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Aiming at investigating the hydrothermal circulation along the eastern flank of the Vulture volcano, along the outermost edge of the
southern Apennine fold-and-thrust belt (ftb), we studied the fossil hydrothermal alteration that mineralized a transtensional fault
that crosscuts volcanoclastic rocks in the Rapolla area. On the basis of structural, mineralogical, and fluid inclusion data, three main
stages of activity of the hydrothermal system are documented. Stage 1 was produced by the circulation of fluids having low-pH
conditions (pH≈ 3-4) and relatively high-SO4

2- activity, as testified by the hydrothermal alteration mainly carried out by the
alunite group minerals (particularly jarosite), which is typical of an advanced argillic alteration facies. Hydrothermal fluids were
characterized by a high temperature of about 200°-210°C. These hot fluids altered and mineralized the matrices of pyroclastic
rocks and sealed both burial-related and fault-related fracture networks. Later hydrothermal circulation (Stage 2) was recorded
by opal A-rich veins present both within and outside the fault zone. The fluids responsible of opal A precipitation were
characterized by lower temperature conditions, probably lower than 100°C. Current goethite mineralization takes place along
the main slip surfaces of the study high-angle fault zone due to low temperature (<30°C) underground water circulation. This
study highlights that a high-temperature hydrothermal system developed in the past within the transtensional fault zone of the
Rapolla area when a high thermal anomaly was present. If we take into account that this area is still affected by a heat flux
positive anomaly (90mW/m2), we may infer that it has the potentiality to be considered an interesting site for future
exploration devoted to the finding of medium-enthalpy geothermal resources at depth.

1. Introduction

Hydrothermal systems cause the redistribution of both
energy and mass in response to circulating H2O fluids and
form in response to thermal perturbations among which
the magma-induced thermal anomalies are the most frequent
[1]. A hydrothermal system is comprised of the following
components: a heat source, a permeable reservoir in which
fluids can flush and trigger an active convective circulation,
a recharge system, and an impermeable cover, respectively.

The rocks affected by a hydrothermal fluid circulation
undergo to a variety of alteration processes due to the insta-
bility of the primary mineralogical assemblages, which tend
to reequilibrate by forming new minerals stable under the
new conditions [2]. As a consequence, the different alteration
mineralogical assemblages are primarily controlled by the
physical-chemical conditions of the hydrothermal fluids.

High-temperature geothermal systems are quite common
in areas characterized by active extensional tectonic environ-
ments [3–5]. In the Central Mediterranean region, a very
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pronounced regional heat flow anomaly (>150mW/m2)
characterizes both the central and southern sectors of the
Tyrrhenian Sea and the thinned and stretched fold-and-
thrust belt exposed along the Tyrrhenian side of the central
and southern Apennines, Italy. There, thinning of the
lithosphere due to extensional tectonics is accompanied by
igneous processes; large-scale intrusion and extrusion phe-
nomena cause the formation of a positive regional anomaly,
which is locally greater than 400mW/m2 [3, 6]. Such a signif-
icant positive heat flow anomaly is associated with both
active and fossil hydrothermal systems, which localize in
the high- and medium-enthalpy geothermal fields of the
Tuscany, Latium, and Campania regions of Italy. Some of
them, the Larderello and Mt. Amiata geothermal fields, for
instance, have been exploited for power production since
the beginning of the 20th century.

