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Abstract
Advanced intelligent surveillance systems are able to automatically analyze video of 
surveillance data without human intervention. These systems allow high accuracy of human 
activity recognition and then a high-level activity evaluation. To provide such features, an 
intelligent surveillance system requires a background subtraction scheme for human seg-
mentation that captures a sequence of images containing moving humans from the reference 
background image. This paper proposes an alternative approach for human segmentation in 
videos through the use of a deep convolutional neural network. Two specific datasets were 
created to train our network, using the shapes of 35 different moving actors arranged on 
background images related to the area where the camera is located, allowing the network 
to take advantage of the entire site chosen for video surveillance. To assess the proposed 
approach, we compare our results with an Adobe Photoshop tool called Select Subject, 
the conditional generative adversarial network Pix2Pix, and the fully-convolutional model 
for real-time instance segmentation Yolact. The results show that the main benefit of our 
method is the possibility to automatically recognize and segment people in videos without 
constraints on camera and people movements in the scene (Video, code and datasets are 
available at http://graphics.unibas.it/www/HumanSegmentation/index.md.html).

Keywords Deep learning · Convolutional neural network · Image processing · Background 
subtraction · Semantic segmentation
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1 Introduction

Fully-autonomous video analysis systems have become increasingly important in recent
years [1, 21, 52]. The British Security Industry Association estimated that between 4.1 and
5.9 million closed-circuit televisions were installed in the UK in 2013. Both public and pri-
vate surveillance systems around the world produce an enormous amount of data, which
creates a challenge for big data and artificial intelligence. There are various applications
related to intelligent video surveillance, such as human search, facial recognition, people
counting, and vehicles detection. Today, traditional surveillance systems are being comple-
mented and even replaced by advanced intelligent surveillance systems. These enable high
accuracy monitoring, such as human activity recognition [40]. Human activity recognition
system enables continuous monitoring of human behaviors in the area of surveillance, which
allow tracking of human body parts such as head, torso, arms, and legs to perform activity
recognition tasks.

In the surveillance systems, the background subtraction scheme for object classification
is one of the first steps for human detection. Usually, a background subtraction algorithm
captures a sequence of images containing moving humans from a static single-camera and
detects them from the reference background image. Other methods use image segmenta-
tion to achieve the same purpose. There are two main classes of segmentation algorithms:
instance and semantic segmentation. Approaches based on the first class of algorithms can
identify specific regions that share similar features but do not interpret the content. Vice
versa semantic segmentation takes care of understanding the content of the image by clas-
sifying the pixels and relating them to certain classes and is responsible for giving such
content a closed and well-defined edge. It can be useful, for example, in scene understanding
[3, 12, 64] or for medical purposes [2, 42]. Human segmentation is a subset of seman-
tic segmentation, where the purpose consists of classifying the pixels in background and
foreground.

In the scientific literature, there are various approaches related to human segmenta-
tion. Some of them are based on images captured by a static camera [62] or an infrared
camera [17]. In other cases, there are no camera-related constraints, but additional data
must be provided to the system to perform a good segmentation, such as pose [6] or con-
tour information [54]. However, it is still a challenging task, especially if the purpose is
to perform segmentation of the foreground automatically and without further information.
Segmentation of people in a huge amount of videos, such as in video surveillance con-
text, can benefit from deep learning techniques. The goal of deep learning is to develop
computational models that consist of multiple processing layers used to learn data repre-
sentations at multiple levels of abstraction [34]. The deep learning revolution has arisen
due to the ability of certain computers to process data at nonlinear levels in a simi-
lar way to humans. In this way, the computers learn and perfect increasingly complex
functionality.

In this paper, we propose an alternative approach for human segmentation in videos
through the use of a deep convolutional neural network (CNN). The CNN has an encoder–
decoder structure composed of two subnetworks: an encoding and a decoding component,
appropriately trained to perform automatic extraction of actors from images. The encoder
is a typical convolutional network and is topologically identical to the well-known VGG-16
architecture [50], but without the fully connected layers. The decoder has as many con-
volutional layers as those of the encoder, and converts the low-resolution encoder feature
maps to full input resolution feature maps by using upsampling operations. In particular,
this type of network classifies the pixels of the input images and produces an output image
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segmented appropriately. Although some datasets including a person class exist, they do not
contain a large number of high quality human segmentation masks. In similar tasks, such as
image matting, datasets have only a few hundred unique foreground objects [58] or focus
on portrait images [48]. To train our network, two specific datasets were created and com-
bined with the background captured from the monitored area of the surveillance camera.
We collected the shapes of 35 different moving actors and arranged them on background
frames, which were extracted from videos recorded in selected surveillance sites: the first
dataset concerned an indoor area and the second was related to an outdoor area. Actors
were captured in different postures and distances, obtaining 16,832 training images with
unique foreground shapes. The main benefit of our method is the possibility to automatically
recognize and segment people in videos without constraints on camera and people move-
ments in the scene. It can considerably support video surveillance systems that still require
human supervision. Furthermore, our network output can also be used for other applica-
tions, for example, to quickly generate an accurate trimap on real images with people in the
foreground.

Our main contributions include

• The attempt to reduce some constraints and overcome the challenges in the field
of automatic human segmentation. In particular, limits of a static background,
uniform lights and colors, camera and people movements in a specific area of
interest.

• Indoor and outdoor scenes datasets creation with high-quality human segmentation
masks.

• The separation of high and low frequencies in the images of our datasets using a
nonlinear filter for better results.

• A preliminary study on the automatic segmentation of people in videos, testing a sim-
ple and efficient architecture in this field, and using the inverse frequency for class
weighting in the network setup.

