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Abstract

In this paper we present a projection method for linear second kind Volterra integral equations with
kernels having weak diagonal and/or boundary singularities of algebraic type. The proposed approach
is based on a specific optimal interpolation process and a smoothing transformation. The convergence
of the method is proved in suitable spaces of functions, equipped with the uniform norm. Several tests
show the accuracy of the presented method.

1 Introduction
Let us consider the following Volterra integral equation

f (y) +

∫ y

−1

k(x , y) f (x)(y − x)α(1+ x)βd x = g(y), y ∈ I ≡ [−1, 1], (1)

where k and g are given functions defined on ∆=
�

(x , y) :−1< x ≤ y ≤ 1
	

and I , respectively, f is the unknown solution and
α,β >−1.

The case α= β = 0, which is when the kernel is a smooth function, has been extensively investigated and today there are
several numerical methods which are able to approximate the solution of (1), which in this case turns out to be smooth. Among
them we mention the iterated collocation methods presented in [3, 15, 22, 27] and the spectral collocation methods proposed in
[12, 24, 26]. However, for a complete bibliography, we refer to [4, Chapter 2] and the reference included there.

The case α ∈ (−1,0) and β = 0 is more delicate to treat, since the kernel is singular along the boundary as y → x . The
solution inherits the weak singularity at x = −1, even when the right-hand side is a smooth function (see, for instance, ([4,
Chapter 6] and [20]). Nevertheless, there is a wide range of literature concerning numerical methods to approximate the solution
of (1) (see, for instance, [2, 4, 5, 6, 8, 7, 14, 19]).

In particular, in [5] the authors consider the corresponding equation (1) defined in [0, 1] with α ∈ (−1, 0) and β = 0. Their
starting point is the behavior of the unknown function f near the point x = 0. Indeed, under the assumption that g and k have
m continuous derivatives, then f (m)(y)∼ y1−m−α. Taking into account that behavior, they regularize the equation and get a new
one in which the unknown solution is smoother than the original one. Then, they propose a Jacobi-collocation method for the
regularized equation and give a rigorous analysis of the error in spaces equipped with the uniform and the L2 norm.

In this paper we deal with a more general case: the situation where the kernel can be singular along the diagonal as y → x
and has a singularity along the side y =−1 as y →−1. Such equations have already been investigated, essentially by means of
piecewise approximations. For instance, in [13] the authors propose a piecewise polynomial collocation method on a mildly
graded or uniform grid after regularizing the equation by a smoothing transformation.

First we develop a projection method based on an interpolation process with optimal Lebesgue constants. Such a process
is based on the well-known “additional nodes method" [16] and allows us to prove the stability and the convergence of the
method in spaces equipped with uniform norm. Once the error is stated, we introduce a smoothing transformation to improve
the order of convergence. This is a typical approach which has been already applied in several contexts [11, 19, 21] and allow us
to improve the smoothness properties of the solution and consequently the error. The aforesaid projection method is then applied
to the regularized equation and a new convergence estimate is derived. Such an estimate furnishes an error which depends on
the smoothing parameter and improves those given in [5].

We want to emphasize that in this paper we consider Volterra integral equations into Zygmund-type spaces (see (2)), which
the unique solution naturally belongs to, by virtue of its pathology. Zygmund-type spaces are the right environment for studying
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functions with algebraic singularities at ±1 and, if conducted in these functional spaces, a theoretical analysis of the method
provides accurate errors of approximation. This adaptability is well known [9]. For instance, let us consider the function
f (x) = (x + 1)5/2. If we look at the space of functions having p continuous derivatives C p then f ∈ C2 and the error of best
polynomial approximation is of the order O(m−2). However, if we look at f as an element of the Zygmund-type space Zλ, then
f ∈ Z5 and the error of best polynomial approximation goes to zero as m−5 (see estimate (6)).

The outline of the paper is as follows. In Section 2 we introduce some notations, functional spaces and the optimal Lagrange
interpolation process we will use in the numerical method described in Section 3. In Section 4 we show by some numerical tests
the accuracy of the procedure and in Section 5 we give the proofs of our main results.

2 Preliminaries

2.1 Notation

Throughout the whole paper we will denote by C a positive constant having different meanings in different formulas. We will
write C 6= C(a, b, . . .) to say that C is a positive constant independent of the parameters a, b, . . ., and C = C(a, b, . . .) to say that
C depends on a, b, . . .. If A, B > 0 are quantities depending on some parameters, we will write A∼ B, if there exists a constant
C 6= C(A, B) such that C−1B ≤ A≤ CB.

Moreover, Pm will denote the space of the algebraic polynomials of degree at most m and for a bivariate function k(x , y) the
notation kx (or ky) will be adopted to regard k as function of the only variable y (or x).

2.2 Function Spaces

Let us denote by C0(A) the space of all continuous functions in any interval A⊂ R equipped with the norm

‖ f ‖A = sup
x∈A
| f (x)|

and by C p(A), p ∈ N the space of functions having the p-th continuous derivative in A. If A= [−1, 1] we set C0 := C0([−1, 1]),
C p := C p([−1, 1]), and

‖ f ‖∞ := sup
|x |≤1
| f (x)|.

For any f ∈ C0 and for an integer k ≥ 1, we denote by Ωk
ϕ
( f , t) the main part of the ϕ-modulus of smoothness [9] defined as

Ωk
ϕ
( f , t) = sup

0<τ≤t
‖∆k

τϕ
f ‖Ikτ , Ikτ = [−1+ (2kτ)2, 1− (2kτ)2],

with

∆k
τϕ

f (x) =
k
∑

i=0

(−1)i
�

k

i

�

f
�

x +
τϕ(x)

2
(k− 2i)

�

, ϕ(x) =
p

1− x2.

