

Article **Exponentially Harmonic Maps into Spheres**

Sorin Dragomir ^{1,*} and Francesco Esposito ²

- ¹ Dipartimento di Matematica, Informatica, ed Economia, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- ² Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento, 73100 Lecce, Italy; francesco.esposito@unisalento.it
- * Correspondence: sorin.dragomir@unibas.it

Received: 29 October 2018; Accepted: 18 November 2018; Published: 22 November 2018

Abstract: We study smooth exponentially harmonic maps from a compact, connected, orientable Riemannian manifold M into a sphere $S^m \subset \mathbb{R}^{m+1}$. Given a codimension two totally geodesic submanifold $\Sigma \subset S^m$, we show that every nonconstant exponentially harmonic map $\phi : M \to S^m$ either meets or links Σ . If $H^1(M, \mathbb{Z}) = 0$ then $\phi(M) \cap \Sigma \neq \emptyset$.

Keywords: exponentially harmonic map; totally geodesic submanifold; Euler-Lagrange equations

1. Introduction

Let *M* be a compact, connected, orientable *n*-dimensional Riemannian manifold, with the Riemannian metric *g*. Let $\phi : M \to N$ be a C^{∞} map into another Riemannian manifold (N,h). The *Hilbert-Schmidt norm* of $d\phi$ is $||d\phi|| = [\operatorname{trace}_{g}(\phi^*h)]^{1/2} : M \to \mathbb{R}$. Let us consider the functional

$$E: C^{\infty}(M, N) \to \mathbb{R}, \quad E(\phi) = \int_{M} \exp\left(\frac{1}{2} \|d\phi\|^{2}\right) dv_{g}$$

A C^{∞} map $\phi : M \to N$ is *exponentially harmonic* if it is a critical point of E i.e., $\{d E(\phi_s)/ds\}_{s=0} = 0$ for any smooth 1-parameter variation $\{\phi_s\}_{|s| < \epsilon} \subset C^{\infty}(M, N)$ of $\phi_0 = \phi$. Exponentially harmonic maps were first studied by J. Eells & L. Lemaire [1], who derived the *first variation formula*

$$\frac{d}{ds} \left\{ E(\phi_s) \right\}_{s=0} = -\int_M \exp\left[e(\phi) \right] h^{\phi} \left(V, \ \tau(\phi) + \phi_* \, \nabla e(\phi) \right) \ d \, \mathbf{v}_g$$

where $e(\phi) = \frac{1}{2} ||d\phi||^2$ and $\tau(\phi) \in C^{\infty}(\phi^{-1}TN)$ is the *tension field* of ϕ (cf. e.g., [2]). Also $V = (\partial \phi_s / \partial s)_{s=0}$ is the infinitesimal variation induced by the given 1-parameter variation. In particular, the Euler-Lagrange equations of the variational principle $\delta E(\phi) = 0$ are

$$-\Delta\phi^{i} + \left(\Gamma^{i}_{jk}\circ\phi\right) \frac{\partial\phi^{j}}{\partial x^{\alpha}} \frac{\partial\phi^{k}}{\partial x^{\beta}} g^{\alpha\beta} + \frac{\partial\phi^{i}}{\partial x^{\alpha}} \frac{\partial e(\phi)}{\partial x^{\beta}} g^{\alpha\beta} = 0$$
(1)

where

$$\Delta u = -\frac{1}{\sqrt{G}} \frac{\partial}{\partial x^{\alpha}} \left(\sqrt{G} g^{\alpha\beta} \frac{\partial u}{\partial x^{\beta}} \right), \quad G = \det[g_{\alpha\beta}],$$

