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ABSTRACT. In this paper, some recent applications of the so-called Generalized Bernstein polynomials are collected.
This polynomial sequence is constructed by means of the samples of a continuous function f on equispaced points of
[0, 1] and depends on an additional parameter which can be suitable chosen in order to improve the rate of convergence
to the function f , as the smoothness of f increases, overcoming the well-known low degree of approximation achieved
by the classical Bernstein polynomials or by the piecewise polynomial approximation. The applications considered
here deal with the numerical integration and the simultaneous approximation. Quadrature rules on equidistant nodes
of [0, 1] are studied for the numerical computation of ordinary integrals in one or two dimensions, and usefully em-
ployed in Nyström methods for solving Fredholm integral equations. Moreover, the simultaneous approximation
of the Hilbert transform and its derivative (the Hadamard transform) is illustrated. For all the applications, some
numerical details are given in addition to the error estimates, and the proposed approximation methods have been
implemented providing numerical tests which confirm the theoretical estimates. Some open problems are also intro-
duced.
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1. INTRODUCTION

Bernstein polynomials Bmf constitute a classical approximation of a continuous function
f based on the samples of f at equidistant nodes of [0, 1]. They have been widely studied in
literature (see for instance [23], [3]) and provide a constructive proof of the Weierstrass theorem,
since the positive Bernstein operators Bm : f → Bmf fits the assumptions of the Korovkin
theorem (see e.g. [2]).

On the other hand, in many applications, the available data are often the values of the tar-
get function at equally spaced point sets, which would make suitable to apply the Bernstein
polynomials. However, such polynomials are rarely used in the numerical approximation be-
cause a rate of convergence faster than 1

m cannot be obtained for more regular functions than
absolutely continuous functions f s.t. ‖f ′′ϕ2‖ <∞, where ϕ(x) =

√
x(1− x) (see e.g. [13]).

In order to get an higher rate of approximation, independently Micchelli [30], Felbeker [17]
and Mastroianni-Occorsio [24] introduced and studied the following combinations of iterates
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of the Bernstein operator Bm

(1.1) Bm,s = I − (I −Bm)s =

s∑
i=1

(
s

i

)
(−1)i−1Bim, s ∈ N,

where Bim = Bm(Bi−1m ), i ≥ 1, B0
m = I and I is the identity operator.

Similarly to Bm, for all s ∈ N, the operators Bm,s map continuous functions f into polyno-
mials of degreem. The polynomialsBm,sf are known in the literature as Generalized Bernstein
polynomials of parameter s (shortly GBs polynomials). Like Bmf , they require the samples of
f at them+1 equispaced points of [0, 1] and interpolate f at the extremes. However, differently
from the "originating" Bernstein operator, GBs operators are not always positive, as it can be
clearly expected, since as m ∈ N is fixed and s → ∞, we have that Bm,sf → Lmf uniformly
in [0, 1], where Lmf is the Lagrange polynomial interpolating f at the same equispaced nodes
[24].

Nonetheless, for any fixed s ∈ N and m → ∞, we have that Bm,sf → f uniformly in [0, 1]
and suitable choices of the additional parameter s > 1, allow to increase the approximation
rate achieved by the classical Bernstein polynomials, being m−s the saturation order of Bm,s
[30]. In addition, as main property and, in some sense, cornerstone of the study, in [30, 24] the
authors independently stated how the rate of convergence in approximating f improves as the
smoothness of f increases. To be more precise, they proved that any function f ∈ C2s([0, 1])
can be uniformly approximated by the sequence {Bm,sf}m∈N with the rate of convergence
O (m−s) . A more refined error estimate was proven in [19] by using the Ditzian–Totik ϕ−
modulus of f having order 2s. GBs polynomials were further investigated from other many
authors and from many different points of view (see e.g. [4], [36], [38], [15], [8], [10], [34], [35]).
In particular, a short history of GBs polynomials can be found in [19], with a wide bibliography
on the topic.

The aim of the present paper is to "promote" GBs approximation in the applications by col-
lecting some numerical methods based on GBs polynomials, which show how these polynomi-
als may be useful from the applicative point of view.

It is in fact known that in many applications the samples of f are sometimes obtained by
devices, or by measures detected at equidistant times. Such an experimental nature of the data
precludes the use of those global techniques of approximation that have optimal performance,
but are based on specified (non uniform) distribution of nodes such as the zeros of orthogonal
polynomials.

On the contrary, GBs polynomials require data at equally spaced points and, differently from
piecewise polynomials or ordinary Bernstein approximations, as the smoothness of f increases,
suitable choices of s allow to improve the rate of convergence. For this reason, GBs polynomials
might be fruitfully used in the applications, where the data are taken at equidistant nodes.

In particular, they have been successfully employed in some applications that we will sum-
marize in this paper, where we provide some improvements of the already known results.

The numerical quadrature of ordinary integrals on the interval [0, 1] and on the square [0, 1]2,
the numerical solution of Fredholm Integral Equations of the second kind (FIEs) on such do-
mains, and, finally, the numerical computation of the finite Hilbert and Hadamard transforms
on [0, 1] are the applications we will deal with.

FIEs play an important role in various fields of the applied sciences, since they model many
problems in elasticity, fluid-dynamics, etc. . Also, the Hilbert transform is widely used for
applications in several fields. Among them, there are partial differential equations, optics
(X-ray crystallography, electron-atom scattering), electrodynamics and quantum mechanics
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(Kramers-Kronig relation), signal processing (phase retrieval, transfer functions of linear sys-
tems, spectral factorization) (see e.g. [22]). Moreover, both the Hilbert and Hadamard trans-
forms, the latter regarded as the first derivative of the Hilbert one, are widely used to formulate
boundary–value problems in many areas of mathematical physics (potential theory, fracture
mechanics, aerodynamics, elasticity, etc.) in terms of singular integral equations in (0, 1) (see
e.g. [21, 27, 28, 29, 37] and the references therein). Hence, numerical methods based on GBs
for the above applications can be applied in different contexts whenever the discrete data are
available at equally spaced nodes.

We recall that in [32, 33] stable and convergent quadrature and cubature rules have been
obtained by replacing the integrand by GBs polynomials in one and in two variables. Based
on these rules, in the same papers, Nyström methods have been proposed for the numerical
solution of one and two-dimensional FIEs. Studying such equations in Sobolev type spaces,the
authors proved that in both the dimensions the methods are numerically stable, convergent
and the involved linear systems are well-conditioned. Here, we extend the results given in [32]
by providing error estimates in the wider class of Hölder–Zygmund spaces. Moreover, in the
bivariate case, we consider the tensor product of GBs operators using different values for both
the degrees and the parameters. In this way, we get a more flexible approximation tool than
that proposed in [33].

The approximation of the Hilbert transform in (0, 1), by means of GBs polynomials, was
firstly investigated in [25, 26]. Such idea has been recently revised in [18], where the simulta-
neous approximation of the Hilbert transform and its first derivative was proposed in (−1, 1).

In this paper, following the ideas in [18], we construct quadrature rules for both the Hilbert
and Hadamard transforms in (0, 1), by means of a shrewd use of the simultaneous approxima-
tion by GBs polynomials. Such approach allows to approximate both the integral transforms,
by using the same samples of f at a grid of equally spaced nodes. Moreover, as in [18], some im-
provements from both the theoretical and computational point of view, are achieved w.r.t. those
shown in [25, 26]. We determine weighted pointwise estimates of the quadrature errors, in the
general case of density functions satisfying the Dini-type conditions involving the Ditzian–
Totik moduli of smoothness [13], as well as in the case of smoother functions in Sobolev and
Hölder–Zygmund spaces. Concerning the numerical computation, recurrence relations for the
quadrature coefficients in [0, 1] are given either for the Hilbert and the Hadamard transforms.
Moreover, such new recurrence relations preserve the more stable Bernstein polynomial basis
and do not require the transformation into the basis {1, x, . . . , xm} as done in [25, 26].

For all the applications, we give some numerical tests and graphs in order to confirm the the-
oretical results and to show some numerical evidences on the role of the involved parameters
m and s and the interaction between them.

Finally along the paper, the reader can find some open problems that could be interesting
for further investigations.

The outline of the paper is as follows. Section 2 contains some notation and preliminary re-
sults about the approximation tools and the functional spaces. Section 3 is devoted to the GBs
polynomials, their properties and the convergence results also for the simultaneous approxi-
mation. In Section 4, the quadrature formula based on GBs approximation is proposed. Section
5 is devoted to the Nyström method based on the quadrature rule of Section 4. Section 6 con-
tains the results on the simultaneous approximation of the Hilbert and Hadamard transforms.
Section 7 shows some recent results in the bivariate case. Finally, Section 8 includes some com-
putational details, that describe the practical implementation of the formulae based on GBs
polynomials, and used in the paper. The tests given for each application were performed in
double precision arithmetic.
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2. NOTATION AND PRELIMINARY RESULTS

In the sequel, C will denote a generic positive constant which may differ at different occur-
rences and C 6= C(a, b, ..) indicates that C is independent of a, b, ... . Moreover, if A,B > 0
depend on some parameters the notation A ∼ B means that there are fixed constants C1, C2 > 0
(independent of the parameters in A,B) such that C1A ≤ B ≤ C2A.