By means of Ωk
ϕ( f , t) it is possible to define the Zygmund-type space of order λ ∈ R+ with 0< λ < k as

Zλ,k =

(

f ∈ C0 : sup
t>0

Ωk
ϕ
( f , t)

tλ
<∞

)

, (2)

equipped with the norm

‖ f ‖Zλ,k
:= ‖ f ‖∞ + sup

t>0

Ωk
ϕ( f , t)

tλ
.

Denoting by Em( f )∞ = inf
Pm∈Pm

‖ f − Pm‖∞ the error of best polynomial approximation of a given function f ∈ C0, the following

equivalence holds true [10, Theorem 2.1]

sup
t>0

Ωk
ϕ
( f , t)

tλ
∼ sup

i≥0
(1+ i)λEi( f )∞, (3)

where the constants in “∼” depend on λ. By (3), it follows that the definition of the Zygmund spaces in (2) is independent of
k > λ, enabling to set Zλ := Zλ,k.

When λ= r is a positive integer, denoting by AC(−1, 1) the set of all the functions which are absolutely continuous on every
closed subset of (−1, 1), let

Wr =
¦

f ∈ C0 : f (r−1) ∈ AC(−1, 1) ‖ f (r)ϕr‖∞ <∞
©

,

be the Sobolev space of order r, endowed with the norm

‖ f ‖Wr
= ‖ f ‖∞ + ‖ f (r)ϕr‖∞.

Let us note that
Wbλc+1 ⊂ Zλ ⊂Wbλc

bλc being the smallest integer greater than or equal toλ>0 .
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To estimate the error of best polynomial approximation, let us recall the weaker version of the Jackson Theorem [9, Theorem
8.2.1]

Em( f )∞ ≤ C
∫

1
m

0

Ωk
ϕ( f , t)

t
d t, C 6= C(m, f ), (4)

and the estimate [16, (2.5.13)]
Ωk
ϕ( f , t)≤ C tk sup

0<h≤t
‖ f (k)ϕk‖Ikh

, C 6= C(t, f ). (5)

In particular, the following Favard inequality [9] holds ∀ f ∈ Zλ,

Em( f )∞ ≤
C

mλ
‖ f ‖Zλ , C 6= C(m, f ). (6)

2.3 Optimal Lagrange interpolation processes

Denoting by vα,β(x) = (1− x)α(1+ x)β the Jacobi weight of parameters α,β > −1, let {pm(vα,β)}∞m=0 be the sequence of the
corresponding orthonormal polynomials having positive leading coefficients and let xα,β

m,1 < xα,β
m,2 < · · ·< xα,β

m,m be the zeros of the
m-th polynomial pm(vα,β ).

For a given function f ∈ C0, let Lα,β
m ( f ) ∈ Pm−1 be the Lagrange polynomial interpolating f at the zeros of pm(vα,β ), i.e.

Lα,β
m ( f , x) =

m
∑

i=1

`
α,β
m,i (x) f (x

α,β
m,i ), `

α,β
m,i (x) =

pm(vα,β , x)

p′m(v
α,β , xα,β

m,i )(x − xα,β
m,i )

.

Denoting by ‖Lα,β
m ‖ the m-th Lebesgue constant, i. e. the norm of the operator Lα,β

m : C0→ C0

‖Lα,β
m ‖= sup

‖ f ‖=1
‖Lα,β

m ( f )‖∞,

it is well known (see, for instance, [16, Chapter 4]) that the sequence {‖Lα,β
m ‖}m plays an essential role in the study of the

convergence of the Lagrange polynomial, since

‖ f −Lα,β
m ( f )‖∞ ≤ (1+ ‖L

α,β
m ‖)Em−1( f )∞.

According to the Faber theorem, it is ‖Lα,β
m ‖ ≥

1
12

log m and, in view of a classical result by Szëgo, the following behaviour arises

‖Lα,β
m ‖ ∼

(

log m, −1< α,β ≤− 1
2

mmax{α,β}+ 1
2 , otherwise.

This means that the Lebesgue constants of Lagrange interpolating polynomial based on the zeros of Legendre polynomials
(α = β = 0) or second kind Chebyschev polynomials (α = β = 1

2
), diverge algebraically as m→∞. On the other hand, it is

possible to modify the above interpolation processes by using the additional nodes method (see e.g. [16, p. 252]) to obtain
corresponding Lebesgue constants behaving like log m, also in the case α >−1/2 or β >−1/2. The additional nodes method
was extensively used by several authors and in different contexts, and nowadays is referred to as the ”additional nodes method”
(see [23], [16] and the references therein for instance [18].) To describe the modified process, let

y j =−1+ j
1+ xα,β

m,1

1+ s
, j = 1, 2, . . . , s,

t j = xα,β
m,1 + j

1− xα,β
m,m

1+ r
, j = 1, 2, . . . , r,

be the additional nodes and define the polynomials

As(x) := Am,s(x) =
s
∏

j=1

(x − y j), Br(x) := Bm,r(x) =
r
∏

j=1

(x − t j).

Then, let us denote by Lα,β
m,r,s( f ) ∈ Pm+r+s−1 the Lagrange polynomial interpolating f ∈ C0 at the zeros of Qm+r+s := As pα,β

m Br .
In the case r = s = 0 it is Lα,β

m,r,s( f )≡ Lα,β
m ( f ).

