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This study compares, for the first time, the mineralogy and geochemistry of

two residual-clay deposits in NW Sardinia (Nurra district) that formed at different

times in tropical and sub-tropical climates. Both deposits represent palaeosols

with deep-weathered residual profiles and overlie Mesozoic carbonate rocks that

were deposited on the south European palaeomargin. The older alterite is

Cenomanian–Turonian in age and grades upward into a horizon of karstic bauxite,

whereas the younger unit occurs within alluvial deposits of Late Neogene age. The

Cretaceous palaeosol represents the precursor of the overlying bauxite and formed from

unknown sedimentary parent rocks. In contrast, the Messinian weathering products

formed by alluvium that was sourced from the Variscan metamorphic basement.

Chemical Index of Alteration values, REE fractionation index values, and the results of

R-mode factorial analysis suggest a common initial weathering path and a common

precursor for the deposits. However, the latter stages of weathering of the Cretaceous

palaeosols resulted in lateritic alteration and bauxite production, whereas weathering of

the Late Neogene palaeosols produced 2:1 clay minerals under less extreme conditions.

Comparison of these residual products constrains the parental material and weathering

trends and allows insight into the relationship between palaeoclimate and regional/local

palaeogeography of southern Europe during Upper Cretaceous and during Messinian.

Keywords: clays, chemical index of alteration, variscan basement, Cretaceous, Messinian

INTRODUCTION

Breakdown of rock at the Earth’s surface produces a thin porous covering that represents
a section of the recently defined “Critical Zone” (National Research Council, 2001; Brantley
et al., 2006), and according to Eggleton (2001), referred to as “regolith.” Typical regolith
displays considerable vertical (distinguishable layers of weathered rocks) and lateral (variations in
landscape and associated soils) heterogeneity (Taylor and Eggleton, 2001; Anderson et al., 2007).
The rate and intensity of chemical weathering are controlled by various factors (Singer, 1984;
Garzanti and Resentini, 2016), including vegetation, drainage of the parent rock, and climate.
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Weathering products such as clays are an important component
of clastic sediments (e.g., siltstone, shale, and greywacke) and can
record the environmental conditions of the source area (Zabel
et al., 2001; Sinisi et al., 2014).

Clay mineral assemblages in residual and transported
sediments are controlled primarily by climatic conditions. Soils
and sediments at high latitudes and in cold climates generally
experience a low rate of chemical weathering that results in
the production of illite and chlorite association (Robert and
Maillot, 1990; Ehrmann and Mackensen, 1992; Ehrmann et al.,
2005). Conversely, soils and terrigenous sediments in tropical
wet regions undergo heavy leaching that produces kaolinite
and gibbsite assemblages (Macias Vazquez, 1981; Deepthy and
Balakrishnan, 2005; Bauluz et al., 2014). Furthermore, the degree
of weathering controls the accumulation/leaching of elements
from the precursor rocks to the residual material (Net et al.,
2002). Different elements show varying behavior during chemical
weathering. The low field strength elements (LFSE; e.g., Na, Ca,
and Sr) have a high affinity for aqueous phases and are therefore
easily removed from exposed rocks in wet regions (Nesbitt et al.,
1980; Nesbitt and Markovics, 1997). Other elements, such as
K, Rb, Mg, and Ba, are easily removed from primary minerals
but are often rapidly incorporated into secondary clay minerals
and insoluble hydroxides within weathering profiles and residual
deposits. Chemical weathering therefore redistributes major and
trace elements in rocks, particularly in sedimentary deposits.
During weathering, some elements are depleted in the parent
rock and residual products, whereas others are conservative and
are retained in moderately weathered rocks or concentrated in
residual deposits (Nesbitt et al., 1980; Peuraniemi and Pulkkinen,
1993; Condie et al., 1995; Nesbitt and Markovics, 1997).
Hence, mineralogical and geochemical investigations of alterites
(including palaeosols) can constrain both the palaeoclimate and
the nature of the parent rocks.

The present study compares the mineralogical and
geochemical features of two weathering products that were
generated at different times on the south European crust
(Sardinia-Corsica microplate).

In NW Sardinia (Nurra district), alterites overlie Mesozoic
carbonates and occur in two distinct stratigraphic contexts.
The older alterite deposit is overlain by Upper Cretaceous
karstic bauxites and rests above Upper Jurassic/Lower Cretaceous
carbonates. In contrast, the younger alterites occur as palaeosols
within a continental sequence of alluvial fan and braided river
deposits, late Miocene in age, which also overlie the same
Mesozoic carbonate sediments.

