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Abstract: We study the semi-Riemannian geometry of the foliation F of an indefinite locally confor-
mal Kähler (l.c.K.) manifold M, given by the Pfaffian equation ω = 0, provided that ∇ω = 0 and
c = ‖ω‖ 6= 0 (ω is the Lee form of M). If M is conformally flat then every leaf of F is shown to be a
totally geodesic semi-Riemannian hypersurface in M, and a semi-Riemannian space form of sectional
curvature c/4, carrying an indefinite c-Sasakian structure. As a corollary of the result together
with a semi-Riemannian version of the de Rham decomposition theorem any geodesically complete,
conformally flat, indefinite Vaisman manifold of index 2s, 0 < s < n, is locally biholomorphically
homothetic to an indefinite complex Hopf manifold CHn

s (λ), 0 < λ < 1, equipped with the indefinite
Boothby metric gs,n.

Keywords: indefinite locally conformal Kähler manifold; indefinite Hopf manifold; indefinite
Boothby metric; indefinite Vaisman manifold; Lee vector field; Lee form; canonical foliation;
indefinite Sasakian structure

1. Reminder of l.c.K. Geometry and Statement of Main Results

Let M be a complex n-dimensional indefinite Hermitian manifold, of index 0 ≤ ν < 2n,
with the complex structure J and the semi-Riemannian metric g (ν is necessarily even,
i.e., ν = 2s). (M, J, g) is an indefinite Kähler manifold if ∇J = 0, where ∇ is the Levi-
Civita connection of (M, g). Indefinite Kähler manifolds were studied by M. Barros and
A. Romero [1]. An indefinite Hermitian manifold M is an indefinite locally conformal Kähler
(l.c.K.) manifold if there is an open cover {Ui}i∈I of M and a family { fi}i∈I of C∞ functions
fi : Ui → R such that

(
Ui , e− fi g

)
is an indefinite Kähler manifold for any i ∈ I. In the

positive definite case (ν = 0) l.c.K. structures were introduced by P. Libermann (cf. [2])
more than sixty years ago. The “result” by T. Aubin (that any compact l.c.K. manifold is
actually Kähler, cf. [3]) slowed down scientific investigation in this area until I. Vaisman’s
1976 work pointed out (cf. [4]) the counterexample of a complex Hopf manifold CHn

0 (λ)
with the Boothby metric g0,n and disproved (as Boothby’s metric g0,n is l.c.K. yet the first
Betti number of the (compact, complex) manifold CHn

0 (λ) is 1, so that CHn
0 (λ) admits no

globally defined Kähler metrics) Aubin’s “finding”. Despite the impressive advancement
of science (an account of which up to the year 1998 is provided by the monograph [5])
regarding the geometry of l.c.K. structures, it was not until the work by K.L. Duggal et al.
that indefinite l.c.K. manifolds were introduced (cf. [6]), and the startling differences
between the definite and indefinite cases were emphasized (cf. also [7]).

If we set gi = e− fi g then gj = e fi− f j gi i.e., the indefinite Kähler metrics gj and gi are
conformally related. By a result in [6] any two conformally related indefinite Kähler metrics
are actually homothetic. Hence, for any i, j ∈ I there is cji ∈ R such that fi − f j = cji
on Ui ∩ Uj. In particular, the (locally defined) differential forms {d fi}i∈I glue up to a
(globally defined) closed differential 1-form ω (the Lee form of M) such that ω

∣∣
Ui

= d fi
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for any i ∈ I]. The Lee form was discovered by H.C. Lee (cf. [8]) in the positive definite
case. Let Ω (respectively Ωj) be the 2-form associated to (g, J) (respectively (gj , J)) e.g.,
Ω(X, Y) = g(X, JY) for any X, Y ∈ X(M). Then Ωj = e− f j Ω hence dΩ = ω ∧Ω.

The Lee field is the tangent vector field B ∈ X(M) determined by g(B, X) = ω(X)
for any X ∈ X(M). Let us set c = g(B, B) ∈ C∞(M) and Sing(B) = {x ∈ M : Bx = 0}.
Unlike the positive definite case, it may be that c = 0 yet Sing(B) = ∅ (provided that B
is lightlike).

Let D be the Weyl connection i.e.,

DXY = ∇XY− 1
2

{
ω(X)Y + ω(Y) X− g(X, Y) B

}
(1)

for any X, Y ∈ X(M). The pointwise restriction of D to Ui is the Levi–Civita connection
of (Ui , gi), hence DJ = 0. In addition, Dg = ω ⊗ g. An indefinite l.c.K. manifold is
conformally flat if RD = 0 (RD is the curvature tensor field of the Weyl connection).

Indefinite l.c.K. manifolds with ∇ω = 0 (the indefinite counterpart of generalized
Hopf manifolds, cf. I. Vaisman [9]) were studied in [6]. Any such manifold carries a
natural foliation F , tangent to the distribution defined by the Pfaffian equation ω = 0.
Additionally, c ∈ R so that B is spacelike (respectively timelike, or lightlike) if c > 0
(respectively if c < 0, or c = 0). Adapting the terminology in the monograph [5] to the
indefinite case, any indefinite l.c.K. manifold with a parallel Lee form ω will be referred to
as an indefinite Vaisman manifold. By Theorem 1 in ([6], p. 9), for every indefinite Vaisman
manifold (M, J, g) of index 2s, 0 < s < n, with Sing(B) = ∅, either (i) c 6= 0, and then
every leaf L ∈ M/F is a totally geodesic semi-Riemannian hypersurface of (M, g) of index

