

OUTDOOR WHEN RIDING A CAR

10 ≤ I < 20 
Slightly 

heavy rain

Driving rain 
making a “zah 

zah” sound

The rain bounces from the 
ground and wets the feet

The sound of rain covers the 
voices 

Rain puddles form 
anywhere on the ground

20 ≤ I < 30 
Heavy rain Pouring rain People get wet even when 

using an umbrella

Approximately half of 
sleeping people can notice 

the rain 

Low visibility even with high 
windshield wiper speeds 

When driving at high speed, a layer 
of water builds between the vehicle 

wheels and the road surface, 
leading to a loss of controllability 

and braking efficiency 
(aquaplanning phenomenon) 

30 ≤ I < 50 
Intense rain

Rainfall like 
poured from a 

bucket

Roads are turned into rivers 

50 ≤ I < 80
Very intense 

rain

Continuously 
flowing rain 

making a 
rasping “goh 
goh” sound

Umbrellas are totally useless
Water splashing whitens the 
surroundings and reduces 

visibility

Driving a car is dangerous 

I ≥ 80
Torrential 

rain

Stifling and 
oppressive 
feeling, fear

Figure 5.1: Informative rainfall intensity classification. Translated and
adapted from Japan Metereological Agency (2017).

In contrast to the aforementioned classification systems, the
China Meteorological Administration rainfall classification re-
ported by Miao et al. (2018) refers to daily precipitation (Table 5.5).

24 HOUR RAINFALL TOTAL [mm] CLASS

0 No rain

0.1− 2.15 Light to moderate rain

25− 50 Heavy rain

50− 75 Torrential rain

75− 100 Heavy torrential rain

≥ 100 Downpour

Table 5.5: Thresholds for rainfall classification used by China Meteoro-
logical Administration (Miao et al. 2018).
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However, a classification based on the rainfall total within 24
hours does not appear to be especially suitable for the purposes
of the present study.

5.2 data sources

Both the dataset used for the binary classification in Chapter 4
and the dataset chosen for the multi-class classification share a
number of key characteristics inherent in the classification task in
single images. In both cases, the dataset was representative with
respect to realistic scenarios with unconstrained and verisimilar
image settings, where the pictures are weather degraded and
exhibit a large variability. The quality of the dataset affects the
model robustness and the capability of coping with the variations
in the given images.

The detection of liquid precipitation was a case of supervised
learning of binary classification type (Murphy 2012), so the exam-
ples were composed of input instances x and the output labels
y ∈ {NR, WR} (binary representation y ∈ {0, 1}) according to
the presence or absence of visible rainfall.

By contrast, for the quantitative characterization of rainfall
the input images x must be labeled with the outputs yi, where
i ∈ {1, ..., C′}, with C′ > 2 being the number of classes. Each label
yi indicates a class Ci corresponding to the considered rainfall
conditions, i.e. categories formed by ranges of rain rates, used
to classify rainfall average intensity over given periods of time
(Monjo 2016).

The dataset used in the Chapter 4 was expanded in terms of
number of instances and improved according to criteria of avail-
ability of known rainfall intensity values, while the model was
properly re-adapted, fine-tuned, and evaluated to meet the needs
of hydro-meteorological monitoring. A larger dataset might en-
sure adequate representation of different rainfall levels and cap-
turing conditions.

Criteria for inclusion were as follows: outdoor scene depiction,
known value of rainfall intensity, availability, multiple rainfall
conditions representativeness, diversity of acquisition devices,
variety of the locations, heterogeneity of the capture time and
lightning conditions.

The pictures with digitally synthesized raindrops or streaks
(i.e. generated with photo editing, 3d modeling and rendering
software) were excluded due to the difficulties of simulating rain
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intensity values with verisimilar physical-perceptual appearance
(Duthon et al. 2016).

The picture belonging to Image2Weather set (Chu et al. 2017),
which were used for the binary classification (Chapter 4), did not
meet inclusion criteria for the study due to the lack of rainfall
rate information as the images originally were labeled as “sunny”
and “rain”.

The first part of the dataset corresponds with the set of pic-
tures taken by dashboard cameras mounted on vehicles moving
around Tokyo Metropolitan Area (Figure 4.2) from 2017.08.19 to
2017.08.20 (©NIED, Japan), already used in the binary case.

Figure 5.2: Geolocation of the images taken from the dashboard cam-
eras around Tokyo Metropolitan Area.

The onboard cameras collect pictures by recording the view
through a vehicle’s front windscreen. Hence, to increase the
possibilities of capturing different precipitation conditions, the
geographical area and the time span for the dash-cam image
collection were expanded to seasons and areas where rain is
expected to be frequent. Japan is characterized by four distinct
seasons and its climate ranges from subarctic in the north to
subtropical in the south; Honshu, Shikoku and Kyushu Regions
have hot or very hot and humid summers (Peel et al. 2007; Japan
Meteorological Agency | Climate of Japan n.d.).

The second collection of dashboard camera pictures were taken
from moving vehicles in several Japanese prefectures (Figure 5.3)
for almost a year, from 2017.07.08 to 2018.06.19 (©NIED).

In both sets, the ground truth for each photography was ob-
tained associating the rainfall rate retrieved from the high pre-
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Figure 5.3: Geolocation of the images taken from the dashboard cam-
eras in different Japanese Prefectures.

cision multi-parameter radar XRAIN (Hirano, Maki, et al. 2014;
Hirano and Maki 2018) to the image according to the capture
time and GPS location. For the veracity of the association of the
radar data with the position on the ground surface, the minimum
rainfall threshold used for labeling was 5 mm/h.

The data obtained previously through experimental activities
in the NIED Large-scale Rainfall Simulator located in Tsukuba
(Appendix B), were inflated with further experiments using the
same heterogeneous shooting devices (Figure 5.4): Canon XC10,
Sony DSC-RX10M3, Olympus TG-2, XiaoYI YDXJ 2, XiaoMi MI8
(smartphone).

The Large-scale Rainfall Simulator (Appendix B) experiments
simulated fairly accurate precipitation fields for given rainfall
intensities in a controlled and repeatable way within areas re-
producing different outdoor landscapes and surfaces, such as
asphalt or grass. By using the physical simulation it shall be
ensured the inclusion of a comprehensive assortment of rain-
fall conditions, including the extreme rain events that usually
have a rather remote occurrence frequency, such as rain showers
and downpours with high return periods. A major advantage
of physical simulation is that delivers raindrops of similar size
and velocity as natural rainfall partially solving the problem of
waiting for a natural event to occur to collect data.
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Figure 5.4: NIED Large-scale Rainfall Simulator experiments.

As previously stated, the training dataset should allow an
adequate generalization, which means that the CNN should be
capable of learning meaningful image features that would enable
the extension to new datasets and therefore the model deploy-
ment for prediction using novel images. To achieve this, the
dataset should include images where the same place is exposed
to different conditions, including the absence of precipitation so
as to avoid misinterpretation of part of the background as “rainy
features”. Hence, the photos taken in the Simulator comprised
scenes where the nozzles were turned off and no precipitation
was produced. Before the experiments the scenes depicted dry
surfaces, after the experiments the surfaces were wet and some
puddles accumulated on the ground, creating realistic scenarios.

During the experiments in the simulator, the nominal constant
intensity produced by the nozzles was set to the following val-
ues: 0 mm/h (before or after the rain simulations); 20 mm/h (the
minimum amount that can be set to obtain an accurate precipi-
tation field); 30 mm/h; 40 mm/h; 50 mm/h; 60 mm/h; 70 mm/h;
80 mm/h; 90 mm/h; 100 mm/h; and 150 mm/h for a certain time
frame.

The minimum scheduled time span was 15 minutes and the
maximum was 60 minutes, to ensure the stability of the rainfall
rate produced. The intervals of shift from a given intensity to the
subsequent one were not considered part of the experiment to
avoid uncertainty.
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The produced intensity was assumed as ground truth for im-
age labeling. The nominal rain intensity was confirmed by av-
eraging the measurements that were taken each 30 seconds by
different rain gauges during each experiment (Figure 5.5).

Figure 5.5: Rain gauges used for checking nominal rain intensity.

The final data set included 61519 heterogeneous color images
coming from the different devices (dashboard moving cameras,
smartphone, action cam, digital cameras) mentioned previously.

The collected images were saved in the JPEG format. Coming
from disparate sources, pictures have various pixel resolutions
ranging from 333× 500 up to 5472× 3648 pixels.

Each picture was associated with its respective known value of
rainfall rate assumed as ground truth (nominal produced inten-
sity for the pictures gathered during the experimental activities,
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XRAIN data for the dashboard camera pictures). In the result-
ing dataset the quantity of images with a precipitation intensity
0 ≤ I ≤ 10 slightly outnumbered the other ones as a condition of
absence of rain or rain intensity lower than 10 mm/h was more
frequent in the dash-cam pictures. An over-compensation with
the data coming from NIED Large-scale Rainfall Simulator could
have affected the representational capacity of the deep CNN and
increased the gap in the portion of images associated with a
precipitation intensity 10 < I < 20.

An important thing to bear in mind when training a Neural
Network is the number of training instances. Large data results
in better generalization. Large-scale data is a commonly-used
notion in ML and yet it is a concept difficult to quantify precisely.
Commonly used large-scale CV datasets1 contain millions of
pictures. In this case the number of available examples is about 8
times larger than the amount used for the binary classification
in Chapter 4, but neither datasets can generally be defined as
large-scale datasets.

None of the large scale public dataset available could satisfy
the requirements inherent in the task of interest, i.e. images that
depict natural rainfall with a given intensity, so it was not possi-
ble to integrate further images.

The chosen strategy to address the problem of limited data
was data augmentation to artificially increase the number of
exposed instances, creating more data with stochastic changes
that don’t impact the interpretation of the images. A data-specific
design of augmentations ensures the safety of the method, i.e.
the likelihood of preserving the label post-transformation. This
data-space solution helps to mitigate overfitting (Shorten and
Khoshgoftaar 2019), in combination with the other regularization
strategies focusing on the model’s architecture itself.

Image data augmentation is extremely useful to improve the
robustness of the network, but can be a computationally expen-
sive and time-consuming process. Geometric transformations
suffer from the following drawbacks: additional memory, trans-
formation compute costs, and additional training time (Shorten
and Khoshgoftaar 2019).

To obtain a good compromise between computational time
and a sufficiently large number of training instances, the chosen
geometrical transformation for image data augmentation was
restrained to the horizontal flip. Horizontal flip or reflection is a
mirror-reversal of an original picture across a vertical axis pass-

1 https://www.datasetlist.com/
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ing through its center. As can be clearly seen in Figure 5.6, it
doesn’t affect the natural appearance of the precipitation for ob-
vious reasons. avoided since they compromise the visual effects
of the rain in the pictures.

(a) Original Image

(b) Flipped image

Figure 5.6: Generation of new pictures via random data augmentation.

5.3 model architecture setup

The CNN model architecture setup is similar to that used in the
previous case.

The DL model was implemented using open source tools: R
programming language with the Integrated Development En-
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vironment RStudio, Keras framework, and Tensorflow engine
backend (Chollet and Allaire 2018).

Transfer learning methods offer an effective way of overcom-
ing the difficulties of training very deep architectures due to the
non-triviality of the addressed task and the limited supply of
available training data (Pan and Q. Yang 2010; Yosinski et al.
2014; Weiss et al. 2016).

The transfer learning approach was applied using the VGG16
network (Simonyan and Zisserman 2014) for the convolutional
base (Table 5.6) excluding the full connected layers of its origi-
nal architecture (Figure 5.7). As seen in Section 4.1.1 the main
advantages of the VGG16 are its generality and the portability
of the features learned on the standard, large-scale, high-quality
computer vision benchmark dataset ImageNet2.

6464 22
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224

conv1

128 128 11
2

conv2

256 256 256 56

conv3

512 512 512 28

conv4

512 512 512 14

conv5

1 40
96

fc6

1 40
96

fc7

1

fc8+softmax

K

Figure 5.7: VGG16 model architecture.

Given the numerousness of parameters in the VGG16 network,
it was partially frozen before the compiling and training of the
new network. The first-layers of a deep network trained on natu-
ral images learn general features resembling Gabor filters or color
blob that work as generic semantic representations of the visual
world also for novel perceptual problems (Yosinski et al. 2014;
Chollet and Allaire 2018. Such layers were frozen to prevent
the weights from being updated during the training of the new
network so as to preserve the previous knowledge and avoid
overfitting on the novel smaller dataset (Yosinski et al. 2014).
The last convolutional layer (block5_conv3) was unfrozen to allow
fine-tuning (weights updating during the training) as it contains
features that can be considered more specific (Yosinski et al. 2014)
to the task and data-related. This was found to be a necessary
component in developing the new network because the Ima-
geNet database contains pictures representing mostly animals,

2 http://www.image-net.org/
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plants, food, and everyday objects that are not directly related
to meteorological conditions or outdoor scenes. Freezing layer
and fine-tuning approaches were combined to obtain a good
trade-off between the computational time, the goodness of fit,
and the accuracy.

LAYER (TYPE) OUTPUT SHAPE PARAMETERS #

input_39 (InputLayer) (None, 200, 200, 3) 0

block1_conv1 (Conv2D) (None, 200, 200, 64) 1792

block1_conv2 (Conv2D) (None, 200, 200, 64) 36928

block1_pool (MaxPooling2D) (None, 100, 100, 64) 0

block2_conv1 (Conv2D) (None, 100, 100, 128) 73856

block2_conv2 (Conv2D) (None, 100, 100, 128) 147584

block2_pool (MaxPooling2D) (None, 50, 50, 128) 0

block3_conv1 (Conv2D) (None, 50, 50, 256) 295168

block3_conv2 (Conv2D) (None, 50, 50, 256) 590080

block3_conv3 (Conv2D) (None, 50, 50, 256) 590080

block3_pool (MaxPooling2D) (None, 25, 25, 256) 0

block4_conv1 (Conv2D) (None, 25, 25, 512) 1180160

block4_conv2 (Conv2D) (None, 25, 25, 512) 2359808

block4_conv3 (Conv2D) (None, 25, 25, 512) 2359808

block4_pool (MaxPooling2D) (None, 12, 12, 512) 0

block5_conv1 (Conv2D) (None, 12, 12, 512) 2359808

block5_conv2 (Conv2D) (None, 12, 12, 512) 2359808

block5_conv3 (Conv2D) (None, 12, 12, 512) 2359808

block5_pool (MaxPooling2D) (None, 6, 6, 512) 0

Total parameters: 14 714 688

Table 5.6: Convolutional Base architecture

The model was extended by adding new layers on top (Ta-
ble 5.7), to obtain a new classifier for the addressed classification
task.

The number of total parameters of the network is equal to
18 402 494. 6 047 614 trainable weights were the variables in-
cluded in backpropagation, whereas the 12 354 880 frozen pa-
rameters were excluded from the training.

The dropout layer randomly drops some input units (along
with their connections) from the neural network during train-
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ing with probability 1− p. This prevents units from co-adapting
excessively. It was used as a regularization technique to reduce
the risk of data overfitting so as to preserve the algorithm gen-
eralizability (Goodfellow et al. 2016; Chollet and Allaire 2018;
Srivastava et al. 2014). The dropout rate was set to 20%, meaning
one in 5 inputs was randomly excluded from each update cycle
during the training phase.

LAYER (TYPE) OUTPUT SHAPE PARAMETERS #

vgg16 (Model) (None, 6, 6, 512) 14714688

flatten (Flatten) (None, 18432) 0

dense (Dense) (None, 200) 3686600

dropout (Dropout) (None, 200) 0

dense_1 (Dense) (None, C′) 1206

Total parameters: 18 402 494 (12 354 880 frozen)

Table 5.7: Model architecture

The task of interest is a C′-way classification, so the last layer
had C′ outputs and a softmax activation to return an array of
C′ probability scores (summing to 1). Each score represents the
probability that the image exposed to the classifier belongs to
one of the classes Ci, where i ∈ {1, ..., C′} with C′ > 2 being the
number of classes.