Between Lower and Upper Cretaceous, clayey alterites and
associated bauxite formed in a monsoonal climate on the south
European palaeomargin at 30◦N palaeolatitude (Dercourt et al.,
1985; Mameli et al., 2007). The major questions on this clayey
material associated to bauxite are concerned with its precursor.
Indeed, the dissolution of high-grade carbonates is unlikely to
have generated the observed thick continuous layer of karstic
bauxite. Accordingly, it has been proposed that the bauxite
was derived from allochthonous debris, deposited on Mesozoic
limestone (MacLean et al., 1997), which in turn may have been
sourced from Variscan basement (Mameli et al., 2007). This

hypothesis, if confirmed, is consistent with an Upper Cretaceous
palaeogeographic setting in which portions of the carbonate shelf
were uplifted and eroded causing the basement to be exposed. In
contrast, the precursor of the Messinian alterites is known to be
debris derived from the Variscan metamorphic basement of NW
Sardinia (Mongelli et al., 2012), but what is still uncertain is the
palaeoclimate during the age of their formation.

Messinian is an age known for the so called Mediterranean
salinity crisis (MSC—i.e., its partial desiccation), one of the most
appealing and debated palaeoclimatic and palaeogeographic
events in the geological history of this sea. It is still controversial
whether the desiccation is controlled by climatic or tectonic
factors (Fauquette et al., 2006; Achalhi et al., 2016). Most of
palaeoclimatic and palaeogeographic reconstructions are based
on palynological and isotopic data on continental and marine
sediments, respectively (Fauquette et al., 2006; Jiménez-Moreno
et al., 2013; Bertini andMenichetti, 2015). The attempts to test the
geochemical and mineralogical proxies on weathering product
are scanty (Mongelli et al., 2012) and are worthy of further
investigations able to give hints of palaeoclimatic relevance.

By comparison between the mineralogy and geochemistry of
the two alterites, we are expected to disclose new aspects in
Cretaceous palaeogeography and contribute in the assessment of
Messinian palaeoclimate.

In detail we aim to provide further insights into: (1)
the provenance of the Cretaceous alterite, which is the
parental material of bauxite; (2) the palaeogeography of
the south European margin during the Late Cretaceous; (3)
the palaeoclimatic conditions in the western Mediterranean
during the Messinian. Overall we also aim to contribute to
our understanding of the interplay among palaeoclimate and
precursor material during the weathering of Al-rich rocks to clay.

GEOLOGICAL SETTING

The Sardinian microplate was part of the South Europe margin
until the Aquitanian (Carmignani et al., 2004), before its counter-
clockwise drift and the opening of the Ligurian-Provencal
Basin in Burdigalian time (Thomas and Gennesseaux, 1986;
Gattacceca et al., 2007; Oudet et al., 2010). NW Sardinia
(Figure 1A) is characterized by a structural high caused by
the tilting of the Ligure-Provencal rift shoulder, during early
Miocene. In present coordinates the tilting results toward
the east; progressively older formations are therefore exposed
toward the west. The oldest rocks crop out near the coast
and comprise mainly phyllite with intercalated metarhyolite and
metabasite of the Variscan basement, which northward, due to
the prograde metamorphism, pass into gneiss, amphibolite, and
anatectic granite (Oggiano and Mameli, 2006; Cuccuru et al.,
2018). Late Permian and Mesozoic cover units are exposed
along a hilly/flat area to the east of the basement. Farther
east, the Mesozoic cover is overlain by Tertiary (Aquitanian–
Langhian) volcano-sedimentary successions of the Porto Torres
Basin (Funedda et al., 2000). The Mesozoic marine succession
is almost continuous from the Triassic (Ladinian) to the
uppermost Cretaceous (Campanian) and comprises evaporite,
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FIGURE 1 | (A) Geological map of NW Sardinia showing the areas from which the analyzed Messinian and Cretaceous palaeosols (MP and CP, respectively) were

sampled [modified after Carmignani et al., 2016]. (B) Geological cross section of the bauxite filling the stratigraphic gap between Upper Jurassic and Upper

Cretaceous. (C) Geological cross section of Messinian alluvial deposits hosting MP palaeosols unconformably capping the deformed Mesozoic cover.

dolostone, and limestone, with few intercalations of marlstone.
There exists a stratigraphic gap embracing the Albian–Turonian
interval, related to a period of emergence (Mameli et al.,

2007). This gap is represented by an almost continuous horizon
of karstic bauxite, and. it is constrained, on paleontological
and micropaleontological bases (Philip et al., 1978; Philip,
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FIGURE 2 | (A) Clay-bearing CP palaeosol below bauxite at Olmedo mine. (B) Schematic stratigraphy of the Cretaceous deposits.