ind(L) =

{
2s if c > 0
2s− 1 if c < 0,

or (ii) c = 0 and then every leaf of F is a totally geodesic lightlike hypersurface of (M, g).
The notion of a totally geodesic submanifold in statement (i) is the ordinary notion in
semi-Riemannian geometry (cf. e.g., Definition 12 in [10], p. 104) i.e., the shape tensor of
each semi-Riemannian leaf L vanishes. As to statement (ii) the adopted notion is typical
of lightlike geometry (cf. e.g., A. Bejancu & K.L. Duggal [11]) and is perhaps less familiar
to the scientific community devoted to the study of (semi) Riemannian geometry. In the
present paper we focus on the semi-Riemannian case (c 6= 0) and relegate the study of
the lightlike case to further work. Therefore, we recall but briefly the constructions most
relevant (to statement (ii) above) in Appendix A. Our main result is as follows.

Theorem 1. Let M be a conformally flat indefinite Vaisman manifold with c 6= 0. Then every
leaf of the canonical foliation F is a semi-Riemannian space form of sectional curvature c/4,
carrying an indefinite c-Sasakian structure. Vice versa, for every indefinite c-Sasakian mani-
fold

(
N, (ϕ, ξ, η, γ)

)
the product manifold M = N × R together with the complex structure

J = f + c−1 (ω⊗ A− θ ⊗ B) and the indefinite Hermitian metric g = p∗γ + c−1 ω⊗ω is an
indefinite Vaisman manifold whose Lee vector and Lee form are

B =
√
|c| ∂

∂t
∈ X(M), ω = ε(c)

√
|c| dt,

and g(B, B) = c. Moreover if (N, γ) has constant sectional curvature c/4 then the Weyl connec-
tion of M is flat.

Here A = JB and θ = −ω ◦ J are respectively the anti-Lee field and anti-Lee form.
In addition, f is the (1, 1) tensor field on M given by f = ϕ on T(N) and f (B) = 0,
p : M → N is the projection, and ε(c) = sign (c). Applying Theorem 1 together with the
semi-Riemannian version (due to H. Wu [12]) of the de Rham decomposition theorem (cf.
Theorem 6.1 in [13], p. 187) yields the following.
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Corollary 1. Let M be a connected, geodesically complete, conformally flat, complex n-dimensional
(n ≥ 3) indefinite Vaisman manifold of index 2s (0 < s < n) with c = ‖ω‖ 6= 0. Then the
universal semi-Riemanian covering manifold of M is(

Cn \Λε(c) , 4 c−1 ∣∣ζ∣∣−2
s,n εj dζ j ⊗ dζ

j
)

where Λε(c) =
{

ζ ∈ Cn : ε(c) εj
∣∣ζ j
∣∣2 ≥ 0

}
.

Here ε1 = · · · = εs = −1 = −εs+1 = · · · = −εn.
The paper is organized as follows. Section 2 is devoted to the construction and main

properties of indefinite complex Hopf manifolds CHn
s (λ), which stay to ordinary complex

Hopf manifolds (equipped with the positive definite Boothby metric) as M. Barros and
A. Romero’s indefinite complex projective spaces CPn−1

s (4) stay to ordinary complex
projective spaces (equipped with the Fubini-Study metric). Unlike ordinary Hopf manifolds
CHN(λ), indefinite Hopf manifolds are noncompact. Topologically each CHn

s (λ) consists
of two connected components Ω± (such that CHn−s(λ) (respectively CHs(λ)) is a strong
deformation retract of Ω+ (respectively of Ω−)). Section 3 discusses the local structure of
conformally flat indefinite Vaisman manifolds (indefinite l.c.K. manifolds with a parallel
Lee form), in the spirit of nowadays classical work by I. Vaisman (cf. [9,14] in the positive
definite case) and provides proofs to the main results (Theorem 1 and Corollary 1). The
assumption of geodesic completeness in Theorem 1 is only needed in order to apply H.
Wu’s semi-Riemannian de Rham decomposition theorem (cf. [12]). Section 4 states a few
open problems. Appendix A presents the construction of the lightlike transversal vector
bundle tr

(
TF ) → M and the derivation of the lightlike analogs to Gauss–Weingarten

formulas (paving the road towards the study of the case c = 0).

2. Indefinite Hopf Manifolds

Indefinite complex Hopf manifolds (introduced in [6], p. 11) are our main examples of
indefinite Vaisman manifolds. We recall their construction, for further use. Let Cn

s be Cn

with the Hermitian form

bs,n(z, w) = −
s

∑
j=1

zjwj +
n

∑
j=s+1

zjwj , z, w ∈ Cn .