Defining

zα,β
i :=







yi , i = 1, 2, ..., s
xα,β

m,i−s, i = s+ 1, ..., s+m
t i−s−m, i = s+m+ 1, ..., s+m+ r

(7)

and

lα,β
j (x) =

m+r+s
∏

p=1
p 6= j

(x − zα,β
p )

(zα,β
j − zα,β

p )
,
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the polynomial Lα,β
m,r,s( f ) can be written in the form

Lα,β
m,r,s( f , x) =

m+r+s
∑

j=1

lα,β
j (x) f (z

α,β
j ). (8)

Next theorem states the conditions under which the sequence {‖Lα,β
m,r,s‖}m behaves like log m [16, p.254]:

Theorem 2.1. Let α,β >−1 and r, s non negative integers. Then,

sup
‖ f ‖∞=1

‖Lα,β
m,r,s( f )‖∞ ∼ log m

if and only if the parameters α,β , r, s satisfy the relations

α

2
+

1

4
≤ r <

α

2
+

5

4
,

β

2
+

1

4
≤ s <

β

2
+

5

4
. (9)

We remark that under the assumption of Theorem 2.1, for each f ∈ Zλ we have

‖ f − Lα,β
m,r,s( f )‖∞ ≤ C

log m

mλ
‖ f ‖Zλ , (10)

where C 6= C(m, f ). Denoting by L1 the usual space of measurable functions in [−1, 1] endowed with the norm ‖ f ‖1 =
∫ 1

−1

| f (x)|d x <∞, we can state the following result, useful in different contexts.

Theorem 2.2. Let r, s ∈ N, α,β >−1 and u= vγ,δ with γ,δ >−1. If

uv r,s

p

vα,βϕ
∈ L1,

p

vα,βϕ

v r,s ∈ L1, (11)

then for any f ∈ C0 we have
‖Lα,β

m,r,s( f )u‖1 ≤ C‖ f ‖∞
where C 6= C(m, f ).

Let us note that in the case r = s = 0 the previous theorem was proved in [17].

3 Main results
Let us consider equation (1). By the change of variable

x = γ(t, y) =
1+ t

2
y +

t − 1

2
,

the interval [−1, y] is mapped into [−1, 1], so that equation (1) can be rewritten as follows

f (y) +µ

∫ 1

−1

k̂(t, y) f (γ(t, y)) vα,β (t)d t = g(y), (12)

where µ= 2−(α+β+1) and
k̂(t, y) = (1+ y)α+β+1k(γ(t, y), y). (13)

Setting

(K f )(y) = µ

∫ 1

−1

k̂(t, y) f (γ(t, y)) vα,β (t)d t, (14)

next proposition states conditions under which the operator K is compact in some subspaces of C0.

Proposition 3.1. Assuming that
sup
|x |≤1
‖kx v0,α+β+1‖Zλ <∞, (15)

we have
‖K f ‖∞ ≤ C‖ f ‖∞, ∀ f ∈ C0, C 6= C( f ) (16)

and

lim
m

�

sup
f ∈Zλ

Em(K f )∞

�

= 0. (17)

By (17) it follows that K : Zλ → C0 is a compact operator (see, for instance, [25, p.93]). Therefore, by the Fredholm
Alternative Theorem, we can conclude that for any given function g ∈ Zλ, the equation (1) admits a unique solution f ∗ ∈ Zλ.
Consequently, we can state the following existence and uniqueness theorem.

Theorem 3.2. Equation (1) admits a unique solution f ∗ ∈ Zλ, for any given function g ∈ Zλ
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3.1 The collocation method

In this section we propose a collocation method obtained by projecting the equation (12) on the finite dimensional space Pm+r+s−1
by means of the Lagrange operator Lα,β

m,r,s defined in (8).
To this end we define the polynomial sequences {gm}m and {Km f }m as

gm = Lα,β
m,r,s(g) (18)

and
(Km f ) = Lα,β

m,r,s(K
∗
m f ), (19)

where

(K∗m f )(y) = µ

∫ 1

−1

Lα,β
m

�

�

Lα,β
m,r,s(k̂y) f (γ(·, y))

�

, x
�

vα,β (x)d x (20)

= µ
m
∑

ν=1

λα,β
m,ν Lα,β

m,r,s(k̂y , xα,β
m,ν) f (γ(xα,β

m,ν , y)) (21)

= µ
m
∑

ν=1

λα,β
m,ν k̂(xα,β

m,ν , y) f (γ(xα,β
m,ν , y)), (22)

{λα,β
m,ν}

m
ν=1 being the Christoffel numbers with respect to vα,β .

Let us note that the equality (21) holds, since the m-th Gauss rule we applied to the integral in (20), is exact for polynomials
in P2m−1. Moreover, let us also point out that setting {zi := zα,β

i }
m+r+s
i=1 with zα,β

i given in (7), and {γi(x) = γ(x , zi)}m+r+s
i=1 , one has

(K∗m f )(zi) = µ
m
∑

ν=1

λα,β
m,ν k̂(xα,β

m,ν , zi) f (γi(x
α,β
m,ν)).

Now let us consider the following finite dimensional equation

fm(y) +µ
m+r+s
∑

i=1

lα,β
i (y)

m
∑

ν=1

λα,β
m,ν k̂(xα,β

m,ν , zi) fm(γi(x
α,β
m,ν)) = gm(y), (23)

where

fm(y) =
m+r+s
∑

k=1

lα,β
k (y) fm(zk) ∈ Pm+r+s−1. (24)

By collocating (23) at {zk}m+r+s
k=1 , using (18) and

fm(γi(y)) =
m+r+s
∑

k=1

lα,β
k (γi(y)) fm(zk) (25)

we get the following square linear system of order m+ r + s

m+r+s
∑

j=1



δk j +µ
m
∑

ν=1

λα,β
m,ν k̂(xα,β

m,ν , zk) l
α,β
j (γk(x

α,β
m,ν))



c j = g(zk), k = 1, . . . , m+ r + s (26)

where c j = fm(z j).
We point out that the polynomial given in (24) interpolates the unknown function fm, whereas the polynomial given in (25)

approximates (not interpolates) fm(γi(y)) .
Denoting by I the identity matrix of order m+ r + s, setting

c= [c1, . . . , cm+r+s]
T , g= [g(z1), . . . , g(zm+r+s)]

T

and denoting by A the matrix of order m+ r + s whose entries are

A(k, j) = µ
m
∑

ν=1

λα,β
m,ν k̂(xα,β

m,ν , zk) l
α,β
j (γk(x

α,β
m,ν)), 1≤ k, j ≤ m+ r + s,

the system (26) can be rewritten in a compact form, as follows

(I + A)c= g.

