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Abstract
We study the stability of exponentially subelliptic harmonic (e.s.h.) maps from
a Carnot–Carathéodory complete strictly pseudoconvex pseudohermitian manifold
(M, θ) into a Riemannian manifold (N , h). E.s.h. maps areC∞ solutions φ : M → N
to the nonlinear PDE system τb(φ) + φ∗ ∇H eb(φ) = 0 [the Euler–Lagrange equa-
tions of the variational principle δ Eb(φ) = 0 where Eb(φ) = ∫

�
exp
[
eb(φ)

]
�

and eb(φ) = 1
2 traceGθ

{�H φ∗h} and � ⊂ M is a Carnot–Carathéodory bounded
domain]. We derive the second variation formula about an e.s.h. map, leading to a
pseudohermitian analog to the Hessian (of an ordinary exponentially harmonic map
between Riemannian manifolds)

H(Eb)φ(V , W ) =
∫

�

hφ
(
Jφ

b, expV , W
)

�

+
∫

M
exp
[
eb(φ)

]
(hφ)∗(DφV , �H φ∗) (hφ)∗(DφW , �H φ∗) �,

Jφ
b, expV ≡ (Dφ

)∗( exp
[
eb(φ)

]
DφV

)

− exp
[
eb(φ)

]
traceGθ

{
�H
(
Rh)φ(V , φ∗ ·

)
φ∗·
}

,

[� = θ∧(dθ)n]. Given a bounded domain� ⊂ M and an e.s.h. map φ ∈ C∞
(
�, N

)

with values in a Riemannian manifold N = N m(k) of nonpositive constant sectional
curvature k ≤ 0, we solve the generalized Dirichlet eigenvalue problem Jφ

b, expV =
λ V in � and V = 0 on ∂� for the degenerate elliptic operator Jφ

b, exp, provided that
� supports Poincaré inequality
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‖V ‖L2 ≤ C‖DφV ‖L2 , V ∈ C∞0
(
�, φ−1T N

)
,

and the embedding W̊ 1,2
H (�, φ−1T N ) ↪→ L2(�, φ−1T N ) is compact.

Keywords CR manifold · Tanaka–Webster connection · Fefferman’s metric ·
Exponentially subelliptic harmonic map · Stability

1 Introduction and a Glimpse to theMain Results

Let (M, g) be a n-dimensional semi-Riemannian manifold with the semi-Riemannian
metric g of signature (ν, n−ν). A C∞ map :M→ N into a Riemannian manifold
(N , h) is exponentially harmonic (e.h.) if  is a critical point of

Eexp() =
∫

�

exp
[
e()

]
d vg

for any relatively compact domain� ⊂⊂M, where the energy density e() :M→
R is

e() = 1

2
traceg

(
∗h
)
.

When g is a Lorentzian metric (i.e. ν = 1) an e.h. map is also referred to as an
exponential wave map. Eells and Lemaire started (cf. [23]) a theory of e.h. maps
(though solely fromRiemannianmanifolds i.e. ν = 0) as one of themany ramifications
of harmonic map theory (cf. [22]) got by considering the energy functionals

EF () =
∫

�

F
[
e()

]
dvg (1)

where

F(t) ∈
{

t,
1

p
(2t)p/2, (1+ 2t)α, et

}

, t > 0, p ≥ 4, α > 1, (2)

leading respectively to ordinary harmonic maps, p-harmonic maps, α-energy func-
tionals (cf. Sacks and Uhlenbeck [30], where n = 2) and of course exponentially
harmonic maps. In a series of papers Ara unified (cf. [1–3]) the treatment of the main
geometric properties of F-harmonic maps [critical points of (1)] by working with
arbitrary C2 functions F : [0,+∞) → [0,+∞) such that F ′(t) > 0 for every t > 0.
However the PDEs side of the subject matter is not investigated in [1–3].

Exponential wave maps  : M → N from the total space M = C(M) of the
canonical1 circle bundle S1 → C(M)

π−→ M over a compact strictly pseudoconvex
CR manifold M , of CR dimension n, endowed with the Fefferman metric g = Fθ (a

1 The relevant notions and basic results (of CR and pseudohermitian geometry) are recalled in Sect. 2.1.
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Lorentzian metric on M, associated to a given positively oriented contact form θ on
M), where considered by us in [16]. When such  is S1-invariant one could integrate
over the fibres in

Eexp() =
∫

C(M)

exp

[
1

2
traceFθ

(
∗h
)
]

d vFθ

to discover that Eexp() = 2π Eb(φ) where2 φ : M → N is the base map associated
to  (i.e. φ ◦ π = ) and

Eb(φ) =
∫

M
exp [eb(φ)] θ ∧ (dθ)n,

eb(φ) = 1

2
traceGθ

(
�H φ∗h

)
. (3)

Critical points of Eb are referred to as exponentially subelliptic harmonic (e.s.h.)
maps. The motivation for the (apparently rather involved) chosen terminology is given
in Sect. 2.3 and relies on the classification of the Euler–Lagrange equations of the
variational principle δ Eb(φ) = 0 i.e.

τb(φ)+ φ∗∇H eb(φ) = 0. (4)

There are a few notable differences in the pseudohermitian analog (3) to the ordinary
energy density e(φ) that we briefly comment upon. First, one doesn’t compute the full
trace of φ∗h but rather the trace of �H φ∗h, the restriction of φ∗h to H(M)⊗ H(M)

where H(M) is the Levi, or maximally complex, distribution of M as a CR manifold.
As explained in [19], omitting a direction [here the Reeb vector field T of (M, θ)] in
the calculation of the trace of φ∗h has far reaching consequences: the second order
differential operator �b appearing in

τb(φ)A ≡ −�bφ
A +

2n∑

a=1

({
A

BC

}

◦ φ

)

Xa(φB)Xa(φC )

is degenerate elliptic and its ellipticity degenerates precisely at the cotangent directions
spanned by θ . Second, in the spirit of complex analysis in several complex variables,
the inner product used to compute traces springs from the Levi form Gθ (determined
by the given nondegenerate CR structure up to a conformal factor) rather than any
other metric on M e.g. the first fundamental form of j : M ↪→ C

n+1 when, say, M is
a real hypersurface in C

n+1 [and M does embed, at least locally, as a CR submanifold
ofC

n+1, by the positive solution to the CR embedding problem in the compact strictly
pseudoconvex case (due to Boutet de Monvel [13])].

The stability problem for F-harmonic maps has been studied for all ramifications
(3) starting with the case F = 1R, cf. Smith [31]. The main ingredient in any stability

2 Here π ∈ R\Q (the irrational number π ).
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theory is the second variation formula forEF e.g. for any smooth 2-parameter variation
{s,t }|s|<ε, |t |<ε of a given harmonic map 0,0 = 

∂2

∂s ∂t

{
E1R

(φs,t )
}

s=t=0 = H(E1R
)φ(V , W ),

V =
{

∂s,t

∂t

}

s=t=0
, W =

{
∂s,t

∂s

}

s=t=0
,

where H(E1R
) (the Hessian of E1R

at ) is

H(E1R
)(V , W ) =

∫

M
h
(
JφV , W

)
dvg,

while J (the Jacobi operator) is

JV = �V − traceg

{
(Rh)(V , φ∗ · )φ∗ ·

}
,

V , W ∈ C∞
(
−1T (N )

)
,

and � is the rough Laplacian, thus leading to natural notions of index and nullity for
every harmonic map  :M→ N

ind() =
{
dimR(F) : F ⊂ C∞(−1T N ) subspace such that

H(E1R
)(V , V ) ≤ 0, ∀ V ∈ F

}
,

null() = dimR

{
V ∈ C∞(−1T N ) : H(E1R

)(V , W ) = 0,

∀ W ∈ C∞(−1T N )
}

.

When g is Riemannian J is elliptic and hence, as M is assumed to be compact, the
spectrum Spec(J) consists of infinitely many eigenvalues with finite multiplicities
and without accumulation points

λ1() ≤ λ2() ≤ · · · ≤ λk() ≤ · · · ↑ +∞.

Each eigenvalue λk() has multiplicity m
[
λk()

] = dimR Eigen
(
J ; λ

)
and the

index and nullity of φ are

ind() =
∑

λ ∈ Spec(J)

λ > 0

m(λ), null() = dimR Ker(J).

Only partial results in this sense are known for arbitrary F-harmonicmaps. The second
variation formula for e.h. maps was obtained by Eells and Lemaire (cf. [23]) and the
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same for exponential wave maps is due to Chiang [14,15]. The arbitrary case F ∈ C2,
F ′ > 0, was treated by Ara (cf. Theorem 6.1 in [1–3], p. 256) yet confined to the
Riemannian category. A second variation formula and a theory of stability about a
given subelliptic harmonic map were derived by Barletta et al. [8]. The generalized
Dirichlet eigenvalue problem for the subelliptic Jacobi operator Jφ

b , on a domain
� ⊂ M in a particular strictly pseudoconvex CRmanifold M , was solved byMagliaro
et al. [11]. The study of partial regularity of weak e.s.h. maps was started in [16] yet
up to this work no stability theory for e.s.h. maps was available.

Let ρθ be the Canrnot–Carathéodory metric [associated to the sub-Riemannian
structure (H(M), Gθ )]. Let us assume that (M, ρθ ) is a complete metric space and
let � ⊂ M be a ρθ -bounded domain. In the present paper we obtain the second
variation formula

∂2

∂s ∂t

{
Eb(φs,t )

}
s=t=0 =

∫

�

hφ
(
J φ

b, expV , W
)

θ ∧ (dθ)n,

J φ
b, exp ≡ Jφ

b, exp + Qφ,

Jφ
b,expV ≡ (Dφ)∗

(
exp
[
eb(φ)

]
DφV

)

− exp
[
eb(φ)

]
traceGθ

{
πH (Rh)φ(V , φ∗ · )φ∗ ·

}
,

QφV ≡ (Dφ)∗
[
exp
[
eb(φ)

]
(hφ)∗(DφV , φ∗) φ∗

]
, (5)

and start a stability theory for e.s.h. maps. Let M be a compact strictly pseudoconvex
CR manifold, endowed with the positively oriented contact form θ . Among other
results we show that

Theorem 1 Let φ : M → Hm be an exponentially subelliptic harmonic map of (M, θ)

into the m-dimensional hyperbolic space Hm. Then φ is weakly stable.

Theorem 2 Let φ : M → Sm be an exponentially subelliptic harmonic map of (M, θ)

into the m-dimensional (m ≥ 3) sphere Sm. If eb(φ) < (m− 2)/2 then φ is unstable.

Theorems 1 and 2 are respectively corollaries of our (more general) Theorems 6
and 7.

As a long range consequence of the construction of the energy density eb(φ) [one
doesn’t compute the trace of the whole bilinear form φ∗h, but only the trace (with
respect to the Levi form Gθ ) of the restriction of φ∗h to H(M)⊗ H(M), thus missing
a direction i.e. the cotangent direction spanned by θ ] the (pseudohermitian) analog
Jφ

b, exp of the Jacobi operator (for an ordinary exponentially harmonic mapping of
Riemannianmanifolds) is a degenerate elliptic operator and the solution to theDirichlet
eigenvalue problem

Jφ
b, expV = λV in �, V = 0 on ∂�, (6)
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is a priori unknown. Let N = N m(k) be a Riemannian manifold of nonpositive
constant sectional curvature k ≤ 0. When M is ρθ -complete and � ⊂ M is a bounded
domain supporting a version of Poincaré inequality

∫

�

hφ(V , V ) θ ∧ (dθ)n ≤ C2
∫

�

(
hφ
)∗(

DφV , DφV
)

θ ∧ (dθ)n, (7)

V ∈ C∞
(
�, φ−1T N

)
,

we solve the generalized Dirichlet problem

Jφ
b, expV = F in �, V = 0 on ∂�, (8)

for any F ∈ L2(�, φ−1T N ), and establish existence and uniqueness of the solu-
tion V = VF ∈ W̊ 1,2

H (�, φ−1T N ) to (8). When additionally � supports a form of
Kondrakov compactness i.e. the embedding

W̊ 1,2
H (�, φ−1T N ) ↪→ L2(�, φ−1T N )

is compact, we use the resulting Green operator

G : L2(�, φ−1T N
)→ L2(�, φ−1T N

)
, GV = VF ,

to solve the Dirichlet eigenvalue problem (6) and establish

Theorem 3 Let φ : M → N m(k) be a non constant exponentially subelliptic harmonic
map from the Carnot–Carathèodory complete pseudohermitian manifold (M, θ) into
the space form N m(k) of nonpositive sectional curvature k ≤ 0. Let � ⊂ M be a
Carnot–Carathèodory bounded domain supporting Poincaré inequality (7) and Kon-
drakov compactness. Then there is an infinite sequence

0 < λ1 ≤ λ2 ≤ · · · ≤ λν ≤ · · · ↑ +∞

and an infinite sequence {Vν}ν≥1 ⊂ W̊ 1,2
H

(
�, φ−1T N m(k)

)
such that {λν : ν ≥ 1}

is the generalized Dirichlet spectrum of Jφ
b, exp i.e.

aφ

(
Vν, S

) = λν

∫

�

hφ(Vν, S) θ ∧ (dθ)n

for any ν ≥ 1 and any S ∈ W̊ 1,2
H

(
�, φ−1T N m(k)

)
.
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Here the bilinear form aφ is

aφ(V , W ) =
∫

�

exp
[
eb(φ)

] {(
hφ
)∗(

DφV , DφW
)

−hφ
(
traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]
, W
)}

θ ∧ (dθ)n .

Theorem 3 is a corollary of the more general Theorem 9 in Sect. 3.5.
The paper is organized as follows. In Sect. 2.1 we recall the needed notions of CR

and pseudohermitian geometry (the Tanaka–Webster connection, Fefferman’s metric,
the Graham connection, etc.) by following mainly the reference [18].

In Sect. 2.2 we recall the basics on exponential wave maps.
In Sect. 2.3 we introduce exponentially subelliptic harmonic maps, appearing as

basemaps associated to S1 invariant exponential wavemaps from the total space of the
canonical circle bundle endowed with Fefferman’s metric, and give a few examples.

In Sect. 3 we derive the second variation formula for Eb about an e.s.h. map φ and
hence the Hessian H(Eb)φ allowing us to introduce natural pseudohermitian analogs
indb, exp(φ) and nullb, exp(φ) to the index and nullity of a harmonic map.

The stability of e.s.h. maps into either a Riemannian manifold N of nonpositive
sectional curvature, or a totally umbilical real hypersurface N of a space form Mm+1(c)
is examined in Sects. 3.3.2 and 3.4.

In Sect. 3.5 we introduce Sobolev type spaces W 1,2
H (�, φ−1T N

)
and W̊ 1,2

H
(�, φ−1T N ) for every e.s.h. map φ ∈ C∞

(
�, φ−1T N ), and solve the Dirichlet

problem (8) and the Dirichlet eingenvalue problem (6) for target Riemannian mani-
folds (N , h) satisfying the curvature estimate

‖Rh(A, B)C‖ ≤ γ ‖A‖ ‖B‖ ‖C‖

for some constant γ > 0 and any A, B, C ∈ X(N ).

2 Exponentially Subelliptic Harmonic Maps

2.1 CR and Pseudohermitian Geometry

2.1.1 Tangential Cauchy–Riemann Equations

Let (M, T1,0(M)) be a compact strictly pseudoconvex CRmanifold, of CR dimension
n, carrying theCR structure T1,0(M) ⊂ T (M)⊗C. The first order differential operator

∂b : C1(M, C
)→ C

(
T0,1(M)∗

)
,
(
∂bu
)
Z = Z(u),

is the tangential Cauchy–Riemann operator and

∂bu = 0 (9)
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are the tangential C–R equations. A C1 solution to (9) is a CR function on M .