• Extensive quantitative and qualitative experiments to verify the proposed approach and
prove its effectiveness.

The reminder of this paper is structured as follows: Section 2 provides an overview of
related works; Section 3 provides background to semantic segmentation and CNN struc-
tures by describing the encoder and decoder; Section 4 describes our approach and the
datasets used in the CNN training; Section 5 describes the CNN training phase; Section 6
summarizes our results and evaluation methods; Section 7 discusses comparisons with
other approaches and potential additional applications of our work; Section 8 presents final
remarks and the future direction of our research.

2 Related work

Increasingly, image segmentation techniques are being used to divide an image into a set
of non-overlapping regions [5, 31, 39, 43, 49]. Many methods have been developed to
tackle this task by applying it to medical image analysis [2, 28, 42], autonomous driv-
ing [15, 56], remote sensing [30], and video surveillance. In this latter case, automatic
human segmentation can be very useful, especially in challenging conditions, where cam-
era or person can move. Zhao et al. [62, 63] proposed a Markov chain Monte Carlo
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approach to segment individual humans in a crowed scene acquired from a static camera.
Fernández-Caballero et al. [17] presented a real-time people segmentation approach based
on infrared images. Their algorithm starts applying traditional thresholding techniques to
obtain candidate blobs, which are refined in a second phase. Another approach working with
infrared images is W4 system [22], a real-time visual surveillance system that detects peo-
ple in an outdoor environment. W4 detects foreground pixels with a statistical-background
model and groups them into blobs that are classified using shape analysis. Vineet et al. [57]
proposed a method for human segmentation in images and videos using CFR framework
and included shape priors and histogram potential to help in recovering background regions
and humans’ shapes. Bhole et al. [6] used multiple CRFs and a pose detector, which helps
guide the segmentation of challenging frames and obtain location information to refine the
results. Other human segmentation methods are graph cut-based. Hernández et al. [25] pre-
sented a GrabCut methodology, where a HOG-based subject detection, face detection and
skin color model were used for the algorithm initialization. Migniot et al. [38] introduced a
graph cut weighted by a non-binary template useful to evaluate the shape of the silhouette.
Furthermore, the segmentation was refined by a part-based template considering differ-
ent postures of people. Song et al. [51] provided one of the first responses to the problem
of fast human segmentation in an image-by-image manner. They tested some convolu-
tional network architecture achieving a high acceleration of computing time and obtaining
a decent segmentation accuracy. Tesema et al. [54] proposed a deep contour-aware net-
work, which requires the mask and the contour to improve segmentation performance. The
contour is generated using an edge detector and refined with some tricks not specified by
the authors.

The main challenge in this scientific field is related to the lack of high quality labeled
data [33]. In some cases, it is also necessary to calculate additional annotations to achieve
a good result [6, 54, 61]. In other cases, there are strong limits: the camera is fixed [62]
or moves slightly, the subjects must wear clothes of a different color from the background,
which usually has a constant and uniform color, and shadows must be avoided [47]. It is still
a challenge to be able to obtain a very accurate segmentation mask of a full-length subject,
in real-time and in real-life situations. We propose an alternative automatic human segmen-
tation method for supporting video surveillance systems. People can move in a chosen area,
there are no camera constraints and no additional data is required in addition to the segmen-
tation mask. The use of a deep neural network trained with a specific dataset guarantees a
good level of accuracy.

3 Background

The proposed approach aims to recognize and segment people in images and videos. It can
be very beneficial, for example, for supporting video surveillance systems. We use the deep
neural network (DNN) shown in Fig. 1.

Our neural network is based on the well-known SegNet architecture [3], which is a CNN
structured as an encoder–decoder, performing pixel classification through its final layer.
SegNet provided good segmentation performances and proved to be efficient both in terms
of computational time and memory. The encoding component of the input consists of sev-
eral convolutional layers [20], with batch normalization operations [26], rectified linear
units (ReLUs) as activation functions [19], and max-pooling layers [66]. The component
that performs the decoding of the encoder output is based on inverse operations such as
deconvolution [60] and unpooling [59].
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Fig. 1 The used encoder–decoder CNN, developed from the SegNet [3] architecture. The network struc-
ture is represented by colored blocks: orange represents the convolutions, batch normalization, and ReLU
operations; blue represents the pooling operations; green represents the up-sampling operations; and gray
represents the pixel classification layer based on Softmax operation. The set of images to the left are the input
set, while the set of images to the right are the corresponding outputs

3.1 Encoder

The encoder is a subnetwork of our model, which consists of 13 convolutional layers based
on VGG-16 CNN proposed by the Visual Geometry Group to solve classification prob-
lems [50]. This type of CNN was originally trained on 224 × 224 RGB images, which are
pre-processed by subtracting the mean from the RGB computed on all training datasets.
The input is passed through a stack of convolutional layers, which have a spatial resolu-
tion of 3 × 3, and stride and zero-padding set at 1. In this way, is possible to preserve the
spatial resolution of the input, after the convolution operation. There are five max-pooling
layers with a 2 × 2 kernel and stride of 2. Among the convolutional layers, the ReLU acti-
vation function is performed, which introduces nonlinearities over the hidden layers. The
original VGG-16 had three fully connected layers [45] after the convolutional one and Soft-
max [7] as the activation function. Our encoder is similar to VGG-16, and the weights
are initialized through the same pre-trained model obtained in the VGG-16 training step
for the classification task [20]. Using pre-trained weights and/or layers, related to a net-
work that solves a similar task, is a common practice in deep learning: This is useful for
obtaining a starting point and making the training easier and faster. To train a network
from scratch, for example using randomized initialized weights, takes much more time, and
a large amount of data is needed. The fully connected layers of VGG-16 were removed,
preserving only the convolutional layers in the encoder structure. This makes the encoder
subnetwork smaller and easier to train than many other architectures [36, 41]. Each convo-
lutional layer produces a set of features map called a tensor, which is normalized through a
batch normalization and passed through the ReLU. Then, a max-pooling operation is per-
formed to reduce the spatial factor of the activated tensor by 2. Before the max-pooling is
performed, the indices of this operation are stored. Such indices represent the positions of
the maximum value and will be used in the decoding phase to perform the up-sampling
operations.