For any integerm ≥ 0, we setNm
0 := {0, 1, 2, . . . ,m} and denote by Pm the set of all algebraic

polynomials of degree at most m. In the Banach space C0([0, 1]) of the continuous functions on
[0, 1] endowed with the uniform norm ‖f‖ := maxx∈[0,1] |f(x)|, the error of best approximation
of f ∈ C0([0, 1]) in Pm is defined as

Em(f) = min
P∈Pm

‖f − P‖

and the Weierstrass theorem ensures that

f ∈ C0([0, 1])⇐⇒ lim
m→∞

Em(f) = 0.

A constructive proof of this result is given by the well-known Bernstein polynomials

(2.2) Bmf(x) =

m∑
k=0

pm,k(x)f (tk) , tk :=
k

m
, x ∈ [0, 1], m ≥ 1,

where

(2.3) pm,k(x) =

(
m

k

)
xk(1− x)m−k, k ∈ Nm

0 , x ∈ [0, 1],

are the fundamental Bernstein polynomials of degreem, which satisfy the following recurrence
relation

(2.4) pm,k(x) = (1− x)pm−1,k(x) + xpm−1,k−1(x), k ∈ Nm
0 , m ≥ 1,

being pm,k(x) ≡ 0, for k /∈ Nm
0 .

It is well–known that, for all f ∈ C2([0, 1]) and m ∈ N sufficiently large, Bernstein polyno-
mials satisfy

‖f −Bmf‖ ≤
C
m
, C 6= C(m),

and that the convergence rate does not improve by increasing the smoothness of f as, instead,
it happens for Em(f).

A useful tool to measure the smoothness of f ∈ C0([0, 1]) is the following Ditzian–Totik
modulus of smoothness [13, (2.1.2)]

ωrϕ(f, t) = sup
0<h≤t

‖∆r
hϕf‖, r ∈ N,

defined by means of the following finite differences with variable step–size

∆r
hϕ(x)f(x) =

r∑
k=0

(−1)k
(
r
k

)
f

(
x+ (r − 2k)

h

2
ϕ(x)

)
,

where throughout the paper, it is ϕ(x) :=
√
x(1− x) and x ∈ [0, 1].

Denoting by ACLoc the space of all locally absolutely continuous functions on [0, 1] (i.e.
which are absolutely continuous in every closed subinterval [a, b] in (0, 1)), such modulus can
be estimated by means of the following equivalent K–functional [13, Th. 2.1.1]

(2.5) ωrϕ(f, t) ∼ Kr,ϕ(f, tr) := inf{‖f − g‖+ tr‖g(r)ϕr‖ : g(r−1) ∈ ACLoc}.
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Similarly to the classical modulus of smoothness given by

ωr(f, t) = sup
0<h≤t

‖∆r
hf‖, r ∈ N,

ωr(f, t) ∼ Kr(f, t
r) := inf{‖f − g‖+ tr‖g(r)‖ : g(r−1) ∈ ACLoc},

we have
lim
t→0

ωrϕ(f, t) = 0, ∀f ∈ C0([0, 1]).

Nevertheless, by taking the variable step–size hϕ(x), that decreases more and more as x ap-
proaches to the extremes of [0, 1], the Ditzian–Totik modulus better describes the behaviour
of the polynomial approximation close to the endpoints. In fact, the following Jackson and
Stechkin-type inequalities hold true [13, Th. 7.2.1 and Th. 7.2.4]

Em(f) ≤ Cωrϕ
(
f,

1

m

)
, ∀r < m, C 6= C(m, f),(2.6)

ωrϕ(f, t) ≤ Ctr
∑

0≤k≤1/t

(1 + k)r−1Ek(f), C 6= C(t, f)(2.7)

and these direct and converse results yield [13, Corollary 7.2.5]

(2.8) Em(f) = O(m−r)⇐⇒ ωkϕ(f, t) = O(tr), k > r > 0.

We point out that the implication "=⇒" does not hold for the classical moduli, that are related
to the Ditzian–Totik ones as follows

ωrϕ(f, t) ≤ Cωr(f, t), C 6= C(f, t), r ∈ N.

Now, let us consider the following Sobolev–type spaces

Wr =
{
f ∈ C0([0, 1]) : f (r−1) ∈ ACLoc, ‖f (r)ϕr‖ <∞

}
, r ∈ N,

equipped with the norm ‖f‖Wr
:= ‖f‖ + ‖f (r)ϕr‖. By virtue of the previous results, the fol-

lowing properties hold for all f ∈Wr and r ∈ N,

Em(f) ≤ C
mr

, C 6= C(m),(2.9)

ωkϕ(f, t) ≤ Ctr‖f (r)ϕr‖, ∀k ≥ r, C 6= C(t, f),(2.10)

ωrϕ(f, t) = o(tr) =⇒ f ∈ Pr−1.(2.11)

Denoting by Ck([0, 1]) the space of all continuously differentiable functions till the order k ∈ N,
we also recall that classical moduli satisfy

(2.12) ωk(f, t) ≤ Ctr‖f (r)‖, ∀f ∈ Cr([0, 1]), ∀k ≥ r, C 6= C(t, f).

The Hölder–Zygmund type spaces based on Ditzian–Totik modulus of smoothness are defined
as follows

(2.13) Zλ =

{
f ∈ C0 : sup

t>0

ωrϕ(f, t)

tλ
<∞, r > λ

}
, ∀λ > 0

and equipped with the norm

(2.14) ‖f‖Zλ = ‖f‖+ sup
t>0

ωrϕ(f, t)

tλ
, r > λ.
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For any λ > 0, the space Zλ constitutes a particular case of the Besov–type spaces studied in
[14] and in the case λ = r ∈ N and the previously introduced Sobolev spaceWr in continuously
imbedded in Zr. More generally, it has been proved that [14, Theorem 2.1]

(2.15) ‖f‖Zλ ∼ ‖f‖+ sup
n>0

(n+ 1)λEn(f), ∀λ > 0.

Such equivalence ensures that the definitions (2.13) and (2.14) are indeed independent of the in-
teger r > λwe choose. Moreover, (2.15) yields the following characterization of the continuous
functions f ∈ Zλ
(2.16) f ∈ Zλ ⇐⇒ En(f) = O(n−λ), ∀λ > 0.

In particular, for all f ∈ Zλ and any r > λ > 0, we get

(2.17) ωrϕ(f, t) ≤ Ctλ‖f‖Zλ , C 6= C(f, t).

3. THE GENERALIZED BERNSTEIN POLYNOMIALS

Let f ∈ C0([0, 1]) and

(3.18) Bimf(x) := Bm(Bi−1m f)(x), B0
mf := f, m, i ∈ N

be the i-th iterate of the Bernstein polynomial (2.2). Fixed an integer parameter s ≥ 1, the
Generalized Bernstein polynomial of parameter s and degree m ∈ N is defined as follows

(3.19) Bm,sf(x) =

s∑
i=1

(−1)i+1

(
s

i

)
Bimf(x).

Such GBs polynomials have been independently introduced and studied in [30], [17], [24].
By (3.19) and (3.18), for any m, s ∈ N, the polynomial Bm,sf takes the form

(3.20) Bm,sf(x) =

m∑
j=0

p
(s)
m,j(x)f

(
j

m

)
, 0 ≤ x ≤ 1,

where

(3.21) p
(s)
m,j(x) =

s∑
i=1

(
s

i

)
(−1)i−1Bi−1m pm,j(x), j = 0, . . . ,m

are the so–called fundamental Generalized Bernstein polynomials of degree m.
Note that the map Bm,s : f ∈ C0([0, 1])→ Bm,sf ∈ Pm is a linear map, not always positive,

and for ∀m, s ∈ N, we have

Bm,sf(0) = f(0); Bm,sf(1) = f(1),

Bm,sei(x) = xi, i = 1, 2, ei(x) := xi.

For all degrees m ∈ N, if we fix s = 1, then we get the classical Bernstein polynomial, i.e.,
Bm,1 = Bm. For increasingly s ∈ N, the sequence {Bm,sf}s, continuously links Bernstein
polynomials Bmf to the Lagrange polynomials Lmf ∈ Pm interpolating f at the nodes {ti}mi=0,
i.e.,

(3.22) Lmf(x) =

m∑
k=0

f(tk)lm,k(x), lm,k(x) =

m∏
k 6=i=0

x− ti
tk − ti

.

Such property, advisable in different contexts (see [38], [34], [5]), was given in the following.
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Theorem 3.1. [24] For any f ∈ C0([0, 1]), we have

(3.23) lim
s→∞

Bm,sf(x) = Lmf(x)

uniformly w.r.t. x ∈ [0, 1].

Figure 1 displays the behaviour of the fundamental GBs polynomials p(s)m,k, with fixed m, k

and increasing values of the parameter s. The plots confirm the continuous relation between
Bernstein and Lagrange polynomials. In fact, as s→∞, in Figure 1 we see that the fundamen-
tal GBs polynomial p(s)m,k(x) uniformly tends to the k−th fundamental Lagrange polynomial
lm,k(x), according with Theorem 3.1.
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FIGURE 1. Plots of the fundamental GBs and Lagrange polynomials p(s)m,k(x)

and lm,k(x) for m = 3, k = 1 on the left and m = 2, k = 2 on the right

For all m, s ∈ N, the fundamental GBs polynomials {p(s)m,j(x)}mj=0 form a partition of the
unity, i.e.,

m∑
j=0

p
(s)
m,j(x) = 1, ∀x ∈ [0, 1].