2.1.2 Canonical Circle Bundle Over a CR Manifold

A complex valued differential p-form η on M is of type (p, 0), or a (p, 0)-form, if
T1,0(M) � η = 0. Let �p,0(M)→ M be the relevant vector bundle i.e. cross-sections
in �p,0(M) are (p, 0)-forms on M . Top degree forms of type (p, 0) are (n + 1, 0)-
forms. There is a natural free action of R+ = GL+(1, R) (the multiplicative positive
reals) on

K0(M) = �n+1,0(M)\{zero section}

and the quotient space

C(M) = K0(M)/R+

is the total space of a principal S1-bundle over M . The construction makes sense for an
arbitrary CR manifold of hypersurface type, without any nondegeneracy assumptions
on the CR structure T1,0(M), and the resulting principal bundle

S1 → C(M)
π−→ M

is referred to as the canonical circle bundle over M . As M is compact and the
projection π has compact fibres, C(M) is compact as well.

2.1.3 Levi Distribution, Levi Form, Graham’s Connection, Fefferman’s Metric

Let H(M) be the Levi, or maximally complex, distribution on M i.e.

H(M) = Re
{
T1,0(M)⊕ T0,1(M)

}
, T0,1(M) ≡ T1,0(M),

and let

J : H(M)→ H(M), J
(
Z + Z

) = i
(
Z − Z

)
, Z ∈ T1,0(M),

be the complex structure on H(M). Let θ be a positively oriented contact form on M
i.e., i) Ker(θ) = H(M), ii) the Levi form

Gθ (X , Y ) = (dθ)(X , JY ), X , Y ∈ H(M),

is positive definite, and iii)� = �θ = θ∧(dθ)n is a volume form on M . Property (iii)
is commonly associated with the label “contact form” and is a nontrivial consequence
of (ii). For the main notions and basic results in CR and pseudohermitian geometry
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we rely on [18]. By a result of Lee (cf. [26]) C(M) carries a Lorentzian metric Fθ , the
Fefferman metric of (M, θ), given by

Fθ = π∗G̃θ + 2
(
π∗θ
)� σ,

σ = 1

n + 2

{

ds+ π∗
(

i ωα
α − i

2
gαβ dgαβ −

ρ

4(n + 1)
θ

)}

,

∇Tβ = ωβ
α Tα, ρ = gαβ Rαβ,

[
gαβ
]
=
[
gαβ

]−1
, gαβ = Gθ

(
Tα, Tβ

)
, (10)

with respect to a local frame {Tα : 1 ≤ α ≤ n} of T1,0(M), defined on some
open subset U ⊂ M . Here s is a local fibre coordinate on C(M), ∇ is the Tanaka–
Webster connection of (M, θ), Rμν is the pseudohermitian Ricci tensor, and ρ is
the pseudohermitian scalar curvature.

2.2 ExponentialWaveMaps

Let N be a m-dimensional Riemannian manifold, with the Riemannian metric h, and
let  : C(M)→ N be a C∞ map. We set

E() = Eexp() =
∫

C(M)

exp
[
e()

]
dvol(Fθ ),

e() = 1

2
gμν ∂A

∂xμ

∂B

∂xν
G AB(),

d vol(Fθ ) = √−g dx1 ∧ · · · ∧ dx2n+2,

gμν = Fθ

(
∂μ, ∂ν

)
, ∂μ ≡ ∂

∂xμ
, g = det

[
gμν

]
,
[
gμν
] = [gμν

]−1
,

A = y A ◦, G AB = h
(
∂A, ∂B

)
, ∂A ≡ ∂

∂ y A
.

Here (U , x̃ j ) and (U , y A) are local coordinate systems on M and N such that

(
π−1(U )

) ⊂ U and one makes use of the induced local coordinates
(
π−1(U ), x j

)

on C(M) i.e.

x j = x̃ j ◦ π, x2n+2 = s.

The range of the indices is

α, β, . . . ∈ {1, . . . , n}, A, B, . . . ∈ {1, . . . , m},
μ, ν, . . . ∈ {0, . . . , 2n + 1}, j, k, . . . ∈ {1, . . . , 2n + 1}.

We willingly adopt the classical tensor notation familiar in the general relativity and
gravity theory, for (C(M), Fθ ) is a space-time, for any 3-dimensional strictly pseu-
doconvex CR manifold M . Indeed if n = 1 then (C(M), Fθ ) is a 4-dimensional
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Lorentzian manifold. On the other hand, by a result of Graham (cf. [24]) σ is a con-
nection 1-form in the principal bundle S1 → C(M)

π−→ M . Let X↑ ∈ X(C(M))

denote the horizontal lift of X ∈ X(M) with respect to σ i.e.

X↑z ∈ Ker
(
σz
)
, (dzπ)X↑z = Xπ(z), z ∈ C(M).

Moreover let S ∈ X(C(M)) be the tangent to the S1 action and let T ∈ X(M) be
the Reeb vector field of (M, θ) i.e. the globally defined, nowhere zero, vector field
transverse to the Levi distribution H(M), uniquely determined by

θ(T ) = 1, T � dθ = 0.

Then T ↑ − S is a globally defined time-like vector field on (C(M), Fθ ). Hence C(M)

is time oriented, and (C(M), Fθ , T ↑ − S) is a genuine space-time. The resulting
relationship between CR geometry, as a chapter of complex analysis of functions of
several complex variables, and space-time physics was pursued by Barletta et al. (cf.
[9]) and Barletta et al. (cf. [10]).

A C∞ map  : C(M) → N is an exponential wave map if  is a critical point
of E i.e.

d

ds

{
E
(
s
)}

s=0 = 0

for any smooth 1-parameter variation {s}|s|<ε ⊂ C∞(C(M), N ) of 0 = . The
Euler–Lagrange equations of the variational principle δ E() = 0 are

τ
(

)+∗ De() = 0,

τ ()A = −�A +
{

A
BC

}

()
∂B

∂xμ

∂C

∂xν
gμν,

D f = gμν ∂ f

∂xμ

∂

∂xν
, � f = − 1√−g

∂

∂xμ

(√−g gμν ∂ f

∂xν

)

, (11)

for any f ∈ C2(C(M)). Exponentialwavemapswere introduced byEells andLemaire
(cf. [23]), though confined to the Riemannian category [i.e. as maps :M→ N from
aRiemannianmanifold (M, g)] under the name exponentially harmonicmaps. Their
notion carries over to the semi-Riemannian case, and in particular to the Lorentzian
case, in a rather obvious manner and the Euler–Lagrange equations in the Riemannian
case are formally identical to (11) [except that, of course, the geometric wave operator
� is replaced there by the Laplace–Beltrami operator of (M, g)].

Let ν ∈ Z, 0 ≤ ν ≤ n, and let R
n
ν ≡

(
R

n, gn,ν

)
be the n-dimensional semi-

Euclidean space i.e.

gn,ν =
n∑

i=1
εi (dxi )2,
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ε1 = · · · = εν = −1 = −εnu+1 = · · · = −εn .

Even for maps  : R
n
1 → E

m from the Minkowski space R
n
1 into Euclidean space

E
m = R

m
0 the e.h. map equations are nonlinear and the second order terms are coupled.

Indeed for any u ∈ C2(Rn)

�u = −
n∑

i=1
εi ∂2u

∂(xi )2
,

{
A

BC

}

= 0,

τ ()A =
n∑

i=1
εi ∂2A

∂(xi )2
, e() = 1

2

m∑

A=1

n∑

i=1
εi
(

∂A

∂xi

)2
,

De() =
m∑

A=1

n∑

i, j=1
εiε j

∂A

∂x j

∂2A

∂xi ∂x j

∂

∂xi
,

hence Eq. (11) become

n∑

i=1
εi

∂2A

∂(xi )2
+

m∑

B=1

n∑

i, j=1
εiε j

∂A

∂xi

∂B

∂x j

∂2B

∂xi ∂x j
= 0. (12)

When n = 2 and m = 1 the system (12) reduces to the single PDE (with u = 1 and
x1 = x , x2 = y)

[

−1+
(

∂u

∂x

)2]
∂2u

∂x2
− 2

∂u

∂x

∂u

∂ y

∂2u

∂x ∂ y
+
[

1+
(

∂u

∂ y

)2]
∂2u

∂ y2
= 0. (13)

Compare (13) to

[

1+
(

∂u

∂x

)2]
∂2u

∂x2
+ 2

∂u

∂x

∂u

∂ y

∂2u

∂x ∂ y
+
[

1+
(

∂u

∂ y

)2]
∂2u

∂ y2
= 0 (14)

which is the e.h. map equation for maps u = 1 : E2 → E
1. Equation (14) is provided

by J. Serrin (cf. [27, p. 431]) as an example of a non-uniformly elliptic equation which
is regularly elliptic. With the classical Monge notations

pi = ∂u

∂xi
, pi j = ∂2u

∂xi ∂x j
, 1 ≤ i, j,≤ 2,

Equation (13) [governing exponential wave functions u : R2
1 → E

1] reads

uyy = p21 − 1

p22 + 1
p11 − 2p1 p2

p22 + 1
p12 (15)
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and the right hand side of (15) doesn’t involve uyy any more. Thus given ϕ, ψ ∈
Cω(R) the Cauchy problem

u(x, 0) = ϕ(x), uy(x, 0) = ψ(x), (16)

for the Eq. (15) admits a unique Cω solution defined in a neighbourhood of the origin.
The line y = 0 is noncharacteristic [for the Cauchy problem (16)] and timelike. If in
turn one prescribes the Cauchy data along the spacelike line x = 0

u(0, y) = ϕ(y), ux (0, y) = ψ(y), (17)

then the points
{
(0, y) ∈ R

2 : ψ(y) ∈ {±1}} are characteristic [for the Cauchy
problem (17)]. If x = 0 is a characteristic line then a necessary condition [for the
existence of the solution to the Cauchy problem (17)] is that ϕ be affine.

By a colloquial3 remark of Eells and Lemaire (cf. [23, p. 130]) the equation

∗De() = 0 (18)

has a “life of its own”. A C∞ map of Riemannian manifolds  :M→ N satisfying
(18) is e.h. if and only if it is harmonic. Given a domain � ⊂ R

n we set as customary

‖u‖p =
(∫

�

|u(x)|p dx

)1/p

for any u ∈ L p(�), 1 ≤ p < ∞. Also for every essentially bounded function
u : �→ R we set

‖u‖∞ = ess supx∈�|u(x)| = sup
{

K > 0 : |u(x)| ≤ K a.e. in �
}
.

Moreover for M = E
n and N = E

1 let us consider (together with [6, p. 557]) the
functionals

H() = ess supx∈�

∣
∣D(x)

∣
∣,

IN () =
(∫

�

∣
∣D

∣
∣2N

d vg

)1/(2N )

, N ∈ N,

where g = gn,0 is the Euclidean metric. Then

H() = ∥∥|D|∥∥∞, IN () = ∥∥|D|∥∥2N ,

and

lim
N→∞ IN () = H()

3 As observed by Valli (Italian mathematician, † 1999, see [21]) at the time [23] was written the e.h. maps
theory was quite new and the results in [23] somewhat patchy, yet the adopted expository style made [23]
a piece of very enjoyable reading [cf. MR1205818 (94d:58045)].
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provided that Vol(�) = ∫
�
1 dx <∞. On the other hand the Eq. (18)may be formally

derived (cf. [6, p. 557]) by a limiting process from the Euler–Lagrange equations of
the variational principle δ IN () = 0

(N − 1)
∣
∣D

∣
∣2(N−1)

{

− 1

N − 1

∣
∣D

∣
∣2 �+∗D

(∣
∣D

∣
∣2
)}

= 0 (19)

[with � ≡ −∑n
i=1 ∂2/∂x2i ]. Indeed, removing (N −1)

∣
∣D

∣
∣2(N−1) and tending with

N →∞ in (19) leads to Eq. (18).
G.Aronsson’s arguments (cf. op. cit.) carry over tomapsφ : M → N from a strictly

pseudoconvex CR manifold M (endowed with a contact form θ ) into a Riemannian
manifold (as shown in Sect. 2.3).

2.3 Exponentially Subelliptic Harmonic Maps

Let  : C(M) → N be S1 invariant and let φ : M → N be the corresponding base
map. By a result in [16] integration along the fibres in E() leads to

E() = 2π Eb(φ) (20)

where we have set

Eb(φ) = Eb, exp(φ) =
∫

M
exp
[
eb(φ)

]
�,

eb(φ) = 1

2
traceGθ

(
�H φ∗h

)
,

where �H B denotes the restriction of the bilinear form B to H(M)⊗ H(M). By (20)
every critical point of E is a critical point of E as well. Conversely, again by a result
in [16], the PDE system (11) projects on

τb(φ)+ φ∗ ∇H eb(φ) = 0 (21)

and (21) are precisely the Euler–Lagrange equations of the variational principle
δ Eb(φ) = 0. A C2 solution to (21) is an exponentially subelliptic harmonic (e.s.h.)
map. As to the notations in (21)

τb(φ)A = −�bφ
A +

2n∑

a=1

{
A

BC

}

Xa(φB) Xa(φC ),

�bu = −div(∇H u
)
, u ∈ C2(M),

with respect to a Gθ orthonormal local frame {Xa : 1 ≤ a ≤ 2n} of H(M). Also

∇H u = �H ∇u, u ∈ C1(M),



55 Page 14 of 62 Y.-J. Chiang et al.

is the horizontal gradient of u, where �H : T (M) → H(M) is the projection with
respect to the direct sum decomposition

T (M) = H(M)⊕ RT (22)

and∇u is the ordinary gradient ofu with respect to theRiemannianmetric gθ [theWeb-
stermetric of (M, θ)] extending the Levi formGθ to thewhole of T (M) by requesting
that the Reeb vector field T be orthogonal to H(M) and adding the normalization
requirement gθ (T , T ) = 1. TheWebster metric gθ is customarily referred to as a con-
traction of Gθ : indeed one may observe that

(
M, H(M), Gθ ) is a sub-Riemannian

manifold (in the sense of Strichartz [32]) and that the Carnot–Carathéodory and Rie-
mannian distance functions [springing respectively from the sub-Riemannian structure
(H(M), Gθ ) and the Riemannian metric gθ ]

ρθ , dθ : M × M → [0,+∞)

are related by

dθ (x, y) ≤ ρθ (x, y), x, y ∈ M .

Finally the divergence operator above div : X(M) → C∞(M) is meant with respect
to the volume form � = θ ∧ (dθ)n i.e.

LX� = div(X)�

for any X ∈ C1, where LX is the Lie derivative at the direction X . There is a constant
Cn > 0 (depending only on the CR dimension n) such that

� = Cn d vol(gθ )

so the divergence operator one works with coincides with the ordinary Riemannian
divergence on (M, gθ ).

The sublaplacian �b is a formally self-adjoint second order differential operator,
similar to the Laplace–Beltrami operator on a Riemannian manifold, yet degenerate
elliptic (in the sense of Bony [12]) and subelliptic of order ε = 1/2 i.e. for every point
x ∈ M there is an open neighborhood U ⊂ M of x and a constant C > 0 such that

∥
∥u‖21/2 ≤ C

(∥
∥�bu‖2 + ‖u‖2

)

for any u ∈ C∞0 (U ). Here ‖ · ‖ε and ‖ · ‖ are respectively the Sobolev norm of order
ε and the L2 norm i.e.

‖u‖ε =
(∫
(
1+ |ξ |2)ε |û(ξ)|2 dξ

) 1
2

, ‖u‖ =
(∫

M
|u|2 �

) 1
2

.
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This motivates our rather involved adopted terminology (i.e. subelliptic h. maps). A
fortiori, by a result of L. Hörmander (cf. [25]) subelliptic operators such as �b are
hypoelliptic (i.e. if u is a distribution solution to�bu = f and f ∈ C∞ then u ∈ C∞).
This prompted the Jost and Xu program (cf. [33]) aiming to recover results, known
within elliptic theory, on local properties of weak solutions to certain non linear PDE
systems of variational origin, to the case where the principal part of said PDE systems
is at least hypoelliptic. In performing this task subelliptic theory (cf. e.g. Danielli et
al. [17]) played the strong role played by elliptic theory in Riemannian geometry.