FIGURE 3 | (A) Continental deposit comprising channelized gravel and clay-rich horizons displaying evidence of pedogenesis (modified after Mongelli et al., 2015). (B)

Sketch of the stratigraphy of the MP deposit.

1983) between the Aptian and the Coniacian. The bauxite
unconformably overlies different rocks of different ages of the
Mesozoic carbonate shelf that include pure limestone, dolostone,
and minor marlstone (Figures 1B, 2A,B). Below the bauxite,
green-gray and purple clay horizons locally occur, which display
a mottled appearance and contain carbonaceous remnants
of fossil plants. These clays are interpreted as palaeosols,
where the green-gray portions with scattered carbonized vegetal
remnants could represent reworked humic horizons. The passage
into the overlying bauxite is gradational, marked by lowering
in kaolinite, increasing Al2O3 and appearance of pisolites
(Mameli et al., 2007).

The Messinian palaeosols are embedded within a wide alluvial
system that linked up with upstream basement areas. The alluvial
deposits unconformably overlie Mesozoic carbonate rocks that
are underlain by Permian clastic sediments, which are the oldest,
deposited on the Variscan basement (Figure 1C). Interbedded

channelized debris contains pebbles of metamorphic quartz,
schist, and quartzite, consistent with being sourced from the
adjacent basement. The alluvial deposit is locally several tens
of meters thick (Figure 3A) and, together transported clay,
hosts at least two horizons of residual clays, which feature as
palaeosols. The primary palaeosol is well exposed along road
cuts and quarries, and has a maximum thickness of 10m.
Another palaeosol horizon, which was intersected during coring
and in one excavation, is generally separated from the former
by a discontinuous gravelly/sandy deposit (Figure 3B). In the
excavation the transition between the two palaeosols is a horizon
of fine sands that yielded a tusco-sardinian land mammal
palaeofauna of Turolian age, leading to consider as Messinian the
upper palaeosol (Abbazzi et al., 2008).

The upper palaeosol consists of reddish clay (5/8–2Y; mottled
with gray in reduced areas) to ochre (8/8–7.5Y) with rare
rhizoliths (Figure 4), and locally is cut by overlying, channelized
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FIGURE 4 | Rhizoliths within pedogenized clay (Mongelli et al., 2015).

quartz-bearing gravel deposit. This deposit consists of mild
sorted, quartz-dominated gravel, clast supported, with no matrix
or with fine sandy matrix. The gravel clasts are sub-rounded to
sub-angular. The particle size ranges from 1.2 cm pebbles to 10–
15 cm, cobbles in places cemented by manganese oxyhydroxides.
This poorly graded, relatively disorganized sediment can be
referred to streamflows-dominated alluvial fan, possibly of
Pliocene age.

MATERIALS AND METHODS

We performed mineralogical and geochemical analyses on 34
representative samples: 12 from the Cretaceous palaeosols (CP)
and 22 from the Messinian palaeosols (MP). CP samples were
collected in two vertical profiles (3 per each profile from bottom
up to the boundary with bauxite) in a mined open pit, other
6 come from individual surficial outcrops scattered over a
wide area, in order to get samples representative of different
Mesozoic bedrocks. The upper Messinian palaeosol was sampled
in two quarry cuts (samples MP1–MP12) at different levels,
the lower (MP 13–MP 22) in two cores drilled during brick
clay prospecting.

Whole-rock samples were dried and reduced to fine powder
in a planetary mill (Retsch) equipped with two agate jars and
agate milling balls. Mineralogical analysis was performed on
randomly oriented whole-rock powders using a Siemens D5000
powder X-ray diffractometer (Cu-Kα radiation, 40 kV, and
30mA) at 2θ angles of 6–70◦ and a step size of 0.02◦. Mineral
phases were identified from powder XRD patterns using the
ICDD PDF-2 database and the Bruker DIFFRACplus EVA 14.2
software package.