A handle vectorial form of the basis {p(s)m,k}mk=0 is given by the following theorem proved in
[34].

Theorem 3.2. For all m, s ∈ N and for any x ∈ [0, 1], let p
(s)
m (x) = [p

(s)
m,0(x), p

(s)
m,1(x), . . . , p

(s)
m,m(x)]

be the row–vector of fundamental GBs polynomials that, for s = 1, reduces to the vector of fundamental
Bernstein polynomials pm(x) = [pm,0(x), . . . , pm,m(x)]. Moreover, let Cm,s be the following square
matrix of order (m+ 1)

Cm,s :=A−1[I − (I −A)s] = [I − (I −A)s]A−1(3.24)

=[I + (I −A) + (I −A)2 + · · ·+ (I −A)s−1],
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where I is the identity matrix and A ∈ R(m+1)×(m+1) is defined by

(3.25) Ai,j = pm,j(ti), ti =
i

m
, (i, j) ∈ Nm

0 ×Nm
0 .

We have

(3.26) p(s)
m (x) = pm(x) · Cm,s, ∀m, s ∈ N, ∀x ∈ [0, 1].

Moreover, for any f ∈ C0([0, 1]), the polynomial Bm,sf can be represented in the following form

(3.27) Bm,sf(x) = pm(x) · Cm,s · fm, ∀m, s ∈ N, ∀x ∈ [0, 1],

where fm ∈ Rm+1 is the sampling (column) vector of the function f evaluated at the nodes ti, i.e.,

(3.28) fm :=

[
f(0), . . . , f

(
i

m

)
, . . . , f(1)

]T
.

Remark 3.1. Theorem 3.2 provides a useful tool for computing GBs polynomial. Indeed from (3.27), it
follows that the GBs polynomial Bm,sf can be considered as the m−th classical Bernstein polynomial of
a function g having a suitable sampling vector, i.e.,

Bm,sf(x) = Bmg(x) = pm(x) · gm,
where the sampling vector of g is given by

gm := Cm,s · fm.
As a consequence, we can compute the polynomial Bm,sf by using the de Casteljau recursive scheme,
which, as it is well-known, is a fast and stable algorithm [16].

Additional details on the fast computation of GBs polynomials are given in Section 7. In
the sequel, we are going to analyze the approximation provided by GBs polynomials of fixed
parameter s ∈ N and increasing degrees. About the estimate of the remainder term f −Bm,sf ,
the following error bound in C0([0, 1]) was proved in [19].

Theorem 3.3. [19] Let s ∈ N be fixed. Then, for all m ∈ N and any f ∈ C0([0, 1]), we have

(3.29) ‖f −Bm,sf‖ ≤ C
{
ω2s
ϕ

(
f,

1√
m

)
+
‖f‖
ms

}
, C 6= C(m, f).

Moreover, for any 0 < µ ≤ 2s, we obtain

‖f −Bm,sf‖ = O(m−
µ
2 ), m→∞ ⇐⇒ ω2s

ϕ (f, t) = O(tµ)

and the o–saturation class is characterized by the equivalence

‖f −Bm,sf‖ = o(m−s) ⇐⇒ f is a linear function.

Applying the properties of the moduli of smoothness given in Section 2, several error esti-
mates can be deduced from (3.29). In particular, for all m, s ∈ N, by (2.11) and by (2.17), we
have

‖f −Bm,sf‖ ≤
C√
mr

, C 6= C(m), ∀f ∈Wr, r ≤ 2s,(3.30)

‖f −Bm,sf‖ ≤
C√
mλ

, C 6= C(m), ∀f ∈ Zλ, λ < 2s.(3.31)

Hence, we remark that by introducing the additional parameter s ∈ N, the saturation order
m−1 occurring with classical Bernstein polynomials is enlarged to m−s and, using the same
function samples at the (m + 1) equidistant nodes of [0, 1], the GBs polynomial may provide
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the square root of the order of the best uniform polynomial approximation of f in Pm (see
(2.16)).

Nevertheless, s cannot be chosen arbitrarily high and the reason is given by Theorem 3.1,
stating that for s → ∞ the operator Bm,s tends to the Lagrange interpolating polynomial on
equispaced points, which is a well known unstable operator.

In order to show the real degree in approximating a given function f , for increasing values
of m and s, in Table 1, we report the maximum errors

Em,sf = max
x∈X
|f(x)−Bm,sf(x)|,

attained in a sufficiently large set X ⊂ [0, 1], for the test function f(x) = |x− 0.6| 72 ∈ Z 7
2

, whose

theoretical error goes like O
(
m−

7
4

)
. In each column of Table 1, the errors for m fixed and s

varying, starting from 26 on, until the errors decrease, are reported. The empty boxes mean
that for the corresponding s, the error does not decrease anymore. We note that for anym there

s m = 16 m = 32 m = 64 m = 128 m = 256 m = 512 m = 1024
26 2.50e− 5 6.90e− 6 1.95e− 6 5.47e− 7 1.49e− 7 3.7e− 8 9.86e− 9
27 1.93e− 5 5.20e− 6 1.46e− 6 4.10e− 7 1.09e− 7 2.76e− 8 6.81e− 9
28 3.78e− 5 4.08e− 6 1.15e− 6 3.20e− 7 8.45e− 8 2.16e− 8 4.58e− 9
29 3.31e− 6 9.34e− 7 2.57e− 7 6.69e− 8 1.73e− 8 2.98e− 9
210 7.34e− 7 2.11e− 7 5.42e− 8 1.46e− 8 2.07e− 9
211 6.52e− 7 1.77e− 7 4.47e− 8 1.22e− 8 2.07e− 9
212 1.50e− 7 3.74e− 8 1.02e− 8 2.04e− 9
213 1.29e− 7 3.31e− 8 8.44e− 9 1.97e− 9
214 1.12e− 7 2.93e− 8 6.98e− 9 1.89e− 9
215 9.89e− 8 2.59e− 8 5.74e− 9 1.79e− 9
216 2.29e− 8 4.70e− 9 1.67e− 9
217 2.02e− 8 3.81e− 9 1.60e− 9
218 1.79e− 8 3.24e− 9 1.50e− 9

TABLE 1. Convergence behaviour w.r.t. m and s

exist a threshold s̃ = s̃(m), until which the errors decrease, while for s > s̃ the situation is quite
reversed. In these reverse cases, m has to be increased for speeding up again the convergence.
To highlight this behaviour, in Fig. 2, we plotted the error curves w.r.t. the same function
f(x) = |x− 0.6| 72 , for fixed m and s varying from 26 to 218.

The investigation on the mutually relation between m and s for obtaining the optimal s for
each m is still an open problem.

In Figure 3, the plots of the polynomials Bm,sf , for m fixed and s varying, are given. Since
in the whole interval the curves seem to coincide, on the right a magnification is given in the
restricted interval [0.5, 0.7].

In conclusion of the section, let us consider the case that f is a continuously differentiable
function up to a certain order k ∈ N. In this case, GBs polynomials can be used for the simulta-
neous approximation of f and its first k derivatives. In fact, we have

lim
m→∞

‖f (k) − (Bm,sf)(k)‖ = 0, ∀f ∈ Ck,
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FIGURE 2. Plots of Em,sf for s = 2n, n = 6, 7, . . . , 18. On the abscissas the
values of n are reported.
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FIGURE 3. On the left the plots of the functions f(x) = |x − 0.6| 72 and Bm,sf
for m = 31 and different values of s. On the right the same plots are zoomed
in [0.5, 0.7].

where the derivatives of GBs polynomials are all based on the same sampling vector of f .
Some computational details on the derivatives of the GBs polynomials can be found in Section
7. Here, we recall the following error estimate.
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Theorem 3.4. [15, Corollary 1.6] Let s ≥ 1 be fixed. Then, for all m, k ∈ N and any f ∈ Ck, we have

‖(f −Bm,sf)(k)‖ ≤ C


ω2s
ϕ

(
f ′,

1√
m

)
+ ωs

(
f ′,

1

m

)
+ ω

(
f ′,

1

ms

)
, k = 1

ω2s
ϕ

(
f (k),

1√
m

)
+ ωs

(
f (k),

1

m

)
+
‖f (k)‖
ms

, k ≥ 2

,

where ω := ω1 and C 6= C(m, f).

4. A QUADRATURE RULE ON EQUALLY SPACED KNOTS

Based on GBs polynomials, the following quadrature rule was introduced in [24]

(4.32)
∫ 1

0

f(x)dx = Σ(s)
m f +R(s)

m f,

where the quadrature sum is defined by

(4.33) Σ(s)
m f :=

∫ 1

0

Bm,sf(x)dx =

m∑
j=0

Q
(s)
j f

(
j

m

)
, Q

(s)
j :=

∫ 1

0

p
(s)
m,j(x) dx

and the quadrature error is given by

R(s)
m f =

∫ 1

0

[f(x)−Bm,sf(x)] dx.

Such rule is easy to construct since the quadrature weights are representable in the following
form [35]

Q
(s)
j =

1

m+ 1

m∑
i=0

(Cm,s)i,j , j ∈ Nm
0 ,

where (Cm,s)i,j denotes the (i, j)–entry of the matrix Cm,s in (3.24).
We point out that these quadrature weights are not always positive. Nevertheless, the quad-

rature formula is always stable. Indeed, by Theorem 3.3 and by the Uniform Boundedness
Principle, it is possible to deduce the following theorem of convergence and stability.