In contrast, the eastern sector of both central and
southern Apennines is made up of several tectonostrati-
graphic units characterized by low values of heat flux
(~30mW/m2). There, the estimated temperature varies from
ca. 30°C, at 1000m below the earth surface, to ca. 60°C, at
depth of 3000m [6]. As a consequence, the occurrence of
hydrothermal activity in the eastern portion is rarely
reported and just limited to some low-temperature thermal
springs. The only significant thermal anomaly localizes in
the Vulture area, a Middle-Upper Pleistocene volcano whose
last episodes of activity took place about 130 kyr [7], with
values of heat flux up to 90mW/m2 [6]. In this work, we
report for the first time evidences of a fossil high-
temperature hydrothermal system located along the eastern
flanks of the Vulture volcano. The study site, positioned in
the vicinity of the Rapolla village of the Basilicata Region, lies
along the outermost edge of the southern Apennines. It pro-
vides a unique opportunity to investigate the interplay
between shallow-rooted faulting, which was associated with
very recent thrusting episodes, and high-temperature hydro-
thermal fluid circulations. The results might help to improve
our understanding of the modalities of fluid migration
through the upper crust at the frontal portion of active
fold-and-thrust belts, and it might represent a key knowledge
for a successful exploration and exploitation of geothermal
and mineral resources. In fact, integrated geological, struc-
tural, mineralogical, and geochemical investigations of either
active or fossil hydrothermal systems could be pivotal for the
assessment of the relationship between crustal structures and
potential geothermal resources [8–12].

2. Geological Setting

The study area is located along the outer front of the southern
Apennines fold-and-thrust (ftb), at the western margin of the
southernmost part of the Pliocene-Pleistocene in age, Bra-
dano Trough foredeep basin [13]. The southern Apennines
ftb is made up of NE-verging, rootless tectonic nappes of
Mesozoic-Tertiary sedimentary successions, which were
originally pertaining to the African-Adriatic margin, and
synorogenic top-thrust deposits [14–19]. During the Upper
Miocene-Early Pliocene times, the entire pile of tectonic
nappes overthrusted the Apulian Platform, which was

crosscut already by NW-SE to NNW-SSE and minor NE-
SW trending extensional faults associated with Cretaceous
tectonics and Plio-Quaternary foreland bulging and foreland
basin system development [20–25]. Contractional deforma-
tion of the whole southern Apennines orogenic wedge ended
during the Early Pleistocene and was followed by uplift and
exhumation [26–28]. During the Middle Pleistocene, the
alkaline potassic to ultrapotassic Vulture stratovolcano
formed at the outermost edge of the southern Apennines ftb
([7, 29–32] and reference therein; [33]). Activity of the Vul-
ture volcano was likely controlled by a N40°–50°E trending
lithospheric discontinuity, which formed in response of the
velocity variations that characterized the subduction-related
rollback of the Apulian Platform. In detail, the Vulture
volcano ismade up of lavas and pyroclastics of tephra-phono-
litic, phonofoiditic, and foiditic compositions, whereas melili-
tites and carbonatites are subordinate. Genesis of the Vulture
volcano is still unclear, even though an OIB-type mantle
source is inferred [7].

At the peripheral sectors of the Vulture volcano, pre-,
syn-, and postvolcanic fluviolacustrine sedimentary deposits
of the Pliocene and Pleistocene age crop out. Among these,
the Venosa basin is located along the northeastern edge of
the Vulture volcano [34], and it includes the fluviolacustrine
deposits of the Middle Pleistocene age (Figure 1). High-angle
fractures often form orthogonal sets with a varying attitude
all around the flanks of the Vulture volcano (Figure 1)
and were interpreted as due to local stress fields associated
with the Vulture-related bulging [35–37]. However, main
WNW-ESE to NW-SE striking fracture sets are docu-
mented throughout the whole volcanic edifice (cf. rose dia-
grams in Figure 1) and quite subparallel to the present
regional σhmax of southern Italy [38].