Let Λ =
{

z ∈ Cn \ {0} : −∑s
j=1
∣∣zj
∣∣2 + ∑n

j=s+1
∣∣zj
∣∣2 = 0

}
be the null cone in Cn

s and let
Λ0 = Λ ∪ {0}. For every λ ∈ C \ {0}

Fλ(z) = λ z, z ∈ Cn \Λ0 ,

is a holomorphic transformation of Cn \Λ0. Let

Gλ = {Fm
λ : m ∈ Z}

be the discrete group generated by Fλ. By Theorems 2 and 3 in ([6], p. 11–13), if n > 1,
0 < s < n, and λ ∈ C \ {0}, |λ| 6= 1, then Gλ acts freely on Cn \ Λ0 as a properly
discontinuous group of holomorphic transformations, hence the quotient space

CHn
s (λ) =

(
Cn \Λ0

)/
Gλ

is a complex manifold. In addition,

gs,n =
∣∣z∣∣−2

s,n

(
−

s

∑
j=1

dzj � dzj +
n

∑
j=s+1

dzj � dzj
)

,
∣∣z∣∣s,n :=

∣∣bs,n(z, z)
∣∣ 1

2 ,
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is a semi-Riemannian metric on CHn
s (λ) organizing it as an indefinite l.c.K. manifold. If

0 < λ < 1 then
CHn

s (λ) ≈ Σ2n−1 × S1

(a diffeomorphism) where Σ2n−1 = {z ∈ Cn : |z|s,n = 1}. In particular CHn
s (λ) is

noncompact. If Λ± = {z ∈ Cn : ±bs,n(z, z) ≥ 0} (so that ∂ Λ± = Λ0) then CHn
s (λ) has

two connected components Ω± =
(
Λ± \Λ0

)/
Gλ

Ω+ ≈ S2n−1
2s × S1 , Ω− ≈ H2n−1

2s−1 × S1 .

The indefinite l.c.K. manifold
(
CHn

s (λ), gs,n
)

has a parallel Lee form locally given by

ω = −d log
∣∣z∣∣2s,n. The corresponding Lee field is

B = −2 a(z)
(

zj ∂

∂zj + zj ∂

∂zj

)
,

a(z) := sign
(
bs,n(z, z)

)
= ±1, z ∈ Λ± \Λ0 .

In particular, if B± = B
∣∣
Ω±

then B+ is spacelike and B− is timelike. Let

D = {2πia + (log λ) b : a, b ∈ Z} (0 < λ < 1)

and let us consider the torus T1
C = C/D. Then T1

C acts freely on CHn
s (λ) and

p : Ω+ → CPn−1
s (4), p

(
Π(z)

)
= z ·C∗ ,

is a principal T1
C-bundle and a semi-Riemannian submersion of Ω+ (equipped with the

semi-Riemannian metric gs,n) onto the indefinite complex projective space CPn−1
s (4), where

Π : S2n−1
2s → CPn−1

s (4) is the indefinite Hopf fibration. The semi-Riemannian metric gs,n
is referred to as the indefinite Boothby metric. Its positive definite counterpart g0,n was
discovered by W.M. Boothby [15]. As to the notations above, we set RN

ν =
(
RN , hν,N

)
with

hν,N(x, y) = −
ν

∑
j=1

xjyj +
N

∑
j=ν+1

xjyj ,

so that SN
ν ⊂ RN+1

ν and HN
ν ⊂ RN+1

ν+1 are respectively the pseudo-sphere and pseudo-
hyperbolic space

SN
ν (r) =

{
x ∈ RN+1 : hν, N+1(x, x) = r2}, SN

ν = SN
ν (1),

HN
ν (r) =

{
x ∈ RN+1 : hν+1, N+1(x, x) = −r2}, HN

ν = HN
ν (1).

The indefinite complex projective space is (cf. [1])

CPn−1
s (k) =

(
Λ+ \Λ0

)/
C∗ , C∗ = C \ {0}.

Let k > 0 and let

Π : S2n−1
2s

(
2√
k

)
→ CPn−1

s (k), Π(z) = z ·C∗ ,

be the indefinite Hopf fibration (a principal S1-bundle). S1 acts on S2n−1
2s

(
2
/√

k
)

as a group
of isometries; hence (by adapting Proposition E.3 in [16], p. 7, to the semi-Riemannian
context) there is a unique semi-Riemannian metric of index 2s on CPn−1

s (k) such that Π
is a semi-Riemannian submersion and CPn−1

s (k) is an indefinite complex space form of
(constant) holomorphic sectional curvature k. Let CPN =

(
CN+1 \ {0}

)/
C∗ be the ordinary
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complex projective space. By a result in [1], p. 57, CPn−1
s (k) and CPn−1−s are homotopy

equivalent; hence, CPn−1
s (k) is simply connected.

3. Conformally Flat Indefinite l.c.K. Manifolds

Since Cn
s is flat, the indefinite Hopf manifold CHn

s (λ) equipped with the indefi-
nite Boothby metric gs,n is (by the very definition of gs,n) conformally flat. By a result of
I. Vaisman [14], any conformally flat complete Vaisman manifold is locally biholomorphi-
cally homothetic to a Hopf manifold with the Boothby metric. The purpose of the present
paper is to recover Vaisman’s result (cf. op. cit.) to the semi-Riemannian setting. Let M be
an indefinite l.c.K. manifold, and let B, A, ω, and θ be its Lee and anti-Lee vector fields
(respectively differential forms). Then

θ(X) = g(X, A), θ(B) = ω(A) = 0, θ(A) = ω(B) = c.

Moreover (by DJ = 0)

(∇X J)Y = −1
2
{θ(Y)X + ω(Y)JX + Ω(X, Y)B− g(X, Y)A}. (2)

Indefinite l.c.K. manifolds with ∇ω = 0 may be characterized as follows.

Lemma 1. Let M be an indefinite l.c.K. manifold. Then M has a parallel Lee form if and only if
one of the following relations holds

∇XB = 0, ∇BX = [B, X],

(DXω)Y = ω(X)ω(Y)− (c/2) g(X, Y), (3)

DXB = −(c/2) X, DBX = [B, X]− (c/2) X,

for any X ∈ X(M).