Major, trace, and rare earth element concentrations were
measured by inductively coupled plasma–optical emission
spectrometry (ICP-OES) and inductively coupled plasma–mass
spectrometry (ICP–MS) at Activation Laboratories, Ancaster,
Canada. The powder samples were dissolved by fusion with
lithium metaborate/tetraborate and the resulting molten bead
was rapidly digested in a weak nitric acid solution or a multiacid
one (for Cu, Zn, and Ni determination), as expected from
4Litho and 4B1 packages. GXR-1, NIST 694, DNC-1, GXR-4,

SDC-1, GXR-6, LKSD-3, TDB-1, NOD-P-1, W-2a, DTS-2b,
SY-4, CTA-AC-1, BIR-1a, NCS DC86312, ZW-C, NCS DC70009
(GBW07241), OREAS 100a (Fusion), OREAS 101a (Fusion),
OREAS 134a (Fusion), and JR-1 were the standards used.
Analytical uncertainties were<5%, except for elements occurring
at concentrations of ≤10 ppm, which yield uncertainties of
5–10%. Loss on ignition (LOI) was estimated using gravimetric
analysis following combustion at 950◦C.

The texture, mineralogy, and microchemistry of polished
sections of representative samples were analyzed using an ESEM
Zeiss LaB6 scanning electron microscope equipped with an
energydispersion spectrometer (EDS).

The samples were then labeled according to their provenance.
The degree of weathering of the palaeosols was estimated

through calculation of the chemical index of alteration (CIA =
Al2O3/(Al2O3 + CaO∗ + Na2O + K2O) × 100; where elements
are in molecular proportions and CaO∗ represents CaO hosted in
silicate minerals only; Nesbitt and Young, 1982). CIA values were
not calculated for samples with CaO concentrations higher than
that of Post Archaean Australian Shales (PAAS) (1.3 wt.%; Taylor
and McLennan, 1985).

Inter-elemental relationships were determined using element
variation diagrams and R-mode factor analysis, performed with
XLStat software package. In detail we used varimax rotation and
subsequent R-mode factor analysis using principal components
in the two sets of palaeosol samples. A standardized correlation
matrix with equal weighting for all variables was used, enabling
conversion of the principal component vectors into factors.
Factor weightings were determined separately for the Cretaceous
and Messinian samples. For both datasets, we only discuss those
variables with absolute weightings of >0.65.

RESULTS

Mineralogy
XRD patterns from whole-rock disoriented powders indicate
that all samples are composed of dominantly clay minerals
and quartz, with minor Al and/or Fe-oxyhydroxides
and Ti-oxides.

The main mineral assemblage in the CP samples comprises
clay minerals (kaolinite + illite ± montmorillonite) + quartz
+ Al/Fe-oxyhydroxides (boehmite/gibbsite + goethite + minor
hematite)+ Ti-oxides (anatase and/or rutile) (Figure 5).

The main mineral assemblage in the MP samples comprises
clayminerals (illite+ kaolinite)+ quartz+Al/Fe-oxyhydroxides
(gibbsite + goethite) + Ti-oxides (rutile + minor anatase) ±
feldspar. Palygorskite occurs in three core samples from the lower
palaeosol and halite was detected in four samples (Figure 6).

The minerals phases are generally well- resolved except for
some Cretaceous samples from Olmedo mine and some core
samples from the Messinian deposit.

In addition to XRD, SEM EDS observation evidenced: (i) the
occurrence of tiny bipyramidal magnetite crystals in the Al rich
MP1 andMP2 samples; (ii) the coexistence of detrital, irregularly
edged, kaolinite plates with tiny, exagonal, growing crystal stacks;
(iii) the survival of detrital muscovite laminae in some quartz rich
millimetric layers within the upper Messinian palaeosol; (iv) the
occurrence of detrital kaolinite also in the Cretaceous clays.
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Chemistry
The major and trace element concentrations of the analyzed
sets of samples are listed in Table 1. Major elements and their
variability are summarized below.

CP samples yield SiO2 concentrations of 32.09–43.94 wt.%
(mean = 39.10 wt.%; n = 12), indicating depletion relative to

the Upper Continental Crust (UCC) [66.62 wt.%; (Rudnick and
Gao, 2014) and references therein] and post-Archaean Australian
shale (PAAS) (62.80 wt.%; Taylor and McLennan, 1985). The
samples contain 23.44–31.64 wt.% Al2O3 (mean = 26.98 wt.%),
more than the UCC (15.40 wt.%) and PAAS (18.90 wt.%). They
contain 7.90–17.24 wt.% Fe2O3 (mean = 12.77 wt.%), 0.25–4.28

FIGURE 5 | XRPD patterns of representative CP palaeosol samples. Legend. Kln, Kaolinite; Ilt, Illite; Mnt, Montmorillonite; Plg, Palygorskite; Qz, Quartz; Fsp,

Feldspar; Cal, Calcite; Rt, Rutile; Ant, Anatase; Hem, Hematite; Gth, Goethite; Gbs, Gibbsite; Bhm, Boehmite; Hl, Halite.