The stratigraphic setting of the eastern Vulture area is
reported by Petrullo et al. [24], who documented pro-
nounced lateral variations of the Cenozoic mixed
carbonate-terrigeneous formations topping the Mesozoic
carbonates of the Apulian Platform. Such a geological set-
ting was interpreted as due to Eocene-to-Miocene in age,
strike-slip, and extensional tectonics, which caused the for-
mation of NW-SE, N-S, and NE-SW striking high-angle
fault sets. The tectonic setting of the study area was inferred
from well logs and seismic profiles downloaded from the
VIDEPI website (Figures 2 and 3). Well data were reinter-
preted adopting a consistent stratigraphic scheme based
on fossil content and lithology. The original seismic pro-
files, downloaded from the VIDEPI website in raster for-
mat, were also reinterpreted and then converted into
SEGY files, imported into the Move™ software, and then
digitized (cf. [24]).

Focusing on the Plio-Quaternary tectonic evolution of
the eastern Vulture area, NE-verging thrusting of a tertiary
allochthonous complex on the topmost infill of the Bradano
Trough occurred by means of a sole thrust that localized on
top of the Pliocene clay units (Figure 2(b)). Low-angle splay
thrust faults departing form this sole thrust were docu-
mented by Sinisi et al. [37]. The allochthonous complex
was not profoundly affected by the latest stages of activity
of the NW-SE high-angle faults (Figure 2(b)), whereas both
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NE-SW and N-S fault sets were mainly active prior to the for-
mation of the Bradano Trough (Figure 2(c)). The eastward
lateral termination of the allochthonous complex is nicely
shown by the well log correlation reported in Figure 3.

3. Sampling and Methods

Selected key outcrops were studied in detail by means of inte-
grated field and laboratory analyses. The field survey was
aimed at deciphering the geological setting and fault architec-
ture exposed along the artificial outcrops of the Toppo
D’Aguzzo Quarry, which occurs in the vicinity of the Rapolla
village of Basilicata (Italy). In particular, field structural anal-
yses focused on the nature, distribution, and relative timing
of the formation of the structural elements exposed along
the walls and pavements of the aforementioned quarry.

To determine the mineralogical composition of veins and
pipe fluid conduit infill, 44 samples were collected at 3
different stations (cf. Figure 4) and then analyzed by X-ray
diffraction (XRD) analysis using a Rigaku Miniflex powder
diffractometer equipped with a sample spinner, with Cu-Kα
radiation, 30 kV, and 15mA. Since most of the samples
showed a zonation with different colors, each of them was
investigated to define the order and the evolution of the

different mineral phases over time. With this aim, selected
samples were also analyzed by optical microscopy (OM)
using an optical polarizing microscope. Scanning electron
microscopy (SEM) investigation was also performed using a
PHILIPS XL30 ESEM operating at a beam current of 1μA
and an accelerating voltage of 15 kV.

Doubly polished thin sections (100-300μm thick) were
prepared for petrography and microthermometric determi-
nations of fluid inclusions. Measurements on fluid inclusions
were made using a Linkam THMS 600 heating-freezing stage.
The accuracy of measurements is estimated at ±2°C at 398°C
controlled by the melting point of K2Cr2O7 and ±0.1°C at 0°C
and ±0.2°C at -56.6°C controlled by using certified pure water
and CO2-bearing synthetic fluid inclusions (Synthetic Fluid
Inclusion Reference Set, Bubbles Inc., USA).

4. Results

4.1. Geological and Structural Analyses. In the Rapolla area,
the structural grain is provided by NE-SW high-angle faults
(Figure 4). The NE-striking faults crosscut both gravel and
coeval tuff deposits and were interpreted as tear faults of
the NE-verging splay thrust faults displacing the allochtho-
nous complex on the foredeep deposits [37]. The NE-SW
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trending, SE dipping normal fault zone exposed at the Toppo
D’Aguzzo Quarry in the vicinity of the Rapolla village of
Basilicata, is characterized by an average throw of 25m. It
includes multiple slip surfaces coated with kinematic
markers such as calcite fibers, calcite steps, and abrasive
striae, which are all consistent with pure extensional kine-
matics. The fault core, as thick as several cm, consists of
grain- and matrix-supported poorly cohesive cataclasites
and major slip surfaces (Figure 5(a)). Many subsidiary syn-
thetic and antithetic slip surfaces localize in the vicinity of
the fault core (inset of Figure 5(a)). Away from the main slip
surfaces, the weakly fractured footwall fault damage zone is
crosscut by N-S and NE-SW striking, subvertical veins
(Figure 5(b)), and minor E-W veins (Figure 5(c)). Subsidiary
NE-SW normal faults are also present throughout the whole
footwall fault damage zone and are characterized by small
vertical fractures that mainly localize at their mode-II exten-
sional quadrants (Figure 5(d)). Such a structural architecture