is the Laplace-Beltrami operator and Γ_{jk}^i are the Christoffel symbols of h_{ij} . The (partial) regularity of weak solutions to (1) was investigated by D.M. Duc & J. Eells (cf. [3]) when $N = \mathbb{R}$ and by Y-J. Chiang et al. (cf. [4]) when $N = S^m$. Differential geometric properties of exponentially harmonic maps, including the second variation formula for *E*, were found by M-C. Hong (cf. [5]), J-Q. Hong & Y. Yang (cf. [6]), L-F. Cheung & P-F. Leung (cf. [7]), and Y-J. Chiang (cf. [8]). The purpose of the present paper is to further study exponentially harmonic maps ϕ winding in $N = S^m$, a situation previously attacked in [4], though confined to the case where M is a Fefferman space-time (cf. [9]) over the Heisenberg group \mathbb{H}_n and $\phi : M \to S^m$ is S^1 invariant. Fefferman spaces are Lorentzian manifolds and exponentially harmonic maps of this sort are usually referred to as exponential wave maps (cf. e.g., Y-J. Chiang & Y-H. Yang, [10]). Base maps $f : \mathbb{H}_n \to S^m$ associated (by the S^1 invariance) to $\phi : M \to S^m$ turn out to be solutions to degenerate elliptic equations [resembling (cf. [11]) the exponentially harmonic map system (1)] and the main result in [4] is got by applying regularity theory within subelliptic theory (cf. e.g., [12]).

Through this paper, M will be a compact Riemannian manifold and $\phi : M \to S^m$ an exponentially harmonic map. Although the properties of an exponentially harmonic map may differ consistently from those of ordinary harmonic maps (see the emphasis by Y-J. Chiang, [13]), we succeed in recovering, to the setting of exponentially harmonic maps, the result by B. Solomon (cf. [14]) that for any nonconstant harmonic map $\phi : M \to S^m$ from a compact Riemannian manifold either $\phi(M) \cap \Sigma \neq \emptyset$ or $\phi : M \to S^m \setminus \Sigma$ isn't homotopically null. Here $\Sigma \subset S^m$ is an arbitrary codimension 2 totally geodesic submanifold.

The ingredients in the proof of the exponentially harmonic analog to Solomon's theorem (see [14]) are (i) setting the Equation (1) in divergence form

$$-\nabla^*\left(\exp\left[e(\phi)\right]\nabla\phi^i\right)+2e(\phi)\,\exp\left[e(\phi)\right]\phi^i=0$$

(got by a *verbatim* repetition of arguments in [4]), (ii) observing that $S^m \setminus \Sigma$ is isometric to the warped product manifold $S^{m-1}_+ \times_w S^1$, and (iii) applying the Hopf maximum principle (to conclude that there are no nonconstant exponentially harmonic maps into hemispheres).

2. Exponentially Harmonic Maps into Warped Products

Let $S = L \times \mathbb{R}$, where *L* is a Riemannian manifold with the Riemannian metric g_L . Let $w \in C^{\infty}(S)$ such that w(y) > 0 for any $y \in S$ and let us endow *S* with the *warped product metric*

$$h=\Pi_1^* g_L+w^2 dt\otimes dt,$$

where $t = \tilde{t} \circ \Pi_2$, \tilde{t} is the Cartesian coordinate on \mathbb{R} , and

$$\Pi_1: S \to L, \quad \Pi_2: S \to \mathbb{R},$$

are projections. The Riemannian manifold (S, h) is customarily denoted by $L \times_w \mathbb{R}$. Let $\phi : M \to S$ be an exponentially harmonic map and let us set

$$F=\Pi_1\circ\phi, \quad u=\Pi_2\circ\phi.$$

We need to establish the following

Lemma 1. Let *M* be a compact, connected, orientable Riemannian manifold and $\phi = (F, u) : M \to S = L \times_w \mathbb{R}$ a nonconstant exponentially harmonic map. Then *u* is a solution to

$$(w \circ \phi) \Delta u + \left(\frac{\partial w}{\partial t} \circ \phi\right) \|\nabla u\|^{2}$$

$$(w \circ \phi) (\nabla u) e(\phi) + 2 (\nabla u) (w \circ \phi).$$

$$(2)$$

If additionally $\partial w / \partial t = 0$ then $\phi(M) \subset L \times \{t_{\phi}\}$ for some $t_{\phi} \in \mathbb{R}$.