3.2 Decoder

The remaining part of the network performs the decoding of the encoder output tensor. This
is another subnetwork, called a decoder, which has as many convolutional layers as those of
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the encoder. Decoding occurs through a set of operations such as deconvolution and unpool-
ing. The unpooling operation performs the spatial up-sampling by using the stored indices in
max-pooling operations. In this way, the hardware memory is significantly reduced, avoid-
ing the need to store all of the features map, which was obtained after the down-sampling
operation in the encoding phase, and reducing the number of parameters without loss of
accuracy. The features maps obtained in this phase are sparse, and they are then passed
through convolutional layers to make them dense. After the convolution, a batch normaliza-
tion is performed. The last layer of the decoder network classifies pixels by using Softmax
as the activation function. The loss function uses cross-entropy [20], which is typically used
in classification problems. Weights of the decoder network are initialized using the MSRA
method, which was proposed by He et al. [24]. It is suitable for layers followed by a ReLU
activation function on very deep neural networks.

4 DNN for human segmentation

To train our DNN, we provided a pair of images as input. Each pair consists of an RGB
element, which contains an actor’s shape on a background frame, and a binary image, which
represents the label (the segmentation mask) as shown in Fig. 1. The background frames
were extracted from a recorded video in defined areas. In this way, once the neural network
has been trained, it will be possible to use as input the frames of a video shot in the chosen
area in which both the actor and the camera can move.

The RGB element is represented through a tensor w × h × 3, with width w, height h,
and depth 3. The label is represented through a binary matrix that uses only two values, 0
and 1, where 0 represents the background class and 1 represents the foreground class. More
specifically, the label represents the ground truth to be compared with the DNN output in
order to compute the loss value during the training and validation phases.

Loss function was defined using cross-entropy, as indicated above. In particular, the error
E(wi), related to the ith weight, can be defined as follows:

E(wi) = −t (i) log(y(i)) (1)

where y is the prediction and t is the target related to foreground and background classes.
Cross-entropy is useful for measuring the dissimilarity between the ground truth and the

output predicted by our network. Equation (1) can be defined as

E(wi) = −t
(i)
fg log(y

(i)
fg) − t

(i)
bg log(y

(i)
bg ) (2)

where

– yfg is the probability of classifying the output as foreground and ybg is the complemen-
tary probability of classifying the output as background;

– tfg is the real probability related to foreground and tbg is the complementary real
probability related to background.

Using (1) and (2), the loss function E(w) computed on N samples and expressed
according to the foreground terms, can be described as follows:

E(w) = 1

N

N∑

i=1

[
−t

(i)
fg log

(
y

(i)
fg

)
−

(
1 − t

(i)
fg

)
log

(
1 − y

(i)
fg

)]
(3)
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If an image contains only one actor, in general, the background pixels will be more
frequent with respect to the foreground ones, as shown in Fig. 2. Such difference can be
dangerous for the training process due to partial learning that favors the background class.
Ideally, we would like each class to have the same number of observations in the training
dataset to prevent a category from being underrepresented. Since the goal of the network is
to segment actors in the foreground, the inverse frequency is used to weigh the classes and
give more importance to the foreground. Thus, during back-propagation, only the gradient
from the maximally scoring instance is calculated and used for updating the weights. The
inverse frequency can be expressed as follows:

F−1 =
∑

i,j Ii,j

∑
i,j I

(k)
i,j

k = 0, 1 (4)

where the numerator represents the sum of the pixels for each I image in the training dataset,
and the denominator represents the sum of the pixels belonging to the kth class for each I

image in the training dataset. F−1 is the inverse frequency for each class (background when
k is equal to 0, foreground when k is equal to 1).

4.1 Dataset

Although there are some dataset including a person class, such as Pascal VOC [16], MS
COCO [35] and the new YouTube-8M Segments, large dataset with high quality human
segmentation masks are scarce. Recently, Supervisely Person Dataset has been released. It
consist of 5711 images with unique people in the foreground. There are some accurate and
high resolution masks. Unfortunately, there are not so many. Most were obtained through
polygons and some of them are very coarse. Furthermore, in some cases, people cover small
parts of the image.

To train our network, we collected a large number of unique human images with cor-
responding segmentation masks. 35 people were captured in different postures, such as

Fig. 2 A label overlay of a training image. The background pixels (light blue), are more frequent with respect
to the foreground pixels (red). The frequency of foreground pixels in the training dataset is 11.16%, and the
frequency of background pixels is 88.84%
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walking, turning on themselves, jumping, greeting, and different distances obtaining, for
example, full-length or half-length images.

Our dataset was based on a number of requirements to make a good dataset for semantic
segmentation: (i) There must be enough image pairs, composed of those to be segmented
and the relative ground truth, and (ii) the labels must be as precise as possible, due to poten-
tially critical issues such as the actor’s hair is very jagged, clothes have folds, or there is
little difference between background and actor.