5.3.1 Training and validation setup

The process of training involves providing to the learning algo-
rithm with known examples of ordered pairs of input and output
to feed the network. Each training instances consisted of an input
picture x paired with exactly one output label yi corresponding
to the considered rainfall conditions. The aim is obtaining a final
fitted model that can make accurate predictions starting from
novel unseen inputs taking as input a picture x and generating
predictions of the classes Ci, giving as output a predicted label
ŷi

3 where i ∈ {1, ..., C′}, with C′ being the number of classes, that
is to say to predict what rainfall intensity range is photographed.

Two different binning set-ups were used according to the pur-
pose of study: a C′ = 6 classification and a C′ = 5 classification.
This process is described in more detail in the next section.

3 The hat is used to denote an estimated value.
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During the training phase, the CNN was initialized with ran-
dom values of all the trainable parameters. For each example
exposed to the model, the RMSprop optimizer updated automat-
ically the values of the weights implementing the error back-
propagation algorithm. The parameters were modified through
the optimization procedure so as to maximize the prediction
accuracy and minimize the cost function. The loss of categor-
ical cross entropy between the training data and the model’s
predictions was used as the cost function because the model
aimed to perform a multi-class classification: images are classi-
fied into multiple mutually exclusive classes (Goodfellow et al.
2016; Chollet and Allaire 2018).

A disjoint validation set (Russell et al. 2010,Table 4.1) provided
an early unbiased evaluation of the model fitness while tuning
the model’s hyperparameters (Figure 4.7), thus safeguarding its
generalization ability.

The Loss (Binary Cross Entropy) was calculated as follows:

Cross Entropy = −
C′

∑
i=1

tilog( f (s)i)

Where ti is the ground-truth for each class Ci and

f (s)i =
esi

∑C
j esj

is the softmax activation function appended to the last layer. The
activation function is necessary to normalize the outputs of the
neural network (raw scores) to a probability distribution over
predicted output classes.

Prior to softmax activation, the component of the vector s, the
raw scores inferred by the net, can assume any values in R and
might not sum to 1. The numeric outputs of the last linear layer
of the multi-class classification neural network (logits) need to be
turned into probabilities. After applying softmax, all the compo-
nents ∈ [0, 1] and sum to 1. The softmax function takes as input
the vector s of C′ real numbers, and normalizes it into a proba-
bility distribution consisting of C′ probabilities proportional to
the exponentials of the input numbers. As elements represent a
class, they can be interpreted as class probabilities.

For training and validation, the deep network completed 30
epochs, i.e. complete presentations of the entire training and
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validation datasets. Each epoch required several iterations to
accomplish one forward pass and one backward pass of all the
examples as they were parsed into batch size equal to 20. The
use of a small batch guarantees a significantly smaller memory
footprint and may offer a regularizing effect resulting in lower
generalization error (Bengio 2012; Masters and Luschi 2018).

The learning rate controls the size of the step an optimizer
takes towards the minima of the loss function. The chosen adap-
tive learning rate technique, implemented through the Keras
callback ReduceLROnPlateau, was set to reduce the learning rate
by a 0.1 factor when the optimizer cannot improve the results
over 5 epochs (patience number of epochs). This situation means
that the optimizer has reached a plateau (Goodfellow et al. 2016),
and it needs the step size to be reduced in order to move down
the error towards the new minima. Hence, if the target training
metric (namely the loss) had stopped improving and stagnated
over 5 epochs, the learning rate was adjusted. Since the proce-
dure was repeated over the epochs, the learning rate was reduced
only when needed, giving the optimizer enough time to find a
better path towards the minima.

The implemented strategies to prevent overfitting can there-
fore be resumed as follows:

• dataset construction: heterogeneity of acquisition devices,
a comprehensive assortment of rainfall conditions, pictures
depicting the same place exposed to different conditions;

• partitioning of the data training, validation, and holdout
test sets;

• augmentation of the training data;

• transfer learning with partial freezing of the convolutional
base;

• dropout layer (dropout rate 20%);

• adaptive learning rate;

• small batch training (batch size equal to 20);

• stopped training after the model convergence to adequate
values of the error (cost function) and the accuracy.
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5.4 6 class classif ication

The total data set consisted of 61519 color images acquired from
the different devices saved in the JPEG format (pixel resolution
ranged from 333× 500 up to 5472× 3648 pixels).

The images were labeled according to the associated rainfall
intensities, whose values were binned into six ranges.

Combining the thresholds arranged by World Meteorological
Organization (2014) and by Japan Metereological Agency (2017),
the rain rate categories were defined as non-overlapping classes:
No Rain or Light rain (NLR), High Moderate rain (HMR),Low
Heavy Rain (LHR), Medium Heavy Rain (MHR), High Heavy
Rain (HHR), and Violent Rain, Downpour (DVR), using the
ranges given in Table 5.8.

The available data were divided into the non-intersecting sub-
sets needed (Russell et al. 2010) as listed in Table 5.8. For each
class Ci, where i ∈ {1, ..., 6}, about 60% of the total examples was
chosen randomly for training the model, 20% for validation and
20% for the test on novel instances.

LABEL INTENSITY
RANGE [mm/h]

# OF IMAGES

(Total) Train ValidationTest

NLR - No rain or
Light Rain

< 5 10278 6026 2126 2126

HMR - High
Moderate Rain

5 ≤ I < 10 15551 8742 3406 3403

LHR - Low Heavy
Rain

10 ≤ I < 20 5919 3294 1308 1317

MHR - Medium
Heavy Rain

20 ≤ I < 30 7820 4520 1648 1652

HHR - High Heavy
Rain

30 ≤ I < 50 7818 4716 1661 1441

DVR - Violent Rain,
Downpour

I ≥ 50 8214 4914 1650 1650

Table 5.8: Data set creation: label division and number of labeled im-
ages per data set

The obtained dataset did not have exactly equal number of
instances in each class. The classes were slightly imbalanced. Al-
though could be useful for generating a balanced distribution of
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all classes, undersampling strategies involve removal of some of
the data and may generate gaps. Furthermore, in the considered
real world scenarios a condition of absence of rain or rain inten-
sity lower than 10 mm/h is more likely to occur. It is reasonable
to expect that the influence of this mild imbalance is negligible
(Google Developers n.d.). For the sake of data completeness, all
available examples were used.

In order to enlarge the size of the training set, new instances
were created via data augmentation (Shorten and Khoshgoftaar
2019). This helps prevent overfitting enhancing the model gener-
alization ability, together with the other strategies addressing the
model architecture. The new examples were obtained through a
a mirror-reversal of the original pictures x across a vertical axis
as shown in Figure 4.5, retaining the associated label yi. The cho-
sen transformations is isometric and guarantees the physically
compatibility with the natural appearance of meteorological phe-
nomena and the background elements of the scene portrayed
(urban environments, vehicles, people, road, grass surface, and
so on).

5.4.1 Results and discussion

5.4.1.1 Training and validation

The setup previously described in Section 5.3 has been used for
the process of training and validation on a holdout set generated
from the original total data (Table 5.8).

The set training configuration (Section 5.3.1) can be summa-
rized as follows:

• Data Augmentation: horizontal flip.

• Loss: categorical cross-entropy. It was used as the cost func-
tion to map the network performance and improve the
preparation of the model.

• Optimizer: RMSprop4. This optimizer implementing the
RMSprop algorithm (Tieleman and Hinton 2012) is the
mechanism through which the network update itself.

• Metric: accuracy. The fraction of the images that were cor-
rectly classified was the metric monitored during training
and testing.

4 keras.io/api/optimizers/rmsprop/
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• Adaptive learning rate: ReduceLROnPlateau5.

Figure 5.8 plots the accuracy (acc) and loss (loss) curves respec-
tively in the top and the bottom panel for validation and training
by epoch.

After an essentially improving trend with some fluctuation
(they seem to peak around the 10th epoch) in the very first epochs
due to a random initialization of the network and the number of
the classes, the training and validation loss values decreased over
the epochs, and the accuracy values increased over the epochs.

As seen in the plot, the values stopped improving significantly
after 20 epochs. In the subsequent epochs, the accuracy values
stopped to significantly improve: the training accuracy stalled at
80%− 81% , whereas the validation accuracy stalled at 78%. The
training and validation loss values were not decreasing signifi-
cantly at the 21st epoch.

The model shows comparable skills on on both datasets: the
visible plateau and the absence of abrupt changes in the curves
indicates that the network has converged and the absence of
inflection for validation curves indicates the absence of over-
learning of the training data.

The trends over the subsequent iterations for training and for
validation identified a good model fit: the curves tended to reach
a point of stability with a minimal gap between the final values
relative to the two sets.
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Figure 5.8: Training and validation: overall accuracy and loss values
for the 6 class model.

5 keras.io/api/callbacks/reduce_lr_on_plateau
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The model was stopped after 30 epochs because the continued
training of a good fit may likely lead to an overfit, learning
representations that are specific to the training data and don’t
generalize to data outside of the training set.

After the 30 training epochs, the network reached an overall
accuracy of 81.27% on the training set and 78.22% on the valida-
tion set (Figure 5.8) and a loss (Murphy 2012) respectively of 0.54
and 0.72.

The Loss (Binary Cross Entropy) was calculated as follows:

Cross Entropy = −
C′=6

∑
i=1

tilog( f (s)i)

Where ti is the ground-truth for each class Ci and

f (s)i =
esi

∑C
j esj

is the last layer softmax activation function.

The case of interest is a 6-way classification problem: given the
input x (picture) we need to predict its output yi (label), relative
to the Ci class where i ∈ {1, ..., C′}, with C′ = 6 being the number
of classes. Interpreting the activated score as a probability distri-
bution, the predicted class label corresponds to the maximum
activated score among all classes.

The values obtained by the final model are significantly far
from a random prediction considering the accuracy and loss of a
balanced 6-class classification problem, where the non-informative
values correspond to accuracy of 16, 67% and loss of 1.79.

5.4.1.2 Testing and evaluation

To obtain an independent evaluation of the algorithm predictive
skills, a test set was exposed to the trained model. The test set
(holdout set) was locked away completely during the training
and evaluation steps, to avoid “peeking” (Russell et al. 2010).
The test set contained 11625 examples randomly chosen from the
total dataset that were not seen by the network in the previous
step, following the same probability class distribution. Hence it
was used to assess the generalization ability of the model to test
the reliability of the model deployment on new use scenarios.
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During the test phase, the final model generated output pre-
dictions on the unseen inputs images to be compared to the
withheld output labels.

The overall accuracy was calculated on the test set, measuring
the fraction of the total samples that were correctly classified.

The obtained value 77.71% was significantly higher from a
random 6 class classifier prediction accuracy and coherent with
the values obtained in the training and evaluation steps (Sec-
tion 5.4.1.1), the 95% confidence interval was of 0.7639 and 0.7793,
so there is a 95% likelihood that the actual accuracy for the model
lies within this range.

Overall accuracy =
correct predictions
total predictions

= 77.17%

Reference values: worst=0%, best=100%.
The “no-information rate” was the largest proportion of the

observed classes: the C2 class HMR, No In f ormation Rate =
0.29. This value represents the accuracy achievable by always
predicting the majority class C2 label y2 = HMR.

It was also computed a hypothesis test to verify whether the
overall accuracy rate was greater than the rate of the largest class,
obtaining a significant p-value (equal to 2.2x10−16).

Kappa value, calculated as the classification accuracy normal-
ized by the imbalance of the classes in the data, indicates a good
reliability:

Cohen′s kappa = κ =
po − pe

1− pe
= 1− 1− po

1− pe

= 0.7095

where po is the relative observed agreement and pe is the hy-
pothetical probability of chance agreement (namely the accuracy
expected by a random classifier, calculated with respect to the
number of instances of each of the 6 classes).

The interpretation of Cohen’s kappa values can be summa-
rized as follows (Cohen 1960; McHugh 2012):

• κ ≤ 0 indicates no agreement;

• 0.01 < κ < 0.20 indicates no to slight agreement;

• 0.21 < κ < 0.40 indicates fair agreement;

• 0.41 < κ < 0.60 indicates moderate agreement;
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• 0.61 < κ < 0.80 indicates substantial agreement;

• 0.81 < κ < 1 indicates almost perfect agreement.

The overall statistics indicate that the obtained classification is
significantly better than random predictions.

To compare the relationship between known reference data
(ground truth) and the corresponding results of the classification
it was built an error matrix compare on a class-by-class basis.

Table 5.9 shows the confusion matrix of rainfall type 6-way
classification, where columns represent the true labels of the
instances, whereas rows represent the estimated labels. The ele-
ments of the diagonal represent the number of correctly predicted
instances. The off-diagonal elements report the count of misclas-
sified elements, which are the examples belonging to a class that
are mistakenly associated with another class. The shades of gray
indicate the percentage of the test elements in the given class.
These results are generally very promising. The worse perfor-
mance can be observed for photos belonging to the LHR C3 class:
almost all the instances are mislabeled as belonging to HMR.
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Table 5.9: Confusion matrix for the 6 class classification problem

In order to assess a class-wise benchmark of the rain intensity
classification performance, a set of “one-versus-all” metrics were
calculated starting from the confusion matrix. The metrics were
then compared to reference values (Goodfellow et al. 2016; Zheng
2015; Murphy 2012; Chicco and Jurman 2020).

The one-versus-all comparisons splits the multi-class classi-
fication problem into separate binary one-versus-all compar-
isons. Since the considered classification has Ci classes where
i ∈ {1, ..., C′}, with C′ = 6, they were required C′ = 6 different
binary one-versus-all comparisons. Each of them produced the
metrics listed in Table 5.9, which were used get the measure of
the classifier skills for each class.
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Given the Ci class of interest as the “positive” class and all the
other classes as the “negative” class, it was counted the number
of corresponding TP, FP, TN and FN to calculate the desired met-
rics (Goodfellow et al. 2016; Zheng 2015; Murphy 2012; Chicco
and Jurman 2020; McHugh 2012). TP were the outcomes where
the model correctly predicts the Ci class. Similarly, TN were all
the correct predictions where the model correctly assigns a class
different from Ci. The off-diagonal elements represents the mis-
predictions: FP were all the elements incorrectly classified as
belonging to Ci, whereas FN are the elements mistakenly classi-
fied as not belonging to Ci.

Hence, the metrics of the classifier relative to the Ci class can
be calculated as follows:

Sensitivity− Recall =
TPi

(TPi + FNi)

Speci f ity− Selectivity =
TNi

(FPi + TNi)

Precision− Positive Predictive Value =
TPi

TPi + FPi

Negative Predictive Value =
TNi

TNi + FNi

F1 =
(1 + β2)× precision× recall
(β2 × precision) + recall

=
2× precision× recall

precision + recall

Balanced Accuracy =
sensitivity + speci f icity

2

Prevalence express how often the Ci class actually occurred
in the sample and reflects the distribution given in Table 5.8. It
was calculating by dividing the sum of the elements in the ith

column (instances belonging to Ci) by the sum of all instances
in the sample. Detection Rate counted exclusively the correct Ci
class predictions made as a proportion of all of the predictions.
Detection Prevalence computed the number of all Ci class pre-
dictions (correct and incorrect) made as a proportion of all of the
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predictions. The rates are strongly influenced by the mislabeled
instances of C3: the busted values are localized in C2 and C3.

NLR HMR LHR MHR HHR DVR REFERENCE
VALUES

Sensitivity -
Recall [%]

83.25 92.01 10.782 80.69 73.352 91.52 worst=0%
best=100%

Specificity -
Selectivity [%]

98.26 75.16 97.878 98.54 99.596 99.56 worst=0%
best=100%

Precision - Pos
Pred Value [%]

91.47 60.63 39.444 90.19 96.266 97.17 worst=0%
best=100%

Neg Pred
Value [%]

96.31 95.77 89.536 96.85 96.34 98.6 worst=0%
best=100%

F1 0.8717 0.7309 0.16935 0.8518 0.83261 0.9426 worst=0
best=1

Prevalence 0.1834 0.2936 0.11364 0.1425 0.12434 0.1424 proportion
of the class

Detection Rate 0.1527 0.2702 0.01225 0.1150 0.09121 0.1303 rate of true
labels

predicted

Detection
Prevalence

0.1670 0.4456 0.03106 0.1275 0.09475 0.1341 prevalence
of label

prediction

Balanced
Accuracy [%]

90.76 83.59 54.33 89.62 86.474 95.54 worst=0%
best=100%

Table 5.10: Evaluation metrics: values for each class.