Once the previous system is solved, we can find the solution of the initial equation (1) according to (24).
Next theorem contains useful properties of the sequences {Km}m and {K∗m} which will be essential for studying the stability

and the convergence of the described method.
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Theorem 3.3. Let K and K∗m be the operators defined in (14) and (20), respectively. If conditions (9) are satisfied, and for some
real λ > 0 it is

sup
|y|≤1
‖ky v0,α+β+1‖Zλ <∞, (27)

then

‖K−K∗m‖Zλ→C0 ≤ C
log m

mλ

where C 6= C(m).
Theorem 3.4. Let K∗m and Km be the operators defined in (22) and (19), respectively. If the assumptions of Theorem 3.3 are satisfied,
then

‖(Km −K∗m)‖Zλ→C0 ≤ C
log m

mλ

where C 6= C(m).
An immediate consequence of the previous two results is the following theorem.

Theorem 3.5. Under the assumptions of Theorem 3.3 we have

‖(K−Km)‖Zλ→C0 ≤ C
log m

mλ

where C 6= C(m).
About the convergence of the method, we can prove the following.

Theorem 3.6. Let us assume that the conditions of Theorem 3.3 are satisfied and that the right-hand side g ∈ Zλ. Then, for
sufficiently large m (say m> m0), equation (23) has a unique solution f ∗m ∈ Pm+r+s−1. Moreover, denoting by f ∗ the unique solution
of equation (1), the following estimate holds true

‖ f ∗ − f ∗m‖∞ =O
�

log m

mλ

�

, (28)

where the constants in “O" are independent of m.

Example 3.1. Let us test the proposed method on the following equation

f (y) +

∫ y

−1

ex y sin (
p

1+ x) f (x)
p

1+ x d x = e(1+y)
1
3 . (29)

Since the exact solution is not available, we assume as exact those values of fm obtained with m= 512 computing the absolute
errors

ε512
m ( f ) :=max

y
| fm(y)− f512(y)|,

as well as the condition numbers cond(I + A) in infinity norm of the matrix I + A of system (26). Following the procedure
described at the beginning of this section, we get equation (12) where k̂ ∈ Z1 and g ∈ Z2/3. Thus, according to (28) we expect an

error of the order at least O
�

log m

m2/3

�

.

m ε512
m ( f ) cond(I + A)

4 1.14e-02 8.89e+00
8 8.30e-03 8.02e+00
16 4.41e-03 7.29e+00
32 1.47e-03 7.07e+00
64 4.32e-04 7.01e+00

256 4.63e-05 7.00e+00

Table 1: Numerical results for Equation (29)

The numerical results (Table 1) confirm the rate of convergence given in (28) and the well conditioning of the linear system.
However, in virtue of the low smoothness of the kernel and right hand side, the order of convergence is slow. Hence, in the
next section we introduce a numerical procedure which aims at regularizing the solution of the equation and consequently at
improving the rate of convergence.
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3.2 A regularized procedure

As already mentioned, the unknown solution of equation (1) is typically non-smooth at y =−1 where its derivative becomes
unbounded (see, for instance, [13, 19]). Then, following a well known approach [11, 19, 21], in order to eliminate such a
singularity, we introduce a change of variable in equation (1).

Specifically, we will consider the following “smoothing" transformation which has been widely adopted in the numerical
methods for solving Volterra and Fredholm integral equations [11, 19, 21]

φq(z) = 21−q(1+ z)q − 1, q ∈ N. (30)

Let us remark that φ′q(z)≥ 0 on [−1, 1] and that the inverse function is explicitly known

φ−1
q (z) = 21− 1

q (1+ z)
1
q − 1. (31)

Setting x = φq(t) and y = φq(z) in (1), we get the following equation

f̂ (z) +ρ

∫ z

−1

f̂ (t) k̃(t, z) (z− t)α (1+ t)ξd t = ĝ(z) (32)

where ρ = q2(1−q)(β+α+1), ξ= (β + 1)q− 1, f̂ (z) = f (φq(z)) is the new unknown function,

k̃(t, z) = k(φq(t),φq(z))





q−1
∑

j=0

(1+ t) j(1+ z)q−1− j





α

(33)

and
ĝ(z) = g(φq(z)). (34)

We remark that the function
q−1
∑

j=0

(1+ t) j(1+ z)q−1− j in the new kernel k̃ does not vanish in [−1, 1]. Moreover, for any

smoothing parameter q ∈ N it results ξ >−1 .
By mapping the interval [−1, y] into [−1, 1], through the change of variable

t = γ(x , z) =
1+ z

2
x +

z− 1

2
, (35)

(32) can be rewritten as

f̂ (z) +%

∫ 1

−1

h(x , z) f̂ (γ(x , z)) vα,η(x)d x = ĝ(z) (36)

where % = q 2−q(2β+α+2)+(β+1), η= ξ− bξc, and

h(x , z) = (1+ z)(β+1)q+α(1+ x)bξc k̃(γ(x , z), z).

Taking into account (33), (30) and (35), the kernel h can be also rewritten as

h(x , z) = (1+ z)q(1+β+α)(1+ x)bξc k(φq(γ(x , z)),φq(z))





q−1
∑

j=0

�

1+ x

2

� j




α

. (37)

Next proposition states that the new known functions are smoother then the original ones.

Proposition 3.7. The following statements hold true:

1. Let g be the right-hand side of the original equation (1) and let us assume that

g(x) = g1(x)g2(v
0,δ(x)), δ > 0, g1, g2 ∈ C s.

Then g ∈ Z2δ with 2δ ≤ s and the function ĝ defined in (34) belongs to Z2qδ with 2qδ ≤ s.