=

Also for an arbitrary test function $\varphi \in C^{\infty}(M)$ we set

$$\phi_s(x) = (F(x), u(x) + s \varphi(x)), \quad x \in M, \quad |s| < \epsilon,$$

so that $\{\phi_s\}_{|s| < \epsilon}$ is a 1-parameter variation of ϕ . For each $x_0 \in M$ let $\{E_{\alpha} : 1 \le \alpha \le n\} \subset C^{\infty}(U, T(M))$ be a local *g*-orthonormal (i.e., $g(E_{\alpha}, E_{\beta}) = \delta_{\alpha\beta}$) frame, defined on an open neighborhood $U \subset M$ of x_0 . Then

$$\|d\phi_s\|^2 = \operatorname{trace}_g(\phi_s^*h) = \sum_{\alpha=1}^n (\phi_s^*h)(E_\alpha, E_\alpha)$$

on *U*. On the other hand

$$(\phi_s^*h)(X,X) = (F^*g_L)(X,X) + (w \circ \phi_s)^2 [X(u) + s X(\varphi)]^2$$
(3)

for every tangent vector field $X \in \mathfrak{X}(M)$. Formula (3) for $X = E_{\alpha}$ yields

$$\|d\phi_s\|^2 = \|dF\|^2 + (w \circ \phi_s)^2 [\|\nabla u\|^2 + 2s g(\nabla u, \nabla \varphi) + s^2 \|\nabla \varphi\|^2].$$

Hence (differentiating with respect to *s*)

$$\frac{d}{ds} \{ E(\phi_s) \}_{s=0} = \int_M \exp\left[e(\phi) \right] \left\{ \left(w \circ \phi \right)^2 g(\nabla u, \nabla \phi) + \left(w \circ \phi \right) \left(w_t \circ \phi \right) \phi \| \nabla u \|^2 \right\} dv_g$$
(4)

where $w_t = \partial w / \partial t$. Moreover

$$\exp \left[e(\phi) \right] (w \circ \phi)^{2} g(\nabla u, \nabla \phi)$$

$$= \operatorname{div} (\phi \exp \left[e(\phi) \right] (w \circ \phi)^{2} \nabla u)$$

$$+ \phi \left\{ \exp \left[e(\phi) \right] (w \circ \phi)^{2} \Delta u - (\nabla u) \left(\exp \left[e(\phi) \right] (w \circ \phi)^{2} \right) \right\}$$
(5)

where div: $\mathfrak{X}(M) \to C^{\infty}(M)$ is the divergence operator with respect to the Riemannian volume form

$$dv_g = \sqrt{G} dx^1 \wedge \cdots \wedge dx^n$$

i.e., $\mathcal{L}_X dv_g = \operatorname{div}(X) dv_g$ and Δ is the Laplace-Beltrami operator (on functions) i.e., $\Delta u = -\operatorname{div}(\nabla u)$. Substitution from (5) into (4) together with Green's lemma yields [by $\{dE(\phi_s)/ds\}_{s=0} = 0$ and the density of $C^{\infty}(M)$ in $L^2(M)$]

$$(w \circ \phi) \Delta u + (w_t \circ \phi) \|\nabla u\|^2$$

$$= (w \circ \phi) (\nabla u) e(\phi) + 2 (\nabla u) (w \circ \phi)$$
(6)

which is (2) in Lemma 1. When $w_t = 0$ Equation (6) is

div
$$\left\{ \exp\left[e(\phi)\right] (w \circ \phi)^2 \nabla u \right\} = 0.$$
 (7)

Equation (7) is part of the Euler-Lagrange system associated to the variational principle $\delta E(\phi) = 0$. Next (by (7))

$$\operatorname{div}\left\{\left(w\circ\phi\right)^{2}u\,\exp\left[e(\phi)\right]\nabla u\right\}=\exp\left[e(\phi)\right]\,\left(w\circ\phi\right)^{2}\|\nabla u\|^{2}.$$
(8)

Let us integrate over M in (8) and use Green's lemma. We obtain

$$\int_{M} \exp\left[e(\phi)\right] \, \left(w \circ \phi\right)^{2} \, \|\nabla u\|^{2} \, d\, \mathbf{v}_{g} = 0$$

yielding (as ϕ is assumed to be nonconstant) $u(x) = t_{\phi}$ for some $t_{\phi} \in \mathbb{R}$ and any $x \in M$. Q.e.d.

3. Exponentially Harmonic Maps Omitting a Codimension 2 Sphere Aren't Null Homotopic

Let $\Sigma \subset S^m$ be a codimension 2 totally geodesic submanifold. A continuous map $\phi : M \to S^m$ *meets* Σ if $\phi(M) \cap \Sigma \neq \emptyset$ and *links* Σ if $\phi(M) \cap \Sigma = \emptyset$ and $\phi : M \to S^m \setminus \Sigma$ is not null homotopic. The purpose of the section is to establish

Theorem 1. Let $\phi : M \to S^m$ be a nonconstant exponentially harmonic map from a compact, connected, orientable Riemannian manifold M into the sphere $S^m \subset \mathbb{R}^{m+1}$. If $\Sigma \subset S^m$ is a codimension 2 totally geodesic submanifold, then ϕ either meets or links Σ .