The macro-averaged F1-score, computed as a simple arithmetic
mean of the per-class F1-scores, was 0.73, rather close to best
reference value 1.

The proposed classifier provides generally much more accu-
rate results than a random guess. The best performances were ob-
tained in the classes C1, C2, C4, C5, C6 (NLR, HMR, MHR, HHR,
and DVR), whereas the mispredictions were mostly limited to C3
class (LHR). The 6-class classifier correctly predicted only about
a tenth of LHR pictures (sensitivity≈ 11%). About 11% of the
total pictures were actually representing LHR (prevalence) but
the class was predicted in approximately 3% of cases (detection
prevalence), with about two fifth of these being correct (positive
predictive value).
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The observed model behavior may attribute to the relative
scarcity of data: image number could not be inflated by experi-
ments in the NIED Rainfall Simulator since the minimum rainfall
rate is 20 mm/h for accurate rain reproduction. However, is not
yet clear whether the class imbalance is the leading factor in
determining the erroneous classification since the other minority
classes (MHR, HHR, DVR) exhibit high rates of correct classifi-
cation and don’t suffer from the same degree of misclassification.
A possible explanation for this inconsistency might be that some-
times it is difficult even for people to distinguish photos taken in
rainy conditions with close values of precipitation intensity. This
may be supported by the findings that the model tends to assign
the pictures to an adjacent class.

The model performance mismatch could result in underes-
timating the rainfall rate, that’s why it was proposed a new
classification scenario with 5 classes presented in the next section
(Section 5.5).

5.5 5 class classif ication

In ML studies, there is a potential for bias from poor construction
of the dataset. To assess whether and how much the performance
of the model can improve, it was determined a different binning
set-up based on 5 classes for the rainfall intensity.

The rain rate categories were defined as mutually exclusive
classes: NLR, HMR, MHR, HHR, and DVR, using the ranges
given in Table 5.11.

These are obtained with respect to the previous one by merging
the old LHR and MHR classes. The new MHR includes photos
taken with a rainfall intensity 10 mm/h ≤ I < 30 mm/h. As
can be seen in the previous subsection Section 5.4.1.2, the 6-class
model yielded poor performance for the LHR class, introducing
the risk of underestimating the rainfall rate. The

The new binning was chosen adopted to be on the safe side and
allow a more balanced class distribution in the train set. Another
advantage of using the modified classification is that it ensured
that the model avoided the over-adaptation to peculiarities in-
troduced by the specific images in the train set. The old LHR
and the HMR contained exclusively the dash-cams pictures, due
to the Rainfall Simulator characteristics. The NLR, MHR, HHR,
and DVR classes entailed a mix of the pictures coming from the
vehicles and the experiments. The NLR contained a balanced
rate of pictures collected from the two data sources, whereas
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the MHR, HHR, and DVR classes consisted mostly of pictures
acquired during the Rainfall Simulator experiments, due to the
ordinary occurrence of the natural precipitation phenomena.

The new classes were meant to contain a more equitable com-
bination of the data sources to minimize the risk of learning fea-
tures that are not descriptive nor informative for the addressed
task.

A total of 61519 color JPEG images were labeled and organized
according to the associated range of rainfall rate. For each class
Ci, where i ∈ {1, ..., 5}, the available data set was randomly
divided into the non-intersecting subsets necessary with a ratio of
60 : 20 : 20 for training, validation and testing sets, respectively.

LABEL INTENSITY
RANGE [mm/h]

# OF IMAGES

(Total) Train ValidationTest

NLR - No Rain or
Light Rain

< 5 10278 6026 2126 2126

HMR - High
Moderate Rain

5 ≤ I < 10 15551 8742 3406 3403

MHR - Medium
Heavy Rain

10 ≤ I < 30 13739 7814 2956 2969

HHR - High Heavy
Rain

30 ≤ I < 50 7818 4716 1661 1441

DVR - Violent Rain,
Downpour

I ≥ 50 8214 4914 1650 1650

Table 5.11: Data set creation: label division and number of labeled im-
ages per data set.

The obtained dataset did not have an exactly equal number of
instances in each class, but the imbalance was milder compared
to the previous case and was similarly expected to be negligible
(Google Developers n.d.). The class distribution may be suitable
for a general likelihood of precipitation in a real world scenario
(excluding peculiar regional and latitudinal distribution that may
require specific analysis).

Prior to model initialization, the size of the training set was
enlarged through data augmentation (Shorten and Khoshgoftaar
2019) to reduce overfitting and enhance generalization, as seen
before.
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5.5.1 Results and discussion

5.5.1.1 Training and validation

The same setup used for the 6-class classifier (Section 5.3), de-
scribed in Section 5.3, has been implemented for training and
validating the 5-class model using the data subsets described in
Table 5.11.

The set training configuration (Section 5.3.1) can be summa-
rized as follows:

• Data Augmentation: horizontal flip.

• Loss: categorical cross-entropy. It was the cost function for
monitoring and improving the model performance.

• Optimizer: RMSprop6 implementing the RMSprop algo-
rithm (Tieleman and Hinton 2012) for self-updating of the
network.

• Metric: accuracy. The measure of correct classification dur-
ing training and testing.

• Adaptive learning rate: ReduceLROnPlateau7.

Figure 5.9 provides an overview of the loss and accuracy of
the model over the training and holdout validation data during
training, reporting the epoch of presentation of the instances on
the abscissa and the value on the ordinate.

According to this plot, during the first 15 epochs the training
accuracy increased while the loss decreased, constantly improv-
ing without abrupt changes.

After 18 epochs, the accuracy reached ≈ 82% for the training
set and ≈ 79% for the validation set. The loss stalled at ≈ 0.45
for the training set and to ≈ 0.64 for the validation set.

For the subsequent epochs, the plots indicate that the training
and validation curves reached a plateau. The small gap between
the curves relative to the two subsets indicates that the network
has converged reaching a point of stability without over-learning
of the training data.

The training was stopped after 30 epochs, to avoid the degra-
dation of the performance of the model (Goodfellow et al. 2016),
visible when accuracy decreases and/or loss increases on the

6 keras.io/api/optimizers/rmsprop/
7 keras.io/api/callbacks/reduce_lr_on_plateau
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unseen examples of the validation set. The presence of possible
overfitting is graphically identifiable as a divergence between
the curves of training and validation for each metric.

The smaller scale of value axes (acc and loss) indicates an im-
provement over the previous network.
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Figure 5.9: Training and validation: overall accuracy and loss values
for the 5 class model.

After the 30 training epochs the final network reached an over-
all accuracy of 82.49% on the training set and 79.09% on the
validation set (Figure 5.9) and a loss (Murphy 2012) respectively
of 0.45 and 0.64.

The Loss (Binary Cross Entropy) was calculated as follows:

Cross Entropy = −
C′=5

∑
i=1

tilog( f (s)i)

Where ti is the ground-truth for each class Ci and

f (s)i =
esi

∑C
j esj

is the last layer softmax activation function.

In this case, the considered problem is a 5-way classification:
for each input picture x, the network outputs a label yi that is
associated with the Ci class where i ∈ {1, ..., C′} and the number
of classes C′ = 5. The class output is based on predicted class
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probabilities distribution: the maximum activated score among
all classes indicates the predicted class label.

The values differ significantly from a random guess consid-
ering the accuracy and loss of a balanced 5-class classification
problem, where the non-informative values correspond to accu-
racy of 20% and loss of 1.60.

5.5.1.2 Testing and evaluation

The evaluation of the modified classification algorithm on the
test set was performed according to the procedure used in the
Section 5.4.1.2.

The overall accuracy calculated on the test set was 78.05%,
slightly better than the previous model value of 77.71%. It is
significantly higher from the random classifier accuracy and
consistent with the values obtained in the previous steps (Sec-
tion 5.5.1.1), with a 95% confidence interval was of 0.7728 and
0.788.

Overall accuracy =
correct predictions
total predictions

= 78.05%

Reference values: worst=0%, best=100%.
Since the majority class C2 label y2 = HMR has not changed

the “no-information rate” is still No In f ormation Rate = 0.29.
The overall accuracy was enough for the model to offer sig-
nificantly better performance over the no-information rate as
indicated by the p-value 2.2× 10−16.

The Kappa statistic for the 5-class model was 0.7143, which
is relatively high (possible values κ ∈ [−1, 1], usual values κ ∈
[0, 1]). According to the reference values (Cohen 1960; McHugh
2012) the value obtained falls into the range 0.61 < κ < 0.80,
indicating substantial agreement between the obtained classifier
and the true class labels once random accuracy is controlled for.

The obtained overall statistics show an overall moderate im-
provement.

To assess the improvements on a class-by-class basis, a break-
down of the predictions generated on the test examples is re-
ported into the confusion matrix. The confusion matrix shown in
Table 5.12 displays the cross-tabulation of the observed and pre-
dicted classes: the diagonal elements are the count of the correct
predictions, whereas the off-diagonal elements are the count of
the incorrect predictions made. The shades of gray represent the
rate of the given class. These results are generally very promising.

88



Most of the instances were placed on the main diagonal (correct
predictions); the misclassified elements are mostly examples be-
longing to the MHR C3 class that are mistakenly associated with
the HMR C2 class.
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Table 5.12: Confusion matrix for the 5 class classification problem.

A series of “one-versus-all” metrics was then calculated and
compared to the corresponding reference values (Goodfellow
et al. 2016; Zheng 2015; Murphy 2012; Chicco and Jurman 2020).
The one-versus-all comparisons splits the multi-class classifi-
cation problem into 5 separate binary one-versus-all compar-
isons, one binary comparison for each possible outcome Ci, being
i ∈ {1, ..., C′} and C′ = 5. Given the Ci class of interest as the
“positive” class and all the other classes as the “negative” class,
the count of TP, FP, TN, and FN formed the basis for the metrics.
Hence, the metrics associated with each Ci class were computed
using the equations given in Section 5.4.1.2:

Sensitivity− Recall =
TPi

(TPi + FNi)

Speci f ity− Selectivity =
TNi

(FPi + TNi)

Precision− Positive Predictive Value =
TPi

TPi + FPi

Negative Predictive Value =
TNi

TNi + FNi

F1 =
(1 + β2)× precision× recall
(β2 × precision) + recall

=
2× precision× recall

precision + recall
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Balanced Accuracy =
sensitivity + speci f icity

2

Prevalence =
TPi + FNi

TPi + FPi + TNi + FNi
=

instances Ci

total predictions

Detection Rate =
TPi

TPi + FPi + TNi + FNi

Detection Prevalence =
TPi + FPi

TPi + FPi + TNi + FNi

Each of them produced the metrics used to assess classifier
skills for the 5 different classes.

A summary of calculated metrics is in Table 5.13.
The results appeared to be unaffected by the class imbalance

since the relatively worst results were obtained in the C3class,
label y3 = MHR, that has prevalence ≈ 26% and the predictions
within the minority classes (C4 labeled y4 = HHR with preva-
lence≈ 12%, C5 labeled y5 = DVR with prevalence≈ 14%) were
pretty accurate.

Best performances were achieved in the C5 class described
by label y5 = DVR (all metrics values were almost perfect),
despite being a minority class (prevalence ≈ 14%) in terms of
both sensitivity (≈ 91%) and specificity (> 99%).

Similarly to the 6-way classification model, the error were
located in the low-medium heavy rainfall range: the measures
are affected by the mislabeled instances of C3. For 1227 instances,
the classifier predictions incorrectly indicated the C2 class when
the images were belonging to C3, lowering the model precision
for C2 and sensitivity for C3.

The differences between the 6-class model and the 5-model
were modest.
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NLR HMR MHR HHR DVR REFERENCE
VALUES

Sensitivity -
Recall [%]

84.48 88.75 56.42 73.005 91.03 worst=0%
best=100%

Specificity -
Selectivity [%]

98.13 78.61 93.76 99.576 99.65 worst=0%
best=100%

Precision - Pos
Pred Value [%]

91.03 63.3 75.69 96.073 97.72 worst=0%
best=100%

Neg Pred
Value [%]

96.57 94.38 86.2 96.293 98.53 worst=0%
best=100%

F1 0.8763 0.7389 0.6465 0.82965 0.9426 worst=0
best=1

Prevalence 0.1834 0.2936 0.2562 0.12434 0.1424 proportion
of the class

Detection Rate 0.1550 0.2606 0.1445 0.09078 0.1296 rate of true
labels

predicted

Detection
Prevalence

0.1702 0.4117 0.1910 0.09449 0.1326 prevalence
of label

prediction

Balanced
Accuracy [%]

91.30 83.68 75.09 86.291 95.34 worst=0%
best=100%

Table 5.13: Evaluation metrics: values for each class.

Taken together, the results showed significant outcomes for
both classifiers.

The approximations inherent in both models are acknowl-
edged: the achievable results cannot be claimed to universally
be useful for all rainfall monitoring applications. In some cases,
the data gathered from the proposed Convolutional Neural Net-
works (CNNs) might be supplemented by data reporting more
precise (quasi) instantaneous rainfall intensity. However, they
demonstrate the adequacy of the method for the problem of inter-
est: monitoring severe rainfall in urban catchments within Early
Warning Systems. The best performances are achieved in heavy
rainfall and no-rain conditions, whereas the mispredictions are
related to lower rainfall rates. In the application field of interest,
it is important to gather high sensitivity in extreme precipitation
events, to mitigate the risk of missing cases of severe rainfall that
could lead to delays in early warning systems. It is worth remark-
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ing here that the near instantaneous liquid precipitation rate is
given in units of mm/hr for the sake of standardization. It repre-
sents the equivalent hourly rain that would have fallen if a given
short-term rainfall rate remained constant for one hour. Typi-
cally urban floods stem from a hydro-meteorological extreme
events of severe precipitation in short spans of time (Chapter 1).
Hence, quasi-instantaneous rainfall rate values appear bigger
than hourly precipitation.

The performance obtained in Classes with rainfall intensity
I > 30 mm/h may guarantee that the model can recognize the
dangerous pluviometric forcing more prone to trigger urban
floods. It was also found that the Transfer Learning with CNN
approach produces good quality results in both models in terms
of specificity for all classes. This, in combination with the ample
skills in the C1 = NLR, might ensure to avoid unnecessary alerts.

The occurrence of misclassifications in less severe near instan-
taneous rainfall intensities may be explained by the constraint of
the dataset and the intrinsic characteristics of the pictures. Closer
inspection of the training photos reveals some ambiguity in the
perceptual aspects of these classes of rain: the raindrops accu-
mulated and wiped on the vehicle windshield make the scenes
very similar. Furthermore, a common behavior associated with
precipitation is sticking a hand out from under an umbrella to
feel the rain since the visual effects of precipitation may be often
inconspicuous.

The limitation of the system is consistent with the findings in
Chapter 4: the proposed approach does not suit scenes that are
misleading for human vision. Additional data may be gathered to
address gaps that are apparent. Further data collection is required
to reach better results within the range of low heavy precipitation
10 ≤ I < 20. A larger dataset might expose a different and
perhaps more balanced perspective on the classes.

It is necessary to have access to different kinds of pictures and
known rainfall rates but this is not straightforward.
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Part III

M a t e r a C a s e S t u d y





6
M a t e r a C a s e S t u d y

Matera is located in the eastern part of Basilicata region in South-
ern Italy (Figure 6.1), bordering the south-western part of the
metropolitan city of Bari (with the municipalities of Altamura,
Gravina in Puglia and Santeramo in Colle), the extreme part
north-west of the province of Taranto (with the municipalities
of Ginosa and Laterza). It is the capital of the province of Mat-
era, the second largest town in Basilicata by population and the
largest municipality. It rises at 401 m above sea level, right on the
border between the Murge plateau to the east and the Bradanica
pit to the west, crossed by the Bradano river. The course of this
river is blocked by a dam, built in the late 50s for irrigation pur-
poses, forming the artificial lake called Lake San Giuliano, which
is part of the regional San Giuliano Nature Reserve.

Figure 6.1: Area of interest.