is hence consistent with predominant opening-mode mecha-
nisms and dilation of the whole high angle, NE-SW trending
fault zone (cf. [37]), similar to other normal fault zones in
carbonates [39, 40] and siliciclastic rocks [41]. Late NW-SE
joints abutting all the aforementioned fracture sets are also
documented within the footwall fault damage zone
(Figure 5(e)).

4.2. Mineralogical and Petrographic Analyses. Themineralog-
ical analyses were performed only on the samples collected
from site 1 to 3 represented by pyroclastics of the Foggianello
and Barile synthems, respectively, within and outside the
study NE-SW trending, high-angle fault zone. Figure 6 shows
the OM and SEM images and the XRD patterns of a repre-
sentative sample collected from site 3 (cf. Figure 4), within
the volcaniclastic rocks of the Barile synthem. In detail, a
dark host rock (Figure 6(a)) reveals the presence of abundant
clinopyroxene and feldspars (plagioclase and k-feldspars) by
means of optical microscopy analysis (Figure 6(b)). This host
rock is crosscut by a 1 cm thick, whitish, N-S trending silica-
rich vein that includes some lithic fragments derived from
the flanking microconglomerates (Figure 6(c)). SEM and
EDX data (Figure 6(d)) support the aforementioned inter-
pretation. XRD data performed on the dark host rock also
indicates the presence of micas, pyroxene, and feldspars,
whereas the whitish vein is almost exclusively made up of
opal A (Figure 6(e)).

A representative hand specimen collected from site 1 (cf.
Figure 4) is shown in Figure 7. There, the weakly fractured
yellowish host rock, which pertains to the Foggianello
synthem, is crosscut by a whitish NE-SW trending vein
(Figure 7(a)). Optical microscopy analyses are consistent
with the presence of quartz, feldspars, and strongly altered
phenocrysts of pyroxenes in the host rock (Figure 7(b)).
Results of SEM analyses point out to crystals of quartz char-
acterized by a rim of pervasive jarosite and opal, which are
dominant in the whitish vein (Figure 7(c)). Goethite is also
present along the vein margin. X-ray profiles confirm that
host rock is characterized by both jarosite and quartz min-
erals besides a large amount of opal A (Figure 7(d)).

Figure 8(a) displays a representative hand specimen
collected from site 2 (cf. Figure 4), within the highly fractured
pyroclastic rocks of the fault damage zone, pertaining to the
Foggianello synthem. Results of optical microscopy analysis
indicate the presence of quartz, feldspars, and rare clinopyrox-
enes in the host rock. The brown veins, ca. NE-SW trending,
are characterized by iron oxide-hydroxide (Figure 8(b)),
which is consistent with the presence of goethite within the
host rock, together with both jarosite and opal A
(Figure 8(c)). Isolated feldspar grains are also identifiedwithin
the host rock. In detail, the SEM image (Figure 8(d)) shows a
crystal of quartz with a rim of jarosite (EDX spectrum) and
pervasive opal A. XRD performed on both host rocks and
veins confirms the aforementioned results (Figure 8(e)). In
fact, X-ray patterns of the host rock delineate of a large
amount of jarosite and, subordinately quartz. The veins
show a broad band from 15 to 32° 2θ indicating the presence
of opal A.
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Figure 4: Geological map based on Google earth image of the
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investigated outcrops for structural analysis are reported.