Let F : [0,+∞) → [0,+∞) be a C2 function such that F ′(t) > 0. By a result
of E. Barletta (cf. Theorem 1 in [7], pp. 34–35) the Euler–Lagrange equations of the
variational principle δ

∫
F(Q) θ ∧ (dθ)n = 0 are τF (φ) = 0 where

τF (φ) = τF (φ ; θ, h) ≡ {div(ρ(Q)∇H φA)

+
2n∑

a=1
ρ(Q)

({
A

BC

}

◦ φ

)

Xa(φB) Xa(φC )
}
YA,

Q = 2 eb(φ), ρ(t) = F ′
(

t

2

)

.

Hence for F(t) = (1/p) (2t)p/2 and p = 2N with N ∈ N

τF (φ) = (N − 1)2N−1eb(φ)N−2 ϕN

ϕN ≡ 1

N − 1
eb(φ) τb(φ)+ φ∗ ∇H eb(φ).

Given a domain � ⊂ M , a compact subset K ⊂ �, and a continuous section ϕ ∈
C(�, φ−1T N ) we set

pK (ϕ) = sup
x∈K

(
hφ
)∗

(ϕ, ϕ)
1/2
x

so that C(�, φ−1T N ) is a Fréchet space with the locally convex topology τ deter-
mined by the family of seminorms {pK : K ⊂⊂ �}. The sets

V (pK , m) =
{

ϕ ∈ C∞(�, φ−1T N ) : pK (ϕ) <
1

m

}

,

K ⊂⊂ �, m ∈ N,

form a local basis for τ and for any pair (K , m) there is M ∈ N such that ϕN ∈
φ∗ ∇H eb(φ)+ V (pK , m) for any N ≥ Mwhich is the limiting process devised in [6,
p. 557], adapted to C∞ maps φ : M → N . The problem of relating the equation

φ∗ ∇H eb(φ) = 0 (23)

to Aronson’s problem (of producing extensions of Lipschitz functions, cf. [6, p. 551])
is open.
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We close the section by giving a few examples of e.s.h. maps.
1) (Constant maps) Let q ∈ N and the us consider the constant map φ : M → N

given by φ(x) = q for any x ∈ M . Then φ is e.s.h. with respect to the data (θ, h), of
energy Eb(φ) = Vol(M, �).

2) (Identity map) Let N = M and h = gθ and let φ : M → N be the identity
map φ = 1M . Then 1M is e.s.h. with respect to the data (θ, gθ ), of energy Eb(1M ) =
en Vol(M, �).

3) (E.s.h. functions) Let φ : M → R be an e.s.h. map of (M, θ) into (R, dt ⊗ dt).

Then

{
1
11

}

= 0 hence τb(φ)1 = −�bφ and

φ∗X = X(φ)

(
∂

∂t

)φ

, X ∈ H(M),

eb(φ) = 1

2

2n∑

a=1
hφ
(
φ∗Xa, φ∗Xa

) = 1

2

2n∑

a=1
Xa(φ)2 = 1

2

∥
∥∇H φ

∥
∥2,

so that the e.s.h. map equation is

−�bφ + 1

2
Gθ

(
∇H (‖∇H φ‖2), ∇H φ

)
= 0. (24)

4) (Duan’s construction) Let γ : I → N be a geodesic in (N , h), parametrized by
arc-length, and s : M → R an e.s.h. function. Then φ = γ ◦ s is an e.s.h. map. To
prove the statement note that

X(φA) = dγ A

ds
(s) X(s), γ A = y A ◦ γ,

for any C1 curve γ in N hence

eb(φ) = E(γ ) ‖∇H s‖2 (25)

where E(γ ) = 1
2 h
(
γ̇ , γ̇

)
. If γ is a geodesic then E(γ ) ∈ R [and E(γ ) = 1

2 provided
that γ is parametrized by arc-lengh]. Moreover

�bφ
A = −d2γ A

ds2
(s) ‖∇H s‖2 + dγ A

ds
(s)�bs, (26)

2n∑

a=1
Xa
(
φB) Xa

(
φC)

{
A

BC

}

(φ) =

= dγ B

ds
(s)

dγ C

ds
(s) ‖∇H s‖2

{
A

BC

}
(
γ (s)
)
, (27)
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hence

τb(φ)A = −dγ A

ds
(s)�bs

+‖∇H s‖2
[

d2γ A

ds
(s)+

{
A

BC

}
(
γ (s)
) dγ B

ds
(s)

dγ C

ds
(s)

]

.

Next, as γ is a geodesic

d2γ A

ds
+
{

A
BC

}
(
γ
) dγ B

ds

dγ C

ds
= 0

one has

τb(φ) = −(�bs
)
γ̇ (s). (28)

Moreover

φ∗ ∇H eb(φ) = E(γ )
(∇H s

)(‖∇H s‖2) γ̇ (s). (29)

Finally [by (28)–(29) and (24) with φ = s]

τb(φ)+ φ∗ ∇H eb(φ) =
{

−�bs + 1

2

(∇H s
) (‖∇H s‖2

)}

γ̇ (s) = 0.

i.e. φ is e.s.h. ��
An alternative proof relies on a result by Duan (cf. [20]) together with the geometric
interpretation of exponential wave maps in [16]. One has4

Theorem 4 Let (M, g) be a Lorentzian manifold and σ : M → R an exponential
wave function. If γ : I = [0, �(γ )] → N is a geodesic in (N , h), parametrized by
arc-length, then  = γ ◦ σ :M→ N is an exponential wave map.

LetM = C(M), h = Fθ and σ = s ◦ π for some C∞ e.s.h. function s : M → R. By
a result of Lee (cf. [26]) π∗� = �b and by a result in [16] π∗D(u ◦ π) = ∇H u for
any u ∈ C1(M). Hence (24) [with φ = s] yields

−�σ + g
(
DDσ Dσ, Dσ

) = 0

i.e. σ is an exponential wave function and Duan’s Theorem 4 applies. Yet φ = γ ◦ s
is the base map associated to  = γ ◦ σ hence (by Theorem 1 in [16]) φ is e.s.h.

4 The result in [20] is about ordinary wave maps, yet the proof of Theorem 4 is a verbatim repetition of the
arguments in [20] (hence Theorem 4 is attributed to Duan, cf. op. cit.).
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3 Second Variation Formula

3.1 Rough Sublaplacians

Let φ : M → N be an e.s.h. map. The map

φ∗ : X(M)→ C∞
(
φ−1T N

)

may be thought of as a section in T ∗(M) ⊗ φ−1T (N ). Let �H φ∗ be the restriction
of φ∗ to C∞(H(M)) [a section in H(M)∗ ⊗ φ−1T (N )]. Given two sections ϕ,ψ ∈
C∞
(
H(M)∗ ⊗ φ−1T N

)
a pointwise inner product

(hφ)∗(ϕ, ψ) : M → R

may be defined as follows. Let x ∈ M and let {Xa : 1 ≤ a ≤ 2n} be a local Gθ

orthonormal frame of H(M), defined on an open neighbourhood U ⊂ M of x . Then

(
hφ
)∗

(ϕ, ψ)x =
2n∑

a=1
hφ
(
ϕXa, ψ Xa

)
x .

L2 inner products on sections in φ−1T (N ) and H(M)∗ ⊗ φ−1T (N ) are respectively
given by

(V , W )φ =
∫

M
hφ(V , W ) �, (ϕ,ψ)φ =

∫

M
(hφ)∗(ϕ, ψ) �,

V , W ∈ C∞(φ−1T N ), ϕ, ψ ∈ C∞
(
H(M)∗ ⊗ φ−1T N

)
.

Let ∇h be the Levi–Civita connection of (N , h). The covariant derivative associated
to the pullback of ∇h by φ may be thought of as a linear operator

(∇h)φ : C∞(φ−1T N )→ C∞
(
T ∗(M)⊗ φ−1T N

)
.

For every V ∈ C∞(φ−1T N ) let

DφV = ((∇h)φ
)H

V

denote the restriction of (∇h)φV to H(M). Next let

(
Dφ
)∗ : C∞

(
H(M)∗ ⊗ φ−1T N

)→ C∞
(
φ−1T N

)

be the formal adjoint of Dφ i.e.

(
(Dφ)∗ϕ, V

)
φ
= (ϕ, DφV

)
φ

,
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ϕ ∈ C∞
(
H(M)∗ ⊗ φ−1T N

)
, V ∈ C∞(φ−1T N ).

The rough sublaplacian is the second order differential operator

�
φ
b =
(
Dφ
)∗ ◦ Dφ.

Let Rh be the curvature tensor field of ∇h i.e.

Rh(Y , Z) =
[
∇h

Y , ∇h
Z

]
−∇h

[Y ,Z ], Y , Z ∈ X(N ).

Let (Rh)φ ∈ C∞
(⊗3 φ−1T N

)
be given by

(Rh)φx
(
r, s
)
t = Rh

φ(x)

(
r, s
)
t,

r, s, t ∈ Tφ(x)(N ), x ∈ M .

The subelliptic Jacobi operator is

Jφ
b V = �

φ
b V − traceGθ

{
�H (Rh)φ(V , φ∗ · )φ∗ ·

}

for any V ∈ C∞(φ−1T N ).
Let � ⊂ M be a bounded domain. The Hessian of Eb(φ) = ∫

�
exp
[
eb(φ)

]
� at

the point φ is

H(Eb)φ(V , W ) =
(
exp
[
eb(φ)

] [
Jφ

b V − Dφ

∇H eb(φ)
V
]
, W
)

φ
+

+
∫

�

exp
[
eb(φ)

]
(hφ)∗

(
DφV , �H φ∗

)
(hφ)∗

(
DφW , �H φ∗

)
�

(30)

for any V , W ∈ C∞(φ−1T N ).

3.2 SecondVariation Formula

3.2.1 Hessian of Eb at an e.s.h. Map

Of course the Hessian H(Eb) isn’t postulated as in (30) but derived by computing
the second variation of Eb. Precisely let {φs,t }|s|<ε, |t |<ε ⊂ C∞(M, N ) be a smooth
2-parameter variation of φ = φ0,0 and let us consider

f : M̃ = M × (−ε, ε)2 → N ,

f (x, s, t) = φs,t (x), x ∈ M, |s| < ε, |t | < ε,

Vs, V , W ∈ C∞(φ−1T N ), |s| < ε,

Vs(x) = (d(x,s,0) f )(∂/∂t)(x,s,0), V = V0,
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W (x) = (d(x,0,0) f )(∂/∂s)(x,0,0), x ∈ M,

Supp(Vs) ⊂ �, |s| < ε.

We may state

Theorem 5 Let φ : M → N be an e.s.h. map of (M, θ) into (N , h). The second
variation formula for Eb about φ is

∂2

∂s ∂t

{
Eb
(
φs,t
)}

s=t=0 = H(Eb)φ(V , W ). (31)

Proof Let ϕ : M̃ → R be given by

ϕ(x, s, t) = eb(φs,t ), x ∈ M, |s| < ε, |t | < ε.

If αs,t is the injection

αs,t : M → M̃, αs,t (x) = (x, s, t), x ∈ M,

then φs,t = f ◦ αs,t . Also for all X ∈ X(M) and A ∈ X(M̃) we define X̃ ∈ X(M̃)

and f∗A ∈ C∞
(

f −1T N
)
by

X̃(x,s,t) = (dxαs,t )Xx , ( f∗A)(x,s,t) = (d(x,s,t) f )A(x,s,t).

Consequently

ϕ = 1

2

2n∑

a=1
h f ( f∗ X̃a, f∗ X̃a

)
(32)

everywhere in the open set Ũ = U × (−ε, ε)2. Then [by (32) together with
(∇h)

f
∂/∂t h

f = 0 and
[
X̃a, ∂/∂t

] = 0]

∂ϕ

∂t
=
∑

a

h f
(
(∇h)

f

X̃a
f∗ ∂/∂t, f∗ X̃a

)
=

[by (∇h)
f

X̃a
h f = 0]

=
∑

a

{
X̃a

(
h f
(

f∗ ∂/∂t, f∗ X̃a

))
− h f

(
f∗ ∂/∂t, (∇h)

f

X̃a
f∗ X̃a

)}
.

For every (s, t) ∈ (−ε, ε)2 we consider the vector field Xs,t ∈ H(M) determined by

h f
(

f∗ ∂/∂t, f∗ Ỹ
)
◦ αs,t = Gθ

(
Xs,t , Y

)
, (33)
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for any Y ∈ H(M). As ∇� = 0 the divergence of Xs,t may be computed as the trace
of Y �→ ∇Y Xs,t i.e.

div
(
Xs,t
) =

2n∑

j=0
gθ

(∇X j Xs,t , X j
)

where

{
X j : 0 ≤ j ≤ 2n

} = {Xa, T : 1 ≤ a ≤ 2n}, X0 = T .

Next [by ∇T Xs,t ∈ H(M) �⇒ gθ

(∇T Xs,t , T
) = 0]

div
(
Xs,t
) =

2n∑

a=1
gθ

(∇Xa Xs,t , Xa
) =

[by ∇gθ = 0 and gθ = Gθ on H(M)⊗ H(M)]

=
∑

a

{
Xa
(
Gθ (Xs,t , Xa)

)− Gθ

(
Xs,t , ∇Xa Xa

)} =

[by (33)]

=
∑

a

{
Xa
(
h f ( f∗

∂

∂t
, f∗ X̃a) ◦ αs,t

)− h f ( f∗
∂

∂t
, f∗ X̃a

) ◦ αs,t
}

that is

div(Xs,t )

=
2n∑

a=1

{

X̃a
(
h f ( f∗

∂

∂t
, f∗ X̃a)

)− h f ( f∗
∂

∂t
, f∗ ∇̃Xa Xa

)
}

◦ αs,t

everywhere in Ũ . Consequently

∂ϕ

∂t
◦ αs,t = div

(
Xs,t
)−

−
2n∑

a=1
h f ( f∗

∂

∂t
,
(∇h) f

X̃a
f∗ X̃a + f∗ ∇̃Xa Xa

) ◦ αs,t . (34)

To obtain a frame-free, and in particular global, version of (34) we introduce the
bilinear form

B( f )(X , Y ) = (∇h) f

X̃
f∗ Ỹ − f∗ ∇̃X Y , X , Y ∈ X(M), (35)
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Then (34) reads

∂ϕ

∂t
◦ αs,t = div

(
Xs,t
)− h f ( f∗

∂

∂t
, traceGθ

{
�H B( f )

}) ◦ αs,t . (36)

By the sub-Riemannian analog to Hopf–Rinow theorem (in Riemannian geometry)
if (M, ρθ ) is a complete metric space then every closed ball of finite radius in
(M, ρθ ) is compact (cf. [29]). In particular for every ρθ -bounded domain � ⊂ M
the closure � is a compact set. Hence the relevant integrals are convergent i.e.
Eb(φ) = ∫

�
exp
[
eb(φ)

]
� <∞. Then let us consider the function

ψ : (−ε, ε)2 → R, ψ(s, t) = Eb(φs,t ), |s| < ε, |t | < ε.