In a phenomenological perspective, each settlement becomes a
semiotic object (Eco 2011) with multiple "narrative dimensions"
and is the result of a balance between construction and destruc-
tion across the time and dialogue with natural elements such as
watercourses, vegetation, exposure, geomorphology, revealing a
structure made by flows and physical actions that can be read and
interpreted (Macaione and Sichenze 2013; Macaione, Ippolito,
et al. 2018). Structural components of the territorial context lie
on multiple and overlapping levels (Figure 6.2, Figure 6.3) which
include physical-environmental, socioeconomic, and historical
levels that are not always visible. Matera is a place that has re-
sisted the adversities and attacks inflicted by the time of history,
assuming an inestimable historical value and a huge attractive
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charm (Sichenze 2017; Sichenze 2014). The town is claimed as
the third-oldest continually inhabited settlement in the world1.
Understanding the diachronic evolution of the urban morphol-
ogy is important not only for knowledge of the historical context
and the cultural heritage, but also for tracing the hydrological
framework.

Figure 6.2: Sassi view. A millenary layered urban cultural landscape.

In the history of Matera, water played an important role in
driving urban evolution as demonstrated by historical changes
in systems for water collection, storage, drainage, and flows (Lau-
reano 2012; Manfreda et al. 2016; Ermini et al. 2010; Spilotro et al.
2019; Mays 2010; Laureano 2009). The hydrologic traits evolved
across successive generations of urban ecosystems via adapta-
tions over the centuries, shifting according to the changes of
pressures. The cultural importance of water in whittling Matera
life was iconically represented by Japanese artist Kenjiro Azuma
with the big drop shaped sculpture Mu 765 G2 in Piazza Giovanni
Pascoli.

Figure 6.3: Sassi view from an house in via Lombardi.

1 https://www.theguardian.com/travel/2019/sep/01/matera-basilicata

-italy-european-capital-of-culture-2019
2 https://luoghidelcontemporaneo.beniculturali.it/mu-765-g-(la-goc

cia)
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6.1 diachronic evolution of the urban morphology

The studies by Rota (2016) and Laureano (2012) offer probably
the most comprehensive analysis of the historical and ecological
aspects of the evolution through time of the urban morphology
of Matera that can not be separated from the Materan ancient hy-
draulic systems (Manfreda et al. 2016; Ermini et al. 2010; Spilotro
et al. 2019; Mays 2010; Laureano 2009).

Settlements in Matera dates from Palaeolithic age, as testified
by the evidence of prehistoric human occupation on hilltops
and along the cavernous ravines surrounding Matera’s site. Due
to continued reuse of the site of the subterranean spaces and
through expanded urban development of the cliff, datable pre-
historic remains within the urban area are limited to Eneolithic
and Bronze Age artefacts. The early settlers identified the natural
resources and introduced the shaping of caves for habitation and
for water and food storage (Toxey 2009). Neolithic entrenched
villages were found in Murgecchia, Tirlecchia, Trasano, Murgia
Timone, Serra d’Alto, Trasanello, and in the Civita. The distri-
bution of the Neolithic and Paleolithic settlements results from
the proximity of the small Jurio waterfalls, an important natural
reserve of water.

The geomorphology of the Gravina canyon, a deep ravine on
the bottom of which the homonymous stream flows, strongly
influenced the development of the settlements (Figure 6.7).

Figure 6.4: Hydro-morphological elements of Sassi settlement system.

The Civita, the central spur of the Sassi, is delimited by two
torrential incisions called grabiglioni (small ravines, Rota 2016).
On the slopes of the grabiglioni, the Sasso Barisano and the Sasso
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Caveoso developed successively, adopting housing structures con-
sisting of overlapping terraces. The Sassi, meaning boulder, rock,
form an urban complex carved and built in calcarenite (locally
improperly called tuff ). Calcarenite is a calcareous sedimentary
rock of biochemical origin; its availability, ease of quarrying and
workability allowed the settlement and its use as construction
materials since prehistoric times. By contrast, these propitious
features could increase the vulnerability to deterioration pro-
cesses and weathering phenomena.

The Sassi are modeled in a vertical succession of levels totally
or partially excavated and built, depending on the original con-
formation of the slope, integrating the natural terraces with verti-
cal cuts of the calcarenite rock according to the level curves. The
heart of the city formed as a “chthonic construction” that mod-
eled as an urban ecosystem of exchanges with and parsimonious
use of natural elements, especially water, soil and sunlight. The
historical elements of the excavated architecture (hypogea, urban
voids, public and private spaces) epitomize a capacity for adap-
tation and regeneration to natural and anthropic phenomena.
The complex urban system of Sassi lived in a balance of environ-
mental, energetic and poietic sustainability, making up a layered
cultural heritage of a millenary urban knowledge landscape,
which might still suggest strategic solutions to contemporary
issues. In this sense, Matera can be considered a paradigmatic
example of the reinvention of places.

Originally, the Sassi basins hosted a water collection system
for irrigation purposes. The demographic pressures lead to an
increasing need for space and a consequent transformation of
the cisterns for residential purposes (Figure 6.5).

Figure 6.5: Cistern transformed into a dwelling space. Reproduced
from Laureano 2012.

As time went on, architectural types of cisterns and residential
ones intermingled increasingly (Figure 6.6). During the Classical
age (IV century BC), the population is concentrated in scattered
nuclei, mainly on Civita and in Sasso Caveoso.
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Figure 6.6: Jazzo and vicinato. Reproduced from Laureano 2012.

The urban morphology developed along with water infras-
tructures as an adaptive habitat system documenting a millenial
human journey (Figure 6.7).

Figure 6.7: Evolution of the Sassi urban ecosystem. Reproduced from
Laureano 2012, watercolor by D. Giorgi.

The anthropological and spatial optimal balance of the housing
system with stratified terraces and the water collection surface,
storage and consumption ensured a good regulation of surface
and sub-surface waters. The ancient hydraulic systems spread
over overlapping levels combining the different principles of cap-
ture, distillation and condensation. During heavy rains, the rain-
water harvesting systems protected homes and inhabitants from
runoff and erosion phenomena and, at the same time, ensured the
accumulation and use of scarce water resources: the precipitation
was conveyed by gravity from the slopes and roofs (channeled
by means of descending terracotta conduits, Figure 6.8) and col-
lected in a diffused single or neighborhood - vicinato - hypogeal
cistern system. During the dry season, the cisterns accumulated
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condensation water from atmospheric humidity captured by the
caves in the nighttime.

During the early Middle Ages (IX-XI century), monasticism
elements and hydraulic technology blended into a coherent ur-
ban fabric, the rupestrian habitat of Byzantine and oriental origin
representing the rock civilization.

Figure 6.8: Sassi view. The roof is contained in the masonry walls and
descending terracotta conduits are visible on the facade.

In the Norman-Swabian period (XI-XII century) the feudal
system catalyzed the development: the Civita became a fortified
urban center of western origin, whereas outside the walls the
population is distributed in the rocky settlement that forms the
first nuclei of the Sassi. During the Swabian-Angevin phase (XIII-
XIV century) the city becomes an important ecclesiastical center:
the Cathedral and the Old Castle ( Castelvecchio) were built in-
side the walled nucleus of Civita, rock churches and monasteries
developed extra moenia. The terraces of the Sassi structured them-
selves into semirural habitats. The medieval pattern remained
heavily characterized by hypogeum structures following the
morphology of the areas and infrastructural network.

During the Aragonese Renaissance phase (XV-XVI century),
Matera experienced a consolidation of the urban organization.
The Civita became the historic and representative center, the
Sassi were the dwellings for the middle and lower classes, the
Piano developed its urban infrastructure becoming the center of
commercial life and of public administration. Tramontano Castle
was built on a hill outside the medieval city. Construction of
the new city walls and towers began. There was evidence of the
Casalnuovo district and of the Ghetto of Seminario.
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A new expansion (XVII-XVIII century) determines the Baroque
urban arrangements (forma urbis), based on the hierarchy of per-
spective values of the “urban scenes”.

The morphology evolution continued to balance residential
development needs and water infrastructural systems. The dis-
tributed system consisting of single or neighborhood cistern was
expanded with large and central storage tanks, built following
the urban expansions after 1500 and in the second half of the
1800s (e.g. the Palombaro grande lying underneath the main square
Piazza Vittorio Veneto).

Demographic pressures generated significant increases in soil
and water consumption, altering the urban ecosystem balance.
The raw wastewater was still disposed directly into the grabiglioni
which served as an open-air channel for the collection of sewage,
becoming a serious health threat due to the population growth.
The hygienic-social decay in the XIX century caused the displace-
ment of the wealthier classes in the upper margin of the Sassi
(Piano).

At the beginning of the XX century, the water resources were
not sufficient to satisfy the needs of approximately 17, 000 inhab-
itants and the situation became increasingly unsustainable from
the health point of view. The ancient water supply systems were
replaced by a modern aqueduct.
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Figure 6.9: Contemporary urban morphology.

The period immediately following World War II determined
a new demographic context. The distinctive cave homes were
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inadequate for additional housing needs, shared with animals
and riddled with disease. Carlo Levi’s “Christ stopped at Eboli”
brought to national attention the dwelling issues of the Sassi. The
leader of the Italian Communist Party Togliatti was the first to
arrive in the Lucanian city in 1948 and defined the unhealthy
environments as “national shame”. A few years later, De Gasperi,
founder of the Christian Democratic Party and first Prime Min-
ister of the Italian Republic, had declared that evacuating and
resettling Materan peasants was a national priority.

(a) 1951 (b) 1951 (c) 1973

Figure 6.10: Henri Cartier-Bresson: Matera, Basilicata, Italy. © Henri
Cartier-Bresson | Magnum Photos

The distinct catholic and communist ideas about society and ur-
ban planning produced a debate of anthropological, sociological,
and urban interest (Figure 6.10) with a substantial contribution
by Olivetti (president of the National Institute of Urban Plan-
ning) and sociologist Friedman. The government implemented
a rehousing program for Matera’s cave dwellers in 1952. As a
result, the Sassi were gradually emptied and the local population
was rehoused in purpose-built rural villages and urban quarters.
A process of socio-economic and urban planning regeneration,
the Risanamento, led to new districts and purpose-built rural vil-
lages designed by prestigious exponents of contemporary urban
planning and architecture (e.g. La Martella by Quaroni, Serra
Venerdì by Piccinato, Spine Bianche by Aymonino and De Carlo,
etc., e.g. see Figure 6.11), representing an important work of the
current Neorealist Rationalism Italian.
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(a) La Martella by Ludovico Quaroni with Gorio, Lugli
and others (1951/1953)

(b) Spine Bianche by Aymonino, with De Carlo,
Fiorentino and others (1955/1959)

(c) Venusio by Piccinato and others (1954/1957)

Figure 6.11: Some of the new districts of Risanamento.

Since the 1980s, with the restoration of the Sassi, new vital
energies were born, transforming the old poverties into richness.
In 1993, UNESCO granted The Sassi and the Park of the Rupes-
trian Churches of Matera World Heritage status. The city was
an European Capital of Culture in 2019. Matera represents a
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resilient “model” of unique urban-living experience (Sichenze
2014; Macaione, Ippolito, et al. 2018, Figure 6.12).

Figure 6.12: Old and new urban fabric view.

From a hydrologic point of view, nowadays the city suffers
from recurrent urban flooding due to city landscapes (both in the
historical center and in the modern districts) that cannot absorb
or otherwise manage heavy rainfall. The recent events (see Sec-
tion 6.3) triggered by extreme meteorological phenomena demon-
strate the change in the contemporary relationship between man
and water. Most of the ancient infrastructures don’t serve their
original function of regulation of the water regime since replaced
with more efficient modern systems. The grabiglioni were closed
with the arrival of the sewerage system, becoming the access
routes to the Sassi. Although modern water and sewerage in-
frastructures are present, the water-soil-urbanization balance is
profoundly altered. In light of this diachrony between rainwater
and anthropogenic systems, it is important to investigate the cur-
rent dynamics between urban sub-basins and meteoric water in
order to define the strategies of interventions (in particular non-
structural) for risk mitigation, monitoring and response, with
practices involving behavioral factors, information and percep-
tion processes.

In this sense, one of the broader objectives of the research is
the recreation of a novel Materan resilience declined in the field
of urban flood risk.
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Flooding can damage architectural heritage and immovable
cultural heritage. An extreme rainfall event can result in a wide
range of damages caused by different concomitant forces: hori-
zontal static pressure of raised water; upward hydrostatic pres-
sure; dynamic low velocity streams; dynamic high-velocity streams;
dynamic impact of waves; dynamic impact of floating objects;
compacting of soils or infill; changes in subsoil conditions; satu-
ration of materials with water; contamination of materials with
chemical and biological agents; formation of barriers; ice floes;
and post-flood effects (Drdácký 2010).

The geological and urban history of Matera site is graphically
depicted in Figure 6.13 through a series of historically accurate
3D computer graphics generated panoramas, in eight chronolog-
ical phases. The 3D reconstructions were gathered from Matera
città Narrata (Matera: Tales of a City) project3 (Eva Pietroni et al.
2011; E. Pietroni 2012) which is a project realized by the Institute
for Technologies Applied to Cultural Heritage (ITABC CNR) and
supported by the Regional Promotion Agency (APT) and the
Basilicata Regional Government’s Department of Manufactur-
ing/Production Activities, involving a web site and applications
for mobile devices for the access to cultural contents using new
technologies.

Figure 6.13: Matera: Tales of a City - 3D reconstructed panoramas.

3 www.materacittanarrata.it
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6.2 statistics

To frame the urban and territorial system, Census data can pro-
vide fairly accurate information on the characteristics of residents
and buildings. Open data taken from the Istat Census 2011 - 15th
General Census of Population and Housing by Italian National Insti-
tute of Statistics (Istat Istituto Nazionale di Statistica 2011) were
subjected to univariate descriptive statistics to provide bench-
marks of the population and housing stock. The 15th General
Census of Population and Housing is dated 9 October 2011. The
observational field is disaggregated to the sub municipal level
(Figure 6.14).

Figure 6.14: Istat Census 2011: Census sections for Matera Municipality.

Figure 6.15: Macro areas of the Municipal Structural Plan.

The settlement system of Matera is articulated by the Munici-
pal Structural Plan (Piano Strutturale Comunale) in 16 macro-areas:
1 - Zone Artigianali; 2 - Granulari; 3 - Serra Rifusa; 4 - Venusio; 5 -
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San Giacomo - Via La Martella; 6 - San Giacomo; 7 - Spine Bianche;
8 - Piccianello; 9 - Serra Venerdì; 10 - Macamarda - Castello; 11
- Centro Storico; 12 - Lanera - Pini; 13 - Sassi; 14 - Agna; 15 - La
Martella; 16 - Extraurbano (see Figure 6.15). Each urban areas
differs from the others by its functional role, recognizability and
spatial identity.

The residents, i.e. the habitually domiciled population in the
municipal territory, on 1st January 2020 amounted to 60411, with
an average density of about 157 inhab./km2(≈ 404 inhab./sqmi)
(Table 6.1), below the Italian average4. The population is concen-
trated in the urban core of the municipal territory.

SETTLEMENT SYSTEM CENSUS

SECTIONS

[n]

DENSITY

[inhab./ha]

TERRITORY

SURFACE

[ha]

ZONE ARTIGIANALI 18 5.71 82.10

GRANULARI 9 107.90 51.15

SERRA RIFUSA 12 13.88 425.57

VENUSIO 18 0.10 4914.18

SAN GIACOMO - VIA LA MARTELLA 9 5.71 45.42

SAN GIACOMO 6 93.84 33.42

SPINE BIANCHE 29 88.62 41.04

PICCIANELLO 64 83.35 58.08

SERRA VENERDÌ 41 87.33 57.05

MACAMARDA - CASTELLO 35 5.71 110.87

CENTRO STORICO 29 99.37 31.79

LANERA PINI 25 59.06 76.42

SASSI 5 49.87 38.02

AGNA 25 5.71 79.35

LA MARTELLA 12 0.80 2928.84

EXTRAURBANO 76 0.07 29858.72

Total 413 1.57 38832.02

Table 6.1: Population and density of the macro areas.

The population analysis delineated the individual’s charac-
teristics, e.g. age and ethnicity, that influence the perception of
social responsibility which is a driving factor in building com-

4 https://www.indexmundi.com/
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munity flood resilience through individual and collective actions
(Soetanto et al. 2017).
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Data source: ISTAT Rilevazione amministrativa

Figure 6.16: Demographic pyramid: Resident population by age and
sex.

To graphically illustrate the age and sex composition of the
population, a demographic pyramid was traced in Figure 6.16
using a paired bar chart-type graphic.