2. Let k be the kernel function of the original equation (1). Assuming that

k(x , y) = k1(x , y) k2(v
0,δ(x), v0,δ(y)), δ > 0, k1, k2 ∈ C s × C s,

then kx , ky ∈ Z2δ. Moreover, under the assumption α+ β + 1≥ 0, the function h defined in (37) is such that

hz ∈ Z2qδ, 2qδ < s

hx ∈ Zζ, ζ=min{[2q(1+α+ β)], 2qδ}.
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At this point in order to approximate the solution of equation (36) we apply the collocation method described in the previous
paragraph.

In a nutschell, we project equation (36) on the finite dimensional space Pm+r+s−1 by means of the Lagrange operator Lα,η
m,r,s

where

α

2
+

1

4
≤ r <

α

2
+

5

4
,

η

2
+

1

4
≤ s <

η

2
+

5

4
. (38)

Then, by proceeding as done in Section 3.1 we introduce the sequences

ĝm = Lα,η
m,r,s( ĝ)

and
(K̂m f̂ ) = Lα,η

m,r,s(K̂
∗
m f̂ ) (39)

where

(K∗m f )(z) = %

∫ 1

−1

Lα,η
m

�

�

Lα,η
m,r,s(hz) f̂ (γ(·, z))

�

, x
�

vα,η(x)d x (40)

and we consider the following finite dimensional equation

f̂m(z) +%
m+r+s
∑

i=1

lα,η
i (z)

m
∑

ν=1

λα,η
m,ν h(xα,η

m,ν , zi) f̂m(γi(x
α,η
m,ν)) = ĝm(z), (41)

where here {zk := zα,η
k }

m+r+s
k=1 and

f̂m(z) =
m+r+s
∑

j=1

lα,η
j (z) f̂m(z j). (42)

Hence, by collocating at {zk}m+r+s
k=1 , we get the following linear system

m+r+s
∑

j=1



δk j +%
m
∑

ν=1

λα,η
m,ν h(xα,η

m,ν , zk) l
α,η
j (γk(x

α,η
m,ν))



ĉ j = ĝ(zk), k = 1, . . . , m+ r + s (43)

where ĉ j = f̂m(z j). In a matrix form, setting

ĉ= [ĉ1, . . . , ĉm+r+s]
T , ĝ= [ ĝ(z1), . . . , ĝ(zm+r+s)]

T

and denoting by Â the matrix

Â(k, j) = %
m
∑

ν=1

λα,β
m,ν h(xα,β

m,ν , zk) l
α,β
j (γk(x

α,β
m,ν)), 1≤ k, j ≤ m+ r + s,

the linear system (43) can be written as
(I + Â)̂c= ĝ.

Once such a system is solved, we can find the solution of the regularized equation (36) according to (42). Moreover, by using
the inverse function (31), we can directly recover the unique solution fm of the initial equation (1) being

fm(y) =
m+r+s
∑

j=1

`
α,η
j (φ

−1
q (x))ĉ j . (44)

Next theorem states the convergence of the collocation method applied to the regularized equation.

Theorem 3.8. Let us assume that α+ β + 1≥ 0, conditions (38) are satisfied, and the assumptions of Proposition 3.7 are fulfilled.
Then, for sufficiently large m (say m> m0), equation (41) has a unique solution f̂ ∗m ∈ Pm+r+s−1. Moreover, denoting by f̂ ∗ the unique
solution of equation (32), the following estimate holds true

‖ f̂ ∗ − f̂ ∗m‖∞ =O
�

log m

mζ

�

, ζ=min{2q(α+ β + 1), 2qδ} (45)

where the constants in “O" are independent of m.

We want to remark that our regularization technique provides more accurate results with respect to others available in the
literature (see, for instance [5]). Consider indeed the following equation [6, Example 5.1] which has been examined also in
Section 4 (see Example 4.2)

f (y) +

∫ y

−1

f (x)(y − x)−0.35d x = (1+ y)3.6 + (1+ y)4.25B(4.6, 0.65)
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where B(·, ·) is the Beta function. The exact solution is f ∗(y) = (1+ y)3.6 ∈ C3. If we apply the procedure given in [5, Theorem
4.1] we get an error of the order O

�

m−2.5 log m
�

, since g ∈ C3 and k ≡ 1. However, according to (28) if we apply our method
the error behaves like O

�

m−q 1.3 log m
�

since g ∈ Z7.2 and (27) is satisfied with λ= 1.3. Hence, if for instance q = 2, we get a
slightly better error but if we take q = 3 we get a high order of convergence. This is one of the advantages of our method, i.e. the
order of convergence depends on the smoothing parameter q and then we can take q as large as we want in order to get an
accurate approximation .

Let us also remark that we have a good error due to the regularizing technique and the use of an optimal interpolation
process, but also due to the choice of the Zygmund-type spaces in which to look for the solution. Indeed, if we had considered
the spaces C p then, in the above example, we would have had an error of the order O

�

m−bq 0.65c log m
�

.

4 Numerical Tests
In this section we show the effectiveness of the proposed numerical method, by means of some numerical examples.

For each test, we solve system (43), we perform the solution f̂m given by (42) of the regularized equation, and then we
construct the solution f of the considered equation according to (44).

In the second example the exact solution f ∗ is available and then we compute the absolute errors

εm( f ) :=max
y
| fm(y)− f ∗(y)|.

In the reminder ones, since the exact solution is not available, we assume as exact the one obtained for a fixed value of M that
we will specify in each test and we compute the absolute errors

εM
m ( f ) =max

y
| fm(y)− fM (y)|.