6 Geofluids



4.3. Fluid Inclusion Analysis. Fluid inclusions hosted within
quartz crystals were classified according to phase types at
room temperature. All descriptions refer to fluid inclusion
assemblages (FIAs), which were strictly defined as fluid
inclusion vacuoles along the same growth zone in a single
crystal or along a single healed fracture that formed at about
the same time or during the same set of P-T conditions [42].
The observed inclusions occur as trails that crosscut the
quartz crystals (Figures 9(a) and 9(b)) and were assigned to
a probable secondary origin according to the criteria of Roed-
der [43] and Goldstein [44]. These are small in size (<15μm,
most of them <10μm), and part of them shows an ellipsoidal
morphology whereas the others have an irregular shape
(Figures 9(a) and 9(b)). Two types of inclusions were identi-
fied in the examined samples by microscopic observation at
room temperature: Type 1 two-phase (liquid + vapor) inclu-
sions (L + V), liquid-rich at room temperature; Type 2 liquid
only (L) inclusions.

Type 1 (L + V) inclusions comprise about 80% of the
fluid inclusion population. They are characterized by a scarce
variability in the vapor/liquid ratio, with the vapor bubble
that occupies around 10-20% of the total volume at room
temperatures (Figure 9(a)). Vapor bubble often vibrates.
Type 2 (L) inclusions mainly occur in the planar groups
along variably healed fracture planes (Figure 9(b)). They
are very small in size (<5μm in diameter). Due to the small
size of the inclusions, the petrographic relationships between
the two populations of fluid inclusions are not clear; as a con-
sequence, we cannot make an unequivocal interpretation of

the timing of entrapment only based on microscopic obser-
vation at room temperature.

Microthermometric analyses were conducted on Type 1
(L + V) fluid inclusions. Results of this investigation are
reported in Figure 9(c). Upon heating, total homogenization
(Th) of these inclusions was observed through the disappear-
ance of vapor in the liquid phase at temperatures ranging
between 167 and 261°C with a mode around 200°C
(Figure 9(c)). The small size of the inclusions hindered the
observation of initial ice melting, and also final ice melting
(Tmi) was possible to be observed only in very few inclusions.
The Tmi values are around -1.5°C, corresponding to salinity
of about 2.6 NaCl wt.%equiv. calculated according to Bodnar
[45]. However, the scarce statistics does not allow having
great confidence concerning this value of salinity.

5. Discussion

The results of integrated geological, structural, mineralogical,
and fluid inclusion analyses of a hydrothermally altered high-
angle fault zone exposed in the vicinity of the Rapolla village,
along the eastern flank of the Vulture volcano, are consistent
with the occurrence of a relatively high-temperature, fossil,
hydrothermal system whose temperature and composition
varied with time. The alteration mineralogical paragenesis
associated with the hydrothermal veins and fluid inclusion
data suggest that the earliest fluids that circulated in the sys-
tem (Stage 1) were characterized by temperature around
200°-210°C and low-pH conditions (pH < 4). Individual
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Figure 5: Main structural elements present along the NE-SE fault zone exposed at the Toppo D’Aguzzo quarry. (a) Cross-sectional view of the
fault zone. Both synthetic and antithetic slip surfaces located at the hanging wall of the main slip surface are reported in the inset. (b)
Subvertical N-S striking veins forming an eye structure. (c) High-angle E-W striking vein abutting against a N-S vein. (d) The pyroclastic
rocks exposed within the footwall damage zone are crosscut by NE-SW striking fractures localized at the dilational quadrants of sheared
parental slip surfaces. See text for further details. (e) Plumose structure displayed along a NW-SE joint.
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hand specimens collected from the pyroclastics pertaining to
the Foggianello synthem (cf. Sections 4.1 and 4.2) point out
to the formation of an advanced argillic mineralogical assem-
blage. The alteration mineralogical assemblage is dominated
by the alunite group minerals (mainly jarosite), which are
stable under low-pH conditions (pH < 4) and high-SO4