FIGURE 6 | XRPD patterns of representative MP palaeosol samples. Legend. See Figure 5.

Frontiers in Earth Science | www.frontiersin.org 6 June 2020 | Volume 8 | Article 290

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Mameli et al. Alterites as Proxy for Palaeogeography

TABLE 1 | Chemical compositions of the analyzed samples.
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TABLE 1 | Continued

(Continued)
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TABLE 1 | Continued

(La/Yb)ch = (La/Lach )/(Yb/Ybch); (La/Sm)ch = (La/Lach )/(Sm/Smch ); (Gd/Yb)ch = (Gd/Gdch)/(Yb/Ybch); Eu/Eu* = Eu/Euch/
√
(Sm/Smch × Gd/Gdch); Ce/Ce* = Ce/Cech/

√
(La/Lach ×

Pr/Prch). D.L., Detection Limit. In red are reported mean, median and standard deviation relative to the whole CP and MP sample sets, respectively; in blue are reported mean, median

and standard deviation relative to upper and lower sub-sets of the MP palaeosol.
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wt.% K2O (mean = 2.64 wt.%), 0.12–0.38 wt.% Na2O (mean =
0.21 wt.%), and 0.29–2.11 wt.% MgO (mean = 1.25 wt.%). Two
samples yield relatively high CaO concentrations (>4.50 wt.%)
due to the presence of carbonate (calcite) fragments, which were
detected in XRD patterns.

MP samples, as a whole, yield SiO2 concentrations of 46.38–
65.40 wt.% (mean = 55.36 wt.%; n = 22), lower than UCC and
PAAS. The samples contain 16.41–32.66 wt.% Al2O3 (mean =
21.74 wt.%), more than the UCC and PAAS. They also contain
1.62–9.81 wt.% Fe2O3 (mean = 7.34 wt.%), 2.91–5.64 wt.% K2O
(mean = 3.88 wt.%), 0.08–0.96 wt.% CaO (mean = 0.30 wt.%),
and 0.51–2.71 wt.% MgO (mean = 0.98 wt.%). Four samples
yield relatively high Na2O concentrations (>1.10 wt.%) due to
the presence of halite, which was detected in XRD patterns.

DISCUSSION AND EVALUATION OF
PALAEOWEATHERING

By the comparison of the two alterites the purpose of this work
is to obtain information on the parental rock of a palaeosol
whose boundary palaeoclimatic conditions are known (CP) and,
on the other hand, to get information on the palaeoclimatic
conditions from a palaeosol of which, instead, the parent rock
is well identified (MP). Beyond the mechanisms of alteration, the
cross-comparison of the mineralogical and geochemical features
of the two alterites can reveal new insights on the Cretaceous
palaeogeographic frame of the south European margin and, on
the other end, add new constraints on the climatic scenario
during Messinian time.

FIGURE 7 | Global Subducting Sediment (GLOSS)-normalized major elements patterns of (A) the CP palaeosols, and (B) the MP palaeosols. GLOSS values are from

Plank and Langmuir (1998).
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In fact few is known about the mechanism that drove the
emergence of the Mesozoic shelf at the beginning of Upper
Cretaceous (Albian-Turonian) generating bauxite and associated
palaeosols. Eustatism and tectonics could both account for such
emergence (Durand et al., 1988; Combes and Peybernes, 1991;
Haq and Huber, 2017; JeŽ and Otoničar, 2018). In the first case
the thick carbonate shelf must have experienced weak erosion;
whereas in the second case an important uplift could have caused
the complete erosion of the carbonate covers leading to the
exposition of the basement.

Uncertainties also affect the Messinian scenario dominated
by the salinity crisis (Gardner, 1970) for which the contribute
of a warm-dry climate was generally invoked (Suc and Bessais,
1990), even if some authors claim that tectonics is the only cause
(Fauquette et al., 2006; Achalhi et al., 2016). In any case the shift
to a wetter climate is supposed only at the end of this age (Griffin,
2002; Willett et al., 2006).

Below, the results related to the mineral phases, the major,
and trace elements are discussed separately, in the light of their
contribution in clarifying the relationships between weathering
conditions and precursors in the formation of residual rocks as
well as in palaeoclimatic and palaeogeographic reconstructions.