Example 4.1. As a first test, let us consider again equation (29) examined in Example 3.1 and let us apply the regularized
procedure. The new kernel and right-hand side belong to the spaces Zq and Z 2q

3
, respectively. Hence, according to Theorem 3.8,

the order of convergence of the method is O
�

log m

m
2q
3

�

. The numerical results given in Table 2 confirm the theoretical error and

also show that the condition number in infinity norm cond(I + Â) of the regularized system is uniformly bounded with respect to
m for each q.

q m ε512
m ( f ) cond(I + Â) q m ε512

m ( f ) cond(I + Â)
2 4 1.29e-02 8.87e+00 3 4 4.94e-02 8.40e+00

8 1.31e-03 8.72e+00 8 5.59e-03 8.89e+00
16 9.43e-04 7.60e+00 16 3.14e-05 7.86e+00
32 2.91e-04 7.15e+00 32 5.64e-10 7.23e+00
64 8.52e-05 7.03e+00 64 2.62e-10 7.05e+00

256 6.69e-06 7.00e+00 256 2.50e-10 7.00e+00

Table 2: Numerical results for Example 4.1

Example 4.2. Let us consider the following Volterra integral equation [6, Example 5.1]

f (y) +

∫ y

−1

f (x)(y − x)−0.35d x = (1+ y)3.6 + (1+ y)4.25B(4.6, 0.65)

where B(·, ·) is the Beta function. The given equation admits as unique solution the function f ∗(y) = (1+ y)3.6. Table 3 shows
the absolute errors we get. As already mentioned at the end of Section 3, if we do not regularize, according to (28), we get an
error of the order O

�

m−1.3 log m
�

whereas if, for instance, we take q = 2 we get O
�

m−2.6 log m
�

.

q m εm( f ) cond(I + Â) q m εm( f ) cond(I + Â)
1 4 7.67e-04 9.70e+00 2 4 5.67e-02 1.07e+01

8 9.04e-06 8.33e+00 8 3.76e-07 9.28e+00
16 8.35e-08 7.28e+00 16 1.32e-11 7.80e+00
32 6.38e-10 6.71e+00 32 9.77e-15 6.97e+00
64 4.01e-12 6.46e+00

256 3.91e-14 6.26e+00

Table 3: Numerical results for Example 4.2
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Example 4.3. Let us apply our method to the following equation

f (y) +

∫ y

−1

x

2+ y2 f (x) (y − x)−
3
4 d x = e|y|

9
4 cos y.

If we look at the regularized equation, then in this case the kernel h is a smooth function with respect to the variable x whereas
hx (z)∼ (1+ z)q/4 ∈ Zq/2. The right-hand side belongs to Z9/4. Then, for q ≥ 3 the smoothness of the right-hand side determines
the order of convergence which is in this case O

�

m−9/4 log m
�

. Table 4 contains the errors we get as well as the condition
numbers of the linear system. This is an example in which our regularization strategy aiming at eliminate the singularity at
y =−1 does not produce a high order of convergence. This is because of the presence of a right-hand side which has an internal
singularity. On the other hand also in this case, our method furnishes a better estimate than those provided in [5] which would
be equal to O

�

m−1.5 log m
�

.

q m ε600
m ( f ) cond(I + Ā) q m ε600

m ( f ) cond(I + Â)
3 8 1.79e-01 1.39e+01 4 8 3.17e-01 1.51e+01

16 4.92e-03 1.36e+01 16 1.07e-02 1.37e+01
32 4.99e-04 1.33e+01 32 4.63e-04 1.35e+01
64 1.31e-04 1.32e+01 64 6.78e-05 1.31e+01

256 4.71e-06 1.28e+01 256 1.69e-06 1.28e+01
512 1.38e-06 1.26e+01 512 2.84e-07 1.27e+01

Table 4: Numerical results for Example 4.3

Example 4.4. Let us test our method to the following equation

f (y) +

∫ y

−1

| sin(x + y)|
8
3 f (x) (y − x)

1
5 (1+ x)

2
5 d x = arctan (1+ y2)

In this case the right-hand side of the regularized equation is smooth and the kernel belongs to Z8/3 for each q ∈ N. In Table 5 we
report the results we get for q = 3. If q ≥ 3 we have errors of the same order in view of the smoothness of the kernel.

q m ε700
m ( f ) cond(I + Â)

3 4 1.80e-01 3.62e+00
8 2.66e-02 3.65e+00

16 2.39e-03 3.73e+00
32 9.68e-05 3.77e+00
64 4.45e-06 3.79e+00

256 2.81e-08 3.79e+00
512 4.29e-10 3.79e+00

Table 5: Numerical results for Example 4.4

5 Proofs
Proof of Theorem 2.2

Setting Am = {x : |x | ≤ 1− c
m2 } for any fixed c > 0, by Remez inequality (see for instance [16, p. 297]) we have

‖Lα,β
m,r,s( f )u‖1 ≤ C

∫

Am

|Lα,β
m,r,s( f , x)|u(x)d x .

Recalling that an expression of the polynomial Lα,β
m,r,s is

Lα,β
m,r,s( f , x) = As(x)Br(x)Lα,β

m

�

f

AsBr
, x
�

+ As(x)pm(v
α,β , x)

r
∑

k=1

f (tk)
As(tk)pm(vα,β , tk)

r
∏

i=1,i 6=k

x − t i

tk − t i

+ Br(x)pm(v
α,β , x)

s
∑

k=1

f (yk)
Br(yk)pm(vα,β , yk)

s
∏

i=1,i 6=k

x − yi

yk − yi
,
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we have

‖Lα,β
m,r,s( f )u‖1 ≤ C

∫

Am

�

�

�

�

As(x)Br(x)Lα,β
m

�

f

AsBr
, x
�
�

�

�

�

u(x)d x

+

∫

Am

�

�

�

�

�

As(x)pm(v
α,β , x)

r
∑

k=1

f (tk)
As(tk)pm(vα,β , tk)

r
∏

i=1,i 6=k

x − t i

tk − t i

�

�

�

�

�

u(x)d x

+

∫

Am

�

�

�

�

�

Br(x)pm(v
α,β , x)

s
∑

k=1

f (yk)
Br(yk)pm(vα,β , yk)

s
∏

i=1,i 6=k

x − yi

yk − yi

�

�

�

�

�

u(x)d x

:= J1 + J2 + J3. (46)

By [16, (4.2.24)-(4.2.25)] immediately it follows
J2 + J3 ≤ C‖ f ‖∞. (47)

To estimate J1 we use (AsBr)(x
α,β
m,k)∼ v r,s(xα,β

m,k) and (AsBr)(x)∼ v r,s(x), x ∈Am, by which we deduce

J1 ≤


Lα,β
m

�

f v−r,−s�uv r,s




1

and by Nevai’s Theorem [17, Th.1], under the assumptions (11), we get

J1 ≤ C‖ f ‖∞.