Theorem 4.5. [32] For all f ∈ C0([0, 1]) and any s,m ∈ N, there holds

(4.34) |R(s)
m f | ≤ C

(
ω2s
ϕ

(
f,

1√
m

)
+
‖f‖
ms

)
, C 6= C(f,m), C = C(s).

Moreover, the quadrature formula is stable, i.e.,

sup
m

m∑
j=0

|Q(s)
j | <∞.

By estimate (4.34), it is possible to deduce the order of convergence for functions belonging
to several functional spaces. For instance, if f ∈ Wr with r ∈ N, then for sufficiently large m
and for any integer s ≥ r

2 , we have by (2.10)

(4.35) |R(s)
m f | ≤ C

(
‖f (r)ϕr‖√

mr
+
‖f‖
ms

)
, C 6= C(f,m), C = C(s).

Another example is given for f ∈ Zλ. Indeed for any s > λ
2 , by (2.17), we get

(4.36) |R(s)
m f | ≤ C ‖f‖Zλ√

mλ
, C 6= C(f,m), C = C(s).
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Now, we propose two tests, comparing the performance of formula (4.33) with the classical
Romberg integration scheme ∫ 1

0

f(t)dt = TN,Nf + eNf,

where TN,N is the Romberg rule and eNf denotes the quadrature error. This rule besides the
well-known triangular scheme (see e.g. [11]), can be also represented as a linear combination
of the samples of f

(4.37) TN,Nf =

2N∑
i=0

σif

(
i

2N

)
,

that is a more convenient form in the implementation of other procedure, for instance in Nys-
tröm methods for integral equations. Details on the coefficients σi are given in [32]. Here, we
only recall the following result about the convergence which holds true for functions having a
continuous derivative of fixed order r ≥ 1 in [0, 1] [7]:

(4.38) |eNf | ≤ C
2(r−1)

2/4

(2π)r
‖f (r)‖
(2N )r

, ∀N ≥ r − 1

2
, f ∈ Cr([0, 1]),

where C is a positive constant independent of f and depending on N and r and such that
1.5 ≤ C ≤ 3.1.

Example 4.1.

I(f1) =

∫ 1

0

cos(x)(1− x)
5
2 dx, I(f2) =

∫ 1

0

√
1− sin2(x)

3
dx.

In order to compare rules (4.33) and (4.37), we choose m = 2N in (4.33), reporting in Tables 2 and 3
the absolute errors. The empty boxes mean that no improvement is attained w.r.t. the errors obtained for
the same values of m.

The values of the integrals I(f1) ∼ 0.2744041660389273 and I(f2) ∼ 0.9526594143223039835
were computed with 16 and 19 exact digits respectively by means of the software Mathematica.

m Romberg s = 32 s = 64 s = 2048
8 1.41e− 06 1.35e− 06 1.47e− 06 9.04e− 07

16 1.47e− 07 1.70e− 07 1.39e− 07 7.98e− 08
32 1.39e− 08 1.53e− 08 1.22e− 08 6.51e− 09
64 1.28e− 09 1.35e− 09 1.07e− 09 5.54e− 10

128 1.15e− 10 1.19e− 10 9.43e− 11 4.81e− 11
256 1.03e− 11 1.05e− 11 8.31e− 12 4.30e− 12
512 9.10e− 13 9.31e− 13 7.35e− 13 3.91e− 13
1024 8.11e− 14 8.26e− 14 6.54e− 14 1.67e− 14

TABLE 2. Errors for I(f1)

Regarding I(f1), according to (4.35) and (4.38), since f1 ∈ W5 ∩ C2([0, 1]) the error R(s)
m f will go

as O(m−
5
2 ), while the error eN of the Romberg rule will behave like O(m−2), where m = 2N .

About the second (elliptic) integral, we note that f2 ∈ Wr for any r and the convergence is very fast
by both the quadrature rules.
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m Romb s = 64 s = 256 s = 1024
8 5.46e− 09 5.33e− 09 1.72e− 09 4.44e− 11

16 2.29e− 11 1.43e− 11 6.26e− 13 2.18e− 13
32 5.66e− 15 1.33e− 15 2.22e− 15
64 1.11e− 16 1.11e− 16

128 4.44e− 16 1.11e− 15
256 2.22e− 16 3.33e− 16

TABLE 3. Errors for I(f2)

So, the tables show that the two quadrature rules are comparable for small values of s. However, in
both the cases, by using the same number of samples m the free parameter s can be enhanced, allowing
to gain better results.

We remark that in both the previous examples the speed of convergence is faster than the
theoretical estimate of this speed. For instance, in the case of I(f1) with m = 1024, the errors
would be around 9.5 × 10−7 for the Romberg formula and 2.8 × 10−8 for the GBs rule. This
means in particular that estimate (4.34) is not sharp.

So an open problem is to estimate R(s)
m f "directly" or, which is the same, to have an L1

estimate of f − Bm,sf . In addition, it would be useful to understand how the constant C in
(4.34) depends on s.

5. A NYSTRÖM METHOD FOR SOLVING FREDHOLM INTEGRAL EQUATIONS

Based on the quadrature rule (4.33), a Nyström method has been introduced in [32] for solv-
ing the following Fredholm Integral Equation (FIE)

(5.39) f(x)− µ
∫ 1

0

f(t)k(x, t)dt = g(x), µ ∈ R, x ∈ [0, 1].

Such equation can be rewritten in operator form as follows

(5.40) (I −K)f = g,

where I denotes the identity operator and

(5.41) Kf(x) := µ

∫ 1

0

k(x, t)f(t) dt, x ∈ [0, 1].

It is known [6] that if the kernel k(x, t) is continuous, then K : C0([0, 1]) → C0([0, 1]) is a
compact operator.

In order to consider the case of more regular kernels, here and in the sequel, we will use the
notation kt (respectively kx) for the bivariate function k(x, t) considered as a function of the
single variable x (respectively t). Using this notation, it is also known [20, Proposition 4.12]
that if k is continuous w.r.t. both the variables and we have

(5.42) sup
t∈[0,1]

‖kt‖Zλ < +∞, λ > 0,

then K : f ∈ C0([0, 1]) → Kf ∈ Zλ is a countinuous map and hence, due to the compact
embedding Zλ ⊂ C0([0, 1]) ([20, Lemma3.2]), we have that K : Zλ → Zλ is a compact operator.

The previous mapping properties and the Fredholm Alternative yield the following theorem
concerning the existence, the uniqueness and the degree of smoothness of the solution of the
FIE (5.39).
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Theorem 5.6. Suppose that the homogeneous equation associated with (5.40) has only the trivial solu-
tion. If the kernel k is continuous w.r.t. both the variables in [0, 1], then there exists a unique solution of
(5.40), that is f∗ ∈ C0([0, 1]), for any continuous function g.
If, in addition, for some λ > 0 we have kt ∈ Zλ uniformly w.r.t. t ∈ [0, 1], i.e., (5.42) holds, then (5.40)
is uniquely solvable in the Hölder–Zygmund spaces Zρ with 0 < ρ ≤ λ, that is f∗ ∈ Zρ, for all g ∈ Zρ.

In order to numerically solve the FIE (5.39), we recall that several fast convergent methods
can be found in the literature concerning projection and Nyström methods based on Gauss-
Jacobi quadrature rules (see for instance [6] and [12] and the references therein).

Nevertheless, many problems in engineering and mathematical physics are often modelled
by (5.39), where the only available data are discrete values of the kernel k and the right–hand
side g at a uniform grid of nodes. In such cases, the implementation of all the methods based
on Jacobi zeros needs a further approximation step in order to derive, from the available data,
the sampling vectors at the involved Jacobi grid. On the other hand, classical methods based
on piecewise polynomial approximation are also available (see [6]) but they offer lower degree
of approximation.

On the contrary, the Nyström method based on the quadrature rule (4.33) can be directly
applied to numerically solve the equation in the case that the values of the kernel k and the
term g are known at equidistant nodes of [0, 1]. To be more precise, in order to find a numerical
approximation of the solution f∗, for all m, we consider the following approximation Km of
the operator K

(5.43) Kmf(x) = µ

m∑
i=0

Q
(s)
i k(x, ti)f(ti), ti =

i

m
, s ∈ N,

where Q(s)
i are the weights of the quadrature rule (4.33) that has been applied to Kf(x) given

by (5.41). The operator Km defines the following approximate equation

(5.44) (I −Km)fm = g

whose solution fm, if existing, has to satisfy the following identity that is a consequence of
(5.44) and (5.43)

(5.45) fm(x) = µ

m∑
i=0

Q
(s)
i k(x, ti)α

∗
i + g(x), α∗i := fm(ti), x ∈ [0, 1].

This function is known as the Nyström interpolant of the solution f∗. In order to compute
the unknowns α∗i , i ∈ Nm

0 , we collocate the approximate equation (5.44) on the knots th, with
h ∈ Nm

0 , obtaining the following linear system of (m + 1) equations and (m + 1) unknowns
{αi}i∈Nm0

(5.46) αh − µ
m∑
i=0

Q
(s)
i k(th, ti)αi = g(th), ti =

i

m
, h ∈ Nm

0 .