Then

∂ψ

∂t
(s, t) =

∫

�

eϕ(x,s,t) ∂ϕ

∂t
(x, s, t) �(x)

=
∫

�

eϕ◦αs,t

{

div
(
Xs,t
)− h f ( f∗

∂

∂t
, traceGθ

{
�H B( f )

}) ◦ αs,t

}

�

and
∫

�

eϕ( ·,s,t) div
(
Xs,t
)

�

=
∫

�

{
div
(
eϕ( ·,s,t) Xs,t

)− Xs,t
(
eϕ◦αs,t

)}
� =

(by Green’s lemma)

=
∫

∂�

eϕ◦αs,t gθ

(
Xs,t , ν

)
d A −

∫

�

Gθ

(
Xs,t , ∇H eϕ◦αs,t

)
� =

[by (33)]

=
∫

∂�

eϕ◦αs,t gθ

(
Xs,t , ν

)
d A

−
∫

�

eϕ◦αs,t

{

h f ( f∗
∂

∂t
, f∗ ˜∇H (ϕ ◦ αs,t )

) ◦ αs,t

}

�

where ν is the outward pointing unit normal vector field on ∂� and d A is short for the
canonical volume form d vol

(
ι∗gθ

)
[with ι : ∂�→ M the inclusion]. Consequently

∂ψ

∂t
(s, t) =

∫

∂�

eϕ◦αs,t gθ

(
Xs,t , ν

)
d A +

−
∫

�

eϕ◦αs,t
{
h f ( f∗

∂

∂t
, f∗ ˜∇H (ϕ ◦ αs,t )+ traceGθ

{
�H B( f )

}) ◦ αs,t
}

�.

(37)



Second Variation Formula and Stability of Exponentially… Page 23 of 62 55

Note that for any x ∈ U

∇H (ϕ ◦ αs,t
)

x =
∑

a

Xa
(
ϕ ◦ αs,t

)
Xa,x

=
∑

a

[
(dxαs,t )Xa,x

]
(ϕ) Xa,x =

∑

a

X̃a(ϕ)(x,s,t) Xa,x

that is

∇H (ϕ ◦ αs,t
) =

2n∑

a=1

{
X̃a(ϕ) ◦ αs,t

}
Xa . (38)

Let π : M̃ → M be the projection i.e. π(x, σ, τ ) = x for any x ∈ M and any
(σ, τ ) ∈ (−ε, ε)2. Then

{
˜∇H (ϕ ◦ αs,t )

}
(x,σ,τ )

= (dxασ,τ )
{∇H (ϕ ◦ αs,t )

}
x =

[by (38)]

=
∑

a

X̃a(ϕ)(x,s,t)(dxασ,τ )Xa,x =
∑

a

X̃a(ϕ)(x,s,t) X̃a, (x,σ,τ )

so that

˜∇H (ϕ ◦ αs,t ) =
2n∑

a=1

{
X̃a(ϕ) ◦ αs,t ◦ π

}
X̃a . (39)

Therefore

{
f∗ ˜∇H (ϕ ◦ αs,t )

}
(x,σ,τ )

= (d(x,σ,τ ) f )
{

˜∇H (ϕ ◦ αs,t )
}
(x,σ,τ )

[by (39)]

=
∑

a

X̃a(ϕ)(x,s,t)(d(x,σ,τ ) f ) X̃a,(x,σ,τ ) =
∑

a

X̃a(ϕ)(x,s,t) ( f∗ X̃a)(x,σ,τ )

or

f∗ ˜∇H (ϕ ◦ αs,t ) =
2n∑

a=1

{
X̃a(ϕ) ◦ αs,t ◦ π

}
f∗ X̃a (40)

in Ũ . The elementary identity αs,t ◦ π ◦ αs,t = αs,t together with (40) yields

{
f∗ ˜∇H (ϕ ◦ αs,t )

} ◦ αs,t =
{

2n∑

a=1
X̃a(ϕ) f∗ X̃a

}

◦ αs,t . (41)



55 Page 24 of 62 Y.-J. Chiang et al.

Let us set

τb( f ) = traceGθ

(
�H B( f )

)

for brevity. Also note that
∑2n

a=1 X̃a(ϕ) X̃a is the local manifestation (on Ũ ) of a
(globally defined) tangent vector field on M̃ which we denote by Xϕ . With these
ingredients we may compute the integrand function in the right hand side of (37) as
follows

h f ( f∗
∂

∂t
, f∗ ˜∇H (ϕ ◦ αs,t )+ τb( f )

) ◦ αs,t

=
{

h f ( f∗
∂

∂t
, τb( f )+ f∗ Xϕ

)
}

◦ αs,t

and hence (37) reads

∂ψ

∂t
(s, t) =

∫

∂�

eϕ◦αs,t gθ

(
Xs,t , ν

)
d A +

−
∫

�

eϕ(x,s,t)
{

h f ( f∗
∂

∂t
, τb( f )+ f∗ Xϕ

) ◦ αs,t

}

�. (42)

Let us differentiate (42) with respect to s and evaluate at s = t = 0. For the first term
[on the right hand side of (42)] one has

{
∂

∂s

∫

∂�

eϕ(x,s,t) gθ (Xs,t , ν)x d A(x)

}

s=t=0

=
{∫

∂�

∂ϕ

∂s
(x, s, t)eϕ(x,s,t) Gθ

(
Xs,t , �H ν

)
x d A(x)

}

s=t=0

+
{∫

∂�

eϕ(x,s,t) ∂

∂s

[
Gθ

(
Xs,t , �H ν

)
x

]
d A(x)

}

s=t=0

and [by (33) with s = t = 0]

Gθ

(
X0,0, �H ν

)
x = h f

(

f∗
∂

∂t
, f∗ �̃H ν

)

(x,0,0)

= hφ(x)

(
Vx ,
{

f∗ �̃H ν
}

(x,0,0)

) = 0

for any x ∈ ∂�, because of Supp(V ) ⊂ �. Also

∂

∂s

[
Gθ

(
Xs,t , �H ν

)]
s=t=0 =
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[again by (33)]

=
{

∂

∂s

[

h f
(

f∗
∂

∂t
, f∗ �̃H ν

)

◦ αs,t

]}

s=t=0
=

[by
(∇h
) f
∂/∂sh f = 0]

= h f
(
(∇h) f

∂/∂s f∗
∂

∂t
, f∗�̃H ν

)

s=t=0
+

+ h f
(

f∗
∂

∂t
,
(∇h) f

∂/∂s f∗�̃H ν

)

s=t=0
(43)

and the second term in (43) vanishes at the boundary (as Supp(V ) ⊂ �). On the other
hand if we set f A = y A ◦ f then

f∗
∂

∂t
= ∂ f A

∂t

(
∂

∂ y A

)

◦ f , f∗
∂

∂s
= ∂ f A

∂s

(
∂

∂ y A

)

◦ f ,

(
∇h
) f

∂/∂s
f∗

∂

∂t
=
{

∂ f A

∂s ∂t
+
({

A
BC

}

◦ f

)
∂ f B

∂s

∂ f C

∂t

}(
∂

∂ y A

)

◦ f ,

Supp

[
∂ f A

∂t

( ·, 0, 0)
]

⊂ Supp(V ),

Supp

[
∂ f A

∂s ∂t

( ·, 0, 0)
]

⊂ Supp
(
Vs
)
, |s| < ε,

so the first term in (43) vanishes at the boundary, as well. Moreover, as

ϕ ◦ α0,0 = eb(φ), τb( f ) ◦ α0,0 = τb(φ), ( f∗ Xϕ) ◦ α0,0 = φ∗ ∇H eb(φ),

we obtain

∂2ψ

∂s ∂t
(0, 0)

= −
∫

�

exp
[
eb(φ)

]
(

∂ϕ

∂s
◦ α0,0

)

hφ
(
V , τb(φ)+ φ∗ ∇H eb(φ)

)
�

−
∫

�

exp
[
eb(φ)

]
{

∂

∂s

[

h f ( f∗
∂

∂t
, τb( f )+ f∗ Xϕ

)
]}

s=t=0
�

or [by τb(φ)+ φ∗ ∇H eb(φ) = 0]

∂2ψ

∂s ∂t
(0, 0) =

= −
∫

�

exp
[
eb(φ)

]
{

∂

∂s

[

h f ( f∗
∂

∂t
, τb( f )+ f∗Xϕ

)
]}

s=t=0
�. (44)
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3.2.2 The “Classical Term”

The term ∂
∂s

[
h f
(

f∗ ∂
∂t , τb( f )

)]
in (44) may be dealt with as follows

∂

∂s

[

h f ( f∗
∂

∂t
, τb( f )

)
]

=

[by (∇h)
f
∂/∂sh f = 0]

= h f ((∇h)
f
∂/∂s f∗

∂

∂t
, τb( f )

)+ h f ( f∗
∂

∂t
, (∇h)

f
∂/∂s τb( f )

)
. (45)

The second term in (45) requires interchanging the covariant derivatives (∇h)
f
∂/∂s and

(∇h)
f

X̃a
and therefore involves curvature terms. Let R(∇h) f

be the curvature tensor

field of (∇h) f

R(∇h) f
(A, B) = [(∇h)

f
A, (∇h)

f
B

]− (∇h)
f
[A,B], A, B ∈ X(M̃).

Then (by
[
∂/∂s, X̃a

] = 0)

(∇h)
f
∂/∂s(∇h)

f

X̃a
f∗ X̃a = (∇h)

f

X̃a
(∇h)

f
∂/∂s f∗ X̃a +

+ R(∇h) f ( ∂

∂s
, X̃a

)
f∗ X̃a (46)

so that (locally)

h f ( f∗
∂

∂t
,
(∇h) f

∂/∂sτb( f )
)

= h f ( f∗
∂

∂t
, (∇h)

f
∂/∂s(∇h)

f

X̃a
f∗ X̃a

)

− h f ( f∗
∂

∂t
, (∇h)

f
∂/∂s f∗

˜
(∇h)

f

X̃a
X̃a
) =

[by (46) and
[
∂/∂s, ∇̃Xa Xa

] = 0]

= h f ( f∗
∂

∂t
, (∇h)

f

X̃a
(∇h)

f
∂/∂s f∗ X̃a

)

+ h f ( f∗
∂

∂t
, R(∇h) f ( ∂

∂s
, X̃a

)
f∗ X̃a

)− h f ( f∗
∂

∂t
, (∇h)

f

∇̃Xa Xa
f∗

∂

∂s

)

that is

h f ( f∗
∂

∂t
,
(∇h) f

∂/∂sτb( f )
)
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= h f ( f∗
∂

∂t
,
∑

a

R(∇h) f ( ∂

∂s
, X̃a

)
f∗ X̃a

)

+ h f ( f∗
∂

∂t
,
∑

a

{

(∇h)
f

X̃a
(∇h)

f

X̃a
− (∇h)

f

∇̃Xa Xa

}

f∗
∂

∂s

)

or [by evaluating at s = t = 0]

h f ( f∗
∂

∂t
,
(∇h) f

∂/∂s τb( f )
) ◦ α0,0 =

= hφ
(
V ,
∑

a

(Rh)φ
(
W , φ∗Xa

)
φ∗Xa

)+

+ hφ
(
V ,
∑

a

{
(∇h)

φ
Xa

(∇h)
φ
Xa

W − (∇h)
φ
∇Xa Xa

W
} )

. (47)

Let X f ∈ H(M) be determined by

Gθ (X f , Y ) = hφ
(
V , (∇h)

φ
Y W
)

(48)

for any Y ∈ H(M). Then

hφ
(
V ,
∑

a

(∇h)
φ
Xa

(∇h)
φ
Xa

W
) =

[as (∇h)
φ
Xa

hφ = 0]

=
∑

a

{
Xa

(
hφ
(
V , (∇h)

φ
Xa

W
))− hφ

(
(∇h)

φ
Xa

V , (∇h)
φ
Xa

W
)} =

[by (48)]

=
∑

a

Xa
(
Gθ

(
X f , Xa

))− (hφ)∗
((

(∇h)φ
)H

V ,
(
(∇h)φ

)H
W
)
=

[by ∇Xa Gθ = 0]

=
∑

a

{
Gθ

(∇Xa X f , Xa
)+ Gθ

(
X f , ∇Xa Xa

)}

− (hφ)∗(DφV , DφW ) =

[again by (48)]

= div(X f )+
∑

a

hφ
(

V , (∇h)
φ
∇Xa Xa

W
)
− (hφ)∗

(
DφV , DφW

)



55 Page 28 of 62 Y.-J. Chiang et al.

that is

hφ
(
V ,
∑

a

{
(∇h)

φ
Xa

(∇h)
φ
Xa

W − (∇h)
φ
∇Xa Xa

W
} ) =

= div(X f )− (hφ)∗
(
DφV , DφW

)
. (49)

Let K h be the Riemann–Christoffel (0, 4)-tensor field of N

K h(A, B, C, D) = h
(
Rh(C, D)B, A

)
, A, B, C, D ∈ X(N ).

Then

K h(A, B, C, D) = −K h(A, B, D, C)

(as Rh is a 2-form) and

K h(A, B, C, D) = −K h(B, A, C, D)

(as ∇hh = 0). Also

K h(A, B, C, D) = K h(C, D, A, B)

(as a consequence of the first Bianchi identity). Therefore

hφ
(
V , (Rh)φ(W , φ∗Xa)φ∗Xa

) = (K h)φ
(
V , φ∗Xa, W , φ∗Xa

)

= (K h)φ
(
W , φ∗Xa, V , φ∗Xa

) = hφ
(
(Rh)φ(V , φ∗Xa)φ∗Xa, W

)
.

Let us substitute from (49) into (47). We obtain

h f ( f∗
∂

∂t
, (∇h)

f
∂/∂s τb( f )

) ◦ α0,0 =
= hφ

(
traceGθ

{
(Rh)φ(V , φ∗ · ) φ∗ ·

}
, W
)+

+ div(X f )− (hφ)∗
(
DφV , DφW

)
. (50)

As to the first term in (45) [evaluated at s = t = 0]

h f ((∇h)
f
∂/∂s f∗

∂

∂t
, τb( f )

) ◦ α0,0

= hφ
(
{

(∇h)
f
∂/∂s f∗

∂

∂t

}

◦ α0,0, τb(φ)
)

so that [by τb(φ) = −φ∗∇H eb(φ)]

h f ((∇h)
f
∂/∂s f∗

∂

∂t
, τb( f )

) ◦ α0,0 =
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= −hφ

({

(∇h)
f
∂/∂s f∗

∂

∂t

}

◦ α0,0, φ∗ ∇H eb(φ)

)

. (51)

Let us substitute from (50)–(51) into (45). We obtain

∫

�

exp
[
eb(φ)

] ∂

∂s

[

h f ( f∗
∂

∂t
, τb( f )

)
]

s=t=0
� =

=
∫

�

exp
[
eb(φ)

]
{

div
(
X f
)− (hφ

)∗
(DφV , DφW )+

+ hφ

(

traceGθ

[(
Rh)φ(V , φ∗ · )φ∗ ·

]
, W

)

+

− hφ

([
(∇h) f

∂/∂s f∗
∂

∂t

]

◦ α0,0, φ∗∇H eb(φ)

)}

�. (52)

The divergence term may be computed as follows

∫

�

exp
[
eb(φ)

]
div(X f )�

=
∫

�

{
div
(
exp
[
eb(φ)

]
X f
)− X f

(
exp
[
eb(φ)

])}
� =

(by Green’s lemma, as Supp(X f ) ⊂ Supp(V ) ⊂ �)

= −
∫

�

exp
[
eb(φ)

]
Gθ

(
X f , ∇H eb(φ)

)
� =

[by (48)]

= −
∫

�

exp
[
eb(φ)

]
hφ
(
V , (∇h)

φ

∇H eb(φ)
W
)

�

hence the “classical” term in (44) is

∫

�

exp
[
eb(φ)

] ∂

∂s

{

h f ( f∗
∂

∂t
, τb( f )

)
}

s=t=0
� =

= − ((Dφ
)∗( exp

[
eb(φ)

]
DφV

)
, W
)
φ
+

−
∫

�

exp
[
eb(φ)

] {
hφ
(
V , Dφ

∇H eb(φ)
W
)+

− hφ
(
traceGθ

[
(Rh)φ(V , φ∗ ·

]
, W
)+

+ hφ

([

(∇h)
f
∂/∂s f∗

∂

∂t

]

◦ α0,0, φ∗ ∇H eb(φ)

)}

�. (53)
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3.2.3 The “New Term”

The “new” [i.e. not appearing in the second variation formula for Eb about an ordinary
subelliptic harmonic map] term in (44) may be locally calculated as follows

{
∂

∂s

[

h f ( f∗
∂

∂t
, f∗ Xϕ

)
]}

◦ α0,0

=
{

∂

∂s

[

h f ( f∗
∂

∂t
,
∑

a

X̃a(ϕ) f∗ X̃a
)
]}

◦ α0,0 =

[by (∇h)
f
∂/∂sh f = 0]

=
{

h f

(
(∇h) f

∂/∂s f∗
∂

∂t
,
∑

a

X̃a(ϕ) f∗ X̃a

)

+

+ h f

(

f∗
∂

∂t
,
∑

a

(∇h) f
∂/∂s

[
X̃a(ϕ) f∗ X̃a

]
)}

◦ α0,0

= hφ

([
(∇h) f

∂/∂s f∗
∂

∂t

]

◦ α0,0, φ∗ ∇H eb(φ)

)

+ T

where the term T is

T = h f ( f∗
∂

∂t
,
∑

a

[∂ X̃a(ϕ)

∂s
f∗ X̃a

+ X̃a(ϕ)
(∇h) f

∂/∂s f∗ X̃a
]) ◦ α0,0.