Major Elements Variations and Mineral
Phases
We observed several differences between the compositions of the
Cretaceous and Messinian palaeosols. The Cretaceous samples
yield high TiO2, Al2O3, Fe2O3, MgO, and CaO concentrations,
whereas the Messinian samples yield higher concentrations of
SiO2, Na2O, and K2O (Figures 7A,B).

These differences, which include variations in both aluminum
and alkaline element concentrations, affect the CIA values.
The lower Messinian palaeosol yields a mean CIA of 72.51

(median = 73.18; σ = 3.90), the upper palaeosol yields a slightly
higher CIA of 75.67 (median 75.80; σ = 1.43). These values
indicate a moderate/intermediate degree of weathering, whereas
Cretaceous samples yield a mean CIA of 82.26 (median = 79.99;
σ = 6.17), suggesting more intense weathering, according to
the different mineralogical evolution (illite rich vs. kaolinite
dominated). These inferences are supported by the different
proportions of kaolinite and illite in the two sets of samples.
On an Al2O3−CaO + Na2O–K2O diagram (Figure 8), the
Cretaceous samples plot along a weathering trend parallel
to the A–K join moving toward the A apex, indicating the
leaching of alkaline elements from primary minerals coupled
with the transformation of metamorphic phyllosilicates to
kaolinite and in turn to Al-hydroxides (Yuste et al., 2015,
2017). In contrast, most of the Messinian palaeosols samples
plot along a weathering trend that is sub-parallel to the A–
CN join, indicating the leaching of Ca and Na from primary
minerals coupled with the formation of 2:1 phyllosilicates.
More in general, the A-CN-K diagram of both the CP and
MP subsets clearly show weathering trends moving from a
pristine “granitoid,” UCC-like, composition toward a clayey
composition devoid of Ca and Na. Trends parallel to the A–K
join moving toward the K apex are not observed, thus excluding
any K-metasomatism modification. This in consistent with the
SEM-EDS observations showing that illite and muscovite are
always detrital.

The observed mineral distribution in the Messinian alterites
is consistent with the hypothesis that weathering intensity
was greatest at the surficial palaeosol and diminishes with
depth. These characteristics, together with the occurrence of
palygorskite, in the lower palaeosol indicate that the initial stage
of weathering occurred under semi-arid conditions (Elidrissi
et al., 2018 and references therein).

FIGURE 8 | A–CN–K diagram for the analyzed palaeosols. Pl, plagioclase; Gr, granite; Ms, muscovite; Il, illite. The Cretaceous sediments display a typical intense

weathering trend, whereas the Messinian samples display a trend consistent with a moderate degree of weathering.
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Noticeably the clay of the stratigraphically higher, Messinian,
palaeosol contains non-negligible amount of gibbsite. This
indicates a high water/rock ratio and the dissolution of kaolinite
rather than the direct formation of gibbsite from feldspars, which
requires a pH of ∼3 (Gardner, 1970), which is inconsistent with
the composition of meteoric water in NW Sardinia (present-day
pH= 7–9; Mongelli et al., 2013) draining calcareous formations.
Kaolinite, instead, could have formed by direct weathering of
the basement rocks, before being transported, together other
clay minerals, in the form of mud and debris flows, over
the Mesozoic carbonate succession, where further weathering
generated the kaolinite rich palaeosols. A high water content
in the Messinian palaeosol is also testified by the occurrence
of magnetite.

Trace Elements Variations
The Cretaceous palaeosols yield higher median concentrations of
most trace elements (including Ga), transition metals (V, Cr, Ni,
and Zn), high field-strength elements [HFSE; Y, Zr, Nb, total REE

(
∑

REE), Hf, Th, and U] Cs, and Pb than the Messinian samples.
In contrast, the Messinian palaeosols are decidedly enriched only
in Ba and Cu relative to the Cretaceous samples (Table 1).

Both sets of samples yield median concentrations of HFSE, U,
large ion lithophile elements (LILE; Rb, Cs, and Pb), and some
transitions metals (Sc, V, Cr, and, in the Cretaceous set only, Ni)
that are higher than those of average global subducting sediment
(GLOSS; Plank and Langmuir, 1998). In contrast, Cu, Sr, and Ba
are depleted relative to GLOSS (Figures 9A,B).