The solution of this system, if existing, provides the values {α∗i }mi=0 that we need in (5.45) and
vice versa, the values fm(ti), i ∈ Nm

0 , are solutions of system (5.46). In other words, (5.44) and
(5.46) are equivalent.

Denoting by Vm the coefficient matrix of the system (5.46) and by cond(Vm) = ‖Vm‖∞
‖V−1m ‖∞ its condition number w.r.t. the matrix infinity norm, we have the following result
which extends a previous one stated for Sobolev spaces in [32].
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Theorem 5.7. If for some λ > 0, the kernel k satisfies (5.42) and

(5.47) sup
x∈[0,1]

‖kx‖Zλ < +∞,

then for all integers m ∈ N and s > λ/2, the system (5.46) is uniquely solvable and well-conditioned,
i.e.,

cond(Vm) ≤ C, C 6= C(m).

Moreover, for all g ∈ Zλ the unique solution f∗ ∈ Zλ of the FIE (5.39) can be approximated by its
Nyström interpolant fm in (5.45) according with the following error estimate

‖f∗ − fm‖ ≤ C
‖f‖Zλ√
mλ

,(5.48)

where C 6= C(m, f∗) and C = C(s).

Proof. The proof can be led using classical arguments (see for instance [6, Th.4.1.2]). Indeed,
it is well known that if the Nyström method is based on a quadrature formula converging
for continuous functions, then the linear system (5.46) in uniquely solvable and the condition
number of the matrix of coefficients is bounded by ‖I − Km‖‖(I − Km)−1‖ that is uniformly
bounded for the collectively compactness of the sequence {Km}m. Moreover, it is also known
that

‖f∗ − fm‖ ∼ ‖Kf∗ −Kmf
∗‖.

Therefore, the Theorem is proved if we estimate the quadrature error for the function kxf
∗.

Taking into account (4.36), we have just to estimate ‖f∗kx‖Zλ , being f∗, kx ∈ Zλ, uniformly
w.r.t. x. Fix x ∈ [0, 1]. Using (2.15), we have

‖f∗kx‖λ ∼ ‖f∗kx‖+ sup
n

(n+ 1)λEn(f∗kx).

In the case n = 2m is not hard to prove that

E2m(f∗kx) ≤ 2‖kx‖Em(f∗) + ‖f∗‖Em(kx).

Analogously if n = 2m+ 1, then

E2m+1(f∗kx) ≤ 2‖kx‖Em+1(f∗) + ‖f∗‖Em(kx).

Therefore,
‖f∗kx‖+ sup

n
(n+ 1)λEn(f∗kx) ≤ C (‖kx‖‖f∗‖Zλ + ‖f∗‖‖kx‖Zλ) .

Hence, assuming the sup on x ∈ [0, 1] and holding (5.47), we finally get

sup
x
‖f∗kx‖Zλ ≤ C‖f∗‖Zλ , C 6= C(m, f∗)

and (5.48) follows. �

Remark 5.2. The convergence estimate (5.48) says that if the known functions in equation (5.39) are
in Zλ, then the order of convergence is O(m−

λ
2 ). This means that in the Hölder–Zygmund spaces the

method converges with an order that is the half of the order of the best polynomial approximation in Zλ
(see (2.16)).

In the sequel, we propose a numerical test in order to check the previous theoretical estimate.
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Example 5.2. We consider the following equation

f(x)− 0.2

∫ 1

0

f(t)|x− t|7.5 dt = | arctan(x− 0.5)|10.4.

Here, µ = 0.2, the kernel k(x, t) = |x− t|7.5 ∈ Z7.5 w.r.t. both the variables and g(x) = | arctan(x−
0.5)|10.4 ∈ Z10.4. In Table 4, we report the maximum errors attained in a discrete sufficiently large set
of point in [0, 1], for increasing values of m and s.

m s = 16 s = 32 s = 64
16 0.71e− 02 0.34e− 02 0.16e− 02
32 0.58e− 04 0.43e− 05 0.37e− 06
64 0.41e− 07 0.15e− 09 0.15e− 10
128 0.18e− 11 0.27e− 14 0.24e− 14
256 0.12e− 14 0.33e− 15 0.69e− 15

TABLE 4. Errors by means of the Nyström interpolant

According with (5.48) the theoretical error behaves like O(m−15/4) for s > 3 and as shown in Table
4, the Nyström method goes faster than the attended speed of convergence. For instance, the machine
precision is attained for m = 256, s = 32.

6. SIMULTANEOUS APPROXIMATION OF THE HILBERT TRANSFORM AND ITS FIRST DERIVATIVE

For any f ∈ C0([0, 1]), let

(6.49) Hf(t) =

∫
−

1

0

f(x)

x− t
dx and H1f(t) =

∫
=

1

0

f(x)

(x− t)2
dx, 0 < t < 1,

be the (finite) Hilbert and Hadamard transforms of f , respectively, where we used the single
and double bar-integral notation to indicate that the integrals have to be understood as the
Cauchy principal value integral and the Hadamard finite–part integral, respectively, namely
(see for instance [31], [37, (1.3)])

Hf(t) = lim
ε→0

[∫ t−ε

0

f(x)

x− t
dx+

∫ 1

t+ε

f(x)

x− t
dx

]
, 0 < t < 1,

(6.50) H1f(t) = lim
ε→0

[∫ t−ε

0

f(x)

(x− t)2
dx+

∫ 1

t+ε

f(x)

(x− t)2
dx− 2f(t)

ε

]
, 0 < t < 1.

An alternative definition interprets the Hadamard transform as the first derivative of the Hilbert
transform, i.e.,

(6.51) H1f(t) =
d

dt

∫
−

1

0

f(x)

x− t
dx, 0 < t < 1

and in that case that f ′ is Hölder continuous on [0, 1], the definitions (6.51) and (6.50) are indeed
equivalent (see [37]).

Both the previous transforms are widely used in many areas of mathematical physics (poten-
tial theory, fracture mechanics, aerodynamics, elasticity, etc.), where several boundary–value
problems can be formulated as singular integral equations in [0, 1] involving such integrals (see
e.g. [21, 27, 28, 29, 37] and the references therein).

The following theorem provide some upper bounds of |Hf(t)| and |H1f(t)|, respectively, in
the case that a Dini-type condition is satisfied by f and f ′, respectively. We omit the proof since
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it can be deduced mutatis mutandis by the analogous results in [9, Th.2.1],[18], concerning the
case [−1, 1].

Theorem 6.8. Let 0 < t < 1. For all functions f such that

(6.52)
∫ 1

0

ωϕ(f, u)

u
du <∞,

we have

log−1
(

e

t(1− t)

)
|Hf(t)| ≤ C

(
‖f‖+

∫ 1

0

ωϕ(f, u)

u
du

)
, C 6= C(f, t).

Moreover, if

(6.53)
∫ 1

0

ωϕ(f ′, u)

u
du <∞,

then we have

(6.54) ϕ2(t)|H1f(t)| ≤ C
(
‖f‖+

∫ 1

0

ωϕ(f ′, τ)

τ
dτ

)
, C 6= C(f, t).

In many applications, the data are discrete and often consist of only the values of f at
equidistant points of [0, 1]. In this case, the simultaneous approximation properties of GBs
polynomials turn out to be useful in constructing quadrature rules for the simultaneous ap-
proximation of the Hilbert and Hadamard transforms.

As regards the Hilbert transform, a first numerical approach based on GBs polynomials
can be found in [25, 26]. Such method has been recently improved in [18], where efficient
quadrature rules provide the simultaneous approximation of Hf(t) and H1f(t) by using the
same samples of f , taken at equidistant nodes of [−1, 1]. Here, we consider similar quadrature
rules on the interval [0, 1].

Such formulas have been constructed starting from the following standard decompositions

Hf(t) =

∫ 1

0

f(x)− f(t)

x− t
dx+ f(t) log

(
1− t
t

)
H1f(t) =

∫ 1

0

f(x)− f(t)− f ′(t)(x− t)
(x− t)2

dx+ f ′(t) log

(
1− t
t

)
− f(t)

t(1− t)

that are based on the ordinary integrals

Ff(t) :=

∫ 1

0

f(x)− f(t)

x− t
dx,(6.55)

F1f(t) :=

∫ 1

0

f(x)− f(t)− f ′(t)(x− t)
(x− t)2

dx.(6.56)

These integrals are approximated by the following quadrature rules based on the GBs polyno-
mials

Ff(t) = Fm,sf(t) + Φm,sf(t)

F1f(t) = F1
m,sf(t) + Φ1

m,sf(t),
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where Φm,sf and Φ1
m,sf denotes the quadrature errors and Fm,sf , F1

m,sf are quadrature sums
defined as follows

Fm,sf(t) :=

∫ 1

0

Bm,sf(x)−Bm,sf(t)

x− t
dx,(6.57)

F1
m,sf(t) :=

∫ 1

0

Bm,sf(x)−Bm,sf(t)− (Bm,sf)
′
(t)(x− t)

(x− t)2
dx.(6.58)

Recalling (3.20), the above integrals can be written as follows

Fm,sf(t) =

m∑
j=0

f

(
j

m

)
D

(s)
m,j(t), D

(s)
m,j(t) :=

∫ 1

0

p
(s)
m,j(x)− p(s)m,j(t)

x− t
dx(6.59)

F1
m,sf(t) =

m∑
j=0

f

(
j

m

)
D

(s)

m,j(t), D
(s)

m,j(t) :=
d

dt
D

(s)
m,j(t).(6.60)

Thus, assuming at first instance that the values f(t), f ′(t) are available, we get the following
quadrature rules for the Hilbert and Hadamard transforms at the point t ∈ (0, 1)

Hf(t) = Fm,sf(t) + f(t) log

(
1− t
t

)
+ Φm,sf(t)(6.61)

=: Hm,sf(t) + Φm,sf(t),

H1f(t) = F1
m,sf(t) + f ′(t) log

(
1− t
t

)
− f(t)

t(1− t)
+ Φ1

m,sf(t)(6.62)

=: H1
m,sf(t) + Φ1

m,sf(t).