The proof of Lemma 1 is straightforward and hence omitted. We collect a few properties of
the Lee and anti-Lee forms and vector fields in the following

Lemma 2. Let M be an indefinite Vaisman manifold. Then

LB J = 0, LA J = 0, LBg = 0, LAg = 0, (4)

dθ = ω ∧ θ + (c/2)Ω . (5)

Here LX is the Lie derivative at the direction X.

Proof of Lemma 2. The first relation in (4) follows from the fact that D is torsion free and
DJ = 0. The second relation in (4) is a consequence of

∇X A =
1
2
{ω(X)A− θ(X)B− c JX}, (6)

∇A J = 0, ∇B J = 0.

Next, the fact that both the Lee and anti-Lee fields are Killing vector fields follows from
∇g = 0. Finally, to prove (5) one performs the following calculation

2 (dθ)(X, Y) = X(θ(Y))−Y(θ(X))− θ([X, Y]) =

= −X(ω(JY)) + Y(ω(JX)) + ω(J[X, Y]) =
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(as ∇ω = 0 and ∇ is torsion free)

= ω((∇Y J)X)−ω((∇X J)Y) =

(by (2))

=
1
2
{θ(Y)ω(X) + ω(Y)ω(JX) + c Ω(X, Y)

−θ(X)ω(Y)−ω(X)ω(JY)− c Ω(Y, X)} =

(by θ = −ω ◦ J)
= ω(X)θ(Y)−ω(Y)θ(X) + c Ω(X, Y).

Let M be an indefinite Vaisman manifold. For the remainder of the section we assume
that Sing(B) = ∅ and c 6= 0. The leafwise bundle metric γ induced by g on T(F ) is
semi-Riemannian of index

ind(T(F ), γ) =

{
2s, c > 0,
2s− 1, c < 0.

Then (cf. also (2) in [6], p. 9)
T(M) = T(F )⊕RB (7)

and every X ∈ X(M) may be decomposed as

X = XF + c−1ω(X)B

for some XF ∈ T(F ). Let tan : T(M) → T(F ) be the natural projection associated to
the decomposition (7). Let us set ξ = tan(A) so that (again by (7)) A = ξ + λ B for some
λ ∈ C∞(M). Then 0 = ω(A) = λ c; hence A = ξ ∈ T(F ) i.e., on any indefinite l.c.K.
manifold, the anti-Lee field is tangent to the leafs of the canonical foliation F . Next let us
consider the endomorphism

ϕ : T(F )→ T(F ), ϕX = tan(JX), X ∈ T(F ).

Then ϕ(ξ) = tan(JA) = −tan(B); hence

ϕ(ξ) = 0. (8)

Next we set
η(X) = γ(X , ξ), X ∈ T(F ). (9)

Then η(ξ) = g(A, A) i.e.,
η(ξ) = c. (10)

Note that η is the pullback of θ to T(F ). It may be easily shown that

ϕX = JX + c−1 η(X) B, (11)

η ◦ ϕ = 0, (12)

γ(ϕX, ϕY) = γ(X, Y)− c−1η(X)η(Y), (13)

for any X, Y ∈ T(F ). In addition,

ϕ2 = −I + c−1η ⊗ ξ. (14)
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An inspection of (8)–(10) and (12)–(14) shows that the restriction of (ϕ, ξ, η, γ) to a leaf
L ∈ M/F obeys to all axioms defining an almost contact metric structure on L (in the sense
of D.E. Blair [17], p. 19–21), except for the occurrence of the constant 1/c. Let us set

Φ(X, Y) = γ(X, ϕY), X, Y ∈ T(F ),

so that (by (5))
dη = (c/2)Φ. (15)

on T(F )⊗ T(F ). Next we consider

Nϕ(X, Y) = [ϕX, ϕY] + ϕ2[X, Y]− ϕ{[ϕX, Y] + [X, ϕY]}

for any X, Y ∈ T(F ). A calculation (relying on (11)) yields

Nϕ + 2c−1 (dη)⊗ ξ = 0 (16)

on T(F )⊗ T(F ). The property (16) is an obvious semi-Riemannian analog to normality
(cf. e.g., [17], p. 49). Let L be a leaf of F . Then (by (6))

(∇L
Xη)Y = (dη)(X, Y) = (c/2)Φ(X, Y), (17)

for any X, Y ∈ T(L). Here ∇L is the Levi–Civita connection of (L, γL) (and γL is the
pointwise restriction of γ to L). By (2)

(∇X J)Y =
1
2
{γ(X, Y)ξ − η(Y)X−Φ(X, Y)B},

for any X, Y ∈ T(F ). Therefore

∇L ϕ =
1
2
{γ⊗ ξ − I ⊗ η} (18)

on T(L)⊗ T(L) (I is the identical transformation). Let R∇, RD, and RL be respectively the
curvature tensor fields of ∇, D, and ∇L. As B is parallel

R∇(X, Y)B = 0, X, Y ∈ T(M). (19)

Similarly (as DB = −(c/2) I and D is torsion-free)

RD(X, Y)B = 0, X, Y ∈ T(M). (20)

By (1)

RD(X, Y)Z = R∇(X, Y)Z− c
4
(X ∧Y)Z− (21)

−1
4
{ω(X)Y−ω(Y)X}ω(Z) +

1
2
{ω(X)g(Y, Z)−ω(Y)g(X, Z)},

for any X, Y, Z ∈ T(M). Here

(X ∧Y)Z = g(Y, Z)X− g(X, Z)Y.