2-

ion activity [46]. Jarosite also precipitated within the cross-
orthogonal N-S and E-W striking fracture sets, and in the
fault-related NE-SW striking fracture. Development of this

high-temperature hydrothermal system required that a sig-
nificant thermal anomaly, able to efficiently supply heat to
the overlying pyroclastic rocks, was established in the area
at the time of jarosite precipitation. The heat source could
be envisaged in a shallow magma chamber connected to the
development of the Vulture volcano. The occurrence of a rel-
atively shallow magma chamber during emplacement of the
Fara d’Olivo ignimbrite, during the Middle Pleistocene, is
strongly suggested by the fact that an impressive caldera
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Figure 6: (a) Picture of representative sample (dark host rock and white vein); (b) OM observation of host rock. Kfs: k-feldspar; Cpx:
clinopyroxene; Pl: plagioclase; Lt: lithic fragments. (c) OM observation vein; (d) SEM image and EDX spectra of opal; (e) XRD diffraction
profiles of the host rock and vein.
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depression formed in response to the big explosive eruption
that spread over a large area of ignimbritic deposits and emp-
tied the magma chamber ([34] and references therein). It is
known that calderas are the result of the collapse of rocks that
overlies shallow magma chambers, which takes place after
the sudden withdrawal of magma due to an explosive erup-
tion [47, 48].

Both acidic conditions of the early hydrothermal fluids
and the inferred high-SO4

2- ion activity were likely related
to the input of deep H2S from organic substances entrapped
within the Apulian Platform and/or from degassing from the
Vulture magma chamber. H2S condensed in oxygenated
hydrothermal fluids producing H2SO4 (equation 1), which

lowered the pH conditions and gave rise to the advanced
argillic mineralogical assemblage.

H2S + 2O2 = H2SO4 1

A drop of temperature and acidity of the fluids, with opal
A precipitation (Stage 2) both outside and within the NE-SW
trending high-angle fault zone, followed the aforementioned
high-temperature and low-pH hydrothermal activity stage
(Stage 1). Outside the fault zone, within the volcaniclastic
rocks of the Barile synthem, opal A precipitated within both
N-S and E-W cross-orthogonal joint sets (cf. Figure 5).
Differently, within the Fara d’Olivo pyroclastics of the
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Foggianello synthem forming the footwall damage zone of
the study fault zone, opal A precipitated within N-S, E-W,
and NE-SW trending high-angle joints and sheared joints
(cf. Figure 5). Opal A precipitated as a consequence of a drop
of temperature of the hydrothermal fluids, which likely
reduced the solubility of silica in solution. Hence, opal A pre-
cipitation during Stage 2 postdated crystallization of jarosite
both within the fault-related joint and sheared joint sets (cf.
Figure 5). We may hypothesize that the observed secondary
fluid inclusion assemblage, which is made up of very small
monophase inclusions (Type 2, Figure 9(b)), is representative
of the hydrothermal fluids that circulated during Stage 2 and
hence consistent with temperatures lower than 100°C. If so,
the drop of temperature that characterized the hydrothermal
fluids between Stage 1 and Stage 2 is in the order of about
100°C. Such a significant drop of temperature could be there-
fore related to the cooling of a shallowmagma chamber of the
Vulture volcano ([34] and references therein) and to the pro-
gressive deepening of the magma source [36] within an
evolved, deeply rooted, NE-SW trending, high-angle trans-
tensional fault zone [37].

The latest evolution of the aforementioned hydrothermal
system was characterized by the goethite mineralization

along the main slip surface (Stage 3). This mineralization
partly developed as supergene alteration of jarosite and was
related to the circulation of CO2-bearing meteoric water at
low temperatures (< 30°C) through the main structural
discontinuities under neutral to weakly acidic conditions
(pH = 6-7). Occurrence of travertine deposits in the Rapolla
area [37] can represent the surficial expression of the circula-
tion of these low-temperature fluids, which could be consid-
ered, to some extent, analogous to those present in the local
Fe-rich aquifer of the Vulture volcano [49].