Next (by
[
X̃a, ∂/∂s

] = 0)

T =
∑

a

[{

X̃a

(
∂ϕ

∂s

)}

s=t=0
hφ
(
V , φ∗ Xa

)+

+
{

X̃a(ϕ) h f
(

f∗
∂

∂t
,
(∇ f ) f

X̃a
f∗

∂

∂s

)}

◦ α0,0

]

hence

∂

∂s

[

h f ( f∗
∂

∂t
, f∗ Xϕ

)
]

s=t=0
=

= hφ

([

(∇h)
f
∂/∂s f∗

∂

∂t

]

◦ α0,0, φ∗∇H eb(φ)

)

+

+ hφ
(
V , (∇h)

φ

∇H eb(φ)
W
)+
∑

a

[

X̃a

(
∂ϕ

∂s

)]

s=t=0
hφ
(
V , φ∗Xa

)
. (54)
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Let us substitute from (53)–(54) into (44) and observe the cancellation of terms. We
obtain

∂2ψ

∂s ∂t
(0, 0) = ((Dφ)∗

(
exp
[
eb(φ)

]
DφV

)
, W
)
φ
+

−
∫

�

exp
[
eb(φ)

]
hφ
(
traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]
, W
)

� +

−
∫

�

exp
[
eb(φ)

] (
� ◦ α0,0

)
� (55)

where � : M̃ → R is locally given by

� =
2n∑

a=1
h f ( f∗

∂

∂t
, f∗ X̃a

)
X̃a

(
∂ϕ

∂s

)

in Ũ . By the very definition of ϕ [i.e. by differentiating in (32) with respect to s and
using the commutation formula [X̃a, ∂/∂s] = 0]

∂ϕ

∂s
=
∑

b

h f
(
(∇h) f

X̃b
f∗

∂

∂s
, f∗ X̃b

)

=

[by (∇h)
f

X̃a
h f = 0]

=
∑

b

{

X̃b

(

h f ( f∗
∂

∂s
, f∗ X̃b

)
)

− h f ( f∗
∂

∂s
, (∇h)

f

X̃a
f∗ X̃b

)
}

hence

{
∂ϕ

∂s
◦ α0,0

}

(x) =

=
∑

b

{

X̃b, (x,0,0)

(

h f ( f∗
∂

∂s
, f∗ X̃b

)
)

− hφ
(

W , (∇h)
φ
Xb

φ∗ Xb

)

x

}

=

=
∑

b

{

Xb,x

(

h f ( f∗
∂

∂s
, f∗ X̃b

) ◦ α0,0

)

− hφ
(

W , ∇φ
Xb

φ∗ Xb

)

x

}

=

=
∑

b

hφ
(
(∇h)

φ
Xb

W , φ∗Xb
)

x

that is

∂ϕ

∂s
◦ α0,0 =

(
hφ
)∗(

DφW , φ∗
)
. (56)
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Moreover

X̃a

(
∂ϕ

∂s

)

◦ α0,0 = Xa

(
∂ϕ

∂s
◦ α0,0

)

. (57)

Hence [by (57)]

� ◦ α0,0 =
∑

a

hφ
(
V , φ∗Xa

)
Xa

(
∂ϕ

∂s
◦ ϕ0,0

)

=

[by (56)]

=
∑

a

hφ
(
V , φ∗Xa

)
Xa
(
(hφ)∗(DφW , φ∗)

)

that is

� ◦ α0,0 = hφ
(

V , φ∗∇H [(hφ)∗(DφW , φ∗)
])

. (58)

To calculate the term
∫

M exp[eb(φ)] (� ◦ α0,0) � in (55) we use (58) and integration
by parts. Precisely let Y f ∈ H(M) be determined by

Gθ

(
Y f , X

) = hφ(V , φ∗ X), X ∈ H(M), (59)

[so that Supp(Y f ) ⊂ Supp(V ) ⊂ �] and let us consider the functions v,w ∈ C∞(M)

given by

v = (hφ)∗
(
DφV , φ∗

)
, w = (hφ)∗

(
DφW , φ∗

)
.

Then [by (58)]

∫

�

exp
[
eb(φ)

] (
� ◦ α0,0

)
� =

∫

�

exp
[
eb(φ)

]
hφ
(

V , φ∗ ∇H w
)

� =

[by (59)]

=
∫

�

exp
[
eb(φ)

]
Gθ

(
Y f , ∇H w

)
� =

∫

�

exp
[
eb(φ)

]
Y f (w) �

=
∫

�

{
Y f
(
w exp

[
eb(φ)

])− w Y f
(
exp
[
eb(φ)

])}
�

=
∫

�

{
div
(
w exp

[
eb(φ)

]
Y f
)−

−w exp
[
eb(φ)

]
div(Y f )− w Y f

(
exp
[
eb(φ)

])}
�
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that is
∫

�

exp
[
eb(φ)

(
� ◦ α0,0

)
� =

= −
∫

�

w exp
[
eb(φ)

] {
div(Y f )+ Y f

(
eb(φ)

)}
�. (60)

On the other hand

div
(
Y f
) =
∑

a

Gθ

(∇Xa Y f , Xa
) =

[by ∇Xa Gθ = 0]

=
∑

a

{
Xa
(
Gθ (Y f , Xa)

)− Gθ

(
Y f , ∇Xa Xa

)} =

[by (59)]

=
∑

a

{
Xa
(
hφ(V , φ∗Xa)

)− hφ
(
V , φ∗∇Xa Xa

)} =

[by (∇h)
φ
Xa

hφ = 0]

=
∑

a

{
hφ
(
(∇h)

φ
Xa

V , φ∗Xa

)
+

+ hφ
(

V , (∇h)
φ
Xa

φ∗Xa − φ∗∇Xa Xa

)}

= (hφ)∗
((

(∇h)φ
)H

V , φ∗
)
+ hφ

(
V , traceGθ �H B(φ)

)

that is

div(Y f ) = v + hφ
(
V , τb(φ)

)
. (61)

Also

Y f
(
eb(φ)

) = Gθ

(
Y f , ∇H eb(φ)

)
=

[by (59)]

= hφ
(

V , φ∗∇H eb(φ)
)

which [together with (60)–(61)] yields [as φ is e.s.h.]

∫

�

exp
[
eb(φ)

] (
� ◦ α0,0

)
� = −

∫

�

v w exp
[
eb(φ)

]
�. (62)
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Let us substitute from (62) into (55). We obtain

∂2ψ

∂s ∂t
(0, 0) = ((Dφ)∗

(
exp
[
eb(φ)

]
DφV

)
, W
)
φ
+

−
∫

�

exp
[
eb(φ)

]
hφ
(
traceGθ

{
�H (Rh)φ(V , φ∗ · )φ∗ ·

}
, W
)

� +

+
∫

�

v w exp
[
eb(φ)

]
�. (63)

3.2.4 The Operator J�
b, exp

Let us consider the linear operator

Jφ
b,exp : C∞

(
φ−1T N

)→ C∞
(
φ−1T N

)
,

Jφ
b,expV ≡ (Dφ)∗

(
exp
[
eb(φ)

]
DφV

)

− exp
[
eb(φ)

]
traceGθ

{
πH (Rh)φ(V , φ∗ · )φ∗ ·

}
,

so that (63) reads

∂2ψ

∂s ∂t
(0, 0) =

(
Jφ

b, expV , W
)

φ
+

+
∫

�

exp
[
eb(φ)

]
(hφ)∗

(
DφV , �H φ∗

)
(hφ)∗

(
DφW , �H φ∗

)
�. (64)

To check that (31) and (64) coincide [thus proving Theorem 5] one needs to relate
Jφ

b, exp to the subelliptic Jacobi operator Jφ
b . We start by establishing

Lemma 1 The formal adjoint (Dφ)∗ of Dφ is locally given by

(Dφ)∗ϕ = −TraceGθ

{
�H Dφϕ

} =

= −
2n∑

a=1

{
(∇h)

φ
Xa

ϕXa − ϕ∇Xa Xa

}
(65)

for any ϕ ∈ C∞
(
H(M)∗ ⊗ φ−1T N

)
. In particular

�
φ
b V = −

2n∑

a=1

{
Dφ

Xa
Dφ

Xa
V − Dφ

∇Xa Xa
V
}

for any V ∈ C∞(φ−1T N ).
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Proof A covariant derivative of ϕ ∈ C∞(T ∗(M) ⊗ φ−1T N ) is defined in terms of
∇h and ∇ [the Levi–Civita and Tanaka–Webster connections of (N , h) and (M, θ),
respectively]

(Dφ
Xϕ)Y = (∇h)

φ
XϕY − ϕ∇X Y , X , Y ∈ X(M).

For any

V ∈ C∞(φ−1T N ), ϕ ∈ C∞
(
H(M)∗ ⊗ φ−1T N

)
,

let Yϕ ∈ H(M) be determined by

hφ
(
V , ϕX

) = Gθ

(
Yϕ, X

)
, X ∈ H(M). (66)

Then (locally)

div(Yϕ) =
∑

a

Gθ

(∇Xa Yϕ, Xa
)

=
∑

a

{
Xa
(
Gθ (Yϕ, Xa)

)− Gθ

(
Yϕ, ∇Xa Xa

)} =

[by (66)]

=
∑

a

{
Xa
(
hφ(V , ϕXa)

)− hφ
(
V , ϕ∇Xa Xa

)}

=
∑

a

{
hφ
(
(∇h)

φ
Xa

V , ϕXa

)
+ hφ

(
V , (∇h)

φ
Xa

ϕXa − ϕ∇Xa Xa

)}

that is

div(Yϕ) = (hφ)∗
(
DφV , ϕ

)+ hφ
(
V , traceGθ

{
�H Dφϕ

})
. (67)

Next

(
(Dφ)∗ϕ, V

)
φ
= (ϕ, DφV

)
φ
=
∫

�

(hφ)∗
(
ϕ, DφV

)
� =

[by (67) and Green’s lemma]

= −
∫

�

hφ
(
V , traceGθ

{
�H Dφϕ

})
�

= − (V , traceGθ

{
�H Dφϕ

})
φ

yielding (65). ��
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The second statement in Lemma 1 follows from (65) for ϕ = DφV .
Moreover for any V ∈ C∞(φ−1T N )

(Dφ)∗
(
exp
[
eb(φ)

]
Dφ
) =

[by (65) for ϕ = exp
[
eb(φ)

]
DφV ]

= (Dφ)∗ϕ = −
∑

a

{
Dφ

Xa
ϕXa − ϕ∇Xa Xa

}

= − exp
[
eb(φ)

]∑

a

{
Xa
(
eb(φ)

)
Dφ

Xa
V + Dφ

Xa
Dφ

Xa
V − Dφ

∇Xa Xa
V
}

that is

(Dφ)∗
(
exp
[
eb(φ)

]
DφV

) = exp
[
eb(φ)

] {
�

φ
b V − Dφ

∇H eb(φ)
V
}

. (68)

Finally

Jφ
b, expV = (Dφ)∗

(
exp
[
eb(φ)

]
DφV

)

− exp
[
eb(φ)

]
traceGθ

{
�H (Rh)φ(V , φ∗ ·

}

so that [by (68)]

Jφ
b, exp = exp

[
eb(φ)

] {
Jφ

b − Dφ

∇H eb(φ)

}
(69)

and substitution from (69) into (64) yields (31). ��

3.2.5 Symbol of L�V = (D�)∗
(
exp

[
eb(�)

]
D�V

)

Let us set

T ′(M) = T ∗(M)\{zero section}

and let π : T ′(M) → M be the projection. Let E = φ−1T (N ) and let π−1E →
T ′(M) be the pullback of E → M by π . As customary let Smblk(E, E) consist of all
σ ∈ Hom

(
π−1E, π−1E

)
such that

σρ ω = ρk σω, ω ∈ T ′(M), ρ > 0.

Moreover let

σk : Diffk(E, E) → Smblk(E, E),

σk(L)ωv = L

(
i k

k!
[

f − f (x)
]k

V

)

x
∈ Ex ,
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ω ∈ T ′(M), x = π(ω), v ∈ Ex ,

V ∈ C∞
(
E
)
, Vx = v, f ∈ C∞(M), (d f )x = ω.

Lemma 2 If LφV ≡ (Dφ)∗
(
exp
[
eb(φ)

]
DφV

)
then

Lφ
(
u V
) = u LφV +

+ exp
[
eb(φ)

] {
(�bu) V − 2 Dφ

∇H u
V
}
− (∇H u)

(
exp
[
eb(φ)

])
V (70)

for any u ∈ C∞(M) and any V ∈ C∞(φ−1T N ).

Proof If ϕ = exp
[
eb(φ)

]
Dφ(u V ) then (locally, by Lemma 1)

Lφ(u V ) = (Dφ)∗ϕ = −
2n∑

a=1

{
(∇h)

φ
Xa

ϕXa − ϕ∇Xa Xa

}

= −
∑

a

{
Dφ

Xa

(
eeb(φ) Dφ

Xa
(u V )

)
− eeb(φ) Dφ

∇Xa Xa
(u V )

}

and one makes use of

�bu = −
2n∑

a=1

{
X2

a(u)− (∇Xa Xa)(u)
}

, ∇H u =
2n∑

a=1
Xa(u) Xa .

��
To compute the symbol

σ2(Lφ)ωv = −1

2
Lφ
(
[ f − f (x)]2 V

)

x

we use Lemma 2 with u = v2 and v = f − f (x) so that

�b(v
2) = 2 v �bv − 2 ‖∇H v‖2 ,

u(x) = 0,
(∇H u

)
x = 0,

(
Dφ

∇H u
V
)

x = 0,
(
�bu
)

x = −2‖∇H f ‖2x ,

hence [by (70)]

Lφ(u V )x = −2 exp
[
eb(φ)x

] ‖∇H f ‖2x Vx .

The decomposition

∇H f = ∇ f − θ
(∇ f
)

T
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yields [by ω = (d f )x ]

‖∇H f ‖2x = ‖ω‖2 − ω(Tx )
2.

Finally

σ2(Lφ)ωv = exp
[
eb(φ)x

] {
ω(Tx )

2 − ‖ω‖2
}

v. (71)

A symbol s ∈ Smblk(E, F) is elliptic if sω : Eω → Fω is an isomorphism for any
ω ∈ T ′(M). Note that

ω(Tx )
2 − ‖ω‖2 = 0⇐⇒ (∇H f )x = 0⇐⇒ ω

(
Xa,x
) = 0

⇐⇒ Ker(ω) ⊃ H(M)x ⇐⇒ ω ∈ H(M)⊥x = Rθx

hence [by (71)] the ellipticity of σ2(Lφ) degenerates at the cotangent directions
spanned by θx , x ∈ M .