In particular for any X, Y, Z ∈ T(F )

RD(X, Y)Z = R∇(X, Y)Z− (c/4) (X ∧Y)Z. (22)

Every leaf L ∈ M/F is totally geodesic in (M, g) hence (by the Gauss–Codazzi equations)

R∇(X, Y)Z = RL(X, Y)Z
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for any X, Y, Z ∈ T(L). This ends the proof.

Lemma 3. Let M be a conformally flat (i.e., RD = 0) indefinite Vaisman manifold with c 6= 0. Then,
every leaf of the canonical foliation F is a semi-Riemannian space form of sectional curvature c/4.

At this point we may clarify the role played by the geometric structure of the leafs of
F in the classification of indefinite Vaisman manifolds. We need to recall a few notions of
indefinite Sasakian geometry (following mainly K.L. Duggal [18] and T. Takahashi [19]).
Let c ∈ R \ {0}. Let N be a real (2n + 1)-dimensional C∞ manifold, and let ϕ, ξ and η
be respectively a (1, 1)-tensor field, a tangent vector field, and a differential 1-form on N
such that

ϕ2 = −I + c−1 η ⊗ ξ, η(ξ) = c, ϕ(ξ) = 0, η ◦ ϕ = 0.

The synthetic object (ϕ, ξ, η) is referred to as an almost c-contact structure on N. A semi-
Riemannian metric γ on N is compatible to (ϕ, ξ, η) if

γ(ϕX, ϕY) = γ(X, Y)− c−1η(X)η(Y),

for any X, Y ∈ T(N). In addition, an almost c-contact structure is normal if

Nϕ + 2c−1(dη)⊗ ξ = 0.

Let (ϕ, ξ, η) be an almost c-contact structure and γ a compatible semi-Riemannian metric.
Let us set Φ(X, Y) = γ(X, ϕY) for any X, Y ∈ X(N). If

dη = (c/2) Φ

then (ϕ, ξ, η, γ) is said to satisfy the c-contact condition, and (ϕ, ξ, η, γ) is a c-contact metric
structure. An indefinite c-Sasakian manifold is a manifold N endowed with a normal c-contact
metric structure. The underlying semi-Riemannian metric γ is referred to as an indefinite
c-Sasakian metric. The properties in (8), (10), (12)–(14) and (16) may then be rephrased
as follows.

Lemma 4. Every leaf of the canonical foliation of an indefinite Vaisman manifold with c 6= 0 is an
indefinite c-Sasakian manifold.

Viceversa let c ∈ R \ {0} and let (N, (ϕ, ξ, η, γ)) be an indefinite c-Sasakian manifold.
Let us set M = N ×R and

B =
√
|c| ∂

∂t
, ω = ε(c)

√
|c| dt,

where t is the natural coordinate function on R and ε(c) ∈ {±1} is the sign of c. Then
ω(B) = c and ω(X) = 0 for any X ∈ X(N). Let p : M→ N be the canonical projection. Then

g = p∗γ + c−1 ω⊗ω (23)

is a semi-Riemannian metric on M and

g(X, Y) = γ(X, Y), g(X, B) = 0, g(B, B) = c,

for any X, Y ∈ T(N). Next we set

θ = p∗η, A = θ] ,
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where ] denotes raising of indices with respect to g i.e., g(A, V) = θ(V) for any V ∈ X(M).
Moreover we extend ϕ to a (1, 1) tensor field f on M by declaring that f (B) = 0. Then

J = f + c−1 {ω⊗ A− θ ⊗ B} (24)

is an almost complex structure on M compatible to g i.e., (M, J, g) is an indefinite almost
Hermitian manifold. A calculation shows that the normality property of (ϕ, ξ, η) implies
NJ = 0 i.e., J is an actual complex structure. We set as customary Ω(V, W) = g(V, JW) for
any V, W ∈ X(M). Then

Ω = 2c−1 θ ∧ω + p∗Φ. (25)

The proof is straightforward and hence omitted. By the c-contact condition p∗Φ = 2c−1dθ,
hence dΩ = ω ∧Ω i.e., (M, J, g) is an indefinite l.c.K. manifold whose Lee form is ω. It
may be easily checked that ∇ω = 0. We obtain the following.

Lemma 5. Let c ∈ R \ {0} and (N, (ϕ, ξ, η, γ)) an indefinite c-Sasakian manifold. Then
M = N ×R together with the complex structure (24) and the indefinite Hermitian metric (23) is an
indefinite l.c.K. manifold with a parallel Lee form whose Lee vector B ∈ X(M) satisfies g(B, B) = c.
Moreover if (N, γ) has constant sectional curvature c/4 then the Weyl connection of M is flat
(RD = 0).

The last statement in Lemma 5 may be proved by observing that the canonical foliation
F of the indefinite l.c.K. manifold M = N × R is given by M/F = {N × {t} : t ∈ R}
followed by applying the identity (22). Let 0 < λ < 1 and let CHn

s (λ) be the indefinite
Hopf manifold. Let π : Cn \Λ0 → CHn

s (λ) be the canonical projection. Let us consider the
C∞ diffeomorphism

F : CHn
s (λ)→ Σ2n−1 × S1,

F(π(z)) =
(

z
|z|s,n

, exp
(

2πi log |z|s,n

log λ

))
, z ∈ Cn \Λ0 ,

with the obvious inverse

F−1(ζ, w) = π
(

λ(arg w)/(2π)ζ
)

, ζ ∈ Σ2n−1, w ∈ S1,

where arg : C→ [0, 2π). Note that

Σ2n−1 ∩Λ+ = S2n−1
2s , Σ2n−1 ∩Λ− = H2n−1

2s−1 .