The first step in creating the dataset was to recorder videos of moving actors using the
green screen and a camera to obtain a large amount of data and very precise labeling. The
green screen setup consisted of an opaque green drape and two lights, one of which illumi-
nated the background, and the other illuminated the actor to remove the shadows as much
as possible. The videos were recorded using a Panasonic HDC-SD800 camera with 14.2
megapixel and 1, 920 × 1, 080 spatial resolution. The video preprocessing phase consisted
of removing the green background (left panel of Fig. 3) using Adobe After Effects and
extracting the shapes of the actors. Using the same software, it was also possible to obtain a
matte version of each shape (center panel of Fig. 3). This consists of a mask that defines the
transparent or background areas as black and the matte or foreground areas, which contain
the actor’s shape, as white. The matte version contains three channels, between 0 and 255.
To label (right panel of Fig. 3) each image, a binarization process was performed using a
global threshold value, which creates a binary image in which all the values of the starting
image over the threshold are set to 1 and all the values below it are set to 0. The threshold
is a value that varies between 0 and 1, but we set this value to 0.3 because this represented
a good compromise for maintaining, as much as possible, the quality of the matte version.
Lower values of the threshold would have made the background areas white, and higher
values would have cut out part of the shape, such as edges, hair, and clothes.

The second step was to extract background frames from a recorded video in an indoor
area that we chose for the video surveillance system. Then, the actors’ shapes were arranged
on the background frames to create the RGB elements. In this way, the network takes
advantage of the knowledge of the area that the camera is able to frame. The use of many
unique shapes and the balance of weights explained in Section 4 allows the network to not
over-adapt.

The obtained pairs of images and labels were divided into 16,832 for the training set,
1,403 for the test set, and 900 for the validation set. The validation set was introduced to
check the training performance of the network by using different data from the training set.

Fig. 3 Example of pre-processing phase. Left: The input taken using a camera and green screen. Center: The
edge highlighted on the matte image obtained using Adobe After Effects. Right: The corresponding label
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The dataset images were reduced using 640 × 360 spatial resolution for reasons related
to the resources and computational times that were available.

Subsequently, we realized some critical issues that arose in this dataset solution. In par-
ticular, shape overlapping on the background frame caused a clear distinction between the
borders of the shape and the background compared with a real image. The network learned
the shape from images created in this manner, and didn’t dive such good results on real
images where the variation between the background and the shape was more linear.

To solve this problem, we introduced a bilateral filter [55] and applied it to the images
obtained in the previous solution. This is a nonlinear filter and is often used to reduce the
noise of images while preserving the edges. In practical terms, a weight is assigned to each
pixel of the image to be filtered, depending both on spatial proximity (spatial domain) and
on photometric similarity (range domain or intensity domain). The idea behind many spatial
filters is based on the requirement that neighboring pixels tend to have similar values. How-
ever, this idea turns out to be incorrect on the borders of objects in images because, in these
points, the signal changes quickly. The bilateral filter considers this feature and replaces the
intensity of each pixel with a weighted average of the intensity value of the neighboring pix-
els. In this way, some of the high frequencies were removed, which are present in particular
on the edges of objects, retaining the low frequencies. In realistic photos, normally, there is
no clear separation between the actor and the background. Since our photos resulted from
the overlapping of background frames and actors’ shapes clipped from the green screen, this
separation was more evident in the image in the left panel of Fig. 4. The bilateral filter was
applied in the image in the right panel of Fig. 4, with the spatial parameter σd set to 16, the
range parameter σr set to 0.1, and the dimension of a half-window of the Gaussian kernel
w set to 5.

These parameters are inspired by those proposed by Durand and Dorsey [14] to separate
low and high frequencies through the bilateral filter. Although they propose the σd value
has to be equal to the 2% of the maximum dimension of the image, we increase this value

Fig. 4 Comparison between an unfiltered image and the corresponding image filtered with the bilateral filter.
The filter parameters are w = 5, σd = 16, and σr = 0.1. In the filtered image, an attenuation of the sharp
edges can be seen, particularly at the neck and the hands
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to a 2.5% because in this way the quality of the approximation is experimentally improved
for the used context [4]. Moreover the value of σr was selected as 0.1 based on visual effect
of the the filter on the image and on the behaviour of the deep neural network. From our
experiments, we established that these values are a good choice for our aim [9].

Based on the knowledge acquired, we also used the filtered dataset solution to build
an outdoor scenes dataset. In this case, the second step was performed by extracting the
background frames from a recorded video in an outdoor area.

Data augmentation was applied to the both indoor and outdoor datasets [13]. This opera-
tion generated perturbed images of the training dataset for each epoch, to avoid the problem
of overfitting. The data augmentation was performed by applying several transformations on
the fly in the training phase; therefore, the perturbed images were not stored, and the dataset
dimension remained unchanged. We made spatial transformations mirroring right/left and
rotation with a random angle between −30 and 30 degrees.

5 Training phase

We developed, trained, and tested our neural network using MATLAB® and its toolboxes,
in particular, the Neural Network ToolboxTM. We used Nvidia GPU GTX 1080 Ti, which
has a Pascal architecture, 3584 CUDA core, 11 GB GDDR5X as a frame buffer and 11 Gbps
speed memory. The training was performed by selecting ADAM [32] as the optimization
algorithm. It was demonstrated empirically that this algorithm achieves good results, in a
short time, applied to large models and datasets. The initial learning rate was set to 10−5,
and the validation set was introduced to check the level of generalization of the neural
network for each epoch. The number of epochs was set to 40, but the training was stopped
after 19 epochs since no further improvements were noted: neither an increase in accuracy
nor a reduction in error. At the end of training, the accuracy was fixed at around 99.8%,
and loss in training was around 0.01. Accuracy in the validation stage did not decrease with
respect to that of training, reaching approximately 99.79%, and loss during validation fell
throughout the training, reaching a final value of 0.008.