3.3 Stability Theory

3.3.1 Index and Nullity of an e.s.h. Map

Let

harb, exp(M, N ) ≡ harb, exp
[
(M, θ), (N , h)

]

consist of all φ ∈ C∞(M, N ) such that φ is an e.s.h. map with respect to the data
(θ, h). Given φ ∈ harb, exp(M, N ) let

ind�(φ) ≡ ind�
b, exp(φ)

denote the upper bound of dim(F) over all finite dimensional subspaces F ⊂
C∞
(
�, φ−1T N

)
on which the Hessian H

(
Eb
)
φ
is negative definite. Also let

null�(φ) = null�b, exp(φ)

be the dimension of the space

{
V ∈ C∞

(
φ−1T N

) : H(Eb)φ(V , W ) = 0, ∀ W ∈ C∞
(
�, φ−1T N

)}
.

When M is compact and � = M we write merely ind(φ) = indM (φ) and null(φ) =
nullM (φ). A map φ ∈ harb, exp(M, N ) is weakly stable if ind(φ) = 0 i.e.
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H(Eb)φ(V , V ) ≥ 0, ∀ V ∈ C∞
(
�, φ−1T N

)
.

Otherwise φ is unstable.
As shown above the operator Jφ

b, exp fails to be elliptic [by (71) Jφ
b, exp is only

degenerate elliptic] so the behaviour of its spectrum is a priori unknown (even if M
is compact). However if the eigenvalues of Jφ

b, exp form a discrete set

λ1(φ) ≤ λ2(φ) ≤ · · · ≤ λν(φ) ≤ · · · ↑ +∞

with finite multiplicities and without accumulation points then, by (64) i.e.

H(Eb)φ(V , V ) = (Jφ
b, expV , V

)
φ

+
∫

�

exp
[
eb(φ)

] (
hφ
)∗(

DφV , �H φ∗
)2

�,

it follows that φ is weakly stable provided that λν(φ) ≥ 0 for any ν ≥ 1. The question
as to when the spectrum of Jφ

b, exp is discrete is examined in Sect. 3.5 for a particular
class of domains � ⊂ M .

3.3.2 E.s.h. Maps into Spaces of Nonpositive Curvature

In this section M is a compact strictly pseudoconvex CR manifold, and the findings
in the previous sections are tacitly used with � = M .

Theorem 6 If (N , h)has nonpositive sectional curvature then anyφ ∈ harb, exp(M, N )

is weakly stable.

Proof For every V ∈ C∞
(
φ−1T N

)

H(Eb)φ(V , V ) =
∫

M
exp
[
eb(φ)

] ‖DφV ‖2 �

−
∫

M
exp
[
eb(φ)

]
hφ
(
traceGθ

{
�H (Rh)φ(V , φ∗ · )φ∗ ·

}
, V
)

�

+
∫

M
exp
[
eb(φ)

]
(hφ)∗

(
DφV , φ∗

)2
�

and for any x ∈ U

hφ
(
traceGθ

{
�H (Rh)φ(V , φ∗ · )φ∗ ·

}
, V )x

= hφ
( 2n∑

a=1
�H (Rh)φ(V , φ∗Xa)φ∗Xa, V )x

=
∑

a

(K h)φ
(
V , φ∗Xa, V , φ∗Xa

)
x
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=
∑

a

K h
φ(x)

(
Vx , (dxφ)Xa,x , Vx , (dxφ)Xa,x

)

=
∑

a

[
‖V ‖2 ‖φ∗Xa‖2 − hφ(V , φ∗Xa)2

]

x
k
(
σa(x)

)

where k
(
σa(x)

) ≤ 0 is the sectional curvature of the 2-plane

σa(x) = RVx + RXa,x ⊂ Tφ(x)(N ).

Hence H(Eb)φ(V , V ) ≥ 0. ��
Let (Rm+1, q) be the Minkowski space i.e.

q(x, y) = −x1y1 + x2y2 + · · · + xm+1ym+1, x, y ∈ R
m+1,

and let gm,1 be the (flat) Lorentzian metric (determined by q) on R
m+1. Let

Hn = {x ∈ R
m+1 : q(x, x) = −1, xm+1 > 0

}

be the hypersurface of R
m+1
1 = (Rm+1, gm,1

)
endowed with the induced metric

h = j∗gm,1 where j : Hm ↪→ R
m+1
1 . Theorem 6 applies to N = (Hm, h) and yields

Theorem 1.

3.3.3 Tangent Space to harb, exp(M,N) and Nullity of e.s.h. Maps

Assume M to be compact. The tangent space

Tφ

(
harb, exp(M, N )

)

consists of all V ∈ C∞(φ−1T N ) such that

∃ {φs}|s|<ε ⊂ harb, exp(M, N ) : φ0 = φ, V = ∂φs

∂s
.

Let φs,t ∈ C∞(M, N ) be an arbitrary smooth 1-parameter variation of φs i.e. φs,0 =
φs . If one sets as customary

(x, s, t) = φs,t (x), x ∈ M, |s| > ε, |t | < ε,

Vx = (d(x,0,0))

(
∂

∂s

)

(x,0,0)
, Wx = (d(x,0,0))

(
∂

∂t

)

(x,0,0)
,

then [as φs is an e.s.h. map]

d

dt

{
Eb
(
φs,t
)}

t=0 = 0, ∀ |s| < ε,



Second Variation Formula and Stability of Exponentially… Page 41 of 62 55

hence

0 = ∂2

∂s ∂t

{
Eb
(
φs,t
)}

s=t=0 = H(Eb)φ(V , W ) =

=
∫

M
hφ
(
Jφ

b, expV , W
)
� +

+
∫

M
exp
[
eb(φ)

]
(hφ)∗

(
DφV , φ∗

)
(hφ)∗

(
DφW , φ∗

)
� (72)

with W ∈ C∞(φ−1T N ) arbitrary. By taking into account

∫

M
exp
[
eb(φ)

]
(hφ)∗

(
DφV , φ∗

)
(hφ)∗

(
DφW , φ∗

)
�

= (exp [eb(φ)
]
(hφ)∗(DφV , φ∗) φ∗, DφW

)
φ

= ((Dφ)∗
[
exp
[
eb(φ)

]
(hφ)∗(DφV , φ∗) φ∗

]
, W
)
φ

the relation (72) implies

J φ
b, expV = 0 (73)

where we have set

J φ
b, exp ≡ Jφ

b, exp + Qφ,

QφV ≡ (Dφ)∗
[
exp
[
eb(φ)

]
(hφ)∗(DφV , φ∗) φ∗

]
.

Then [by (73)]

Tφ

(
harb, exp(M, N )

) ⊂ Ker
(
J φ

b, exp

)

so that

dimR Tφ

(
harb, exp(M, N )

) ≤ null(φ).

3.3.4 Constant Maps

Assume M to be compact. Let q ∈ N and φ : M → N the constant map φ(x) = q.
Let (U , y A) be a local coordinate system about q ∈ U ⊂ N so that each V ∈
C∞
(
φ−1T N

)
may be represented as

V = f A
(

∂

∂ y A

)φ
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for some f A ∈ C∞(M). As φ is constant

eb(φ) = 0, φ∗X = 0,
(∇h)φ

X V = X( f A)

(
∂

∂ y A

)φ

,

LφV = (Dφ)∗DφV ,

hence

J φ
b, expV = (�b f A)

(
∂

∂ y A

)φ

. (74)

Proposition 1 For every constant mapping φ : (M, θ) → (N , h) the spectrum

Spec
(
J φ

b, exp

)
is the set of eigenvalues of the sublaplacian �b of (M, θ) acting

on C∞(M) counted m times. In particular Spec
(
J φ

b, exp

)
doesn’t depend upon

{q} = φ(M) ⊂ N.

By a result of Menikoff and Sjöstrand (cf. [28]) the sublaplacian �b has a discrete
spectrum

Spec(�b) =
{
λ0(θ) = 0 < λ1(θ) < · · · < λk(θ) < · · · ↑ +∞}.

The continuity of the eigenvalues λk(θ) as functions of the contact form θ was estab-
lished in [4]. The effect of deformations θ̂ = eu θ , u ∈ C∞(M), on the eigenvalues
λk(θ) was studied in [5]. For an arbitrary e.s.h. map φ we conjecture that Jφ

b , Jφ
b,exp

andJ φ
b, exp have discrete spectra on domains� ⊂ M enjoying appropriate5 properties.

This would of course lead to further developments of stability theory for e.s.h. maps.
Let F ⊂ C∞(φ−1T N ) be a finite dimensional subspace and V ∈ F . Then

H
(
Eb
)
φ
(V , V ) =

∫

M
hφ
(
J φ

b, expV , V
)

�

= G AB(q)

∫

M
(�b f A) f B �

where G AB = h
(
∂A, ∂B

)
and ∂A ≡ ∂/∂ y A. We may start with an orthonormal linear

basis {wA : 1 ≤ A ≤ m} ⊂ Tq(N ) and consider the normal coordinate system
(U , y A) with center at q i.e. (∂/∂ y A)q = wA. Then [as �b is a positive operator]

5 For instance, discreteness of the spectrum of the operator Jφ
b associated to a subelliptic harmonic map

φ is established (cf. [11]) for a class of CR structures arising as orbit spaces M3 of null Killing vector
fields on a space-time (Gödel’s universe in [11]), on a domain � ⊂ M3 supporting a form of Poincaré’s
inequality and a form of Kondrakov compactness involving L2(�, φ−1T N ). The approach in [11] carries
over verbatim to arbitrary subelliptic harmonic maps.
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H
(
Eb
)
φ
(V , V ) =

m∑

A=1

(
�b f A, f A

)

L2
≥ 0

thus yielding ind(φ) = 0 and null(φ) = m.

3.4 E.s.h. Maps into Real Hypersurfaces of Space Forms

Let
(
Mm+1(c), h

)
be a real (m + 1)-dimensional space form i.e. a Riemannian

manifold, with the Riemannian metric h, of (constant) sectional curvature c ∈ R.
Let j : N ⊂ Mm+1(c) be an orientable totally umbilical real hypersurface and let
T (N )⊥ → N be the normal bundle of the given immersion. Let tanx and norx be the
canonical projections associated to the direct sum decomposition

Tx
[
Mm+1(c)

] = Tx (N )⊕ Tx (N )⊥, x ∈ N .

We shall need the Gauss and Weingarten formulas

∇X Y = ∇N
X Y + B(X , Y ), ∇Xη = −Aη X +∇⊥X η,

X , Y ∈ X(N ), η ∈ C∞
(
T (N )⊥

)
,

where ∇, ∇, B, Aη and ∇⊥ are respectively the Levi–Civita connections of h and
h = j∗h, the second fundamental form, the Weingarten operator (associated to the
normal vector field η), and the normal connection of the given immersion. Then B =
H ⊗ h where H = traceh B is the mean curvature vector of j. Let � ⊂ Mm+1(c) be
a simple and convex open subset such that N ∩� $= ∅ and let φ : M → N ∩� be a
nonconstant e.s.h. map of a compact strictly pseudoconvex CR manifold M , endowed
with the positively oriented contact form θ , into

(
N ∩�, h

)
.

Let {Z A : 1 ≤ A ≤ m + 1} be a local h-orthonormal frame of T
[
Mm+1(c)

]
such that

∇Z A = 0. If VA = tan(Z A) then

H(Eb)φ
(
VA, VA

) =
= (exp [eb(φ)

]
DφVA, DφVA

)
φ
+

−
∫

M
exp
[
eb(φ)

]
hφ
(
traceGθ

{
�H (Rh)φ (VA, φ∗ · ) φ∗ ·

}
, VA

)
� +

+
∫

M
exp
[
eb(φ)

]
(hφ)∗

(
DφVA, φ∗

)2
�. (75)

To evaluate the terms in (75) note first that

Dφ
Xa

VA = ∇h
(dφ)Xa

VA = [by the Gauss formula]

= tan
[∇(dφ)Xa tan(Z A)

] = tan
[∇(dφ)Xa

(
Z A − nor (Z A)

)] =
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[by ∇Z A = 0]

= −tan∇(dφ)Xanor(Z A) = [by the Weingarten formula]

= Anor(Z A)(dφ)Xa

so that

Dφ
Xa

VA = Anor(Z A)(dφ)Xa . (76)

Moreover using

‖X‖2 = h(X , X) =
m+1∑

A=1
h(X , Z A)2, X ∈ X(Mm+1),

together with (76) one may conduct the following calculation

∥
∥Dφ

Xa
VA
∥
∥2 = ∥∥Anor(Z A)(dφ)Xa

∥
∥2

=
m+1∑

B=1
h
(

Anor(Z A)(dφ)Xa, Z B
)2

=
m+1∑

B=1
hφ
(

Anor(Z A)(dφ)Xa, tan(Z B)
)2 =

[using

h(B(X , Y ), η) = h(Aη X , Y )

for any X , Y ∈ X(N ) and any η ∈ C∞(T (N )⊥)]

=
∑

B

h
(
B
(
(dφ)Xa, VB

)
, nor(Z A)

)2

so that

∥
∥
∥Dφ

Xa
VA

∥
∥
∥
2 =

m+1∑

B=1
h
(
B
(
(dφ)Xa, VB

)
, nor(Z A)

)2
. (77)

Let us substitute B = H ⊗ h into (77). We have

∥
∥
∥Dφ

Xa
VA

∥
∥
∥
2 =
∑

B

hφ ((dφ)Xa, VB)2 h (H , nor(Z A))2
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hence

∥
∥
∥Dφ

Xa
VA

∥
∥
∥
2 = ‖(dφ)Xa‖2 h

(
H , nor(Z A)

)2
. (78)

Let ξ ∈ C∞(T (N )⊥) be a unit normal vector field on N . One has

‖η‖2 = h
(
η, ξ
)2

, η ∈ C∞(T (N )⊥),

nor(Z A) = f A ξ,

for some f A ∈ C∞(N ). Then

h
(
H , nor(Z A)

)2 = f 2A h(H , ξ)2 = f 2A ‖H‖2

yielding

h
(
H , nor(Z A)

)2 = ‖nor(Z A)‖2 ‖H‖2. (79)

Finally substitution from (79) into (78) gives

∥
∥
∥Dφ

Xa
Z A

∥
∥
∥
2 = ‖(dφ)Xa‖2 ‖nor(Z A)‖2 ‖H‖2. (80)

We may now compute the first term in the right hand side of (75) as follows

(hφ)∗
(
exp
[
eb(φ)

]
DφVA, DφVA

)

= exp
[
eb(φ)

] 2n∑

a=1

∥
∥
∥Dφ

Xa
VA

∥
∥
∥
2 = [by (80)]

= exp
[
eb(φ)

] 2n∑

a=1
‖(dφ)Xa‖2 ‖nor(Z A)‖2 ‖H‖2

= 2 exp
[
eb(φ)

]
eb(φ) ‖nor(Z A)‖2 ‖H‖2

so that

(
exp
[
eb(φ)

]
DφVA, DφVA

)
φ
=

= 2 ‖H‖2
∫

M
exp
[
eb(φ)

]
eb(φ) ‖nor(Z A)‖2 �. (81)

Indeed ‖H‖ ∈ R as a consequence of the Codazzi equation

(∇X Aξ )Y − (∇Y Aξ )X = 0, X , Y ∈ X(N ),
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together with Aξ X = ±‖H‖ X . If ξ = g A Z A for some g A ∈ C∞(N ) then

ξ − g A nor(Z A) = g A VA

yields g A VA = 0 and then

ξ = g A Z A = g A f A ξ

implying

f · g = 1 (82)

where f = ( f1, · · · , fm+1) and g = (g1, · · · , gm+1). Moreover

∑

A

f 2A =
∑

A

‖nor(Z A)‖2 =
∑

A

h (nor(Z A), Z A)