Let gs,n be the indefinite Boothby metric and let us set

g̃ = G∗gs,n , G =: F−1 .

We need to compute the explicit local expression of g̃. To this end we set I = (0, 1) ⊂ R
and U = {exp(2πit) : t ∈ I} ⊂ S1. Then G : Σ2n−1 ×U → CHn

s (λ) is given by

G(ζ, exp(2πit)) = π
(
λtζ
)
, ζ ∈ Σ2n−1, t ∈ I.

Let D ⊂ Cn be an open set such that π : D → π(D) ⊂ CHn
s (λ) is a local diffeomorphism

and let (z1, . . . , zn) be the corresponding complex coordinates on π(D). Then

G∗dzj = λt
[
dζ j + (log λ) ζ j dt

]
, G∗dzj = λt

[
dζ

j
+ (log λ) ζ

j dt
]
,

hence
g̃ = εj dζ j � dζ

j
+ (log λ)2 dt⊗ dt = (26)

= −
s

∑
j=1

dζ j � dζ
j
+

n

∑
j=s+1

dζ j � dζ
j
+ (log λ)2 dt⊗ dt
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as ζ jdζ j + ζ jdζ j = 0 along Σ2n−1. Here ζ j = ζ j. Also εj = −1 for 1 ≤ j ≤ s and εj = 1 for
s + 1 ≤ j ≤ n. Let gjk = gs,n(Zj, Zk) where Zj = ∂/∂zj. Then

gjk =
1
2
|z|−2

s,n εj δjk

hence the 2-form Ωjk = −igjk may be written as

Ω = −i|z|−2
s,n

(
−

s

∑
j=1

dzj ∧ dzj +
n

∑
j=s+1

dzj ∧ dzj

)

and taking the exterior derivative we obtain the familiar formula dΩ = ω ∧Ω (accounting
for the fact that gs,n is an indefinite l.c.K. metric) where

ω = |z|−2
s,n

[
s

∑
j=1

(
zj dzj + zj dzj

)
−

n

∑
j=s+1

(
zj dzj + zj dzj

)]
.

A straightforward calculation shows that

F∗dζ j = |z|−1
s,n

[
dzj − 1

2
εk|z|−2

s,n zj
(

zk dzk + zk dzk
)]

,

F∗dt = |z|−2
s,n π i (log λ)−1 h εj

(
zj dzj + zj dzj

)
,

where

h = exp
(

2πi log |z|s,n

log λ

)
.

In particular

ω = − log λ

π i h
F∗dt. (27)

Let us assume from now on that M is a conformally flat indefinite Vaisman manifold with
c 6= 0. Let M̃ be the universal covering space of M. By a semi-Riemannian version of the
de Rham decomposition theorem due to H. Wu (cf. [12]) it follows that M̃ with the lifted
metric is isometric to L̃×R, where L̃ is the universal covering space of an arbitrary fixed
leaf L ∈ M/F . Yet (by Lemma 4) L̃ carries an indefinite Sasakian structure (obtained as the
lift of the structure on L). Then (by Lemma 5) L̃×R carries the indefinite l.c.K. structure
associated to the indefinite Sasakian structure on L̃. Moreover, as M is conformally flat,
each leaf L is a totally geodesic submanifold and a space form of (constant) sectional
curvature k = c/4. Then (by a classical result in the theory of space forms, cf. J.A. Wolf [20],
p. 68) we have

L̃ ≈


S2n−1

2s

(
2√
c

)
, c > 0,

H2n−1
2s

(
2√
|c|

)
, c < 0,

(a global isometry). Let (ϕ, ξ, η, γ) be the lift to L̃ of the indefinite Sasakian structure
on L (induced by the indefinite l.c.K. structure on M). Then L̃×R carries an indefinite
l.c.K. structure (J, g) with the Lee form ω = ε(c)

√
|c|dt. Let ĝ be a local indefinite Kähler

metric of L̃ × R. As M is conformally flat so does M̃ ≈ L̃ × R; hence, ĝ is flat, so that
ĝ = εjdzj � dzj for some local complex coordinate system (zj) on M̃. Thus

g = exp
(

ε(c) t
√
|c|
)

εj dzj � dzj. (28)
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It should be observed that a priori L̃×R carries yet another complex structure J̄ obtained
as the lift to M̃ of the complex structure of M. To see that these complex structures actually
coincide let us consider the commutative diagram

M ≈ L×R - L

M̃ ≈ L̃×R - L̃

? ?

πM πL

p

p̃

where πM, πL, p, p̃ are projections. Let (ϕ, ξ, η, γ) be the indefinite Sasakian structure of L
and (ϕ̃, ξ̃, η̃, γ̃) its lift to L̃. Then

γ̃ = π∗Lγ, η̃ = π∗Lη,

and ξ̃ ∈ X(L̃) is given by γ̃(X, ξ̃) = η̃(X) for any X ∈ X(L̃). By the proof of Lemma 5 if
c ∈ R \ {0}

B̃ =
√
|c| ∂

∂t
, ω̃ = ε(c)

√
|c| dt,

are respectively the Lee field and the Lee form on (L̃×R, J̃, g̃). Here

g̃ = p̃∗γ̃ + c−1ω̃⊗ ω̃ = (πL ◦ p̃)∗γ + ε(c) dt⊗ dt,

while J̃ is the complex structure. Next if θ̃ = p̃∗η̃ = (πL ◦ p̃)∗η then

Ω̃ = p̃∗Φ̃ + 2c−1θ̃ ∧ ω̃ = (πL ◦ p̃)∗Φ + 2c−1θ̃ ∧ ω̃

is the Kähler 2-form of L̃×R. On the other hand let ω̄ be the lift of the Lee form (of the
indefinite l.c.K. manifold (M, g, J)) to (M̃, J̄, ḡ). Precisely

ω̄ = π∗Mω, ḡ = π∗Mg.