Population can be described by a Constrictive pyramid: res-
idents have long life expectancy, a low death rate, but also a
low birth rate. The percentage of elderly population is extremely
high, this can increase flood risk: people aged 65 or over tend to
be more vulnerable and experience greater impacts from flood
events, such as restriction of access to medicine, personal aids,
health treatments or equipment, etc. Aging may also affect the
level of preparedness, capacity to cope during events, ability to
respond and recover.

The education level is not particularly high and there is a
significant rate of illiteracy and low literacy (Figure 6.17).

The gender gap is close to zero: the average level of educational
attainment among men presents values that are similar to the
average level of educational attainment among women.

Lower education level and low degree of numeracy is associ-
ated with higher vulnerability of population: it tend to affect risk
perception, awareness and coping capacity at both individual
and community level.
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Figure 6.17: Educational attainment of resident population in the entire
Municipal territory of Matera by sex

Ethnicity and migration status are additional factors of flood-
related social vulnerability since these may impose cultural and
language barriers, but resident foreigner presence in Matera
municipality is pretty low so it isn’t a significant contributory
factor to the development of the risk (Figure 6.18).
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Figure 6.18: Resident foreigner by macro areas and origin

115



Exposed population must include not only the resident pop-
ulation, but in general the population present temporarily or
occasionally, namely the commuters (Figure 6.19) and tourists
who enter and leave the municipal territory every day for differ-
ent reasons.

Flood can affect also transport links and commuter routes
through the town.
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Figure 6.19: Commuting flow towards Matera
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Matera, since its nomination and acquisition of the title of Eu-
ropean Capital of Culture in 2019, has experienced a constant
rise in both international and domestic tourism (Figure 6.20). The
popular viewpoints and main attractiveness points are concen-
trated in the Sassi area. The significant presence of tourists in the
town’s territory can lead to the doubling of the population at
certain times of the year.

The presence of tourist from different part of the World in-
creases the population exposed at the risk and requires a simple,
iconographic and/or multilingual communication targeted at
users with little or no knowledge of the territorial and historical
context.
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Figure 6.20: Touristic flows towards Matera.

The surveys concerned not only the population but also the
state, type of use and of utilization of the building heritage. Build-
ings and buildings complex definitions include constructions
containing spaces permanently destined for use by people as
living space and/or for the production of goods and services.
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A building or buildings complex (Figure 6.21) is classified as
used if is used totally or partially for residential and/or goods
and services production purposes at the census reference period,
but also when it is ready to be used, even if not actually used.
Otherwise, is classified as not used if is not ready yet (e.g. under
construction) or doesn’t fit residential and/or production needs
because in a state of decay.
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Figure 6.21: Utilized buildings.

The type of use of buildings and buildings complex construc-
tion of the building in function of the destination which it was
made for; residential buildings may have a consistent part occu-
pied by offices and other economic activities that, during the time,
have taken place in a structure built for residential purposes; it
is, also, possible to have conventional dwellings in structures de-
signed for non-residential purposes, as institutional households,
hotels, etc.

The residential building (Figure 6.22) classification includes:
buildings designed, constructed and used exclusively for residen-
tial purposes (such as detached houses, villas, cottages, terraced
houses, etc.); buildings designed, constructed and used mainly
for residential purposes (such as multi-apartment buildings or
apartment blocks with shops at street level, etc.); buildings that,
though not originally designed and constructed for residential
purposes, over time changed use becoming residential; a build-
ing which, though originally designed and constructed for res-
idential purposes, over time changed use becoming no longer
a residential building (e.g. a very common case in Matera is a
residential building which has become a Bed & Breakfast activ-
ity). Types of use of a building are: residential (used mainly for
residential purposes), production (industry, handicraft, agricul-
ture, general production), commercial (retail, wholesale, public
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stores), business district/tertiary (public and private administrative
offices, financial districts, insurance companies and representa-
tive offices), turist/receptive (tourist residences, hotels, convention
centers, health spa, camping areas), services (services to person:
cultural, social, health, welfare and hospital services, sport fa-
cilities, education, technological systems, public parking lots,
fairs/exhibitions, park areas/gardens; services to community:
barracks, prisons, etc.), other (religious institutions, churches,
etc.).

The construction materials and methods of construction (Fig-
ure 6.23), the period of construction (Figure 6.24), the state (Fig-
ure 6.25), layouts and facade finishing play an important role
in determining the potential for exposure to floodwater and re-
silience against floods.

The number of the floors of a building includes the basement
and the ground floor (Figure 6.26).
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Figure 6.22: Buildings and buildings complex by type of use.

53
 - 

73
.6

1 
%

4 
- 2

.9
2 

%

45
 - 

10
.8

7 
%

11
2 

- 5
9.

57
 %

6 
- 3

.2
3 

%

56
 - 

39
.4

4 
%

23
 - 

19
.3

3 
%

15
7 

- 5
3.

77
 %

7 
- 2

.9
3 

%

12
6 

- 3
0.

43
 %

28
2 

- 7
9.

44
 %

87
 - 

26
.6

9 
%

53
7 

- 9
9.

44
 %

15
3 

- 3
9.

13
 %

25
3 

- 5
2.

82
 %

20
1 

- 3
6.

35
 %

21
02

 - 
43

.3
2 

%

13
 - 

18
.0

6 
%

13
3 

- 9
7.

08
 %

34
3 

- 8
2.

85
 %

51
 - 

27
.1

3 
%

17
1 

- 9
1.

94
 %

86
 - 

60
.5

6 
%

96
 - 

80
.6

7 
%

10
7 

- 3
6.

64
 %

23
2 

- 9
7.

07
 %

28
2 

- 6
8.

12
 %

64
 - 

18
.0

3 
%

23
7 

- 7
2.

7 
%

3 
- 0

.5
6 

%

23
4 

- 5
9.

85
 %

18
1 

- 3
7.

79
 %

23
9 

- 4
3.

22
 %

24
77

 - 
51

.0
5 

%

6 
- 8

.3
3 

%

0 
- 0

 %

26
 - 

6.
28

 %

25
 - 

13
.3

 %

9 
- 4

.8
4 

%

0 
- 0

 %

0 
- 0

 %

28
 - 

9.
59

 %

0 
- 0

 %

6 
- 1

.4
5 

%

9 
- 2

.5
4 

%

2 
- 0

.6
1 

%

0 
- 0

 %

4 
- 1

.0
2 

%

45
 - 

9.
39

 %

11
3 

- 2
0.

43
 %

27
3 

- 5
.6

3 
%

0

500

1000

1500

2000

2500

3000

1 
- Z

on
e 

A
rt

ig
ia

na
li

2 
- G

ra
nu

la
ri

3 
- S

er
ra

 R
ifu

sa

4 
- V

en
us

io

5 
- S

an
 G

ia
co

m
o 

- 
V

ia
 L

a 
M

ar
te

lla

6 
- S

an
 G

ia
co

m
o

7 
- S

pi
ne

 B
ia

nc
he

8 
- P

ic
ci

an
el

lo

9 
- S

er
ra

 V
en

er
dì

10
 - 

M
ac

am
ar

da
 - 

C
as

te
llo

11
 - 

C
en

tr
o 

St
or

ic
o

12
 - 

La
ne

ra
 P

in
i

13
 - 

Sa
ss

i

14
 - 

A
gn

a

15
 - 

La
 M

ar
te

lla

16
 - 

Ex
tr

au
rb

an
o

En
tir

e 
M

un
ic

ip
al

 
Te

rr
ito

ry
 o

f M
at

er
a

Macroareas of the Settlement System

N
um

be
r o

f b
ui

ld
in

gs

Structural frame building material
Residential buildings 
load-bearing wall
Residential buildings 
renforced concrete
Residential buildings 
other material

RESIDENTIAL BUILDINGS BY BUILDING MATERIAL

Data source: ISTAT CENSUS 2011

Figure 6.23: Residential buildings by structural frame building mate-
rial.
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Figure 6.24: Residential buildings by period of construction.
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Figure 6.25: Residential buildings by state.
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Figure 6.26: Residential buildings by number of floors
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6.3 critical points - past flood events

In the last decade, the city suffered from urban flooding due to
the landscape assets that cannot manage rainfall. The urban mor-
phology evolution, the surfaces, and topographic characteristics,
as well as the climatic context, increase the proneness and the
susceptibility to pluvial floods, caused by heavy precipitation on
a local scale and having disastrous impacts (see Figure 1.5).

In the absence of a rigorous systematic catalog of urban flood
events, a data collection was carried out to ascertain the past
heavy precipitation effects and map the zones most hit by past
flooding. Observations (mainly photographs and video), stake-
holders testimonials, and disaster reports were collected from
several secondary sources: national press, local press, and social
media searching inherent keywords in Italian and English. Using
such information and available pluviometric data obtained from
the Decentralized Functional Center of Basilicata (Centro Fun-
zionale Decentrato Basilicata, Protezione Civile Basilicata n.d.),
shown in Figure 6.27, it was possible to select a sample of past
flood events. There were no available precipitation data for the
event of 27 March 2015.

Several zones of Matera urban settlement appeared particu-
larly prone to severe precipitation related risk. The observations
were consistent with the simulation of urban pluvial flood con-
ducted with a modified FLORA2D (Cantisani et al. 2014) model
by Mancusi et al. (2019) and were used to delineate the historical
context for the development of the web prototyping tool for flood
risk communication at local scale presented in Section 6.7.
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Figure 6.27: Precipitation data for past flood events: 1-hour accumu-
lated rainfall in Matera.
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CARTOGRAPHIC DATA SOURCES Open Street Map | Geoportale Basilicata

matera  - マテーラmatera  - マテーラ



H
eavy precipitation event: 12 N

ovem
ber 2019

1928

CRITICAL POINT Piazza Vittorio Veneto  MACROAREA  Sassi  VIEW POINT 40°39’58”N 16°36’22”
DATA SOURCE Google Earth | Google street view | muvmatera.it | Facebook | http://www.sassilive.it

matera  - マテーラmatera  - マテーラ



H
eavy precipitation event: 3 A

ugust 2018
12 November 2019

CRITICAL POINT Piazza San Pietro Caveoso   MACROAREA  Sassi  VIEW POINT 40°39’55”N 16°36’46”E
DATA SOURCE Google Earth | Google street view | Facebook | Twitter | http://www.sassilive.it |https://www.inmeteo.net



Extrem
e rainfall event sim

ulation 
(return period 30 years)

M
ancusi et al. 2019

9 July 2013
H

eavy precipitation event: 24 M
ay 2014

CRITICAL POINT Sant’Agostino MaCROAREA  Sassi  VIEW POINT 40°40’10”N 16°36’41”E
                      via Madonna delle Virtù
DATA SOURCE Google Earth | Google street view | http://www.meteoweb.eu/ | http://www.sassilive.it



Extrem
e rainfall event sim

ulation 
(return period 30 years)

M
ancusi et al. 2019

H
eavy precipitation event: 9 July 2013

27 M
arch 2015

CRITICAL POINT via Manzoni MACROAREA  Spine Bianche  VIEW POINT 40°40’14”N 16°35’40”E
DATA SOURCE Google Earth | Google street view | YouTube | https://www.sassiland.com/



Extrem
e rainfall event sim

ulation 
(return period 30 years)

M
ancusi et al. 2019

27 M
arch 2015

10 Septem
ber 2016

9 July 2013

CRITICAL POINT via Cererie MACROAREA  Piccianello VIEW POINT 40°40’31”N 16°36’07”E
                      (ex stabilimento Barilla - former Barilla factory)
DATA SOURCE Google Earth | Google street view | http://www.sassiland.com | https://giornalemio.it/



3 A
ugust 2018

9 July 2013

CRITICAL POINT via La Martella MACROAREA  Zone Artigianali | Extraurbano VIEW POINT 40°40’04”N 16°34’45”E
DATA SOURCE Google Earth | Google street view | http://www.sassiland.com | https://giornalemio.it/



6.4 matera thermo-pluviometric data

At the present time, the available rainfall and temperature data
for the Matera urban area is obtained from measurements of only
one weather station located near the boundaries of extra-urban
macroarea owned by the Regional Civil Protection (Protezione
Civile Basilicata n.d., Table 6.2 and Figure 6.28) .

Address ISTITUTO PROFESSIONALE

Watershed BRADANO

Latitude 40° 39’ 35" N

Longitude 16° 35’ 43" E

Altitude 475 m above sea level

Table 6.2: Matera weather station.

Figure 6.28: Matera weather station location.

Not all observations are continuous: the gaps in the recorded
air temperature and hourly precipitation are evident (Figure 6.29).

There is a demand for cost-effective techniques to enhance
the availability and size of rainfall data for a proper catchment
representation at urban scale.
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Figure 6.29: Recorded air temperature and hourly precipitation. Data
source Protezione Civile Basilicata (n.d.).
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6.5 bari - matera 5g project

The research can benefit from innovative areas in components,
systems, networking and web technologies.

The measurement algorithms and data assimilation techniques
must be harmonized to improve the rainfall monitoring ability
in order to produce a tangible impact on the smart management
of flood risk.

This can be achieved by increasing the efficiency of opera-
tional time in emergency management by reducing latency and
enabling real-time.

These goals can be reached by using the latest stage in the
evolution of mobile communications: the 5th Generation mobile
network (5G) telecommunication standards (Xiang et al. 2017).
5G systems not only provide faster speeds than 4G, but also of-
fer higher capacity, higher density of mobile broadband users,
device-to-device communication support, simultaneous connec-
tions for wireless sensors, higher spectral and efficiency, lower
latency and better coverage. This means that the system suits a
wide range of use cases, such as better implementation of the
Internet of Things (IoT), as well as broadcast-like (real-time) ser-
vices and lifeline emergency communication in case of natural
disasters.

The Bari - Matera 5G project: together for the Digital Future5

(Chapter 4) was developed by Telecom Italia S.p.A. (TIM) , Fast-
web and Huawei, which as a consortium won the call for tenders
of the Ministry of Economic Development. The project includes
55 Partners such as Universities and Research Centers, PA and
public interest communities, Companies in Puglia and Basilicata,
and Industry segment leaders and startups. The project sets the
cities of Bari and Matera to become the first “5G cities” in the
South testing several innovative services and new technology.
The Action Plan (2017-2021) involves network coverage in 10
areas (media - virtual reality, smart port, smart city, smart agri-
culture, public safety, industry 4.0, health 5.0, mobility - road
safety, tourism and culture, environmental monitoring) and ser-
vice development including 70 examples of use.

5 http://www.barimatera5g.it/
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Figure 6.30: Bari - Matera 5G project: together for the Digital Future.

6.6 real-world deployment of the binary model

In order to estimate the skills of the binary classification model
proposed in the Chapter 4 in a real world unconstrained opera-
tional setting, it was built a completely new set of input images.
The first test set was obtained from the same sources of the train-
ing and validation sets (Table 4.1) so it contained pictures coming
from the same sources, representing both natural rain and rain
produced in the Large-scale Rainfall Simulator of the NIED.

For the real world model deployment, the source of the picture
was a Reolink surveillance camera installed by TIM within the
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Bari - Matera 5G project6 without any special setting aimed to
enhance the precipitation visibility. In fact the webcam was set
for the Public Safety case using 5G network connectivity testing
(Figure 6.31).

Figure 6.31: TIM Surveillance camera location

The camera frames piazza Vittorio Veneto - the main square
in the historical center of Matera city - and its hypogeum (Fig-
ure 6.32). Being a cultural tourist attraction point, the scene is
often populated by moving pedestrians, bicycles, police cars, and
service vehicles.

Figure 6.32: Real use case: Surveillance camera framing Vittorio Veneto
square and hypogeum.

The test set is strongly independent of the training and valida-
tion data sets used in Chapter 4, but follows the same balanced
probability distribution of the classes. It contains 2360 unseen

6 http://www.barimatera5g.it/
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examples, 1180 instances for the WR class and 1180 for the NR
class. The resolution of the color picture was 2560× 1920 pixels.

The ground truth was created by labeling manually the pic-
tures that displayed visible precipitation streaks or raindrops
and selecting the same number of frames that displayed a clean
background, with as many lightning conditions as possible (i.e.
with diverse capture time).