Proof. The proof is by contradiction, i.e., we assume that ϕ doesn't meet Σ and the map $\phi : M \to S^m \setminus \Sigma$ is null homotpic. Let (ξ_j) be a system of coordinates on \mathbb{R}^{m+1} such that Σ is given by the equations $\xi_1 = \xi_2 = 0$. Let $S^{m-1}_+ \subset \mathbb{R}^m$ be the hemisphere

$$S^{m-1}_+ = \left\{ y = (y', y_m) \in \mathbb{R}^{m-1} \times \mathbb{R} : y \in S^{m-1}, y_m > 0
ight\}.$$

Let us consider the map

$$I: S^{m-1}_+ \times S^1 \to S^m \setminus \Sigma, \quad I(y, \zeta) = (y_m u, y_m v, y'),$$
$$y = (y', y_m) \in S^{m-1}_+, \quad \zeta = u + i v \in S^1 \subset \mathbb{C}.$$

Let g_N denote the canonical Riemannian metric on $S^N \subset \mathbb{R}^{N+1}$. The map I is an isometry of $S^{m-1}_+ \times_f S^1$ onto $(S^m \setminus \Sigma, g_m)$ with the warping function

$$f \in C^{\infty}(S^{m-1}_+ \times S^1), \quad f(y,\zeta) = y_m.$$

Let us consider the map $\tilde{\psi} = I^{-1} \circ \phi$. We need the following. \Box

Lemma 2. Let *S* and \overline{S} be Riemannian manifolds, $\pi : S \to \overline{S}$ a local isometry, and $\overline{f} : M \to \overline{S}$ an exponentially harmonic map. Then every map $f : M \to S$ such that $\pi \circ f = \overline{f}$ is exponentially harmonic.

Proof. Let *h* and \overline{h} be the Riemannian metrics on *S* and \overline{S} . For every 1-parameter variation $\{f_s\}_{|s| < \epsilon}$ of $f_0 = f$ we set $\overline{f}_s = \pi \circ f_s$ so that $\{\overline{f}_s\}_{|s| < \epsilon}$ is a 1-parameter variation of $\overline{f}_0 = \overline{f}$. A calculation relying on $\pi^*\overline{h} = h$ yields $E(f_s) = E(\overline{f}_s)$ for every $|s| < \epsilon$. Q.e.d.

By Lemma 2 the map $\tilde{\psi} = I^{-1} \circ \phi$ is exponentially harmonic. Let us set

$$F = \pi_1 \circ \tilde{\psi}$$
, $\tilde{u} = \pi_2 \circ \tilde{\psi}$,

where $\pi_1 : S^{m-1}_+ \times S^1 \to S^{m-1}_+$ and $\pi_2 : S^{m-1}_+ \times S^1 \to S^1$ are projections. Next let us consider a point $x_0 \in M$ and set $\zeta_0 = \tilde{u}(x_0) \in S^1$. Also, considered the covering map $p : \mathbb{R} \to S^1$, $p(t) = \exp(2\pi i t)$, pick $t_0 \in \mathbb{R}$ such that $p(t_0) = \zeta_0$. As ϕ is null homotopic, the map $\tilde{\psi}$ is null homotopic as well. Then

$$\tilde{u}_* \pi_1(M, x_0) = 0$$

where $\pi_1(M, x_0)$ is the first homotopy group of *M*. Consequently there is a unique smooth function $u : M \to \mathbb{R}$ such that $p \circ u = \tilde{u}$ and $u(x_0) = t_0$. The map

$$\psi = (F, u) : M \to S^{m-1}_+ \times_w \mathbb{R}$$

is exponentially harmonic [because $\psi = \pi \circ ilde{\psi}$ and

$$\pi = \left(1_{S_+^{m-1}}, p\right) : S_+^{m-1} \times_w \mathbb{R} \to S_+^{m-1} \times_f S^1$$

is a local isometry, where $w \in C^{\infty}(S^{m-1}_+)$ is given by $w(y) = y_m$]. We may then apply Lemma 1 to the map ψ with $L = S^{m-1}_+$ to conclude that

$$\psi(M) \subset S^{m-1}_+ \times \{t_\psi\}$$

for some $t_{\psi} \in \mathbb{R}$. It follows that $F = \pi_1 \circ \psi : M \to S^{m-1}_+$ is exponentially harmonic. We shall close the proof of Theorem 1 by showing that exponentially harmonic mappings into S^{m-1}_+ are constant. \Box