6 Results

Our model inference was performed by using one Titan Xp GPU card. Images with size
640 × 360 were processed in about 0.06 s. A video demo1 of our work shows the results
obtained interactively on videos recorded with different frame rates and in different loca-
tions. It can be seen that there are no constraints on the movement of the camera or
people.

The remainder of the section shows an overview of the evaluation methods of the results
obtained and analyzes the output related to both the test dataset and the photos taken in the
areas chosen during the dataset creation phase.

6.1 Evaluationmethods

Evaluation of the results after several training steps was performed through two types of test:
A first test was performed by using the test set, which contained the images to be segmented

1URL http://graphics.unibas.it/www/HumanSegmentation/index.md.html
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Table 1 The metric values of the whole test dataset for the first two trained model: Global Accuracy, Mean
Accuracy, Mean IoU, and Mean BF score

Global Acc. Mean Acc. Mean IoU Mean BF Score

1st Network (Unfiltered Case) 0.99737 0.99828 0.99132 0.9942

2nd Network (Filtered Case) 0.99778 0.99829 0.99267 0.9955

The first row is related to the network trained with the unfiltered indoor scenes dataset, whereas the second
row is related to the filtered indoor images

and the labels to be used as a comparison with the output obtained from the network; the
other test was performed on real and unlabeled photos. Semantic segmentation quality was
evaluated through three metrics: Accuracy, Intersection over Union (IoU) [18], and Mean
Boundary F1 (BF) Score [46].

The Accuracy metric measures the amount of correctly classified pixels with respect to
the total amount of pixels. It can represent the ratio of correctly classified pixels to total
pixels, regardless of class (Global Accuracy), the ratio of correctly classified pixels in each
class to total pixels, averaged over all classes (Mean Accuracy), or the ratio of correctly
classified pixels in each class to the total number of pixels belonging to that class according
to the ground truth. This last definition can be expressed as

Accuracy = T P + T N

T P + T N + FP + FN
(5)

where T P indicates the true positive, T N indicates the true negative, FP indicates the false
positive, and FN represents the false negative.

IoU is a statistical measure of accuracy that penalizes false positives. This parameter
shows the quality of the pixels correctly classified with respect to the total amount of pixels
assigned to a certain class by ground truth and by the network output. IoU can be expressed
by the following formula and can also be computed as an average value (Mean IoU).:

IoU = T P

T P + FP + FN
(6)

BF Score is a measure of the accuracy used in the statistical analysis and is calculated
for each class. The measure takes into account the precision and recovery of the test, where
the precision is the number of true positives divided by the number of all positive results,
and the recovery is the number of true positives divided by the number of all the tests that
should have been positive (i.e., the sum of true positives and false negatives). This parameter
is defined as the harmonic mean of precision p and recovery r .

Table 2 The metrics obtained by considering each class with respect to the unfiltered and filtered cases:
Accuracy, Intersection over Union, and Mean BF score

Acc. IoU Mean BF Score

1st Network Foreground 0.99974 0.98587 0.99168

(Unfiltered Case) Background 0.99683 0.99677 0.99672

2nd Network Foreground 0.99909 0.98805 0.99351

(Filtered Case) Background 0.99749 0.99728 0.9975
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Table 3 The confusion matrix related to the test carried out on the networks after training with indoor scenes
dataset

1st Network (Unfiltered Case) 2nd Network (Filtered Case)

Predicted Predicted Predicted Predicted

Foreground Background Foreground Background

Class Class Class Class

True Foreground Class 99.97 0.02647 99.91 0.09141

True Background Class 0.3166 99.68 0.2514 99.75

BF score = 2 · p · r

p + r
(7)

In addition to these metrics, a further method of viewing the performance data from the
tested network is the normalized confusion matrix [53]. It returns a representation of the
accuracy of the classification. Each column represents the predicted values, and each row
represents the real values. Each element (i, j) is given from the amount of pixels that belong
to the true class i, but associated with the predicted class j . A normalization is performed
by dividing by the total number of predicted pixels in j .

6.2 Results after training with the indoor scenes dataset

The first two network training were performed respectively with the unfiltered and filtered
dataset, both relating to an indoor area. The neural network performance was evaluated
against the test set and the real photos. The test set was created as the training set, with
actors’ shapes arranged on background frames. Table 1 shows the metrics aggregated over
the test dataset, and Table 2 shows the metrics for each class. Similar values were obtained
for the tests carried out on the first model, 1st Network (Unfiltered Case), and on the sec-
ond model, 2nd Network (Filtered Case). By observing the normalized confusion matrix
(Table 3), it is possible to obtain rapid feedback on the performed test.

Figures 5 and 6 show some results concerning the first test phase performed respec-
tively with the unfiltered and the filtered dataset. They highlight the best and the worst

Fig. 5 Results related to the test dataset after training using the unfiltered dataset. The test set was created as
the training set and contains unfiltered images. The top left panel shows the best result for Mean Accuracy
(99.9%), and the top right panel shows the best result for Mean IoU (99.6%). A classification error related
to foreground can be seen in the bottom left panel, which shows the worst result for Mean Accuracy (96%),
and a classification error related to background can be seen in the bottom right panel, which shows the worst
result for Mean IoU (96.6%)
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Fig. 6 Results of the filtered test dataset for the chosen indoor area. The top left panel shows the best results
for Mean Accuracy (99.9%), and the top right panel shows the best results for IoU (99.6%). A classification
error related to foreground pixels can be seen in the bottom left panel, which shows the worst result for Mean
Accuracy (96.4%), and a classification error related to background pixels can be seen in the bottom right
panel, which shows the worst result for Mean IoU (94%)

case for Mean Accuracy (left panels) and Mean IoU (right panels). As noted previously by
analyzing the metrics, there is not a big difference between the two networks in the first
test phase.