The presence of rain was verified with rainfall data collected
both from the Japan Aerospace Exploration Agency (JAXA) Global
Rainfall Watch - Global Satellite Mapping of Precipitation (GSMaP)
Project7 (Japan Aerospace Exploration Agency n.d.; K.i. Okamoto
et al. 2005; Kubota et al. 2007; Kenichi Okamoto et al. 2008) and
the Centro Funzionale Decentrato Basilicata8 (Protezione Civile
Basilicata n.d.).

(a) JAXA Global Rainfall
Watch (GSMaP)

(b) Centro Funzionale Decentra-
to Basilicata
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(c) Comparison of the precipitation data

Figure 6.33: Data used to verify the manual labeling of images (pres-
ence of rain).

7 https://sharaku.eorc.jaxa.jp/GSMaP/
8 http://www.centrofunzionalebasilicata.it/
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The learned model was used to generate prediction on the
test TIM data set (Table 6.3) to validate the preliminary results
discussed in the Chapter 4.

IMAGE ACTUAL PREDICTED ERROR

1 piazza_vittorio_veneto_01_20200313074502.jpg NR NR

2 piazza_vittorio_veneto_01_20200323151537.jpg NR NR

3 piazza_vittorio_veneto_01_20200324101048.jpg NR NR

4 piazza_vittorio_veneto_01_20200314184448.jpg NR NR

5 piazza_vittorio_veneto_01_20200326205100.jpg WR WR

6 piazza_vittorio_veneto_01_20200326222402.jpg WR WR

7 piazza_vittorio_veneto_01_20200324104733.jpg NR NR

8 piazza_vittorio_veneto_01_20200326195802.jpg WR NR <—

9 piazza_vittorio_veneto_01_20200326070617.jpg WR WR

10 piazza_vittorio_veneto_01_20200326095658.jpg WR NR <—

11 piazza_vittorio_veneto_01_20200313052720.jpg NR NR

12 piazza_vittorio_veneto_01_20200323080858.jpg NR NR

13 piazza_vittorio_veneto_01_20200326211701.jpg WR WR

14 piazza_vittorio_veneto_01_20200326014951.jpg WR WR

15 piazza_vittorio_veneto_01_20200326013750.jpg WR WR

16 piazza_vittorio_veneto_01_20200313063735.jpg NR NR

17 piazza_vittorio_veneto_01_20200326024851.jpg WR WR

18 piazza_vittorio_veneto_01_20200326195003.jpg WR WR

19 piazza_vittorio_veneto_01_20200313093527.jpg NR NR

20 piazza_vittorio_veneto_01_20200326123612.jpg WR NR <—

Table 6.3: Predicted classification on a sample of 20 pictures from the
test TIM data set.

To assess the quality of the predictions on new pictures, the
confusion matrix was constructed over the entire test set.

The confusion matrix, reported in Table 6.4, opposes instances
in a predicted class (model response) against instances in an
actual class. The correct predictions represented by values in the
diagonal of the matrix while the prediction errors are located
outside the diagonal.

Given the WR label (presence of rain) as the positive class and
NR (absence of rain) as the negative class, it was counted the
number of TP, FP, TN and FN to calculate the useful metrics.
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REFERENCE

Positive = WR Negative = NR

PREDICTION
Positive = WR 884 of TP 97 of FP

Negative = NR 296 of FN 1083 of TN

Table 6.4: Confusion matrix for the binary classification problem - TIM
dataset

The accuracy value, with p-value equal to 4x10−14, and the loss
of entropy were computed on the TIM image set and compared
to the previous binary test set (in brackets) of the Section 4.2.2:

Overall accuracy =
(TP + TN)

(TP + FP + FN + TN)
= 83.35% (85.28%)

Reference values: worst=0, best=100.

Cross Entropy = −
C′=2

∑
i=1

tilog(si)

= −t1log(s1)− (1− t1)log(1− s1)

= 0.3960878 (0.3400635)

Reference values: perfect ≈ 0, good < 0.69, bad ≥ 0.69.
Both TIM image set and binary test set share a significant

outcome. The metrics values were similar to that obtained in
the Section 4.2.2, exhibiting a rather high reliability of predic-
tion made by the model (Chicco and Jurman 2020; Zheng 2015;
Murphy 2012; McHugh 2012).

Sensitivity− Recall =
TP

(TP + FN)
= 74.92% (90.44%)

Reference values: worst=0, best=100.

Speci f ity =
TN

(FP + TN)
= 91.7% (80.13%)

Reference values: worst=0, best=100.

Precision =
TP

TP + FP
= 90.11% (81.98%)

Reference values: worst=0, best=100.
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F1 =
(1 + β2)× precision× recall
(β2 × precision) + recall

=
2× precision× recall

precision + recall
= 0.8181 (0.8600)

Reference values: worst=0, best=1 (β = 1).

Cohen′s kappa = k =
po − pe

1− pe
= 1− 1− po

1− pe

= 0.6669 (0.7057)

Reference values:

• κ ≤ 0 indicates no agreement;

• 0.01 < κ < 0.20 indicates no to slight agreement;

• 0.21 < κ < 0.40 indicates fair agreement;

• 0.41 < κ < 0.60 indicates moderate agreement;

• 0.61 < κ < 0.80 indicates substantial agreement;

• 0.81 < κ < 1 indicates almost perfect agreement

MCC =
TP× TN − FP× FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

= 0.6766 (0.7094)

Reference values: worst=−1, best=+1.
Compared to the test results, the model deployed on the TIM

camera pictures dis-closes lower sensitivity, ≈ 75%, but higher
specificity, ≈ 92% , and precision, ≈ 91%. That means that the
pictures marked as relevant instances (WR) were actually rele-
vant, so the alerts are likely to be true. On the other hand, the
higher false negative rate may underestimate the pluviometric
forcing.

Considering an optimal balance of recall and precision, F1
score is close to the ideal value 1 in both the test evaluation
and the experiment evaluation. The model withstood the drastic
change in the data sets, as the images were completely new.

Figure 6.34 displays a frame in rainy condition (26th March
2020) and a visual explanation of the CNN binary classification:
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the Gradient-weighted Class Activation Mapping (Grad-CAM)
(Selvaraju et al. 2016), a heatmap visualizing the input regions
considered “important” for predictions by the classifier. It’s inter-
esting to note that the parts of the image judged more rainy-like
(strongly activated in the Grad-CAM) by the binary model are the
portions of the scene obstructed by the raindrops accumulated
on the lens of the surveillance camera.

Figure 6.34: Gradient-weighted Class Activation Mapping of a rainy
frame of Matera.

To benchmark the code execution performances, the R code
was profiled using the Profvis library (Chang and Luraschi 2018).
The profiling data were collected on different sample of the data
set. The flame graph (Figure 6.35) blocks represent the memory
allocated or deallocated in megabytes [Mb] and the time spent
in in milliseconds [ms] for a given call stack: libraries loading,
model loading and compiling, prediction and evaluation.

Figure 6.35: Algorithm profiling: the model applied on pictures of a
real event in Matera.
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The results of the model deployment on the real use case were
encouraging for the binary classification problem that detects the
presence or the absence of liquid precipitation.

The experimentation on a real world scenario raises the pos-
sibility that the use of real rain images can help in setting up a
monitoring and warning system of the pluviometric forcing.

6.7 mateera: a web prototyping tool for flood risk communication
at local scale

MATera Extreme Events Resilience and Awareness (MATEERA)
is a web prototyping tool for flood risk communication at local
scale developed within the Environmental Monitoring and Natural
Risk Management use case of Bari - Matera 5G project (Framework
agreement: Accordo quadro per la fornitura di progetti di ricerca stip-
ulato tra Università degli studi della Basilicata e Telecom Italia S.p.A.
di durata quadriennale nell’ambito della sperimentazione della rete
5G Bari- Matera), working group: Aurelia Sole, Raffaele Albano,
Vincenzo Scuccimarra, Nicla Maria Notarangelo and Nunzia
Laguardia.

The MATEERA logo (Figure 6.36) was designed as a combina-
tion of visual and verbal elements: the unique Matera skyline, the
drop shape (modeled on the aforementioned Mu 765 G sculpture
by Azuma) and an exclamation mark to create a very simple
and easily rememberable image that can leave a comprehensible
impression on the observer. The used symbols are commonly
understandable: the skyline recalls the specificity of the Matera
study case, the water drop symbolizes the heavy rainfall, and the
exclamation mark is widely adopted in many contexts to draw
attention to warnings of danger, hazards, or precaution.

Figure 6.36: MATera Extreme Events Resilience and Awareness - logo.

The European Floods Directive (Section 1.2) states the crucial
role played by non-structural measures based on Early Warning
Systems in flood risk management. Starting from the theoreti-
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cal framework traced in Section 1.3, the prototype MATEERA
was developed to model the significant and competing factors
influencing urban flood risk induced by rainfall in the city of
Matera and to reduce the residual risk by intervening on its
components (hazard, vulnerability and exposure), integrating
scientific methodology, innovative technology, and user-friendly
communication.

The web portal was designed to be a people-centered Early
Warning tool for risk communication at local scale entailing:

1. Hydro-meteorological forecasting (Protezione Civile Basili-
cata n.d.);

2. Pluviometric monitoring using cameras (Chapter 4, Chap-
ter 5);

3. Historical events data (Section 6.3), with visual documents
to surrogate the “experience of flooding” that increase re-
silience (Soetanto et al. 2017);

4. Hydrodynamic models to map flood risk at urban scale
(Mancusi et al. 2019);

5. Life saving tips - Rules for self-protection in the event of an
alarm (Appendix C).

The web-based geographical information system (WebGIS) aims
to enhance the flood resilience at a community level, increasing
understanding and knowledge, thus enhancing awareness and
behavioral response.

An example of the website functioning is given in Figure 6.37:
the past critical observation are indicated with points in dif-
ferent shades of orange, the flood extent and water depth cal-
culated on the basis of the recorded pluviometric level in the
sub-catchement recorded by the camera-based gauges and ren-
dered in user-friendly maps (Figure 6.37a); the pluviometric level
is compared with past events data (Figure 6.37b); self-protection
tips are showed on the basis of the event (Figure 6.37c).
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(a) Map of flood extent and water depth calculated on the basis of the
recorded pluviometric level in the sub-catchement

(b) Past event data comparison

(c) Self-protection tips in the event of an alarm

Figure 6.37: Screenshots of MATEERA website.
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7
C o n c l u s i o n s a n d F u t u r e W o r k

In this study, it was proposed a method for near real-time heavy
rainfall monitoring at local scale for flood risk mitigation in
vulnerable urban and suburban areas.

The general goal was disaster resilience enhancement through
a technological evolution of risk prevention.

Benefiting from innovative techniques, the specific aim was
to investigate the use of easily available photographing devices
as rain detectors-gauges to develop a dense network of low-cost
rainfall sensors to support the traditional methods. Using a DL
approach based on Transfer Learning with CNN, the rainfall
information was gathered from single photographs taken in very
generalizable conditions.

The first scenario of interest for supervised learning was a
binary classification whose outputs indicated the presence of pre-
cipitation: the cameras act as rain detectors. Similarly, the second
scenario of interest was a multi-class classification; the multi-
class outputs described ranges of quasi-instantaneous rainfall
intensity: the cameras act as rain estimators.

The preparation of the classifiers included the preparation of
suitable dataset mimicking real-world scenarios: the chosen im-
ages were acquired from varying sources both for the binary case
(Image2Weather dataset, dashcams in the Tokyo Metropolitan
area and experiments in the aforementioned Simulator) and for
the multiclass model (dashcams in the Honshu, Shikoku and
Kyushu Regions in Japan and experiments in the Simulator).

The presented methods for rainfall detection and rainfall in-
tensity estimation were shown to produce good outcomes en-
compassing unconstrained verisimilar settings. The results of
the tests and the deployment on the real-world scenario were
encouraging for both the binary classification and multi-class
classification problems. The case study, the city of Matera (Italy),
proved the immediate applicability at an operational level of the
theoretical variables considered and methodological components
chosen. The experimental activities with a pre-existent surveil-
lance camera within the “Bari Matera 5G” project provided a
promising perspective on the smart environmental monitoring
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using 5G connectivity. The binary model reached accuracy and F1
score values of 85.28% and 0.86 for the test, and 83.35% and 0.82
for the deployment. The multi-class model reached test average
accuracy and macro-averaged F1 score values of 77.71% and 0.73
for the 6-way classifier, and 78.05% and 0.81 for the 5-class. The
best performances were obtained in heavy rainfall and no-rain
conditions, whereas the mispredictions are related to less severe
precipitation, serving the purpose of monitoring in case of severe
rainfall events.

The results achieved surpass the earlier work in this area in
terms of flexibility and simplicity of application. As opposed to
existing literature, the study focused on maximizing the number
of image sources (like smartphones, general-purpose surveil-
lance cameras, dashboard cameras, webcams, digital cameras,
etc.), entailing the cases where it is not possible to adjust the
camera parameters or obtain shots in timelines or videos.

The proposed approach has limited operational requirements.
It used heterogeneous and easily producible input data: the im-
ages were acquired from disparate sources in different lighting
conditions, without particular requirements in terms of the shoot-
ing settings and, since each image is classified independently, the
detection doesn’t require any sequence or continuous shooting
or videos. In comparison with image sequences or video, single
images comprise independently the scene information, with a
consequent decrease in the amount of data that needs to be pro-
cessed, stored, and transferred. Once the training phase is over,
computational times are extremely reduced. The Convolutional
Neural Networks (CNNs) can easily exploit pre-existent devices
and be convenient for systems that need to be implemented
quickly, yielding a fairly rapid, simple and expeditious solution,
easily embeddable in intelligent devices.

The system can be managed locally, remotely or via cloud by
programming electronic devices (such as smart cameras or IoT de-
vices) for recording and transmitting the rain data. The model can
retrieve rainfall information by processing data collected from
different sources located in a fixed place (surveillance cameras)
or moving (smartphones, dash-cams, action-cams), contributing
to the traditional monitoring networks and forecast systems.

Despite being a prototype, it offers a first operative tool based
on artificial vision techniques which can contribute to creating a
support sensors network for the characterization of rainfall with
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a parsimonious approach in terms of economic and computa-
tional resources.

The provided information, whilst being qualitative, can be
of practical value for flood early warning systems based on the
identification of a meteorological trigger indicator. This approach
is especially useful in urban areas where measurement methods
such as rain gauges encounter installation difficulties or opera-
tional limitations or in contexts where there is no availability of
remote sensing data.

This finding can help define novel strategies for meteorological-
hydrological studies on a local scale in urban areas: the informa-
tion can be used in targeted interventions aimed at building-up a
hyperlocal information infrastructure integrating low-cost sensor
and crowdsourced data that suits the future needs in terms of
spatial and temporal resolution, scalability, heterogeneity, and
dynamicity.

The major limitation of the proposed approach concerns the
approximations inherent in the outputs. Additional data may be
gathered to address gaps that are apparent and improve the accu-
racy of the precipitation intensity prediction. Another limitation
can stem from possible ambiguities in the visual appearance of
pictures: the system does not suit scenes that are also misleading
for human visual perception.

Taken together, the obtained results suggest that using a DL
method is an efficient strategy for the CV task of gathering rain-
fall information using cameras as low-cost sensors and it can be
replicated, updated, fine-tuned, and extended in the future.

New technologies and non-conventional data sources offer
great potential for engagement and co-production of knowledge
to improve the representation of urban precipitation fields to
build-up extreme events resilience.

Future directions might be related to the enhancement of the
observational capability through an increase in spatial density
of rain observations by further experiments and application to
crowdsourced pictures of rain acquired with any available de-
vice. The results can be incrementally improved through public
initiatives such as development of apps, workshops, seminars,
hashtag campaigns, etc. Thus, users con become volunteer sen-
sors (Goodchild 2007) and collaborate to generate useful content.