Chondrite-normalized patterns for both sets of samples
(Figures 10A,B) display a similar degree of LREE–HREE
(Light Rare Earth Elements and Heavy Rare Earth Elements
respectively) fractionation, as indicated by their median
(La/Yb)N values (CP = 11.38; MP = 10.64), which are higher
than that of GLOSS (7.05). In contrast, the degrees of LREE–
MREE (Medium Rare Earth Elements) [median (La/Sm)N: CP
= 3.29; MP = 4.04] and MREE–HREE fractionation [median
(Gd/Yb)N: CP= 1.75; MP= 1.69] are similar to those of GLOSS
(3.14 and 1.67, respectively). The palaeosols yield median Eu

FIGURE 9 | GLOSS-normalized trace elements patterns of (A) the CP palaeosols, and (B) the MP palaeosols. GLOSS values are from Plank and Langmuir (1998).
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FIGURE 10 | Chondrite-normalized REE patterns of (A) the CP palaeosols, and (B) the MP palaeosols. Chondrite values are from Taylor and McLennan (1981).

anomalies (Eu/Eu∗) (CP = 0.69; MP = 0.71) that are similar to
that of GLOSS (0.72). These fractionation indexes, that are those
more affected by provenance, especially the Eu/Eu∗ ratio, suggest
both the sets share a provenance characterized by a composition
close to the average Upper Continental Crust one.

Finally, the Messinian palaeosols yield Ce anomalies that are
generally close to 1 with the exception of sample MP1 (Ce/Ce∗

= 0.48). The Cretaceous samples instead exhibit a wide range
of Ce/Ce∗ values (0.26–2.63) likely as a consequence of local
Eh fluctuations, as supported by the presence of remnants of a
reducing humic horizon and oxyhydroxide phases (Braun et al.,
1990; Mongelli, 1997; Mameli et al., 2008).

Inter-elemental Relationships
The relationships between major and trace elements in the
Cretaceous andMessinian samples were evaluated using varimax

rotation and subsequent R-mode factor analysis. We selected
different variables for the two datasets due to their differences
in chemical evolution and mineralogy. Most Cretaceous samples
display Ce anomalies; consequently, La (representing the LREE)
and Yb (representing the HREE) were included in addition to Ce
to enable the evaluation of inter-elemental fractionation among
the REE. In contrast, as the Messinian samples lack significant Ce
anomalies, we included only total REE. We also included a LILE
(Rb) because the most abundant mineral in these samples is a
2:1 phyllosilicate.

Cretaceous Palaeosols

Three factors can explain 77.8% of the total variance in the
composition of the Cretaceous palaeosols (Table 2).

The first factor (F1) explains 38.1% of the total variance and
has positive weightings for Al2O3, Sc, Cr, and Th. The Al2O3

concentrations are higher in soils with a higher weathering rate,
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and are indicative of abundant clay minerals and Al-hydroxides.
Al-bearing minerals in soils are also generally coupled with
resistate phases that control the abundance of low-solubility
elements, such as Sc and Th (e.g., Mongelli et al., 2014a,b),
which are characterized by low water/rock partition coefficients
(Rudnick and Gao, 2014). As for Cr, it occurs as insoluble
Cr2O3 over much of its Eh–pH space, although in nature most
Cr3+ is hosted in chromite, and Cr in soils occurs mainly in
the residual immobile fraction (Kabata-Pendias, 2010). Thus, F1
likely represents the capacity of some elements to be concentrated
during intense weathering.

The second factor (F2) explains 24.2% of the total variance
and has significant positive weightings for Fe2O3 and V, and a
negative weighting for Ga. The positive weightings for Fe2O3

and V suggest that V concentrations in the Cretaceous palaeosols
were controlled mainly by Fe-oxyhydroxides. As for Ga, in the
Ga–O–H system, it is hosted in söhngeite Ga(OH)3, which is a
common compound in soils (Kabata-Pendias, 2010), over much
of its Eh–pH space (pH = 6–10 for aGa = 10−8). Therefore, F2
might record competition between Fe- and Ga-hydroxides.