=
∑

A

f A h
(
ξ, Z A

) =
∑

A

f Ag A

implying

‖ f ‖2 = f · g (83)

and summing up [by (82)–(83)]

m+1∑

A=1

∥
∥nor(Z A)

∥
∥2 = 1. (84)

Let us sum over 1 ≤ A ≤ m + 1 in (81) and take into account (84). We obtain

m+1∑

A=1

(
exp
[
eb(φ)

]
DφVA, DφVA

)
φ
=

= 2 ‖H‖2
∫

M
exp
[
eb(φ)

]
eb(φ) �. (85)

To compute the curvature term in (75) we need to recall the Gauss equation [of a
totally umbilical submanifold in a real space form N ⊂ Mm+1(c)]

Rh(X , Y )Z =
(

c + ‖H‖2
) {

h(Y , Z)X − h(X , Z)Y
}
,

X , Y , Z ∈ X(N ),
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so that

traceGθ

{
�H (Rh)φ (VA, φ∗ · ) φ∗ ·

}

=
2n∑

a=1
(Rh)φ

(
VA, φ∗Xa

)
φ∗Xa

=
(

c + ‖H‖2
)∑

a

{
hφ
(
φ∗Xa, φ∗Xa

)
VA − hφ

(
VA, φ∗Xa

)
φ∗Xa

}

=
(

c + ‖H‖2
)
{

2 eb(φ) VA −
∑

a

hφ
(
VA, φ∗Xa

)
φ∗Xa

}

hence

hφ
(
traceGθ

{
�H (Rh)φ (VA, φ∗ · ) φ∗ ·

}
, VA

)

=
(

c + ‖H‖2
)
{

2 eb(φ) ‖VA‖2 −
∑

a

hφ
(
VA, φ∗Xa

)2
}

=
(

c + ‖H‖2
)
{

2 eb(φ) ‖VA‖2 −
∑

a

h (φ∗Xa, VA)2

}

and since

‖VA‖2 + ‖nor(Z A)‖2 = 1 �⇒
m+1∑

A=1
‖VA‖2 = m

one has

m+1∑

A=1
hφ
(
traceGθ

{
�H (Rh)φ (VA, φ∗ · ) φ∗ ·

}
, VA

)

=
(

c + ‖H‖2
)
{

2m eb(φ)−
2n∑

a=1
‖φ∗Xa‖2

}

hence one may conclude

m+1∑

A=1

∫

M
exp
[
eb(φ)

] ×

× hφ
(
traceGθ

{
�H (Rh)φ (VA, φ∗ · ) φ∗ ·

}
, VA

)
� =

= 2(m − 1)
(

c + ‖H‖2
) ∫

M
eb(φ) exp

[
eb(φ)

]
�. (86)
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We are left with the calculation of the last term in (75) i.e.

(hφ)∗
(
DφVA, φ∗

)2 =
[

2n∑

a=1
hφ
(

Dφ
Xa

VA, φ∗Xa

)
]2

=

[by (76)]

=
[
∑

a

hφ
(

Anor(Z A) φ∗Xa, φ∗Xa
)
]2

=
[
∑

a

h (B (φ∗Xa, φ∗Xa) , nor(Z A))

]2

=

(again by umbilicity)

=
[
∑

a

hφ
(
φ∗Xa, φ∗Xa

)
h
(
H , nor(Z A)

)
]2

= 4 eb(φ)2 h
(
H , Z A

)2

so that

m+1∑

A=1

∫

M
exp
[
eb(φ)

]
(hφ)∗

(
DφVA, φ∗

)2
� =

= 4‖H‖2
∫

M
eb(φ)2 exp

[
eb(φ)

]
�. (87)

Summing up [by (85)–(87)]

m+1∑

A=1
H(Eb)φ

(
VA, VA

) = 2
∫

M
eb(φ) exp

[
eb(φ)

] ×

×
{
−(m − 1)c + ‖H‖2[2 eb(φ)− (m − 2)

]}
�. (88)

We obtain

Theorem 7 Let j : N ⊂ Mm+1(c) be an orientable real hypersurface, of mean curva-
ture vector H, of a real space form

(
Mm+1(c), h

)
. Let � ⊂ Mm+1(c) be a simple and

convex open subset such that � ∩ N $= ∅. Let φ : M → � ∩ N be an exponentially
subelliptic harmonic map of a compact strictly pseudoconvex CR manifold, endowed
with a positively oriented contact form θ , into (� ∩ N , h) with h = j∗h.

i) If m ≥ 2, c > 0, and j is totally geodesic, then φ is unstable.
ii) If m ≥ 3, c ≥ 0, and j is totally umbilical with H $= 0, and

2 eb(φ) < (m − 1)
c

‖H‖2 + m − 2 (89)
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then φ is unstable. In particular if N = Sm ⊂ R
m+1 (c = 0) and eb(φ) < (m − 2)/2

then φ is unstable.

3.5 Spectrum of J�b, exp

3.5.1 Sobolev Spaces of Sections in�−1T(N)

Let φ ∈ harb, exp(M, N ) be an e.s.h. map from a Carnot–Carathèodory complete
pseudohermitian manifold (M, θ) into the Riemannian manifold (N , h). Let L2(�) =
L2(�, �) consist of all measurable functions u : � → R such that

∫
�

u2 � < ∞.
Also let L2(�, φ−1T N ) consist of all sections V : �→ φ−1T (N ) such that

‖V ‖ = hφ
(
V , V

)1/2 ∈ L2(�)

i.e.
∫
�

hφ(V , V ) � < ∞. Then L2(�, φ−1T N ) is a Hilbert space with the inner
product

(
V , W )L2 =

∫

�

hφ(V , W ) �.

If ϕ, ψ are sections in H(M)∗ ⊗ φ−1T (N ) and x ∈ M we set as customary

(
hφ)∗

(
ϕ,ψ

)
x =

2n∑

a=1
hφ
(
ϕ(Ea), ψ(Ea)

)
x

where {Ea : 1 ≤ a ≤ 2n} is a (local) Gθ -orthonormal frame in H(M), defined on
an open neighbourhood U ⊂ M of x . Let L2(�, H(M)∗ ⊗ φ−1T N

)
consist of all

sections ϕ in H(M)∗ ⊗ φ−1T (N ) such that

(hφ)∗(ϕ, ϕ)1/2 ∈ L2(�).

Then L2(�, H(M)∗ ⊗ φ−1T N
)
is a Hilbert space with the scalar product

(
ϕ, ψ

)
L2 =

∫

�

(hφ)∗(ϕ, ψ) �.

Let

Dφ = [(∇h)φ]H : C∞(�, φ−1T N )→ C∞(�, H(M)∗ ⊗ φ−1T N ),

DφV = [(∇h)φ]
∣
∣
∣
C∞(�,H(M))

.

Let

(
Dφ
)∗ : C∞0 (�, H(M)∗ ⊗ φ−1T N )→ C∞(�, φ−1T N )
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be the formal adjoint of Dφ i.e.

(
(Dφ)∗ϕ, V

)
L2 =

(
ϕ, DφV

)
L2 .

A section V ∈ L2(�, φ−1T N ) is weakly differentiable along H(M) if there is a
section ϕV : �→ H(M)∗ ⊗ φ−1T (N ) such that

(
hφ
)∗(

ϕV , ϕV
)1/2 ∈ L1

loc(�),
∫

�

(
hφ
)∗(

ϕV , ψ
)
� =

∫

�

hφ
(
V , (Dφ)∗ψ

)
�,

for any ψ ∈ C∞0 (�, H(M)∗ ⊗ φ−1T N ). Such ϕV is unique up to a set of measure
zero and then denoted by ϕV = DφV .

Let W 1,2
H (�, φ−1T N ) consist of all V ∈ L2(�, φ−1T N ) such that V is

weakly differentiable along H(M) and DφV ∈ L2(�, H(M)∗ ⊗ φ−1T N ). Then
W 1,2

H (�, φ−1T N ) is a Hilbert space with the scalar product

(
V , W

)
W 1,2 =

(
V , W

)
L2 +

(
DφV , DφW

)
L2 .

Let‖V ‖W 1,2 = (V , V
)1/2

W 1,2 be the normonW 1,2
H (�, φ−1T N ). Let W̊ 1,2

H (�, φ−1T N )

be the completion of C∞0 (�, φ−1T N ) with respect to the norm ‖ · ‖W 1,2 . Through
this section we shall work with domains � ⊂ M supporting the Poincaré inequality

‖V ‖L2 ≤ C
∥
∥DφV

∥
∥

L2

for any V ∈ C∞0 (�, φ−1T N ) and some constant C > 0 not depending on V .

Lemma 3 W̊ 1,2
H (�, φ−1T N ) is a Hilbert space with

(
V , W

)
W̊ 1,2 =

(
DφV , DφW

)
L2 . (90)

Proof Poincaré inequality implies that (90) is a scalar product on W̊ 1,2
H (�, φ−1T N ).

Let us set ‖V ‖W̊ 1,2 =
(
V , V

)1/2
W̊ 1,2 . The statement follows from the fact that ‖ · ‖W̊ 1,2

and ‖ · ‖W 1,2 are equivalent norms on C∞0 (�, φ−1T N ) i.e.

‖V ‖W̊ 1,2 ≤ ‖V ‖W 1,2 ≤ (1+ C
) ‖V ‖W̊ 1,2

for any V ∈ C∞0 (�, φ−1T N ). ��

This is the main feature of domains supporting Poincaré inequality: the failure of
the rough sublaplacian �φ to be elliptic is compensated by ‖ · ‖W̊ 1,2 being already a

norm on W̊ 1,2
H (�, φ−1T N ).
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3.5.2 Generalized Dirichlet Problem for J�
b, exp

The Dirichlet problem for Jφ
b, exp is

Jφ
b, expV = F in �, V = 0 on ∂�. (91)

In this section we solve a weak, or generalized, version of (91) i.e. for every F ∈
L2(�, φ−1T N ) we prove existence and uniqueness of V ∈ W̊ 1,2

H (�, φ−1T N ) such
that

(
exp
[
eb(φ)

]
DφV , Dφ S

)
L2 +

−
∫

�

exp
[
eb(φ)

]
hφ
(
traceGθ

{
�H (Rh)φ(V , φ∗ · )φ∗ ·

}
, S
)
= (F, S)L2

(92)

for any S ∈ W̊ 1,2
H (�, φ−1T N ).

We adopt the following notations

Fφ(V ) = 1

2
q(V )− (F, V

)
L2 , q(V ) = aφ(V , V ),

aφ(V , W ) =
∫

�

exp
[
eb(φ)

] {(
hφ
)∗(

DφV , DφW
)+

−hφ
(
traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]
, W
)}

�.

Lemma 4 Let us assume that

∥
∥Rh(A, B)C

∥
∥ ≤ γ ‖A‖ ‖B‖ ‖C‖ (93)

for some constant γ > 0 and any A, B, C ∈ X(N ), where ‖A‖ = h(A, A)1/2. Then
for each W ∈ W̊ 1,2

H (�, φ−1T N ) the function

V ∈ W̊ 1,2
H (�, φ−1T N ) �−→ aφ(V , W ) ∈ R

is continuous.

Proof We have

∣
∣aφ(V , W )

∣
∣ ≤ ∣∣(exp [eb(φ)

]
DφV , DφW

)
L2

∣
∣

+
∣
∣
∣
(
exp
[
eb(φ)

]
traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]
, W
)

L2

∣
∣
∣ ≤
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[by distributing a exp
[ 1
2 eb(φ)

]
factor to each term of the L2 scalar products]

≤
∥
∥
∥
∥exp

[1

2
eb(φ)

]
DφV

∥
∥
∥
∥

L2

∥
∥
∥
∥exp

[1

2
eb(φ)

]
DφW

∥
∥
∥
∥

L2

+
∥
∥
∥
∥exp

[1

2
eb(φ)

]
traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥
∥

L2

∥
∥
∥
∥exp

[1

2
eb(φ)

]
W

∥
∥
∥
∥

L2

and

∥
∥
∥
∥exp

[1

2
eb(φ)

]
DφV

∥
∥
∥
∥

2

L2

=
∫

�

exp
[
eb(φ)

] (
hφ
)∗(

DφV , DφV
)
� ≤ exp

[
C(�, φ)

] ∥∥DφV
∥
∥2

L2

where

C(�, φ) = sup
x∈�

eb(φ)x .

Then C(�, φ) <∞ [as � is compact] and

C(�, φ) > 0⇐⇒ φ : �→ R is non constant.

Indeed if C(�, φ) = 0 then eb(φ) = 0 in �. For each point x0 ∈ � we consider a
local orthonormal frame {Ea : 1 ≤ a ≤ 2n} ⊂ C∞(U , H(M)) defined on an open
neighbourhood U ⊂ � of x0, and a local coordinate system (V , y A) about the point
φ(x0), such that φ(U ) ⊂ V . Let us set φA = y A ◦ φ. Then

0 = eb(φ)|U =
1

2

2n∑

a=1
hφ
(
φ∗Ea, φ∗Ea

) �⇒

�⇒ 0 = φ∗Ea = Ea
(
φA)

(
∂

∂ y A

)

◦ φ �⇒ ∂bφ
A = 0

i.e. φA is a real valued CR function on U . Yet M is strictly pseudoconvex and in
particular nondegenerate, so that U is a nondegenerate CRmanifold, with the induced
CR structure. Hence real valued CR functions are constants, and then φA is constant
on U . That is φ : �→ N is locally constant, and then constant in �. Yet φ : �→ N
is continuous, so φ : �→ N is constant. ��

We have established the estimates
∥
∥
∥
∥exp

[1

2
eb(φ)

]
DφV

∥
∥
∥
∥

L2
≤ exp

[1

2
C(�, φ)

] ∥
∥DφV

∥
∥

L2 , (94)
∥
∥
∥
∥exp

[1

2
eb(φ)

]
traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥
∥

L2
≤
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≤ exp
[1

2
C(�, φ)

] ∥∥
∥traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥

L2
, (95)

∥
∥
∥
∥exp

[1

2
eb(φ)

]
W

∥
∥
∥
∥

L2
≤ exp

[1

2
C(�, φ)

] ‖W‖L2 . (96)

On the other hand

traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∣∣
∣
U
=

2n∑

a=1
(Rh)φ(V , φ∗Ea)φ∗Ea

on U . Let {(Uα, fα
) : α ∈ I } be a family of local orthonormal frames fα = {Eα

a :
1 ≤ a ≤ 2n} ⊂ C∞(Uα, H(M)) such that {Uα}α∈I is an open cover of �. Let
{ψα}α∈I be a smooth partition of unity subordinated to {Uα}α∈I i.e.

i) 0 ≤ ψα(x) ≤ 1 for any α ∈ I and x ∈ �,
ii) {Supp(ψα)}α∈I is a locally finite family,
iii)
∑

α∈I

ψα(x) = 1 for any x ∈ �.

By (93)

∥
∥
∥traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥
∣
∣
∣
Uα

≤
2n∑

a=1

∥
∥
∥(Rh)φ(V , φ∗Eα

a )φ∗Eα
a

∥
∥
∥ ≤

≤
∑

a

γ ‖V ‖ ‖φ∗Eα
a ‖2 = 2 γ ‖V ‖ eb(φ)|Uα

hence

∥
∥
∥traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥
2

L2

=
∑

α∈I

∫

Uα

ψα

∥
∥
∥traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥
2
∣
∣
∣
∣
Uα

� ≤

≤ 4γ 2
∑

α∈I

∫

Uα

ψα ‖V ‖2 eb(φ)2
∣
∣
∣
Uα

� = 4γ 2
∫

�

‖V ‖2 eb(φ)2 � ≤

≤ 4 γ 2 C(�, φ)2
∫

�

‖V ‖2 �.