The integration of conventional monitoring networks with op-
portunistic sensing (Dickinson et al. 2010), voluntary geographic
information (Goodchild 2007), and crowdsourced data can pro-
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mote communication, participation, and dialogue among stake-
holders and increase public awareness, emergency response, and
civic engagement through the smart city (Riva Sanseverino et al.
2017) and smart community idea.
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Part IV

A p p e n d i x





A
D i a c h r o n i c L e g a l F r a m e w o r k

An overview of Diachronic Legal Framework in Italy inherent to
the field of study is given in the following timeline:

1877 ROYAL DECREE NO. 3918/1877
Regio Decreto n. 3918/1877
One of the first regulatory interventions regarding specific restrictions
for the protection of forests (‘forest restriction’)

1904 ROYAL DECREE NO. 523/1904, “CONSOLIDATED ACT OF THE LEGAL

PROVISIONS CONCERNING THE HYDRAULIC WORKS OF THE VARIOUS

CATEGORIES”
Regio Decreto n. 523/1904 “Testo unico delle disposizioni di legge intorno
alle opere idrauliche delle diverse categorie”

1910 LAW NO. 277/1910
Legge n. 277/1910
Law aimed at purchasing woods and land for the constitution of the
State property forest

1911 Law 13 no. 774/1911
Legge 13 luglio 1911, n. 774
Law containing measures for the hydraulic-forestry arrangement of
mountain watersheds, for other hydraulic works and for reclamation

1912 MINISTERIAL DECREE OF 20 AUGUST 1912 “APPROVAL OF THE

RULES FOR THE PREPARATION OF HYDRAULIC-FORESTRY WORKS

PROJECTS IN MOUNTAIN BASINS”
Decreto ministeriale 20 agosto 1912 “Approvazione delle norme per la
preparazione dei progetti di lavori di sistemazione idraulico-forestale nei
bacini montani”

1923 ROYAL DECREE NO. 3267/1923 “REORGANIZATION AND REFORM

OF THE LEGISLATION ON FORESTS AND MOUNTAIN LAND”
Regio Decreto n. 3267/1923 “Riordinamento e riforma della legislazione in
materia di boschi e terreni montani”
It limits and regulates the anthropic action in areas subject to
hydrogeological restriction

1926 ROYAL DECREE NO. 1126/1962
Regio Decreto 16 maggio 1926, n. 1126
It identifies the criteria for delimiting the areas subject to restrictions
and for issuing authorizations.

1933 ROYAL DECREE NO. 215/1933
Regio Decreto n.215/1933
It defines the reclamation works to be applied in mountain soils that
are damaged from an hydrogeological and forestry point of view.

1933 CONSOLIDATED ACT NO. 1775/1933 “CONSOLIDATED ACT OF THE

PROVISIONS OF LAW ON WATER AND ELECTRICAL SYSTEMS”
Testo Unico n. 1775 /1933“Testo unico delle disposizioni di legge sulle acque
e impianti elettrici”
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1952 LAW NO. 184/1952 “ORIENTATION PLAN FOR THE PURPOSES OF A

SYSTEMATIC REGULATION OF WATER AND ANNUAL REPORT BY THE

MINISTRY OF PUBLIC WORKS”
Legge n. 184/1952 “Piano orientativo ai fini di una sistematica regolazione
delle acque e relazione annua del Ministero dei lavori pubblici”

1962 LAW NO. 11/1962 “IMPLEMENTATION PLAN FOR A SYSTEMATIC

REGULATION OF NATURAL WATER COURSES”
Legge n. 11/1962 “Piano di attuazione per una sistematica regolazione dei
corsi di acqua naturali”

1967 LAW NO. 632/1967 “AUTHORIZATION OF EXPENDITURE FOR THE

EXECUTION OF LAND IMPROVEMENT AND DEFENSE WORKS”
Legge n. 632/1967 “Autorizzazione di spesa per l’esecuzione di opere di
sistemazione e difesa del suolo”

1971 LAW N. 1102/1971
Legge n. 1102/1971
Establishment of the Mountain Communities

1972 DECREE OF THE PRESIDENT OF THE REPUBLIC NO. 11/1972
“TRANSFER OF STATE ADMINISTRATIVE FUNCTIONS ON

AGRICULTURE AND FORESTS, HUNTING AND FISHING IN INLAND

WATERS AND RELATED PERSONNEL AND OFFICES TO THE REGIONS

WITH ORDINARY STATUTE”
Decreto del Presidente della Repubblica n.11/1972 “Trasferimento alle
Regioni a statuto ordinario delle funzioni amministrative statali in materia
di agricoltura e foreste, di caccia e di pesca nelle acque interne e dei relativi
personali ed uffici”

1977 DECREE OF THE PRESIDENT OF THE REPUBLIC NO. 616/1977
Decreto del Presidente della Repubblica n.616/1977
It transfers to the Regions the competence for activities of
hydrogeological accommodation and conservation, forest and
woodland maintenance, and the functions related to the
determination of the hydrogeological restrictions

1989 LAW NO. 183/1989 “RULES FOR THE ORGANIZATIONAL AND

FUNCTIONAL REARRANGEMENT OF SOIL DEFENSE”
Legge n. 183/1989, “Norme per il riassetto organizzativo e funzionale della
difesa del suolo”

1990 DECREE OF THE PRESIDENT OF THE COUNCIL OF MINISTERS OF 23
MARCH 1990 “ACT OF GUIDANCE AND COORDINATION FOR THE

PURPOSES OF THE PREPARATION AND ADOPTION OF THE

FORECASTING AND PLANNING SCHEMES REFERRED TO IN ART. 31 OF

THE LAW 18 MAY 1989, N. 183, CONTAINING RULES FOR THE

ORGANIZATIONAL AND FUNCTIONAL REORGANIZATION OF SOIL

DEFENSE”
Decreto del Presidente del Consiglio dei ministri 23 marzo 1990 “Atto di
indirizzo e coordinamento ai fini della elaborazione e della adozione degli
schemi previsionali e programmatici di cui all’art. 31 della legge 18 maggio
1989, n. 183, recante norme per il riassetto organizzativo e funzionale della
difesa del suolo”
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1990 LAW NO. 102/1990 “PROVISIONS FOR THE RECONSTRUCTION AND

REBIRTH OF VALTELLINA”
Legge n. 102/1990 “Disposizioni per la ricostruzione e la rinascita della
Valtellina”

1992 LAW NO. 225/1992 ËSTABLISHMENT OF THE NATIONAL CIVIL

PROTECTION SERVICE

Legge n. 225/1992 Istituzione del Servizio nazionale della protezione civile”

1993 DECREE LAW NO. 398/1993 CONVERTED WITH AMENDMENTS INTO

LAW NO. 493/1993 “PROVISIONS FOR THE ACCELERATION OF

INVESTMENTS IN SUPPORT OF EMPLOYMENT AND FOR THE

SIMPLIFICATION OF BUILDING PROCEDURES” AND, IN PARTICULAR,
ART. 12 RELATING TO “PROCEDURES FOR SOIL DEFENSE PLANS”
Decreto Legge n. 398/1993 convertito con modifiche nella legge n. 493/1993
“Disposizioni per l’accelerazione degli investimenti a sostegno
dell’occupazione e per la semplificazione dei procedimenti in materia edilizia”
ed in particolare, l’art. 12 relativo a “Procedure per i piani di difesa del
suolo”

1993 DECREE OF THE PRESIDENT OF THE REPUBLIC OF 14 APRIL 1993
“ACT OF GUIDANCE AND COORDINATION FOR THE REGIONS

CONTAINING CRITERIA AND PROCEDURES FOR THE PREPARATION OF

HYDRAULIC AND FOREST MAINTENANCE PROGRAMS”
Decreto del Presidente della Repubblica del 14 aprile 1993 “Atto di indirizzo
e coordinamento alle regioni recante criteri e modalità per la redazione dei
programmi di manutenzione idraulica e forestale”

1997 LAW NO. 344/1997 “PROVISIONS FOR THE DEVELOPMENT AND

QUALIFICATION OF INTERVENTIONS AND EMPLOYMENT IN THE

ENVIRONMENTAL FIELD”
Legge n. 344/1997 “Disposizioni per lo sviluppo e la qualificazione degli
interventi e dell’occupazione in campo ambientale”

1997 LAW NO. 345/1997 “FUNDING FOR WORKS AND INTERVENTIONS OF

ROADS, INFRASTRUCTURES, SOIL DEFENSE, AS WELL AS FOR THE

SAFEGUARDING OF VENICE”
Legge n. 345/1997 “Finanziamenti per opere e interventi di viabilità,
infrastrutture, di difesa del suolo, nonché per la salvaguardia di Venezia”

1997 MINISTERIAL DECREE OF FEBRUARY 14, 1997 “TECHNICAL

DIRECTIVES FOR THE IDENTIFICATION AND DELIMITATION BY

REGIONS AT HYDRAULIC RISK”
Decreto ministeriale del 14 febbraio 1997 “Direttive tecniche per
l’individuazione e perimetrazione da parte delle Regioni a rischio idraulico”

1998 LEGISLATIVE DECREE NO. 112/1998 “CONFERRAL OF STATE

FUNCTIONS AND ADMINISTRATIVE TASKS TO THE REGIONS AND

LOCAL AUTHORITIES, IN IMPLEMENTATION OF CHAPTER I OF LAW

NO. 59”
Decreto legislativo n. 112/1998 “Conferimento di funzioni e compiti
amministrativi dello Stato alle regioni ed agli enti locali, in attuazione del
capo I della L. 15 marzo 1997, n. 59”
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1998 DECREE LAW NO. 180/1998 (SARNO DECREE)
Decreto Legge n.180/1998 (Decreto Sarno)
Issued following the hydrogeological event that involved the town of
Sarno, in Campania region

1998 DECREE OF THE PRESIDENT OF THE COUNCIL OF MINISTERS OF 29
SEPTEMBER 1998 “GUIDANCE AND COORDINATION ACT FOR THE

IDENTIFICATION OF THE CRITERIA RELATING TO THE OBLIGATIONS

PURSUANT TO ART. 1, PARAGRAPHS 1 AND 2, OF THE D.L. 11 JUNE

1998, N. 180”
Decreto del Presidente del Consiglio dei ministri del 29 settembre 1998 “Atto
di indirizzo e coordinamento per l’individuazione dei criteri relativi agli
adempimenti di cui all’art. 1, commi 1 e 2, del D.L. 11 giugno 1998, n. 180

1998 LAW NO. 267/1998 “CONVERSION INTO LAW, WITH AMENDMENTS,
OF THE DECREE-LAW 11 JUNE 1998, N. 180, CONTAINING URGENT

MEASURES FOR THE PREVENTION OF HYDROGEOLOGICAL RISK AND

IN FAVOR OF AREAS AFFECTED BY LANDSLIDES IN THE CAMPANIA

REGION”
Legge n. 267/1998 “Conversione in legge, con modificazioni, del
decreto-legge 11 giugno 1998, n. 180, recante misure urgenti per la
prevenzione del rischio idrogeologico ed a favore delle zone colpite da disastri
franosi nella regione Campania”

1999 MINISTERIAL DECREE 4 FEBRUARY 1999 “IMPLEMENTATION OF

URGENT PROGRAMS FOR THE REDUCTION OF HYDROGEOLOGICAL

RISK, REFERRED TO IN ARTICLES 1, PARAGRAPH 2, AND 8,
PARAGRAPH 2, OF THE D.L. NO. 180, CONVERTED, WITH

AMENDMENTS, BY LAW NO. 267 OF 3 AUGUST 1998
Decreto ministeriale 4 febbraio 1999 “Attuazione dei programmi urgenti per
la riduzione del rischio idrogeologico, di cui gli articoli 1, comma 2, e 8,
comma 2, del D.L. n°180, convertito, con modificazioni, dalla legge 3 agosto
1998, n°267”

1999 DECREE OF THE PRESIDENT OF THE REPUBLIC NO. 348/1999
“REGULATION CONTAINING TECHNICAL STANDARDS CONCERNING

ENVIRONMENTAL IMPACT STUDIES FOR CERTAIN CATEGORIES OF

WORKS”
Decreto del Presidente della Repubblica n. 348/1999 “Regolamento recante
norme tecniche concernenti gli studi di impatto ambientale per alcune
categorie di opere”

1999 LEGISLATIVE DECREE NO. 152/1999 “PROVISIONS ON THE

PROTECTION OF WATER FROM POLLUTION AND IMPLEMENTATION OF

DIRECTIVE 91/271/EEC ON THE TREATMENT OF URBAN WASTE

WATER AND DIRECTIVE 91/676/EEC ON THE PROTECTION OF

WATER FROM POLLUTION CAUSED BY NITRATES FROM

AGRICULTURAL SOURCES”
Decreto legislativo n. 152/1999 “Disposizioni sulla tutela delle acque
dall’inquinamento e recepimento della direttiva 91/271/CEE concernente il
trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa
alla protezione delle acque dall’inquinamento provocato dai nitrati
provenienti da fonti agricole”
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2000 LAW NO. 365/2000 “CONVERSION INTO LAW, WITH AMENDMENTS,
OF THE DECREE LAW 12 OCTOBER 2000, NO. 279, CONTAINING

URGENT INTERVENTIONS FOR AREAS AT VERY HIGH

HYDROGEOLOGICAL RISK AND IN THE FIELD OF CIVIL PROTECTION,
IN FAVOR OF THE AREAS OF THE CALABRIA REGION DAMAGED BY

THE HYDROGEOLOGICAL CALAMITIES OF SEPTEMBER AND OCTOBER

2000”
Legge n. 365/2000 “Conversione in legge, con modificazioni, del decreto
legge 12 ottobre 2000, n. 279, recante interventi urgenti per le aree a rischio
idrogeologico molto elevato ed in materia di protezione civile, nonché a favore
delle zone della regione Calabria danneggiate dalle calamità idrogeologiche di
settembre ed ottobre 2000”

2000 EUROPEAN DIRECTIVE NO. 2000/60
Direttiva europea n. 2000/60
establishing a framework for Community action in the field of water
policy

2004 DECREE OF THE PRESIDENT OF THE COUNCIL OF MINISTERS OF 27
FEBRUARY 2004 “OPERATIONAL GUIDELINES FOR THE

ORGANIZATIONAL AND FUNCTIONAL MANAGEMENT OF THE

NATIONAL, STATE AND REGIONAL ALERT SYSTEM FOR

HYDROGEOLOGICAL AND HYDRAULIC RISK FOR CIVIL PROTECTION

PURPOSES”
Decreto del Presidente del Consiglio dei ministri del 27 febbraio 2004
“Indirizzi operativi per la gestione organizzativa e funzionale del sistema di
allertamento nazionale, statale e regionale per il rischio idrogeologico ed
idraulico ai fini di protezione civile”

2006 LEGISLATIVE DECREE NO. 152/2006 “CONSOLIDATED ACT OF THE

ENVIRONMENT”
Decreto legislativo n. 152/2006 “Testo unico dell’ambiente”
establishing the general principles and competences of the State, the
Regions, Autonomous Provinces, the District Basin Authorities and
defines the objectives and contents of the Basin Plans, the
Hydro-geological Stability Plan (PAI) and the three-year programs of
intervention

2007 EUROPEAN DIRECTIVE NO. 2007/2 ESTABLISHING AN

INFRASTRUCTURE FOR SPATIAL INFORMATION IN THE EUROPEAN

COMMUNITY (INSPIRE)
Direttiva europea n. 2007/2, che istituisce un’Infrastruttura per
l’informazione territoriale nella Comunità europea (Inspire)

2007 EUROPEAN DIRECTIVE NO. 2007/60 ON THE ASSESSMENT AND

MANAGEMENT OF FLOOD RISKS

Direttiva europea n. 2007/60, relativa alla valutazione e alla gestione dei
rischi di alluvioni

2008 EUROPEAN REGULATION NO. 1205/2008
Regolamento europeo n. 1205/2008
It establishes the requirements for creation e updating of metadata for
spatial data sets
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2010 LEGISLATIVE DECREE NO. 32/2010 “IMPLEMENTATION OF THE

INSPIRE DIRECTIVE”
Decreto legislativo n. 32/2010 “Recepimento della direttiva Inspire”

2010 LEGISLATIVE DECREE NO. 49/2010 “IMPLEMENTATION OF

DIRECTIVE 2007/60/EC ON THE ASSESSMENT AND MANAGEMENT

OF FLOOD RISKS”
Decreto legislativo n. 49/2010 “Attuazione della direttiva 2007/60/CE
relativa alla valutazione e alla gestione dei rischi alluvioni”

2010 LEGISLATIVE DECREE NO. 219/2010
Decreto legislativo n. 219/2010
Temporary measures for the implementation of the obligations
established by Legislative Decree no. 49/2010: National Basin
Authorities (ex. Law 183/1989) and Regions competences

2011 DECREE OF THE PRESIDENT OF THE COUNCIL OF MINISTERS OF 10
NOVEMBER 2011 “TECHNICAL RULES FOR DEFINING THE CONTENT

OF THE REPERTOIRE NATIONAL TERRITORIAL DATA, AND THE

FORMER METHODS ESTABLISHMENT AND UPDATING OF THE SAME”
Decreto del Presidente del Consiglio dei ministri del 10 novembre 2011
“Regole tecniche per la definizione del contenuto del Repertorio nazionale dei
dati territoriali, nonché delle modalità di prima costituzione e di
aggiornamento dello stesso”

154



B
T h e N I E D L a r g e - s c a l e R a i n f a l l S i m u l a t o r

To be able to develop, train and test the algorithm that gath-
ers rainfall characteristics using camera as low-cost sensor, the
construction of a data-base of images with known rainfall con-
ditions was the essential prerequisite. The data-bases found in
the literature do not respond to the desired criteria, in terms of
completeness, availability, heterogeneity, rainfall representative-
ness, known rainfall intensity values, and absence of digitally
synthesized rain.