The second test phase concerned the evaluation of real photos, which were taken in the
same indoor area where the background videos used to create the dataset were shot. These
photos were resized appropriately to fit the aspect ratio to the size of the neural network
input. Tables 4 and 5 show the quantitative results obtained by querying the network trained
with the unfiltered dataset (1st Network) and the network trained with the filtered dataset
(2nd Network). The metric values demonstrate a significant improvement in the case of the
2nd Network. In particular, the values for the foreground class increase by about 10% for
Accuracy and IoU, and by 7% for Mean BF Score (Table 5). Figure 7 shows the qualitative
results for both the networks. The 1st Network partially identified the subjects in these
photos. Since the network was trained on a dataset in which the actors presented a well-
defined edge with respect to the background, there is an uncertainty in real cases on the
boundary zones. This involves an error in the classification of foreground pixel. As can be
seen in the third panel of Fig. 7, we found a marked improvement in the classification of
foreground pixels with the second network. The subjects were clearly identified in the first
two cases, although the left hand was not correctly segmented in the third case. This latter
is a challenging picture because the hand covers a small part of the image and has a color
similar to the background.

Table 4 The metric values of the second test phase concerning the evaluation of real photos taken with a
camera in the chosen indoor area

Global Acc. Mean Acc. Mean IoU Mean BF Score

1st Network 0.97937 0.93016 0.91083 0.92538

(Unfiltered Case)

2nd Network 0.99289 0.98649 0.96947 0.97509

(Filtered Case)

The first row is related to the network trained with the unfiltered indoor scenes dataset, whereas the second
row is related to the network trained with the filtered images
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Table 5 The metrics obtained by considering each class and related to the second test phase for the indoor
area

Acc. IoU Mean BF Score

1st Network Foreground 0.86364 0.84491 0.89074

(Unfiltered Case) Background 0.99668 0.9767 0.96001

2nd Network Foreground 0.97784 0.94708 0.96487

(Filtered Case) Background 0.99514 0.99185 0.98531

6.3 Results after training with the outdoor scenes dataset

The final training step was performed on the filtered dataset with background frames of an
outdoor area, and the neural network performances were evaluated as in the previous cases.
Table 6 shows the metrics aggregated over the test dataset, Table 7 shows the metrics for
each class, and Table 8 shows the normalized confusion matrix.

Figure 8 shows some results concerning the first test phase performed with the network
trained with the outdoor scenes dataset: the best and the worst case for Mean Accuracy (left
panels) and Mean IoU (right panels). Figure 9 shows some of the second test phase results.
They were obtained from the real photos taken in the same outdoor area selected for the
network training.

7 Comparisons and applications

Starting with the results obtained through our approach, we made some quantitative and
qualitative comparisons with other approaches.

The first comparison was made using an Adobe Photoshop tool called Select Subject. It
was developed through Adobe Sensei, a framework that uses artificial intelligence to support
image-processing tasks to enhance and simplify complex user image-editing operations.
According to Adobe, this tool is useful for quickly selecting prominent subjects in pictures.
Select Subject provides a basic method to select the subject and allows the selection to be
refined through other tools or user actions. Adobe Sensei is an advanced machine learning
technology trained to identify a wide variety of objects in an image, such as people, animals,
vehicles, and toys.

The second comparison was made against Pix2Pix, a type of Conditional Gener-
ative Adversarial Network developed by Isola et al. [27]. The authors tested their
approach on several tasks, such as photo generation, image colorization, and segmentation.
We trained Pix2Pix2 using our dataset and the training information provided for
the Cityscapes labels → photos task. In particular, the model was trained
from scratch initializing the weight with a Gaussian distribution with zero mean
and standard deviation 0.02. We set the number of epochs to 200 and the batch
size to 10.

Finally, we focused on Yolact, a fully-convolutional model for real-time instance seg-
mentation developed by Bolya et al. [8]. The authors achieved good performance training

2Implementation of Pix2Pix: https://github.com/affinelayer/pix2pix-tensorflow
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Fig. 7 Results of real photos, taken directly with a camera, querying the network after training with the
unfiltered and filtered dataset. A classification error related to foreground pixels can be seen in the second
column. In particular, parts of the actor in the top and bottom panels have a color similar to the background.
The third column shows the results in the filtered case. We can see an improvement in the classification of
foreground pixels, especially in the top panel

and testing their network on MS COCO dataset [35]. We conducted two assessments:3 (i)
we trained Yolact on our dataset as proposed by the authors, using batch size 8 and pre-
trained weights provided for this model; (ii) we tested their base model, Yolact-550 with
ResNet-101 backbone.

7.1 Quantitative result on test dataset

Firstly, we made a quantitative comparison calculating metrics value on the test dataset
for Pix2Pix and Yolact, since we trained those networks with our indoor scenes dataset.
Tables 9 and 10 illustrate the results on the whole test set and for each class, respectively.
We found a decrease from 1% to 3% of the values achieved by the compared approaches,
as demonstrated by all the metrics in Table 9 and foreground class metrics in Table 10.