Let B̄ ∈ X(M̃) be given by ω̄(X) = ḡ(X, B̄) for any X ∈ X(M̃). Then ḡ is an indefinite
Hermitian metric on M̃, and a calculation shows that dΩ̄ = ω̄ ∧ Ω̄ so that (M̃, J̄, ḡ) is an
indefinite l.c.K. manifold with the Lee form ω̄. As M ≈ L×R and g = p∗γ + ε(c) dt⊗ dt
and ḡ = (p ◦ πM)∗γ + ε(c) dt⊗ dt, one has

B̄ = ε(c)ω̄
(

∂

∂t

)
∂

∂t

hence

ḡ(B̄, B̄) = c, ω̄

(
∂

∂t

)2
= |c|.

By replacing t with −t if necessary we may assume that ω̄(∂/∂t) > 0 when c > 0 and
ω̄(∂/∂t) < 0 when c < 0 i.e.,

ω̄

(
∂

∂t

)
= ε(c)

√
|c|.

We may then conclude that

B̄ =
√
|c| ∂

∂t
= B̃, ω̄ = ω̃.

Finally
Ω̄ = (p ◦ πM)∗Φ + 2c−1(p ◦ πM)∗η ∧ ω̄.

Yet p ◦ πM = πL ◦ p̃ where from ḡ = g̃ and Ω̄ = Ω̃. We may conclude that J̄ = J̃.
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Let φ : Cn ×R→ Cn \Λε(c) be given by

φ(z, t) = exp

(
− ε(c)t

√
|c|

2

)
z, z ∈ Cn, t ∈ R.

Then

φ∗dζ j = exp

(
− ε(c)t

√
|c|

2

){
dzj − ε(c)

√
|c|

2
zjdt

}

hence (by setting g0 = εj dζ j � dζ
j
)

φ∗g0 = exp
(
−ε(c)t

√
|c|
){

εj dzj � dzj−

−ε(c)
√
|c|εj

[
zjdzj + zjdzj

]
� dt + (|c|/4) |z|2s,ndt⊗ dt

}
.

As L̃ is described by the equation εjzjzj = ε(c)4/|c| it follows that

j∗
[
εj(zjdzj + zjdzj)

]
= 0

and ĝ = j∗(εjdzj � dzj), where j : L̃ ↪→ Cn is the inclusion. Then

j∗φ∗g0 = exp(−ε(c)t
√
|c|){ĝ + ε(c) dt⊗ dt}.

Next let us observe that h = φ ◦ (j× 1R) is a diffeomorphism

S2n−1
2s (2/

√
c)×R ≈ Cn \Λ+ , c > 0,

H2n−1
2s (2/

√
−c)×R ≈ Cn \Λ+ , c < 0.

Moreover

h∗
(

4
c
|ζ|−1

s,n g0

)
= (j× 1R)

∗
{

4
c

exp
(

ε(c)t
√
|c|
)
|z|−1

s,n φ∗g0

}
=

= ĝ + ε(c) dt⊗ dt.

On the other hand if i : L̃ ↪→ L̃×R is the map z 7→ (z, 0) then γ = i∗ ĝ. Next if p : L̃×R→
L̃ and q : L̃×R→ R are the natural projections, then

g = p∗γ + ε(c)q∗(dt⊗ dt), ĝ = (i ◦ p)∗ ĝ = p∗γ.

Consequently

h∗
(

4
c
|ζ|−1

s,n g0

)
= g.

Finally if J is the complex structure on L̃×R induced by the canonical complex structure
of Cn via h, then h is a biholomorphism of (L̃×R, J) onto Cn \Λε(c) and g is an indefinite
Hermitian metric with respect to J. Corollary 1 is proved.

4. Conclusions and Open Problems

Any indefinite Vaisman manifold admits (cf. [6]) two canonical foliations F and G,
the first of which is given by the Pfaffian equation ω = 0, while the second is tangent
to the distribution spanned by the Lee and anti-Lee fields i.e., T(G) = RB ⊕ RA. The
objective of the present paper was the investigation of the leafwise geometric structure of
F , which turned out to be indefinite c-Sasakian, for instance in the sense of K.L. Duggal [18].
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Our study is confined to the semi-Riemannian case (c 6= 0), and in that case knowledge
of the first-order geometric structure of F together with the semi-Riemannian de Rham
decomposition theorem (cf. [12]) leads to the local description of the metric structure of
any geodesically complete, conformally flat, indefinite Vaisman manifold (cf. Corollary 1
above). It is an open question whether these considerations carry over to the lightlike
case. Besides from relying on a theory of the second fundamental form for the lightlike
foliation F of the semi-Riemannian manifold M (whose starting ingredients are briefly
described in Appendix A, by adapting the treatment of a single submanifold (such as
in [11]) to that of a foliation (such as in [21])), an attempt to solve the posed problem will
require a lightlike version of the de Rham decomposition theorem. Besides the metric
structure, the first canonical foliation F inherits from M a tangential CR structure, i.e.,
each leaf of L is a CR manifold, of CR dimension n− 1, nondegenerate if c 6= 0. The study
of the pseudohermitian geometry (in the sense of [22]) of the leaves of F is a matter of a
“work in progress”. We anticipate that every leaf of F is a pseudo-Einstein manifold of
pseudohermitian sectional curvature (in the sense of [23]) H(σ) = 1 and pseudohermitian
scalar curvature (in the sense of [22]) ρ = 2n(n − 1) yet non-spherical (which may be
seen, provided that n ≥ 3, by computing the Chern-Moser tensor (in the sense of [24])
of a leaf). Once again the case c = 0 is open. To further recover (from the definite to the
indefinite case) results on conformally flat l.c.K. manifolds, one should rely on the classical
Gray–Hervella classification (cf. [25]) and consider the work by V.F. Kirichenko [26].
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Appendix A. Canonical Foliations with Lightlike Leaves