High-temperature hydrothermal systems in the frontal
sector of recently active fold-and-thrust belts are rarely
observed, because a low amount of heat flow characterizes
these regions [50, 51]. The particular conditions that led to
the development of a high-temperature hydrothermal system
in the Rapolla area, where the lithosphere thickness is around
90–100 km [28], must just be sought in the occurrence of the
Vulture volcano, which formed in the frontal sector of the
Apennines chain, not far from the western margin of the
Apulia foreland. The origin of the Vulture volcano is related
to the unusual mantle dynamic that has occurred after cessa-
tion of collision between the Adria–Africa and Europe plates
[52]. This unusual feature allows considering the Rapolla
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Figure 9: (a) Microphotograph of secondary trails of Type 1 two-phase liquid-rich (L + V) fluid inclusions; (b) microphotograph of
secondary trails of Type 2 liquid only (L) fluid inclusions; (c) histogram of the homogenization temperatures of the studied Type 1 fluid
inclusions. N =number of measurements.
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area as a very rare case of a high-temperature hydrothermal
system developed at the very front of an orogen.

Presently, the only evidence of a geothermal system in the
area is represented by saline waters at temperatures of 35°C
that have been discovered during drilling of some wells in
the Bradano foredeep (Forestella and Montemilone wells)
at a depth of about 600m [53]. Waters circulate within a
horst formed by fractured Cretaceous carbonates of the Apu-
lian Platform, located about 15 km East of the study area,
sealed by Pleistocene clay. This finding, together with the
heat flux anomaly reported for the Vulture area [6], point
out the possible presence of a low- to medium-enthalpy geo-
thermal system.

6. Conclusions

The results of this integrated geostructural, mineralogical,
and fluid inclusion study take in evidences that high-
temperature (ca. 200-210°C) hydrothermal circulation
occurred at quite shallow depths during burial diagenesis of
pyroclasts pertaining to the Middle Pleistocene Foggianello
and Barile synthems, Vulture volcano, southern Italy. There,
at the outermost edge of the southern Apennine ftb, the
hydrothermal system was due to a short-time living, high
positive thermal anomaly that localized along the eastern
flanks of the Vulture volcano. Three main stages of activity
of the hydrothermal system were documented. Stage 1 pro-
duced the circulation of fluids having low-pH conditions
(pH < 3-4) and relatively high-SO4

2- activity, as testified by
the main hydrothermal mineralogical assemblage formed
by jarosite and minor silica, typical of advanced argillic alter-
ation facies. Hydrothermal fluids were characterized by high
temperature around 200°-210°C. These hot fluids altered and
mineralized the matrices of pyroclastic rocks and sealed both
burial-related (N-S and E-W striking) and fault-related (NE-
SW striking) fracture networks. Later hydrothermal circula-
tion (Stage 2) was recorded by opal A-rich veins, which are
present both inside and outside the transtensional fault zone.
The fluids responsible of the second stage of development of
the Rapolla area hydrothermal system were characterized by
temperature conditions probably lower than 100°C. Cur-
rently, goethite mineralization occurs along the main slip
surfaces of the study high-angle fault zone, which is due to
the circulation of meteoric-derived fluids pertaining to the
local aquifer. This study highlights that a high-temperature
hydrothermal system developed in the past in the Rapolla
area within the transtensional fault zone, when a high
thermal anomaly was present. If we take into account that
this area is still affected by a heat flux positive anomaly
(90mW/m2), we may infer that it has the potentiality to
be considered an interesting site for future exploration
devoted to the finding of medium-enthalpy geothermal
resources at depth.
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