In addition, we made a further comparison considering inference time per image, as
illustrated in Table 11. The second column indicates the type of architecture of each neural
network and the third one contains the inference time in seconds. For each approach, it was
calculated on the same computer using the Titan Xp GPU card and after loading the neural

3For the first comparison, we downloaded the ImageNet pretrained model resnet101 reducedfc.pth
and trained it using the information provided on the github page https://github.com/dbolya/yolact and our
indoor scenes dataset. For the second evaluation, we used the Resnet101-FPN model, with input image size
550.
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Table 6 The metric values of the whole test dataset for the network trained with our filtered dataset for the
chosen outdoor area

Global Acc. Mean Acc. Mean IoU Mean BF Score

0.99771 0.99843 0.99245 0.99602

network into memory. Therefore, the inference time includes the average time of reading
and loading an image and the forward step to obtain the prediction. Although the inference
time for the other approaches is less, we still got an interactive response with our approach
via MATLAB. Note that computational times can be further reduced by generating C and
CUDA code or MEX functions from MATLAB code.

7.2 Quantitative results on real photos

We compared all approaches using real photos. This test provided us with initial feedback
on data that differs from training and test dataset. We considered a representative set of
images, which consists of photos taken with a camera in the indoor area chosen for the
training of our neural network. We needed ground truth images for each photo to calcu-
late metrics. We got them through careful manual segmentation. Since it is time-consuming
and, in some cases, it is not easy to obtain, we decided to consider 30 photos contain-
ing people at different distances from the camera and in several positions. Table 12 shows
the metrics aggregated over the whole set of images and the best values for each met-
ric are in bold. Although Photoshop Select Subject achieved better values for Global and
Mean Accuracy and Mean IoU, our approach remained competitive: a very small gap for
these metrics and the highest value for the Mean BF Score can be seen. Table 13 indi-
cates the metrics for each class. The best values for the foreground class are highlighted in
bold. As can be seen, our network achieved the highest value for Mean BF Score and dif-
fered slightly from the best Accuracy and IoU. Interestingly, Yolact-500 achieved excellent
results in the case of Accuracy and the IoU for background class predictions, but not for
the foreground class, with a difference greater than 20%. A high value for the background
class may not always indicate a better overall result. Background pixels are more frequent
than foreground pixels if the image contains a person distant from the camera, as indicated
in Section 4.

7.3 Qualitative results on real photos

A qualitative and visual comparison of the output masks allowed us to have comprehen-
sive and clear feedback on the performance of all methods. The third row of Fig. 10
shows some of the results obtained from real photos using Select Subject. The foreground
shapes of its output were highlighted in white. In comparison with our output (second

Table 7 The metrics obtained by considering each class with respect to the filtered test dataset for the chosen
outdoor area

Acc. IoU Mean BF Score

Foreground 0.99957 0.9877 0.99432

Background 0.99729 0.9972 0.99771
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Table 8 The confusion matrix related to the test carried out on the network after training with the filtered
dataset for the chosen outdoor area

Predicted Foreground Class Predicted Background Class

True Foreground Class 99.96 0.04345

True Background Class 0.2705 99.73

row), less accuracy was obtained in the case of Photoshop, particularly in the first panel
and the subject’s contours in the third panel. The fourth row shows the output obtained in
the case of Pix2Pix. A deterioration when using this model compared with the results of
our network can be observed, mostly in the first two Pix2Pix output masks, in which the
foreground is not completely identified or errors are made in the background. The bottom
panels of Fig. 10 provide the output masks for both Yolact evaluations. The Yolact net-
work trained with our dataset provided coarse segmentation masks, while Yolact-500 got
better masks from the second and third photos, although no people were detected in the
first photo.

All these tests show the effectiveness of the proposed work in terms of foreground and
background accuracy and quality of the segmentation mask.

7.4 Other applications

The output of our neural network can be used for other applications, such as image-matting.
In particular, a good trimap can be obtained from our segmentation mask. Most state-of-
the-art matting algorithms [10, 11, 23] require human intervention to generate the alpha
matte from the input image. The most common form of user interaction is the trimap
interface, where the user manually partitions the image into foreground, background, and
unknown regions [44]. Natural-image matting is usually problematic. User-specified strokes
or trimaps are used to sample foreground and background colors to make it tractable. Our
approach uses semantic segmentation that takes only an RGB image as input and gener-
ates a binary output quickly, often with a very accurate boundary. Therefore, our estimated
segmentation result could be used as a good initial trimap. The unknown regions could be
created with morphological operations such as erosion and dilation of foreground regions,
as shown in Fig. 11. The trimap (top right panel) was generated using morphological

Fig. 8 Results of the filtered test dataset for the chosen outdoor area. The top left panel shows the best results
for Mean Accuracy (99.9%), and the top right panel shows the best results for IoU (99.66%). The bottom left
panel shows the worst result for Mean Accuracy (96.6%), and the bottom right panel shows the worst result
for Mean IoU (97.8%). In these last two panels, a classification error related to foreground pixels can be seen
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Fig. 9 Results of real images, taken directly with a camera, querying the network after training with the
filtered dataset for the chosen outdoor area. There are no notable classification errors. The system is efficient
even when there are more people in the image, as shown in the top panel

operations: the unknown region, in gray, was obtained with erosion and dilation using a
disk-shaped structuring element with a radius of 20 pixels. The bottom panels show the
KNN (K-Nearest Neighbors) [10] and the KL-divergence (Kullback-Leibler) [29] output
using our trimap.

8 Conclusions

We aim to automatically segment people in videos using a deep convolutional neural net-
work. People and camera can move in a specif area, and no additional data is required.
The developed approach can support intelligent surveillance systems during the background
subtraction step for human segmentation.