Let us assume that c = 0 so that B ∈ T(F ). We set (cf. e.g., [11], p. 140)

Rad T(F )x = T(F )x ∩ T(F )⊥x , x ∈ M.

Then, B ∈ Rad T(F ). By Proposition 2.2 in [11], p. 6, dimR T(F )x = 2n − 1 yields
dimR T(F )⊥x = 1, for any x ∈ M. If Sing(B) = ∅ then T(F )⊥ = RB. Consequently
(by Proposition 1.1 in [11], p. 78) every leaf L ∈ M/F is a lightlike hypersurface in (M, g).
As another consequence every Y ∈ T(F )⊥ is orthogonal to the Lee field, hence Y ∈ T(F )
implying T(F )⊥ ⊂ T(F ) i.e., Rad T(F ) = T(F )⊥. Let S(TF ) be a C∞ distribution on M
such that

T(F ) = S(TF )⊕orth T(F )⊥ .

The portion of S(TF ) over a leaf of F is a screen distribution on that leaf (the adopted
terminology is that of [11], p. 78). Then, one may apply Proposition 2.1 in [11], p. 5, at
a point x ∈ M, to the unique leaf of F passing through x, to conclude that S(TF ) is
nondegenerate, and then

T(M) = S(TF )⊕orth T(F )⊥ .

Note that S(TF )⊥ has rank 2 and T(F )⊥ ⊂ S(TF )⊥. One has the following:

Lemma A1. Let π : E → M be a vector subbundle of S(TF )⊥ → M such that S(TF )⊥ =
T(F )⊥ ⊕ E. Let V ∈ C∞(U, E) be a nowhere zero section, with U ⊂ M open. Then (i) ω(V) 6= 0
everywhere in U. Let NV ∈ C∞(U, S(TF )⊥

)
be given by

NV =
1

ω(V)

{
V − g(V, V)

2 ω(V)
B
}

.
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If V′ ∈ C∞(U′ , E) is another nonzero section, with U′ ⊂ M open and U ∩U′ 6= ∅, then (ii)
NV = NV′ on U ∩ U′. Let x ∈ M and let U ⊂ M be an open neighborhood of x such that
EU = π−1(U) is trivial. Let us set

tr(TF )x = RNV(x).

Then (iii) tr(TF )x is well defined and the disjoint union tr(TF ) = ⋃
x∈M tr(TF )x is the total

space of a lightlike vector subbundle tr(TF )→ M of S(TF )⊥ → M such that

S(TF )⊥ = T(F )⊥ ⊕ tr(TF ).

Finally (iv) the definition of tr(TF ) does not depend upon the choice of complement E to T(F )⊥ in
S(TF )⊥.

Cf. Lemma 1 in [6], p. 10. Note that Lemma 1 is an adaptation of Theorem 1.1 in ([11], p. 79)
(applying to the foliation F of M, rather than a single lightlike hypersurface of M). Again
by adopting the terminology in [11], p. 79, the portion of tr(TF ) over a leaf L ∈ M/F is
the lightlike transversal vector bundle of L with respect to the screen distribution S(T(F )

∣∣
L.

Gathering the decompositions above

T(M) = S(TF )⊕orth
[
T(F )⊥ ⊕ tr(TF )

]
= T(F )⊕ tr(TF ). (A1)

Let tan : T(M)→ T(F ) and tra : T(M)→ tr(TF ) be the canonical projections associated
to the direct sum decomposition (A1). Let us set

∇FX Y = tan
(
∇XY

)
, h(X, Y) = tra

(
∇XY

)
,

AV X = −tan
(
∇XV

)
, ∇tr

XV = tra
(
∇XV

)
,

for any X, Y ∈ T(F ), and any V ∈ tr(TF ). Then ∇F is a connection in T(F )→ M, h is a
tr(TF )-valued bilinear symmetric form on T(F ), AV is an endomorphism of T(F ), and
∇tr is a connection in tr(TF )→ M. In particular

∇XY = ∇FX Y + h(X, Y), ∇XV = −AV X +∇tr
XV,

(the Gauss and Weingarten formulas for F in (M, g)). Cf. also [21]. The pointwise
restrictions of ∇F , ∇tr, h and AV to a leaf of F are respectively the induced connections,
the second fundamental form, and the shape operator of that leaf (cf. [11], p. 83), as a
lightlike submanifold of (M, g). A leaf L of F is totally geodesic if every geodesic of ∇F
lying on L is also a geodesic of (M, g). A lightlike version of the classical de Rham
decomposition theorem (cf. [13], pp. 187–193) or of its semi-Riemannian analog (cf. [12,27])
is so far unknown.
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