Hence, data were integrated with pictures collected during
experimental activities carried out in the Large-scale Rainfall
Simulator of the NIED1 located in Tsukuba, Ibaraki prefecture,
Japan (Figure B.1, Figure B.2).

Figure B.1: Aerial view of the National Research Institute for Earth Sci-
ence and Disaster Resilience防災科学技術研究所. Google
earth V 7.3.3.7786. 36°07’35"N 140°05’23"E. Eye alt 367 m.
SIO, NOAA, U.S. Navy, NGA, GEBCO.

Rainfall simulators are one of the most common systems for
reproducing natural precipitation phenomena accurately and

1 https://www.bosai.go.jp/
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precisely. The physical rainfall simulation provides a convenient
tool for creating arbitrarily rain events of nominated properties
in a controlled way, while varying the parameter of interest
(Dunkerley 2008).

The use of rainfall simulators has a relatively long tradition
within hydrology and geomorphology fields, for the assessment
of hydrologic interactions of rainwater with soils (Lora et al. 2016;
Xu et al. 2020), i.e. erosion, infiltration, debris flow, soil erosion,
etc.

site area

Figure B.2: NIED experimental facilities located in Tsukuba headquar-
ters ©NIED.

The NIED Large-scale Rainfall Simulator was completed in
march 1974 and renewed in 2013 (Ishizawa et al. 2014). It is
the largest simulator in the world in terms of rainfall area and
sprinkling capacity.

The characteristics of this facility, shown in Figure B.3 and
Table B.1, offer a systematic tool to develop both small-scale
and full-scale physical models to address problems of: hydro-
geological processes simulation and measurement, water-related
disasters studies (landslides, urban floods, etc.), waterproofing
system in construction industry, radars evaluation under heavy
rain condition, heavy rain experience educational activities, and
so forth.

The leading benefit of using a large scale rain simulator is
that it allows experimental tests to be carried out in a relatively
short time, reproducing events of different known intensities,
including those with a rather remote occurrence frequency, such
as rain showers and downpours with time high return period
under controlled and repeatable conditions (Figure B.4).
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Figure B.3: NIED Large-scale Rainfall Simulator located in Tsukuba
(Ibaraki prefecture, Japan) ©NIED.

LARGE-SCALE MOBILE RAINFALL FACILITY

Structure (area) Steel-pipe-trussed ferroconcrete ( 3,492 m2)

Observation room Floor 7.5 m above the ground

2 rooms of 65.4 m2 each

Sprinkling area 48×72 m, 5 divisions

SPRINKLING FACILITY

Raindrop size 0.1 - 2.2 mm diameter [→ improved to 6 mm]

Rainfall intensity 15 - 200 mm/hr [→ improved to 300 mm/hr]

Rainfall area 44×72 m (dividable into quarters)

Nozzles System 1 : 15 - 40 mm/hr 544 pcs.

(0.7 - 5.0 kg/cm2) System 2 : 30 - 75 mm/hr 544 pcs.

System 3 : 60 - 130 mm/hr 544 pcs.

System 4 : 100 - 200 mm/hr 544 pcs.

Nozzle height 16 m above the ground

Control Remote control: flow rate/stress control

Circulating pump 160 kW, 11 kg/cm2, 5.5 kl/min, 2 pumps

RESERVOIR

Water storage capacity 2,250 m3

Pump Supply well 250 mm diameter, 150 m depth

Table B.1: NIED Large-scale Rainfall Simulator main technical specifi-
cations.
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Figure B.4: Experiments in the NIED rainfall simulator.
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C
L a n d s l i d e s a n d f l o o d s : L i f e s a v i n g t i p s - R u l e s f o r
s e l f - p r o t e c t i o n i n t h e e v e n t o f a n a l a r m

Translated and adapted from the brochure created by the PROIDRO
Project (PROfessionisti del monitoraggio ambientale e la sicurezza
IDROgeologica - Environmental monitoring and hydrogeological
safety professionals).

Curated by Aurelia Sole, Francesco Sdao
In collaboration with Santina Scarpino
Graphic Design project - art director: Aldo Presta
Icon development: Roberto Gentili, Alessandra Dodaro
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The brochure was created to promote the culture of preven-
tion, raise awareness among citizens and stimulate their active
participation in times of crisis in order to reduce risk.

The tool represents an aid to communicate correct behaviors
to be held in the forecast phase and during extreme events of
landslides and floods.

The graphic symbol system used is the result of a specific de-
sign process within the context of a research of a wider scope
which aims to address the implementation of a general and col-
laborative system of symbols for risk communication, carried
out by the University of Basilicata’s School of Engineering and
the lacosa studio grafico.

The underlying assumption is that learning to prevent and
reduce the consequences of calamitous events is a task that con-
cerns all: spreading risk information is a collective responsibility
to which all the citizens should contribute.
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Hydro-geological risk: the importance of 
being well-informed

Information is one of our most essential tools when dealing with 
hydro-geological calamitous events. Relevant information is 
generated at the national and local levels by agencies responsible for 
systems of alert and response: Functional Centres - Civil Protection 
Authorities.

In addition to this, the Basin Authority information system outlines in 
the Hydro-geological Stability Plan (PAI Piano di Assetto idrogeologico) 
the areas at risk of floods and landslides. This plan is available online 
and, in some cases, complemented by warning signage placed at the 
affected areas.

The management of the national alert system is ensured by the 
Department of Civil Protection, the Regions and Autonomous 
Provinces; the alert system is managed through the network of 
monitoring centres, as well as the regional organizations and centres 
of expertise that are frequently called upon to contribute functionally 
and operationally to this network.

The municipalities are provided with the specific Municipal 
Emergency Plans, where the risk characteristics are specifically 
defined, the assembly areas in case of alert, and the response 
procedure which the administration will implement in the case of a 
calamitous event.



Reducing the risk: active citizens.

As well as the mechanisms created by relevant authorities, an efficient 
prevention system also depends on the role performed by individual 
citizens, who must be sure to behave appropriately in order to avoid, 
or at least reduce, the impact of extreme events.

It is necessary, therefore, that each citizen assumes an active attitude 
towards this problem, and has the essential information required to 
activate the main systems of self- protection. 

First of all, it is necessary to be familiar with the characteristics of the 
risks, the locations of the zones at risk of landslides or flooding, and 
to be aware – where defined – of the arrangements contained within 
the Municipal Emergency Plan.

Civil Protection drills take place periodically in order to check the 
status and the efficiency of response and rescue systems. It’s possible, 
and indeed important, for citizens to attend these.

It is also essential to build upon educational activities at school by 
teaching our own children how to behave in case of emergency, such 
as staying safe, turning off the gas or calling emergency numbers. 



To increase your ability to protect yourself from natural 
disasters it is necessary to follow these simple rules and 

implement a few key behaviours

Be informed about the Municipal Emergency Plan

Own a survival kit containing 

Keep in reach useful phone numbers

Be informed about the Municipal Emergency Plan

 

 

1

2

3

4



SURVIVAL KIT 
It is always useful to have certain essential items in your house, and 
to ensure every member of your family knows where they are kept

FIRST AID KIT 
AND MEDICINES

SPARE SET OF 
WARM CLOTHES

RADIO AND 
SPARE BATTERIES

NON-
PERISHABLE 
FOOD ITEMS

TORCH AND 
SPARE BATTERIES

PHOTOCOPIES OF 
IDENTITY DOCUMENTS 
AND OTHER VALUABLE 

DOCUMENTS

WATER-PROOF 
SHOES

HOUSE KEYS

UTILITY KNIFE

STOCKPILE 
OF DRINKING 

WATER

LIGHT 
WATERPROOFS 

OR OILSKINS

PEN AND PAPER

USEFUL PHONE NUMBERS
You should always keep at hand up-to-date emergency numbers

Fire Brigade: 115 
State Police (Polizia di Stato): 113 
European emergency phone number: 112
Medical emergency: 118
Carabinieri’s forestry and environment unit: 1515
 
Civil Protection  
(write down the useful numbers for your specific District, Province or Region)
.......



Landslides and floods: What are they?

A landslide is defined as the movement, fast or slow, of a mass of 
rock, earth or debris down a slope. The main kinds of landslide are as 
follows: falls, topples, slides (transitional or rotational), flows (debris 
or earth), and lateral spreads.

Landslides are very common in our country due to the area’s 
orographic conditions, geological structure and geomorphology, 
climate conditions and seismicity.

From a Civil Protection point of view, landslides often lead to 
significantly dangerous conditions and cause damage to people and 
to property.

The hazard level is closely linked to the type of movement, its 
speed, the type and frequency of occurrence of the trigger factors 
(rain, earthquakes, human activity, etc.) and the volume of landslide 
material.

Floods are among the most common events of hydro-geological 
disruption.

An excess of water due to heavy rainfall causes an increase of flow 
rate in waterways,  which overflow or break the embankments 
and invade the surrounding areas causing damage to buildings, 
manufacturing activities, traffic networks, agricultural areas, etc. 

During and after floods, the water of the river is heavily polluted, 
carrying floating debris that can injure or stun.

Many Italian hydrographical basins can flood very quickly, even 
within the space of a few hours; and for this reason it’s crucial that 
the warning is transmitted early enough to allow relevant authorities 
and agencies operating in the area enough time to implement a 
response aimed at reducing the exposure of people at risk and 
limiting damage.



Detection and alert

The Regional and/or National Functional Centre identifies the 
conditions of a potential risk identifies the conditions of potential 
risk and notifies the relevant bodies for Critical Regional Warnings 
(DPCM February 27th, 2004, G.U 11. 03.2004 n. 59). The territorial 
organizations, in accordance with their respective regional laws, then 
emit communications according to the level of criticality: before the 
event (pre-alert) or during the event (warning or event in progress) 
according to the directives of the  respective regional laws.

At the municipal level, the Mayor manages the emergency by 
activating the procedures provided by the Municipal Emergency 
Plan.

In the pre-alert phase, it is necessary to also implement the procedures 
for the warning or ongoing event phase, as the difference in danger 
between the phase of pre-alert and warning or ongoing event, can be 
minimal and hard to quantify. In fact, all it takes is for the rain to be 
concentrated in a restricted area for flood phenomena to suddenly 
occur. The streets can become flooded rivers in their own right, where 
cars and materials can temporarily obstruct alleys or passages, and 
can suddenly fail, thereby creating further danger .



Rules for self-protection 
> pre-alert phase

> Consult the website of the Regional Functional 
Centre or of the Civil Protection. Here, you can find real-
time information on the alert levels and the Weather 
situation.

> Pay attention to information provided by the 
authorities via radio or TV.

> Pay attention to the loudspeaker announcement 
broadcast by municipal or Civil Protection vehicles.

> Check for updates on the light panels, if available.

> Prepare flood barriers to protect buildings located 
on street level. Close and lock the doors of cellars and 
basements. Secure the movable items located in premises 
potentially affected by flood (only if you are in conditions 
of maximum safety).

> Secure your own vehicle in an area beyond the reach 
of floods

> Avoid walking along river banks, even if there are 
levees.

In case of flood



> If you have a farm, bring the flocks and the animals 
to a high, safe area, close up premises that could be flooded 
(only if you are in conditions of maximum safety).

> Do not travel unless absolutely necessary.

> Move away from areas at risk of landslide, as 
identified by the Basin Authority in the PAI, or indicated in 
warning posters.

> Move away from waterways or torrential incisions 
where rapid mud-flows could occur.

> Avoid passing through or near areas that are at risk 
of ground movement, especially during storms or heavy 
rainfall.

> Pay attention to small cracks, fractures and 
variations in the morphology of the terrain, as they could 
be precursors for a landslide event.

In case of landslide



Rules for self-protection 
> warning or event in progress phase

> Prepare flood barriers to protect buildings located 
on street level. Close and lock the doors of cellars and 
basements. Secure the movable items located in premises 
potentially affected by flood (only if you are in conditions 
of maximum safety).

> Help people with disabilities and elderly people to 
get to a safe location.

> Consult the website of the Regional Functional 
Centre or of the Civil Protection. Here, you can find real-
time information on the alert levels and the Weather 
situation.

> Pay attention to information provided by the 
authorities via radio or TV.

> Pay attention to the loudspeaker announcement 
broadcast by municipal or Civil Protection vehicles.

> Check for updates on the light panels, if available.

> Do not attempt to secure any property or material 
goods, and move immediately to a secure location.

> Do not travel unless absolutely necessary.



> Stay calm. Avoid to create panic state. 

> Make sure that all potentially at risk  people are 
aware of the alarm. 

> Use your telephone and/or mobile only in cases of 
actual necessity to avoid overloading the lines.

> Do not stay in areas that can be reached by the water, 
avoid approaching ditches and streams that can suddenly 
swell.

> Do not stand on walkways or bridges and/or near 
the banks of rivers or streams.

> In case of flooding, find safe shelter moving to the 
upper floors of your building (do not use the lift).

> Do not seek refuge in basements, garages or cellars 
below street level.

> If you live on a high floor, offer accommodation to 
those who live on the lower floors; ask for accommodation 
if you live on the lower floors.

In case of flood



> Stay at home if your house is not at risk of flooding.

> Do not try to save your car or other vehicle. Rapidly 
flowing water can knock you off your feet and the debris 
can block you.

> Do not attempt to get to a certain destination; 
instead, take shelter in the nearest safe building.

> If travelling by car, do not enter underpasses which 
can be prone to flooding due to their depressed situation.

> Do not take shelter under isolated trees.

> Do not drink tap water at home, and if outside avoid 
contact with the water: it could be contaminated with oil, 
naphtha and sewage or it could have an electric charge due 
to underground power lines.



> Do not stand near slopes classified at risk of 
landslide, as reported by the warning signs.

> Quickly move away from the landslide area paying 
attention to rolling boulders or bouncing trees that can 
cause harm.

> If you come across a recently fallen landslide, try to 
warn any other cars, and alert Civil Protection or the Fire 
Brigade.

In case of landslide

> Do not approach the edge of the landslides as it is 
unstable.

> Do not stop under poles or pylons: they could 
collapse or fall  



Before leaving safe areas, make sure that it has been 
officially declared:

The state of emergency is over.

> Throw away food that has come in contact with floodwaters.

> Be careful with bathrooms, septic tanks, wells and damaged sewage 
systems, as these can cause serious risks.

> Avoid contact with water, which can be contaminated with oil, naphtha 
or sewage. Underground or downed power lines can also electrically charge 
the water. 

> Avoid areas affected by water runoff.

> Do not drive in areas where the water may have receded. Areas where 
the water has receded can be fragile and susceptible to collapsing under the 
weight of your vehicle.

After the emergency

In case of flood



> Check for injured and trapped persons near the slide, without entering 
the direct slide area. Direct rescuers to their locations. 

> Help people who may need assistance, in particular children, elderly 
people and people with disabilities.

In case of landslide

> In case of gas leakage from a building, do not enter the building; check  
if there is a general gas valve outside the house and if so, turn it off. Report 
immediately to the Fire Brigade or other specialists.

> Report broken utility - electric, gas and water- lines and damaged 
roadways and railways to appropriate authorities. 
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