Hence, the thesis follows by combining last inequality with (47) and (46).�
Proof of Proposition 3.1 Since for any f ∈ C0,

|(K f )(y)| ≤ C‖ f ‖∞(1+ y)α+β+1

∫ 1

−1

|k(γ(x , y), y)|vα,β (x)d x ≤ C‖ f ‖∞,

under the assumption (15), the thesis (16) follows.
Let us prove that for any f ∈ Zλ,

Ωr
ϕ
(K f , t)≤ C tλ‖ f ‖Zλ , 0< λ≤ r. (48)

By (14) for 0< h≤ t, y ∈ Irh = [−1+ (2rh)2, 1− (2rh)2] we have

∆r
hϕ(K f )(y) = µ

∫ 1

−1

∆r
hϕ(y)

�

f (γ(x , y))k̂(γ(x , y), y)
�

vα,β (x)d x

≤ C
∫ 1

−1

Ωr
ϕ
(k̂x fx , t)vα,β (x)d x

and consequently, by using [16, (2.5.18)]

Ωk
ϕ( f , t)≤ C tk

b 1
t c
∑

i=0

(1+ i)k−1Ei( f )∞, C 6= C(t, f ),

we have

Ωr
ϕ
(K f , t)≤ C sup

|x |≤1
Ωr
ϕ
(k̂x fx , t)

≤ C t r

b 1
t c
∑

i=0

(1+ i)r−1 sup
|x |≤1

Ei(k̂x fx)∞

≤ C t r






sup
|x |≤1
‖k̂x fx‖∞ +

b 1
t c
∑

i=1

(1+ i)k−1 sup
|x |≤1

Ei(k̂x fx)∞






.

Thus, recalling that for any f1, f2 ∈ C0 we have [16, p. 384]

E2m( f1 f2)∞ ≤ C
�

‖ f1‖∞Em( f2)∞ + 2Em( f1)∞‖ f2‖∞
�

, (49)

by the assumption (15) and taking (13) into account we have

Ωr
ϕ
(K f , t)≤ C






t r +

b 1
t c
∑

i=1

i r−λ−1






‖ f ‖Zλ ≤ C tλ‖ f ‖Zλ
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from which (48) follows.
By applying (4) we have

Em(K f )∞ ≤ C
∫ 1/m

0

Ωr
ϕ(K f , t)

t
d t ≤

C
mλ
‖ f ‖Zλ ,

and therefore (17) i.e.

lim
m

 

sup
‖ f ‖Zλ

=1
Em(K f )∞

!

= 0. �

Proof of Theorem 3.3 Setting

(eKm f )(y) = µ

∫ 1

−1

Lα,β
m,r,s(k̂y , x) f (γ(x , y)) vα,β (x)d x ,

we can write

|(K f )(y)− K∗m f )(y)| ≤ |(K f )(y)− (eKm f )(y)|+ |(eKm f )(y)− K∗m f )(y)|=: I1(y) + I2(y). (50)

Let us first consider I1(y). By (14) we have

I1(y) ≤ µ

∫ 1

−1

| f (γ(x , y))| |k̂y(x)− Lα,β
m,r,s(k̂y , x)|vα,β (x)d x ≤ µ‖ f ‖∞ max

|y|≤1
‖[k̂y − Lα,β

m,r,s(k̂y)]v
α,β‖1.

By Theorem 2.1, in virtue of the assumption (9),

I1(y)≤ C ‖ f ‖∞ max
|y|≤1

Em+r+s−1(k̂y)∞,

and using the weak-Jackson estimate (4), we get

‖I1‖∞ ≤
C

mλ
‖ f ‖∞ sup

|y|≤1
‖k̂y‖Zλ ≤

C
mλ
‖ f ‖∞ (51)

where the last bound follows taking into account the assumption (27).
Consider now I2(y). By applying (49), we can write

I2(y)≤ CE2m−1(L
α,β
m,r,s(k̂y) f (γ(y)))∞ ≤ C

�

‖Lα,β
m,r,s(k̂y)‖∞ Em( f (γ(y)))∞ + ‖ f (γ(y)))‖∞Em(L

α,β
m,r,s(k̂y))∞

�

from which by (10) and (15) we deduce

‖I2‖∞ ≤ C
log m

mλ
‖ f ‖Zλ sup

|y|≤1
‖k̂y‖Zλ ≤ C

log m

mλ
‖ f ‖Zλ . (52)

Therefore, by replacing (51) and (52) in (50) we have

‖[K−K∗m] f ‖∞ ≤ C
log m

mλ
‖ f ‖Zλ .

and the thesis immediately follows.�

Proof of Theorem 3.4 In virtue of Theorem 9, under the assumptions (9) and taking (4) into account we have

‖(K∗m −Km) f ‖∞ ≤ C log m Em+r+s−1(K∗m f )∞

≤ C log m

∫
1
m

0

Ωr
ϕ(K

∗
m f , t)∞
t

d t. (53)

Let us prove that for any f ∈ Zλ with 0< λ≤ r

Ωr
ϕ(K

∗
m f , t)≤ C tλ‖ f ‖Zλ . (54)

For 0< h≤ t, y ∈ Irh = [−1+ (2rh)2, 1− (2rh)2] we have

|∆r
hϕ(K

∗
m f )(y)| ≤ C

m
∑

ν=1

λα,β
m,ν∆

r
hϕ(y)

�

f (γ(xα,β
m,ν , y))k̂(γ(xα,β

m,ν , y)
�

≤ C
m
∑

ν=1

λα,β
m,νΩ

r
ϕ

�

k̂(xα,β
m,ν) f (γ(x

α,β
m,ν)), t

�
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and therefore

Ωr
ϕ
(K∗m f , t)≤ C sup

1≤ν≤m
Ωr
ϕ

�

k̂(xα,β
m,ν) f (x

α,β
m,ν), t)

�

∫ 1

−1

vα,β (x)d x .