In the case that the values of f(t) and f ′(t) are unknown, we approximate them by Bm,sf(t)
and its derivative, respectively, obtaining

Hf(t) = Fm,sf(t) + log
(1− t

t

)
Bm,sf(t) + Em,sf(t)(6.63)

=: Hm,sf(t) + Em,sf(t)

and

H1f(t) = F1
m,sf(t) + log

(1− t
t

)
(Bm,sf)

′
(t)− 1

t(1− t)
Bm,sf(t) + E1m,sf(t)(6.64)

=: H1
m,sf(t) + E1m,sf(t),

where Em,sf(t), E1m,sf(t) denote the errors and the remaining part at the right–hand side of
(6.63), (6.64) reduces to a quadrature sum based on the same samples of f .

Further numerical details on the computation of the previous quadrature rules will be given
in Section 7. In the sequel, we are going to discuss the convergence rate of such formulas.

The following result has been stated in [18] for the interval [−1, 1].

Theorem 6.9. Let 0 < t < 1. For all f ∈ C0([0, 1]) satisfying (6.52), we get

|Em,sf(t)| ≤ Clog

(
e

t(1− t)

)[
logm ‖f −Bm,sf‖+

∫ 1
m

0

ωrϕ(f, u)

u
du

]
, C 6= C(m, f, t).

Moreover, in the case that (6.53) holds, we have

(6.65) ϕ2(t)|E1m,sf(t)| ≤ C

[
‖f −Bm,sf‖+ logm‖(f −Bm,sf)′‖+

∫ 1
m

0

ωrϕ(f ′, u)

u
du

]
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with r < m and C 6= C(m, f, t).
Finally, the errors Φm,sf(t) and Φ1

m,sf(t) satisfy the same estimates of Em,sf(t) and E1m,sf(t), and in
addition we have

|Φm,sf(t)| ≤ C‖(f −Bm,sf)′‖, ∀f ∈ C1([0, 1]), C 6= C(m, f, t),(6.66)

|Φ1
m,sf(t)| ≤ C‖(f −Bm,sf)′′‖, ∀f ∈ C2([0, 1]), C 6= C(m, f, t).(6.67)

From this theorem, several error estimates of the quadrature errors can be obtained by the er-
ror estimates of GBs polynomials recalled in Section 3 and based on several moduli of smooth-
ness of f and f ′. For instance, as regards the approximation of the Hilbert transform, by (3.29)
and Theorem 3.4, we get that

log−1
(

e

t(1− t)

)
| Em,sf(t)| ≤ C logm

[
ω2s
ϕ

(
f,

1√
m

)
+
‖f‖
ms

]
+ C

∫ 1
m

0

ωrϕ(f, u)

u
du

holds with r < m and C 6= C(m, f, t), for any f satisfying (6.52). Moreover,

|Φm,sf(t)| ≤ C
[
ω2s
ϕ

(
f ′,

1√
m

)
+ ωs

(
f ′,

1

m

)
+ ω

(
f ′,

1

ms

)]
, ∀f ∈ C1([0, 1]).

For brevity, we omit the details and only state the following corollary to Theorem 6.9, which
easily follows by using (2.10) and (2.17) in the estimates of Theorem 3.3 and Theorem 3.4.

Corollary 6.1. Let 0 < t < 1. For any given s ∈ N and sufficiently large m ∈ N, as regards the
quadrature errors for the Hilbert transform, we have

|Em,sf(t)| ≤ C log

(
e

t(1− t)

)
‖f‖Wr√
mr

logm, ∀f ∈Wr, r ≤ 2s,

|Em,sf(t)| ≤ C log

(
e

t(1− t)

)
‖f‖Zλ√
mλ

logm, ∀f ∈ Zλ, 0 < λ < 2s,

with C 6= C(m, f, t). The same estimate holds for |Φm,sf(t)|, which also satisfies

|Φm,sf(t)| ≤ C√
mk

, ∀f ∈ Ck+1([0, 1]), 1 ≤ k ≤ 2s, C 6= C(m, t).

Moreover, concerning the approximation of the Hadamard transform, we have

ϕ2(t)|E1m,sf(t)| ≤ C logm√
mk

, ∀f ∈ Ck+1([0, 1]), 1 ≤ k ≤ 2s, C 6= C(m, t)

and the error Φ1
m,sf(t) satisfies the same estimate and

|Φ1
m,sf(t)| ≤ C√

mk
, ∀f ∈ Ck+2([0, 1]), 1 ≤ k ≤ 2s, C 6= C(m, t).

We conclude by proposing the following test.

Example 6.3. Consider Hf(t), H1f(t) with f(x) = ex

1+x2 . By the previous algorithms, the recon-
struction of Hf(t) and H1f(t), has been performed in high precision (more than 10 exact digits) by
using only 200 samples of f for both of them. In the graph are shown the approximation Hm,sf(t) and
H1
m,sf(t) of the functionsHf(t) andH1f(t), respectively.
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FIGURE 4. Hm,sf and H1
m,sf , m = 200, s = 20

7. BIVARIATE GBS POLYNOMIALS AND APPLICATIONS

7.1. The bivariate generalized Bernstein operator. Let S = [0, 1]2 and C(S) indicate the space
of continuous functions f in two variables, equipped with the uniform norm on the square S

‖f‖S = max
(x,y)∈S

|f(x, y)|.

Denote by m = (m1,m2), m1,m2 ∈ N and by s = (s1, s2), s1, s2 ∈ N. From now on, let
Pij =

(
i
m1
, j
m2

)
, (i, j) ∈ Nm1

0 × Nm2
0 and Pm1,m2 denote the space of the bivariate algebraic

polynomials of degree m1 w.r.t. the variable x and m2 w.r.t. the variable y.
With these notation and by Bm,s given in (3.20), we can introduce the bivariate Generalized

Bernstein operator Bm,s on S as the tensor product

Bm,s := Bm1,s1 ⊗Bm2,s2 : C(S)→ Pm1,m2
, m = (m1,m2), s = (s1, s2).

This operator with m1 = m2 and s1 = s2 was introduced in [33]. Here, we are proposing a
more general definition in order to get a more flexible approximation tool, according to the
different smoothness properties of the approximating bivariate function, with respect to the
single variables. In other words, we want to make the most of the advantages of the definition
of Bm,s as a tensor product.

By definition and taking into account (3.20), the polynomial Bm,sf(x, y) can be expressed as

(7.68) Bm,sf(x, y) =

m1∑
i=0

m2∑
j=0

p
(s1)
m1,i

(x)p
(s2)
m2,j

(y)f(Pij)

with
{
p
(s)
m,k

}
k∈Nm0

defined in (3.21).
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Let f ∈ C(S). For s = (1, 1), Bm,sf reduces to the bivariate Bernstein polynomial (see for
instance [10] for the case m1 ≡ m2),

Bmf(x, y) =

m1∑
i=0

m2∑
j=0

pm1,i(x)pm2,j(y)f(Pij).

Using the vector representation for the Bernstein basis, the bivariate Bernstein polynomial
can be rewritten as

(7.69) Bmf(x, y) = pm1
(x)TFmpm2

(y),

where the entries of the matrix Fm ∈ R(m1+1)×(m2+1) are

(7.70) (Fm)i,j = f(Pij), (i, j) ∈ Nm1
0 ×Nm2

0 .

Extending some properties holding true in the univariate case, it is not hard to prove that Bm,sf
interpolates f at the corners of the square S and preserves bivariate polynomials of degree 1 in
each variable separately.

By (3.26), Bm,sf can be also represented in the Bernstein basis. Indeed, using the definiton
of Cm,s given in (3.24), it results

(7.71) Bm,sf(x, y) = pm1(x)TCm1,s1FmC
T
m2,s2pm2(y).

Setting

(7.72) Gm,s = Cm1,s1FmC
T
m2,s2 ,

by (7.71), it follows

(7.73) Bm,sf(x, y) = pm1(x)TGm,spm2(y),

i.e., according to (7.69) the polynomial Bm,sf can be seen as the bivariate Bernstein polynomial
of a continuous function g such that g(Pij) = (Gm,s)i,j , (i, j) ∈ Nm1

0 ×Nm2
0 .

From now on, let fx and fy denote the function f(x, y) when considered as a function of the
only variable y and x, respectively.

We give a convergence result of the proposed approximation which is a generalization of
that given in [33].