4. Exponentially Harmonic Map System in Divergence Form

Let us consider the L^2 inner products

$$(u,v)_{L^2} = \int_M uv \, dv_g, \quad (X,Y)_{L^2} = \int_M g(X,Y) \, dv_g$$

Let us think of the gradient ∇ as a first order differential operator $\nabla : C^1(M) \to C(T(M))$ and let ∇^* be its formal adjoint, i.e.,

$$(\nabla^* X, u)_{L^2} = (X, \nabla u)_{L^2}$$

for any $X \in C^1(T(M))$ and $u \in C^1(M)$. Ordinary integration by parts shows that $\nabla^* X = -\operatorname{div}(X)$. Let $\rho = \exp [e(F)] \in C^{\infty}(M)$. Starting from $\Delta u = -\operatorname{div}(\nabla u)$ one has

$$(\rho \Delta u, \varphi)_{L^{2}} = (\nabla^{*} \nabla u, \rho \varphi)_{L^{2}} = (\nabla u, \nabla (\rho \varphi))_{L^{2}}$$
$$= (\nabla^{*} (\rho \nabla u), \varphi)_{L^{2}} + \int_{M} \varphi g(\nabla u, \nabla \rho) dv_{g}$$
is
$$\exp \left[e(F) \right] \Delta u = \nabla^{*} (\exp \left[e(F) \right] \nabla u)$$
(9)

for any $\varphi \in C^{\infty}(M)$, that is

$$\exp \left[e(F) \right] \Delta u = \nabla^* \left(\exp \left[e(F) \right] \nabla u \right)$$

$$+ \exp \left[e(F) \right] g \left(\nabla u, \ \nabla e(F) \right).$$
(9)

Lemma 3. Let $F: M \to S^{m-1}_+$ be an exponentially harmonic map and $\mathbf{F} = j \circ F$ where $j: S^{m-1} \hookrightarrow \mathbb{R}^m$ is the inclusion. If $\mathbf{F} = (F^1, \dots, F^m)$ then

$$-\nabla^* \left(\exp\left[e(F) \right] \nabla F^i \right) + 2 e(F) \exp\left[e(F) \right] F^i = 0$$
(10)

for any $1 \leq i \leq m$.

Proof. Let $y = (y^1, \dots, y^{m-1}) : S^{m-1}_+ \to \mathbb{B}^{m-1}$ be the projection, where $\mathbb{B}^{m-1} \subset \mathbb{R}^{m-1}$ is the open unit ball. With respect to this choice of local coordinates, the standard metric g_{m-1} and its Christoffel symbols are

$$h_{ij} = \delta_{ij} + \frac{y^i y^j}{1 - |y|^2}, \quad |y|^2 = \sum_{i=1}^{m-1} (y^i)^2,$$
 (11)

$$h^{ij} = \delta^{ij} - y^i y^j \,, \tag{12}$$

$$\Gamma^i_{jk} = y^i h_{jk} \,. \tag{13}$$

Let us substitute from (13) into (1) [with $\phi^i = F^i$] and take into account

$$e(F) = \frac{1}{2} g^{\alpha\beta} \frac{\partial F^{j}}{\partial x^{\alpha}} \frac{\partial F^{k}}{\partial x^{\beta}} (h_{jk} \circ F).$$
(14)

The exponentially harmonic map system (1) becomes

$$-\Delta F^{i} + 2e(F)F^{i} + g(\nabla e(F), \nabla F^{i}) = 0, \quad 1 \le i \le m - 1.$$

$$(15)$$

Multiplication of (15) by exp [e(F)] and subtraction from (9) [with $u = F^i$] yields (10) for any $1 \le i \le m - 1$.