Thus following the same arguments used in the proof of relation (48), we can conclude

Ωr
ϕ(K

∗
m f , t)≤ C tλ ‖ f ‖Zλ ,

and then (54). By combining (53) and (54) we get

‖(K∗m −Km) f ‖∞ ≤ C
log m

mλ
‖ f ‖Zλ

by which the thesis follows. �
Proof of Theorem 3.6 The first part of the theorem follows by [1, p. 55]. Moreover, by (12) and (23), setting ef (x , y) =

f ∗(γ(x , y)), we have

‖ f ∗ − f ∗m‖∞ ≤ C
�

‖g − gm‖∞ + ‖(K−Km)ef ‖∞
�

from which by (10) and Theorem 3.5, we can write

‖ f ∗ − f ∗m‖∞ ≤ C
log m

mλ

�

‖g‖Zλ + ‖ f ∗‖Zλ

�

i.e estimate (28). �
Proof of Proposition 3.7 By the assumption g(x) = g1(x)g2((1+ x)δ) with g1, g2 ∈ C s. For each r ≤ s, by using the Faa di

Bruno’s formula, we can write

[g2((1+ x)δ)](r) = r!
r
∑

k=0

g(k)2 ((1+ x)δ)
∑

h1+...+hk=r

�

(1+ x)δ−h1

h1!

�

· · ·
�

(1+ x)δ−hk

hk!

�

.

Thus

|[g2((1+ x)δ)](r)ϕr(x)| ≤ C
r
∑

k=0

|g(k)2 ((1+ x)δ)| (1+ x)δ−
r
2 ,

and then, for 2δ < r ≤ s we get
‖[g2((1+φq)

δ](r)ϕr‖Irh
≤ Ch2δ−r‖g(r)2 ‖∞.

Consequently, by (5) we can deduce that g2 ∈ Z2δ and therefore g ∈ Z2δ. Let us now consider ĝ. By its definition

ĝ(x) = g1(φq(x)) g2((1+φq(x))
δ)

where g1(φq(x)) still belongs to C s. Considering that g2((1+φq(x))δ) = g2(21−q(1+ x)qδ) by proceeding as done before, with
qδ instead of δ, we get g2((1+φq(x))δ) ∈ Z2qδ. Therefore ĝ ∈ Z2qδ.

Let us now prove the point 2. In virtue of the assumption on the kernel k, by proceeding as done for g, we can deduce that
kx , ky ∈ Z2δ. Moreover in view of (37) we can write

hz(x) = (1+ x)bξc




q−1
∑

j=0

(1+ x) j

2





α

k1(φq(γz(x)),φq(z)) k2

�

(1+φq(γz(x)))
δ,φq(z)

�

.

The first two functions belong to C∞, the third one belongs to C s and so the smoothness of the hz(x) depends on the last
function. About the latter, noting that

k2

�

(1+φq(γz(x)))
δ,φq(z)

�

= k2(2
δ(1−2q)(1+ z)qδ(1+ x)qδ,φq(z))

by applying Faa di Bruno’s formula and using (5), we can assert that it belongs to Z2qδ. Consequently, hz(x) ∈ Z2qδ too.
Concerning the last point, we note that

hx(z) = (1+ z)q(α+β+1) k1(φq(γz(x)),φq(z)) k2

�

(1+φq(γz(x)))
δ,φq(z)

�

.

Again the last two functions belong to Z2qδ, whereas the first one belongs to Z2q(1+α+β). Hence, hx (z) ∈ Zζ with ζ=min{2q(α+
β + 1), 2qδ}.�

Proof of Theorem 3.8 First, let us denote by K̂ the integral operator appearing in (36), namely

(K̂ f )(z) = %

∫ 1

−1

h(x , z) f̂ (γ(x , z)) vα,η(x)d x .

By a well-known result [1, p. 55] if we prove that

lim
m
‖K̂− K̂m‖= 0 (55)

where K̂m is given in (39), then for sufficiently large m equation (41) admits a unique solution. In order to show (55) we write

‖K̂− K̂m‖ ≤ ‖K̂− K̂∗m‖+ ‖K̂
∗
m − K̂m‖

where K̂∗m is defined in (40). Now, the first term can be estimated as done in the proof of Theorem 3.3 whereas the second one
can be estimated by following the proof of Theorem 3.4. Moreover, taking into account Proposition 3.7 and by proceeding as in
the proof of (28), we find (45).�
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6 Conclusion
In this paper, we proposed a projection method for linear Volterra integral equations having kernels that can be singular along
the diagonal and/or at the side y =−1. These are pathological cases since the solution inherits the singularity at y =−1.

We proved the convergence and the stability of the method providing also an error estimate. Such estimate is further
improved by introducing a smoothing transformation in order to regularize the unknown solution.

In the light of the analysis carried out, we get accurate error estimates. Such accuracy is due to a combination of different
approximation tools, among which, the selection of spaces which are appropriate to treat functions with singularities, the use of
an optimal interpolation process and the introduction of a smoothing technique.

The numerical experiments confirmed the theoretical results showing the stability of the method, the well conditioning of the
linear systems we have to solve and the dependence of the order of convergence on the smoothing parameter.
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