Theorem 7.10. Let f ∈ C(S). For any fixed s = (s1, s2), it results

(7.74) ‖Bm,sf‖S ≤ 2s1+s2‖f‖S, ∀m.

Moreover, for m1 and m2 sufficiently large (say m1,m2 > m0 fixed)

‖f −Bm,sf‖S ≤ C

{
sup
y∈[0,1]

[
ω2s1
ϕ

(
fy,

1
√
m1

)
+
‖fy‖
ms1

1

]
(7.75)

+ sup
x∈[0,1]

[
ω2s2
ϕ

(
fx,

1
√
m2

)
+
‖fx‖
ms2

2

]}
,

where C is a positive constant depending on s1, s2 and independent of f , m1 and m2.

Proof. The proof can be led repeating word by word that of Theorem 3.1 in [33]. Indeed, denot-
ing by ‖A‖∞, the infinity norm of a matrix A, then it results ‖Cmh,sh‖∞ ≤ 2sh − 1 and hence
(7.74) immediately follows by (7.72) and (7.73). Moreover, (7.75) can be deduced with the same
arguments in [33], taking into account estimate (3.29). �
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Remark 7.3. From the previous estimate, it is possible to deduce the rate of convergence of the approxi-
mation according to the smoothness properties of f ∈ C(S) . For instance, if fy ∈ Wr1 and fx ∈ Wr2 ,
uniformly w.r.t. y and x respectively, then choosing s1 ≥ r1

2 and s2 ≥ r2
2 , by (2.10), we immediately

deduce that

(7.76) ‖f −Bm,sf‖S ≤ C

{
sup
y∈[0,1]

[
‖fy‖Wr1√

mr1
1

+
‖fy‖
ms1

1

]
+ sup

x∈[0,1]

[
‖fx‖Wr2√

mr2
2

+
‖fx‖
ms2

2

]}
.

Estimate (7.76) suggests that when the smoothness of the function f is different w.r.t the two variables,
then it is possible to obtain a significant reduction in the computational cost, both in terms of function
samples and in the construction of matrices Cmh,sh , h = 1, 2, with respect to the case m1 = m2.

7.2. A cubature rule. The above introduced Bm,s operator can be usefully employed in the
numerical cubature. Indeed for integrals of the type

∫
S
f(x, y)dxdy, it is possible to deduce the

following cubature rule ∫
S

f(x, y)dxdy =

∫
S

Bm,sf(x, y)dxdy + Rm,sf(7.77)

=: Σm,sf + Rm,sf.

By (7.73) and taking into account that∫ 1

0

pm,k(t)dt =
1

m+ 1
, k ∈ Nm

0 ,

it is not hard to prove that

(7.78) Σm,sf =

m1∑
i=0

m2∑
j=0

T
(s)
i,j f(ti, tj),

where for any (i, j) ∈ Nm1
0 ×Nm2

0 ,

T
(s)
i,j =

1

(m1 + 1)(m2 + 1)

(
m1∑
r=0

(Cm1,s1)r,i

)(
m2∑
k=0

(Cm2,s2)k,j

)
.

The previous rule for m1 = m2 and s1 = s2 was introduced in [33]. The stability and con-
vergence of the cubature rule are stated in the next theorem which can be obtained as a direct
application of (7.75).

Theorem 7.11. With the notation used in (7.77)-(7.78) and for any f ∈ C(S), the cubature formula is
convergent , holding

|Rm,sf | ≤ C

{
sup
y∈[0,1]

[
ω2s1
ϕ

(
fy,

1
√
m1

)
+
‖fy‖
ms1

1

]
(7.79)

+ sup
x∈[0,1]

[
ω2s2
ϕ

(
fx,

1
√
m2

)
+
‖fx‖
ms2

2

]}
, C 6= C(m, f), C = C(s)

and numerically stable, i.e.,

(7.80) sup
m1

sup
m2

m1∑
i=0

m2∑
j=0

|T(s)
i,j | <∞.
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Remark 7.4. As for the generalized Bernstein approximation, also in this case from estimate (7.79),
it is possible to deduce suitable convergence order for specific classes of functions. For instance for
functions that are in Sobolev spaces w.r.t the single variable and estimate like (7.76) can be obtained also
for Rm,sf . In addition taking into account the different estimates w.r.t the single variables of f , it is
possible to construct, with the same attained error, a cubature rule with a computational saving respect
both the computation of the function samples and the construction of the weights of the rule.

Now, we want to give just two examples of the proposed cubature formula. In both cases,
the value of the integral is computed in machine precision by means of a Gaussian cubature
formula obtained as a tensor product of two Gauss-Legendre rules.

Example 7.4. Consider the double integral∫ 1

0

∫ 1

0

cos(xy)e|y−0.2|
17
3 dx dy ∼ 9.779542891104441e− 01.

The integrating function is in Wr1 for any integer r1 with respect to the variable x, while is in W5 with
respect to the variable y. Therefore from (7.79), we get that the order of convergence of the formula is
O(m−5/2). Nevertheless, it is clear that m1 and s1 could be taken reasonably small while m2 has to
increase in order to get an high number of correct digits. Therefore we fixed m1 = 64, s1 = 1024, while
for any value of m2 we consider different values for s2. The results are shown in the following Table 5

m2 s2 = 4 s2 = 8 s2 = 16 s2 = 32 s2 = 64 s2 = 128
64 6.31e− 07 7.04e− 08 1.86e− 08 6.69e− 09 2.86e− 09 1.38e− 09
128 6.04e− 08 2.79e− 09 4.18e− 10 9.29e− 11 2.57e− 11 8.39e− 12
256 6.22e− 09 1.05e− 10 8.00e− 12 1.01e− 12 1.63e− 13 3.13e− 14
512 6.89e− 10 4.01e− 12 1.38e− 13 8.10e− 15 7.77e− 16 1.32e− 15
1024 8.05e− 11 1.63e− 13 7.77e− 16 9.99e− 16 1.33e− 15 1.44e− 15

TABLE 5. Absolute errors for Example 7.4

As the table shows, the numerical behavior in surely better than the theoretical estimate predicts. More-
over, it is possible to show that increasing m1 does not lead to any relevant improvement in the exact
digits in the results.

Example 7.5. Consider the double integral∫ 1

0

∫ 1

0

e(x+y)
2

| sin(y)− 0.5| 72 dx dy ∼ 4.8794503105779e− 02.

The integrating function is in Wr1 for any integer r1 with respect to the variable x while is in W3 with
respect to the variable y. Therefore from (7.79), we get that the order of convergence of the formula is
O(m−3/2). As in the previous example, we fix m1 and s1, while m2 is taken increasing in order to get
an high number of correct digits. Therefore we fixed m1 = 256, s1 = 4096, while for any value of m2

we consider different values for s2. The results are shown in the following Table 6.

Also in this case, if we take higher values for m1, no benefits can be found on the obtained results.
Moreover also here it is evident that for a fixed value of m2, the choice of higher values for s2 leads to
gain more exact digits, till some threshold s̃2 depending onm2 (see for instance the results form2 = 256
and s2 = 32, 64, 128 or m2 = 512 and s2 = 16, 32, 64, 128).
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m2 s2 = 4 s2 = 8 s2 = 16 s2 = 32 s2 = 64 s2 = 128
64 1.14e− 06 6.53e− 08 8.69e− 09 1.48e− 09 1.90e− 10 6.92e− 11
128 1.18e− 07 2.57e− 09 1.69e− 10 2.19e− 11 8.05e− 12 6.62e− 12
256 1.31e− 08 1.05e− 10 3.08e− 12 4.11e− 13 2.85e− 13 2.79e− 13
512 1.53e− 09 4.72e− 12 5.92e− 14 1.22e− 14 1.11e− 14 1.11e− 14
1024 1.84e− 10 2.35e− 13 1.41e− 15 5.55e− 16 5.55e− 16 5.55e− 16

TABLE 6. Absolute errors for Example 7.5

7.3. Fredholm integral equations on the square. In this section, we want to show a possible
application of the cubature rule introduced above to the numerical approximation of the so-
lution of a Fredholm integral equation (FIE) defined on S . For the sake of simplicity, we will
limit ourselves to the case m1 = m2 and s1 = s2, but all the results, mutatis mutandis can be
obtained in the more general case.

First of all, we introduce the following bivariate Sobolev–type space

(7.81) Wr =

{
f ∈ C(S) :Mrf := max

{
max

(x,y)∈S
|f (r)y (x)ϕr(x)|, max

(x,y)∈S
|f (r)x (y)ϕr(y)|

}
<∞

}
,

where the superscript (r) denotes the r-th derivative of the one-dimensional function fy or fx
and the function ϕ(z) =

√
z(1− z). Wr will be equipped with the norm ‖f‖Wr = ‖f‖S+Mrf .

Let us consider the following bivariate FIE on the square S

(7.82) f(x, y)− µ
∫
S

f(z, t)k(x, y, z, t)dz dt = g(x, y), (x, y) ∈ S,

where µ ∈ R, k defined on S×S and g defined on S are given functions, while f is the unknown
function. Denoting by

Kf(x, y) = µ

∫
S

k(x, y, z, t)f(z, t) dz dt

(7.82) can be rewritten in operatorial form as

(7.83) (I−K)f = g,

where I is the identity operator on C(S). Here and in the sequel, we will denote k(z,t) for
meaning that the function of four variables k is considered as a function of the only pair (x, y).