To see that (15) (and therefore (10)) holds for i = m as well, one first exploits the constraint $(F^m)^2 = 1 - \sum_{i=1}^{m-1} (F^i)^2$ together with (11) and (14) to show that

$$e(F) = \frac{1}{2} \sum_{j=1}^{m} \|\nabla F^{j}\|^{2}.$$

Finally, one contracts (15) by F^i and uses once again the constraint together with $\Delta(u^2) = 2\{u \Delta u - \|\nabla u\|^2\}$. Q.e.d.

We may now end the proof of Theorem 1 as follows. Let $F : M \to S^{m-1}_+$ be an exponentially harmonic map. Let us integrate over *M* in (10) for j = m. Then (by Green's lemma)

$$\int_{M} e(F) \exp\left[e(F)\right] F^{m} dv_{g} = 0$$

and $F^m > 0$ so that

$$0 = e(F) = \frac{1}{2} \sum_{j=1}^{m} \|\nabla F^{j}\|^{2}$$

yielding F^j = constant. So ϕ is constant as well, a contradiction. \Box

As well known $S^{m-1}_+ \times S^1$ and S^1 are homotopically equivalent. Therefore a continuous map $\phi : M \to S^{m-1}_+ \times S^1$ is null homotopic if and only if $\pi_2 \circ \phi : M \to S^1$ is null homotopic. The homotopy classes of continuous maps $M \to S^1$ form an abelian group $\pi^1(M)$ (the *Bruschlinski group* of *M*) naturally isomorphic to $H^1(M, \mathbb{Z})$. We may conclude that

Corollary 1. Let M be a compact, orientable, connected Riemannian manifold with $H^1(M, \mathbb{Z}) = 0$. Then every nonconstant exponentially harmonic map $\phi : M \to S^m$ meets Σ .

Author Contributions: The two authors have equally contributed to the findings in the present work.

Funding: This research received no external funding.

Acknowledgments: Sorin Dragomir acknowledges support from Italian PRIN 2015. Francesco Esposito is grateful for support within the joint Ph.D. program of *Università degli Studi della Basilicata* (Potenza, Italy) and *Università del Salento* (Lecce, Italy).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Eells, J.; Lemaire, L. Some Properties of Exponentially Harmonic Maps; Partial Differential Equations, Banach Center Publications; Institute of Mathematics, Polish Academy of Sciences: Warszawa, Poland, 1992; Volume 27, pp. 129–136.
- 2. Eells, J.; Sampson, J. Harmonic mappings of Riemannian manifolds. *Am. J. Math.* **1964**, *85*, 109–160. [CrossRef]
- 3. Duc, D.M.; Eells, J. Regularity of exponentially harmonic functions. Int. J. Math. 1991, 2, 395–408. [CrossRef]

- 4. Chiang, Y.-J.; Dragomir, S.; Esposito, F. Exponentially subelliptic harmonic maps from the Heisenberg group into a sphere. Unpublished work, 2018.
- 5. Hong, M.-C. On the conformal equivalence of harmonic maps and exponentially harmonic maps. *Bull. Lond. Math. Soc.* **1992**, *24*, 488–492.
- 6. Hong, J.-Q.; Yang, Y. Some results on exponentially harmonic maps. Chin. Ann. Math. 1993, 14, 686–691.
- Cheung, L.-F.; Leung, P.-F. The second variation formula for exponentially harmonic maps. *Bull. Aust. Math. Soc.* 1999, 59, 509–514. [CrossRef]
- 8. Chiang, Y.-J. Exponentially harmonic maps and their properties. *Math. Nachr.* 2015, 228, 1970–1980. [CrossRef]
- 9. Dragomir, S.; Tomassini, G. *Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics;* Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2006; Volume 246.
- 10. Chiang, Y.-J.; Yang, Y.-H. Exponential wave maps. J. Geom. Phys. 2007, 57, 2521–2532. [CrossRef]
- 11. Jost, J.; Xu, C.-J. Subelliptic harmonic maps. Trans. Am. Math. Soc. 1998, 350, 4633–4649. [CrossRef]
- 12. Dragomir, S. Cauchy-Riemann geometry and subelliptic theory. *Lect. Notes Semin. Interdiscip. Mat.* 2008, 7, 121–162.
- 13. Chiang, Y.-J. Exponentially harmonic maps between surfaces. Unpublished work, 2018.
- 14. Solomon, B. Harmonic maps to spheres. J. Differ. Geom. 1985, 21, 151-162. [CrossRef]

 \odot 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).