Thus

∥
∥
∥traceGθ

[
�H (Rh)φ(V , φ∗ · )φ∗ ·

]∥∥
∥

L2
≤ 2 γ C(�, φ) ‖V ‖L2 ≤

(by Poincaré inequality)

≤ 2C γ C(�, φ) ‖DφV ‖L2 . (97)
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Finally [by (94)–(96)]

∣
∣aφ(V , W )

∣
∣ ≤ eC(�,φ)

{‖DφV ‖L2 ‖DφW‖L2+
+‖traceGθ �H (Rh)φ(V , φ∗ · )φ∗ · ‖L2‖W‖L2

}
≤

[by (97) and Poincaré inequality]

≤ [1+ 2C2γ C(�, ϕ)
]

eC(�,φ)‖DφV ‖L2‖DφW‖L2 .

��
Lemma 5 The function

V ∈ W̊ 1,2
H (�, φ−1T N ) �−→ (F, V )L2 ∈ R

is continuous for every F ∈ L2(�, φ−1T N ).

Proof By Cauchy and Poincaré inequalities

∣
∣(F, V )L2

∣
∣ ≤ ‖F‖L2‖V ‖L2 ≤ C‖F‖L2‖V ‖W̊ 1,2 .

��
Lemma 6 Under the assumptions in Lemmas 4–5 the functional Fφ is Gâteaux dif-
ferentiable and its Gâteaux derivative is

F ′φ(V )W = aφ(V , W )− (F, W )L2 , W ∈ W̊ 1,2
H (�, φ−1T N ).

Proof By the symmetry of the Riemann–Christoffel tensor field K h(A, B, C, D) [in
the pairs (A, B) and (C, D)] the bilinear form aφ is symmetric, and hence q is a
quadratic form. Then [by Lemma 4] q is Gâteaux differentiable and its Gâteaux
derivative is

q(V )W = 2 aφ(V , W ). (98)

Also [by Lemma 5]

(
F, · )′L2V = (F, V )L2 . (99)

and (98)–(99) yield Lemma 6. ��
Lemma 7 Let us assume that (N , h) has nonpositive sectional curvature. Then aφ is
coercive. Consequently Fφ is strictly convex and

lim‖V ‖W̊1,2
Fφ(V ) = +∞. (100)
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Proof As (N , h) has nonpositive sectional curvature

hφ
(
traceGθ �H (Rh)φ(V , φ∗ · )φ∗ ·, V

)
≤ 0

so that

aφ(V , V ) ≥
∫

�

exp
[
eb(φ)

] ‖DφV ‖2 � ≥ α ‖V ‖2
W̊ 1,2

where we have set

c(�, φ) = inf
x∈�

eb(φ), α = exp
[
c(�, φ)

]
.

Hence aφ is coercive with coercivity constant α ≥ 1. Coercivity yields

aφ(V , W ) ≤ 1

2

[
q(V )+ q(W )

]
(101)

with equality if and only if V = W . Let t ∈ (0, 1) and V , W ∈ W̊ 1,2(�, φ−1T N )

with V $= W . Then [by (101)]

Fφ

[
tV + (1− t)W

]
<

<
1

2

[
tq(V )+ (1− t)q(W )

]− t (F, V )L2 − (1− t) (F, W )L2

= t Fφ(V )+ (1− t)Fφ(W )

i.e. Fφ is strictly convex. The last statement in Lemma 7 follows by coercivity and
Poincaré inequality

Fφ(V ) = 1

2
q(V )− (F, V )L2 ≥ 1

2
‖V ‖2

W̊ 1,2 − C‖F‖L2‖V ‖W̊ 1,2

= 1

2
t2 − C‖F‖L2 t →+∞, t →+∞,

where we have set t = ‖V ‖W̊ 1,2 . ��
Theorem 8 Let (N , h) be a Riemannian manifold of nonpositive sectional curvature
such that

‖Rh(A, B)C‖ ≤ γ ‖A‖ ‖B‖ ‖C‖, A, B, C ∈ X(N ).

Let φ : M → N be an e.s.h. map of the Carnot–Carathéodory complete pseudoher-
mitian manifold (M, θ) into (N , h). Let � ⊂ M be a bounded domain supporting the
Poincaré inequality

(∫

�

hφ(V , V ) �

) 1
2 ≤ C

(∫

�

(
hφ
)∗ (

DφV , DφV
)

�

) 1
2

,
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V ∈ C∞0 (�, φ−1T N ).

Then for every F ∈ L2(�, φ−1T N ) there is a unique generalized solution VF ∈
W̊ 1,2(�, φ−1T N ) to the Dirichlet problem Jφ

b, expV = F in � and V = 0 on ∂�.

Proof As

Fφ : W̊ 1,2
H (�, φ−1T N ) → R

is strictly convex, Gâteaux differentiable, and obeys to (100), there is a unique global
minimum point VF ∈ W̊ 1,2

H (�, φ−1T N ) for Fφ . In particular VF is a critical point
for Fφ hence [by Lemma 6]

0 = F ′φ(VF )W = aφ

(
VF , W

)− (F, W )L2

so that VF is a solution to the generalized Dirichlet problem for Jφ
b, exp on �. If V̂F is

another generalized solution

aφ

(
V̂F , W

) = (F, W ), W ∈ W̊ 1,2
H (�, φ−1T N ),

then [again by Lemma 7]

F ′φ
(
V̂F
)
W = 0. (102)

Yet Fφ is convex, so (102) is a sufficient condition for V̂F to be a global minimum
point for Fφ . Uniqueness of global minima then yields V̂F = VF . ��

3.5.3 Dirichlet Eigenvalue Problem for J�
b, exp

Let (N , h) be a Riemannianmanifold obeying to the assumptions in Theorem 8 and let
� ⊂ M be a Carnot–Carathéodory bounded domain. Let φ : M → N be an e.s.h. map
from (M, θ) into (N , h). Solving (according to Theorem 8) the generalized Dirichlet
problem for Jφ

b exp on � produces the Green operator

Gφ : L2(�, φ−1T N )→ L2(�, φ−1T N ), Gφ(V ) = FV .

It should be observed that [by the proof of Theorem 8] the rangeR(Gφ) is a subspace
of W̊ 1,2

H (�, φ−1T N ).
The domain � ⊂ M is said to satisfy the Kondrakov condition if the embedding

W̊ 1,2
H

(
�, φ−1T N

)
↪→ L2(�, φ−1T N

)

is compact.
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Lemma 8 Under the hypothesis of Theorem 8 let us additionally assume that �

satisfies the Kondrakov condition. Then the Green operator Gφ of Jφ
b, exp is i) linear,

ii) continuous, iii) self-adjoint, and iv) compact.

Proof i) Linearity of Gφ follows from that of Jφ
b,exp and the uniqueness statement in

Theorem 8.
ii) By Poincaré inequality and coercivity

‖Gφ F‖2L2 = ‖VF‖2L2 ≤ C2‖VF‖2W̊ 1,2 ≤

≤
(

C

α

)2
aφ

(
VF , VF

) =
(

C

α

)2
aφ

(
VF , Gφ F

) =

[as Gφ F is the solution to the generalized Dirichlet problem]

=
(

C

α

)2 (
F, Gφ F

)
L2 ≤

[by the Cauchy inequality]

≤
(

C

α

)2
‖F‖L2‖Gφ F‖L2

and then either G F = 0 or

‖Gφ F‖L2 ≤ C2 exp
[− 2 c(�, φ)

] ‖F‖L2 .

��
iii) The proof is organized in three steps, as follows.
Step 1. Gφ : L2(�, φ−1T N ) → R(Gφ) is invertible.

Proof If Gφ F = 0 then VF = 0 so that

0 = aφ

(
VF , W

) = (F, W
)

L2

thus [as W̊ 1,2
H (�, φ−1T N ) is dense in L2(�, φ−1T N )] it must be F = 0 i.e. Gφ is

injective. ��
Step 2. G−1φ ≡ [Gφ : L2(�, φ−1T N ) → R(Gφ)

]−1
is self-adjoint.

Proof LetV , W ∈ D(G−1φ ) ≡ R(Gφ) and let us set F = G−1φ (V ). Then [byR(Gφ) ⊂
W̊ 1,2

H (�, φ−1T N )]

(
G−1φ V , W

)
L2 =

(
F, W

)
L2 = aφ

(
Gφ F, W

) = aφ(V , W )

= aφ(W , V ) = (G−1φ W , V
)

L2 =
(
V , G−1φ W

)
L2 .
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Step 3. Gφ is self-adjoint.

Proof Let Fa ∈ L2(�, φ−1T N ), a ∈ {1, 2}. Then
(
Gφ F1, F2

)
L2 =

(
Gφ F1, G−1φ Gφ F2

)
L2 = [by Step 2]

= (G−1φ Gφ F1, Gφ F2
)

L2 =
(
F1, Gφ F2

)
L2 . ��

iv) To show that Gφ is a bounded operator, let B ⊂ L2(�, φ−1T N ) be a bounded set
i.e. ‖F‖L2 ≤ CB for some constant CB > 0 and any F ∈ B. Then [by coercivity]

‖Gφ F‖2
W̊ 1,2 ≤ exp

[− c(�, φ)
]

aφ

(
Gφ F, Gφ F

) =

[as Gφ F is the solution to the generalized Dirichlet problem]

= exp
[− c(�, φ)

] (
F, Gφ F

)
L2 ≤

[by Cauchy inequality]

≤ exp
[− c(�, φ)

] ‖F‖L2 ‖Gφ F‖L2 ≤ CB exp
[− c(�, φ)

] ‖Gφ F‖L2 ≤

[by Poincaré inequality]

≤ C CB exp
[− c(�, φ)

] ‖G F‖W̊ 1,2

hence either Gφ F = 0 or

‖Gφ F‖W̊ 1,2 ≤ C CB exp
[− c(�, φ)

]

i.e.G−φ(B) is a bounded set of W̊ 1,2
H (�, φ−1T N ). Then, by theKondrakov condition,

Gφ(B) is a bounded subset in L2(�, φ−1T N ). SoGφ mapsbounded sets onto bounded
sets. ��

The Dirichlet eigenvalue problem is

Jφ
b, expV = λF in �, V = 0 on ∂�. (103)

A weak version of (103), the generalized Dirichlet eigenvalue problem, is to deter-
mine λ ∈ R and V ∈ W̊ 1,2

H (�, φ−1T N ) such that

aφ

(
V , S

) = λ
(
V , S

)
L2 , ∀ S ∈ W̊ 1,2

H (�, φ−1T N ).

Let σgen
(
Jφ

b, exp

)
and σ(Gφ) be respectively the spectrae of the generalized Dirichlet

eigenvalue problem and of Gφ . Note that Ker(Gφ) = (0) so that 0 /∈ σ(Gφ). Also

[by the linearity of aφ and Gφ] 0 /∈ σgen
(
Jφ

b, exp

)
.
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Theorem 9 Let � ⊂ M and φ ∈ harb, exp
(
M, N

)
satisfy the assumptions6 in Lemma

8. Then there is an infinite sequence

0 < λ1(φ) ≤ λ2(φ) ≤ · · · ≤ λν(φ) ≤ · · · ↑ +∞

and an infinite sequence {Vν}ν≥1 ⊂ W̊ 1,2
H (�, φ−1T N ) such that

σgen
(
Jφ

b, exp

) = {λν(φ) : ν ≥ 1
}
,

aφ

(
Vν, S

) = λν(φ)
(
Vν, S

)
L2 , ν ≥ 1,

for any S ∈ W̊ 1,2
H (�, φ−1T N ).

The regularity problem for the eigen-sections Vν will be addressed in a further paper.
There is an obvious relationship between σgen

(
Jφ

b, exp

)
and σ(Gφ), for given the bijec-

tion f : R\{0} → R\{0}, f (λ) = 1/λ, one has f
[
σgen
(
Jφ

b, exp

)] = σ(Gφ). The proof
of Theorem 9 relies on that, together with a few standard results in functional analysis.

Step 1. ∅ $= σ(Gφ) ⊂ (0, +∞).
Proof Green’s operator Gφ is self-adjoint, continuous, and compact, so σ(Gφ) $= ∅.
Let μ ∈ σ(Gφ) so that there is V ∈ L2(�, φ−1T N ), V $= 0, such that GφV = μV .
Let us take the L2 inner product with V . We have

μ ‖V ‖2L2 =
(
V , GφV

)
L2 =

[by solving the (generalized) Dirichlet problem Jφ
b, expU = V in� andU = 0 on ∂�]

= aφ

(
GφV , GφV

) ≥

[by coercivity]

≥ exp
[− c(�, φ)

] ‖GφV ‖2
W̊ 1,2 > 0

hence μ > 0. ��
Step 2. dimRR(Gφ) = ∞.

Proof Step 2 follows from

C∞0 (�, φ−1T N ) ⊂ R(Gφ), dimR C∞0 (�, φ−1T N ) = ∞.

To check the claimed inclusion let V ∈ C∞0 (�, φ−1T N ) and let us set

F ≡ Jφ
b, exp(V ) (104)

6 That is the assumptions in Theorem 8, including the curvature requirements on the Riemannian manifold
(N , h), together with the Kondrakov condition.
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so that F ∈ C∞0 (�, φ−1T N ). Let us take the L2 inner product of (104) with S ∈
C∞0 (�, φ−1T N ) arbitrary i.e.

(
Jφ

b, expV , S
)

L2 =
(
F, S
)

L2

or (integrating by parts)

aφ

(
V , S

) = (F, S
)

L2 . (105)

Let S ∈ W̊ 1,2
H (�, φ−1T N ) and let {Sν}ν≥1 ⊂ C∞0 (�, φ−1T N ) be a sequence con-

verging to S in the ‖ · ‖W 1,2 norm. By passing to the limit with ν →∞ in

aφ

(
V , Sν

) = (F, Sν

)
L2

it follows that (105) holds for arbitrary S ∈ W̊ 1,2
H (�, φ−1T N ) hence V is the solution

to the (generalized) Dirichlet problem Jφ
b, expV = F in � and V = 0 on ∂� i.e.

V = Gφ(F) ∈ R(Gφ). ��
Step 3. The set σ(Gφ) is countable.

Proof Green’s operator Gφ is self-adjoint, continuous, and compact, hence σ(Gφ)

is at most countable. We ought to show that σ(Gφ) isn’t a finite set. One argues by
contradiction. If σ(Gφ) is a finite set, say

σ(Gφ) = {μ1, · · · , μp}

then (again because Gφ is self-adjoint, continuous, and compact) the system E(μν)

of all linearly independent eigenvectors of Gφ corresponding to the eigenvalue μν

consists of finitely many vectors, hence
⋃p

ν=1 E(μν) is a finite set, say

p⋃

ν=1
E(μν) =

{
V1, · · · , Vq

}
.

Finally

Gφ F =
q∑

j=1

(
G F, Vj

)
L2 Vj , ∀ F ∈ L2(�, φ−1T N )

implying that the range R(Gφ) is finite dimensional, in contradiction with Step 2. ��
At this point one may end the proof of Theorem 9. By Steps 1 and 3 there is an

infinite sequence

{μν(φ)}ν≥1 ⊂
(
0, +∞)
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such that σ(G − φ) = {μν(φ) : ν ≥ 1}. If we set λν(φ) = 1/
[
μν(φ)

]
then

σgen
(
Jφ

b, exp

) = {λν(φ) : ν ≥ 1
}
.

Once again as Green’s operator G is self-adjoint, continuous, and compact, 0 is the
only accumulation point of the set σ(G). Hence

lim
ν→∞μν(φ) = 0

and one may relabel the eigenvalues μν(φ) so that to have

μ1(φ) ≥ μ2(φ) ≥ · · · ≥ μν(φ) ≥ · · · ↓ 0.

��
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