Using standard arguments, it is possible to prove that if k(x, y, z, t) is continuous, then K :
C(S) → C(S) is compact and consequently the Fredholm Alternative holds true for (7.83) in
C(S) (see for instance [6]). Moreover if for some r ∈ N,

(7.84) sup
(z,t)∈S

‖k(z,t)‖Wr
< +∞,

then Kf ∈Wr for any f ∈ C(S).
Starting with the cubature rule (7.78) written with m1 = m2 =: m and s1 = s2 =: s, we can

define the following discrete operator

Kmf(x, y) = µ

m∑
i=0

m∑
j=0

T
(s)
i,j k(x, y, ti, tj)f(ti, tj)

and consider the operator equation

(7.85) (I−Km)fm = g,
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where fm is unknown. Collocating on the pairs (th, t`), (h, `) ∈ Nm
0 × Nm

0 , the quantities
βij = f(Pi,j), (i, j) ∈ Nm

0 ×Nm
0 , come out to be the unknowns of the linear system

(7.86) βh` − µ
m∑
i=0

m∑
j=0

T
(s)
i,j k(th, t`, ti, tj)βij = g(th, t`), (h, `) ∈ Nm

0 ×Nm
0 .

The matrix solution (β∗ij)i,j=0,1...,m of this system, if it exists, allows us to construct the Nyström
interpolant in two variables

(7.87) fm(x, y) = µ

m∑
i=0

m∑
j=0

T
(s)
i,j k(x, y, ti, tj)β

∗
ij + g(x, y)

which will approximate the unknown f . Now, denote by Γm,s the coefficient matrix of system
(7.86), which is a (m+ 1) block matrix, the entries of which are matrices of order m+ 1.

Denoting by cond(Γm,s) the condition number in infinity norm of Γm,s, the following theo-
rem holds true (see [33]).

Theorem 7.12. Assume that k is continuous w.r.t. its four variables and that Ker{I −K} = {0} in
C(S). Denote by f the unique solution of (7.85) in C(S) for a given g ∈ C(S). If in addition, for some
r ∈ N, k satisfies (7.84), g ∈Wr, and

(7.88) sup
(x,y)∈S

‖k(x,y)‖Wr < +∞,

then, for m sufficiently large, the system (7.86) is uniquely solvable and well-conditioned too, since

cond(Γm,s) ≤ C, C 6= C(m), C = C(s).

Moreover, for any s ≥ r
2 , there results

‖f − fm‖S ≤ C
‖f‖Wr√
mr

,(7.89)

where C 6= C(m, f) and C = C(s).

Remark 7.5. Several computational details and numerical tests about the proposed Nyström method
can be found in [33]. In particular, in that paper the case in which the function kernel k(x, y, z, t) shows
some symmetry was discussed. Indeed, the symmetry properties of the kernel are inherited by the matrix
Γm,s. And this fact could be useful for reducing the computational effort in solving the linear system
(7.86).

8. COMPUTATIONAL DETAILS

8.1. On the computation of Bm,sf . In order to construct Bm,sf as defined in (3.27), we give
some computational details about the matrix Cm,s [33]. Such matrix is defined by the matrix
A in (3.25) which can be constructed by rows by making use of the triangular scheme in (2.4).
In this way, for each row, m2 long operations are required. On the other hand, since A is
centrosymmetric, i.e., A = JAJ, where J is the counter-identity matrix of order m + 1 (i.e.,
Ji,j = δi,m−j , ∀i, j ∈ Nm

0 , being δh,k the Kronecker delta), it will be enough to compute only
the first

(
m+1
2

)
rows for odd m, or

(
m+2
2

)
rows, when m is even. Therefore, the construction of

A requires about m
3

2 long operations. Furthermore, since the product of two centrosymmetric
matrices can be performed in almost m3

4 long operations [1], the matrix Cm,s in (3.24) can be
constructed in almost (s−2)m3/4 long operations, instead of (s−2)m3 ones, i.e., with a saving
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of about the 75%. A more significant reduction is achieved when the parameter s = 2p, p ∈ N .
Indeed, by using [32, (14)]

(8.90) Cm,2p = Cm,2p−1 + (I −A)2
p−1

Cm,2p−1 ,

that allow to the following relation among the polynomials

(8.91) Bm,2pf(x) = 2Bm,2p−1f(x)−B2
m,2p−1f(x),

the matrix Cm,s can be determined by 2(log2 s − 1) products of centrosymmetric matrices and
therefore requiring almost m3

2 (log2 s − 1) long operations. For instance, for s = 256, if we use
definition (3.24), then we have 255 products of centrosymmetric matrices that require about
255m

3

4 ∼ 63.7m3 long operations. On the contrary, if we use (8.90), then approximatively only
3.5m3 long operations are needed.

8.2. Computation of the derivatives of Bm,sf . As regards the first derivative of the Bernstein
polynomials Bm,sf , by (3.27), we obtain the following useful representation

(8.92) (Bm,sf)
′
(x) = p1

m(x)Cm,sfm,

where fm was defined in (3.28) and we set

p1
m(x) := [p′m,0(x), . . . , p′m,m(x)],

where

(8.93) p′m,k(x) = m (pm−1,k−1(x)− pm−1,k(x)) , k ∈ Nm0 ,

with the usual convention pm,j(x) = 0 if j /∈ Nm0 .

8.3. Coefficients of the quadrature rules for Hilbert and Hadamard transforms. The coeffi-
cients of the rule (6.59) take the following expression

(8.94) D
(s)
m,j(t) =

m∑
i=0

(Cm,s)i,j

∫ 1

0

pm,i(x)− pm,i(t)
x− t

dx =:

m∑
i=0

(Cm,s)i,jqm,i(t),

where the polynomials qm,i(t) can be computed via recurrence relation as stated in the follow-
ing proposition.

Proposition 8.1. For all m ∈ N, m > 1, the polynomials qm,k(t), with k ∈ Nm0 , satisfy the following
recurrence relation

q0,0(t) = 0, q1,0(t) = −1, q1,1(t) = 1,

qm,0(t) = (1− t)qm−1,0(t)− 1

m
,

qm,k(t) = (1− t)qm−1,k(t) + tqm−1,k−1(t), 1 ≤ k ≤ m− 1,

qm,m(t) = tqm−1,m−1(t) +
1

m
.
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Proof. For 1 ≤ k ≤ m − 1, by using recurrence relation (2.4) and taking into account that∫ 1

0
pm,k(x)dx = 1

m+1 for all k ∈ Nm0 , we get

qm,k(t) =

∫ 1

0

(1− x)pm−1,k(x)− (1− t)pm−1,k(t)

x− t
dx

+

∫ 1

0

xpm−1,k−1(x)− tpm−1,k−1(t)

x− t
dx

= qm−1,k(t)−
∫ 1

0

xpm−1,k(x)− tpm−1,k(t)

x− t
dx

+

∫ 1

0

xpm−1,k−1(x)− tpm−1,k−1(t)

x− t
dx

= qm−1,k(t)− 1

m
− tqm−1,k(t) +

1

m
+ tqm−1,k−1(t)

= (1− t)qm−1,k(t) + tqm−1,k−1(t).

For k = 0,

qm,0(t) =

∫ 1

0

(1− x)pm−1,0(x)− (1− t)pm−1,0(t)

x− t
dx = qm−1,0(t)− 1

m
− tqm−1,0(t)

= (1− t)qm−1,0(t)− 1

m
.

For k = m, we proceed in the same way. �

Setting

(8.95) qm(t) = [qm,0(t), qm,1(t), . . . , qm,m(t)],

the quadrature rule (6.59) can be rewritten as

(8.96) Fm,sf(t) = qm(t)Cm,s fm.

Moreover, the quadrature ruleHm,s in (6.63) tales the form

(8.97) Hm,sf(t) =

[
qm(t) + log

(1− t
t

)
pm(t)

]
Cm,sfm.

About the coefficients of the formula (6.60), by (6.59) and (8.94), we get ∀j ∈ Nm0 ,

(8.98) D
(s)

m,j(t) =

m∑
i=0

(Cm,s)i,jdm,i(t), dm,i(t) := q′m,i(t),

where the polynomials dm,i(t), i = 0, . . . ,m can be computed recursively according to next
proposition which easily follows by Proposition 8.1.

Proposition 8.2. For all m ∈ N, m > 1, the polynomials dm,k(t), k ∈ Nm0 , satisfy the following
recurrence relation

d1,0(t) = 0, d1,1(t) = 0,

dm,0(t) = (1− t)dm−1,0(t)− qm−1,0(t),

dm,k(t) = (1− t)dm−1,k(t)− qm−1,k(t) + tdm−1,k−1(t) + qm−1,k−1(t), 0 < k < m,

dm,m(t) = tdm−1,m−1(t) + qm−1,m−1(t).
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Setting
dm(t) = [dm,0(t), dm,1(t), . . . , dm,m(t)] ,

the quadrature rule (6.60) takes the following form

(8.99) F1
m,sf(t) = dm(t)Cm,s fm.

Finally by (8.99), (3.27) and (8.92), the rule H1
m,s defined in (6.64) takes the following vectorial

form

(8.100) H1
m,sf(t) =

[
dm(t) + log

(1− t
t

)
p1
m(t)− 2

t(1− t)
pm(t)

]
Cm,sfm.
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