Two case studies were defined: human segmentation in indoor and outdoor environ-
ments. The semantic segmentation problem was tackled by classifying pixels and assigning

Table 9 The metrics values calculated on the test dataset. We tested our approach, Pix2Pix, and Yolact trained
with our indoor scenes dataset

Global Acc. Mean Acc. Mean IoU Mean BF Score

Our Network 0.99778 0.99829 0.99267 0.9955

Pix2Pix 0.98579 0.9853 0.96827 0.96619

Yolact 0.99272 0.98597 0.97604 0.97534

The highest values are highlighted in bold
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Table 10 The metrics for each class considering the test dataset

Acc. IoU Mean BF Score

Our Network Foreground 0.99909 0.98805 0.99351

Background 0.99749 0.99728 0.9975

Pix2Pix Foreground 0.98389 0.95741 0.95616

Background 0.9867 0.97912 0.97623

Yolact Foreground 0.9753 0.96095 0.96511

Background 0.99664 0.99113 0.98558

Both Pix2Pix and Yolact were trained with our indoor scenes dataset

The highest values for the foreground class are highlighted in bold

them a specific meaning using the encoder-decoderr neural network. Our system identi-
fies pixels belonging to the background class and those belonging to the foreground class,
where the foreground is represented by the shape of a person in the image. The system
also proved to be efficient when a photo contains more than one person, as shown in the
top panel of Fig. 9. A critical issue that was tackled is the creation of a good training
dataset, one that is representative of the system and allows the network to generalize appro-
priately, avoiding underfitting or overfitting. A green screen was used as a determinant
to create datasets quickly and to easily extract labels by performing a binarization of the
matte versions. In this manner, we collected a lot of unique foreground shapes and accurate
segmentation masks. Images of the dataset were built by blending the foreground shapes
with background images, which were extracted from videos recorded in the area where
the camera could move. In this way, the neural network takes advantage of the knowledge
of that area. Various measures were used to avoid overfitting problems, such as balanc-
ing the final layer weights and using many different and unique foreground shapes. Since
no such good initial results were obtained, we realized some issues in the dataset creation
and addressed them. In particular, we conducted a study about high and low frequencies in
images and applied a nonlinear filter to smooth the edges of the shape to make our dataset
as uniform and real as possible. Subsequently, we tested our approach and carried out
quantitative and qualitative assessment of our network, comparing it with some interesting
approaches. Ultimately, our method is competitive and shows a good level of precision of the
segmentation mask.

Furthermore, our network output can be used as an initial step to solve image matting
problems: an accurate trimap can be generated quickly, starting from an RGB photo with
one or more people in the foreground. It must be taken in the chosen area for network
training, such as a room or an outdoor location.

Table 11 Comparison between our approach and Pix2Pix and Yolact networks trained with our dataset

Neural Network Architecture/Backbone Inference Time (s)

Our encoder–decoder 0.06

Pix2Pix U-Net 0.05

Yolact ResNet101-FPN 0.02

The third column presents the average inference time per image in seconds on the Titan Xp GPU card
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Table 12 The metrics calculated on a representative set of real photos captured in the indoor environment

Global Acc. Mean Acc. Mean IoU Mean BF Score

Our Network 0.99289 0.98649 0.96947 0.97509

Photoshop 0.99416 0.98982 0.97484 0.94339

Pix2Pix 0.97297 0.96365 0.90942 0.84006

Yolact–Our Train 0.9936 0.98349 0.9722 0.96061

Yolact-500 0.9623 0.86231 0.83671 0.88406

The highest values for each metric are highlighted in bold. Our network achieved the best value in the case
of the average BF score, while the difference between our other metrics values and the best ones is less or
equal to 0.5%

8.1 Limitations and future works

Despite the numerous advantages, there are some questions concerning the limitations of
our approach. The main problem is due to its use of deep learning, which requires a large
amount of data to obtain good results. This data must be as precise as possible to allow the
neural network to obtain a good level of generalization for certain behavior. Another prob-
lem concerns the precision of the segmentation when the foreground color is chromatically
similar to the background color, which makes it difficult to detect the edges of a shape.
Other limitations are due to reflections within a scene (for example, glasses, windows) and
motion blur (partially solvable by recording slow-motion video, from 120 fps) because the
neural network fails to classify pixels in such areas. We intend to continue the development
of our approach by increasing the dataset to obtain more accurate classification, by per-
forming the segmentation on high-resolution images [37, 65] and by solving the limitations
exposed in this section. Furthermore, our work is related to the chosen background area. A
possible future development is to generalize the dataset in such a way that the network is
independent of the type of background. At a later stage, this work could be used as an ini-
tial phase to solve the problem of human actions recognition in video surveillance systems.
Finally, it could be interesting to bring our work on embedded systems, making it faster and

Table 13 The metrics computed for each class concerning a representative set of real indoor photos

Acc. IoU Mean BF Score

Our Network Foreground 0.97784 0.94708 0.96487

Background 0.99514 0.99185 0.98531

Photoshop Foreground 0.98395 0.95637 0.91511

Background 0.99569 0.9933 0.97167

Pix2Pix Foreground 0.94985 0.85079 0.78263

Background 0.97745 0.96805 0.89749

Yolact–Our Train Foreground 0.96982 0.95173 0.94057

Background 0.99716 0.99267 0.98066

Yolact-500 Foreground 0.72714 0.71507 0.91648

Background 0.99747 0.95836 0.89818

The highest values for the foreground predictions are highlighted in bold
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Fig. 10 Results on real photos taken directly with a camera. Both the camera and people can move in the cho-
sen indoor area. The output masks obtained with our approach (second row) and the comparison algorithms
are shown

more efficient, for example, by exploiting the potential shown by the results of recent neural
network architectures.
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Fig. 11 The trimap generated through our network output. The top left panel shows. The network output was
used to obtain the trimap (top right panel), in which the unknown region was obtained through morphological
operations. It can be used as input of well-known matting algorithms, such as KNN and KL-divergence,
obtaining the last two images
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