The third factor (F3) explains 15.1% of the total variance and
has significant positive weightings for La and Yb. This factor
accounts for the processes governing the distribution of REE
in the Cretaceous palaeosols, with the notable exception of Ce.
In general, soil solution composition is the main factor that
drives the differential transport of REE during weathering and
pedogenesis (Laveuf and Cornu, 2009 and references therein).
HREE form complexes with organic matter (Henderson, 1984;
Byrne and Li, 1995; Sonke, 2006) and bicarbonates (Cantrell
and Byrne, 1987; Lee and Byrne, 1993; Pourret et al., 2007)
that are more stable than those involving LREE, resulting in
the preferential leaching of HREE during weathering. The soil
solution composition also affects adsorption onto secondary
minerals, and the balance of REE concentrations between soil
solutions and mineral surfaces is controlled mainly by pH-driven
adsorption/desorption reactions. REE are adsorbed onto mineral
surfaces as pH increases and LREE are more efficiently adsorbed
than HREE (Pourret et al., 2010 and references therein). The
order in which REE are adsorbed onto mineral surfaces with

TABLE 2 | R-mode factor analysis results for the CP composition.

Factor 1 Factor 2 Factor 3

Al2O3 0.68

Fe2O3(T) 0.74

Sc 0.93

V 0.81

Cr 0.82

Ni

Ga −0.85

La 0.80

Ce

Yb 0.90

Th 0.82

increasing pH is as follows: LREE>MREE>HREE, and REE are
released from mineral surfaces in the same order during a period
of decreasing pH (Gammons et al., 2005; Johannesson et al., 2006;
Leybourne and Johannesson, 2008;Welch et al., 2009). Therefore,
circa-neutral to acidic soil solutions enhance REE fractionation in
soils, explaining the higher (La/Yb)N and (La/Sm)N values in the
palaeosols relative to GLOSS.

Due to its redox chemistry, Ce is commonly fractionated
relative to the other REE in soils and sediments that form through
intense weathering (e.g., Mongelli et al., 2014a and references
therein). Samples that yield negative Ce anomalies typically
acquire their REE budget through the scavenging of Ce-depleted
solutions resulting from Ce oxidation and precipitation in an
environment devoid of organic matter (Usman, 2008; Mongelli
et al., 2015).

Messinian Palaeosols

Four factors can explain 85.0% of the total variance in the
composition of Messinian palaeosols (Table 3).

The first factor (F1) explains 39.4% of the total variance
and has strong positive weightings for Al2O3, Sc, and Rb.
The 2:1 phyllosilicates formed during weathering; thus, Al2O3

concentrations are mainly related to the clay mineral content.
The second factor (F2) explains 22.8% of the total variance

and has significant positive weightings for Fe2O3, Co, Ni, and Cu.
Most transition elements can be adsorbed onto Fe-oxyhydroxides
(Usman, 2008); however, Acosta et al. (2011) showed that also
Fe-rich mica-like clay minerals such as biotite, chamosite, and
chlorite, which occur in the Variscan basement, may control the
transition element budget in soils. Thus, F2 accounts for the
capacity of Fe-oxyhydroxides and possibly 2:1 clay minerals to
host heavy metals in soils.

The third factor (F3) explains 14.7% of the total variance
and has significant positive weightings for TiO2 and Th, and a
negative weighting for Ga. In the Messinian palaeosols, the most
abundant Ti-bearing mineral is detrital rutile. The relationship

TABLE 3 | R-mode factor analysis results for the MP composition.

Factor 1 Factor 2 Factor 3 Factor 4

Al2O3 0.91

Fe2O3 (T) 0.83

TiO2 0.86

Sc 0.97

V

Cr

Co 0.79

Ni 0.81

Cu 0.85

Ga −0.81

Rb 0.91

Zr

Th 0.78

ΣREE 0.94
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between Ti and Th may indicate that the abundance of rutile
covaries with that of detrital Th-bearing minerals such as
monazite. The negative weighting for Ga suggests that it is not
present in high concentrations in accessory and detrital phases.

The fourth factor (F4) explains 8.1% of the total variance and
has significant positive weightings for REE. Thus, F4 accounts for
the processes controlling the REE distribution in the samples.

General Implications About the
Palaeoclimate Conditions and
Palaegeography
In siliciclastic and residual sediments is generally retained (e.g.,
Perri and Ohta, 2014; Perri et al., 2015a,b) that relationships
among Al2O3, Sc, and Rb indicate that these elements covary
with the abundance of clay minerals, with Rb likely occurring
as interlayer cation. Thus, F1 in MP represents the resistance
of some trace elements, including LILE such as Rb, to leaching
during a weathering less intense with respect to CP. It is
interesting to observe that the factors explaining the higher
variance in both the sets (F1 Cretaceous vs. F1 Messianian)
support what depicted by the mineralogical composition and the
A-CN-K diagrams about the difference in palaeoclimate during
the formation of the two different residual clay deposits.

The Eu anomaly, recording in sediments the proportion
of exposed crust in the source area (e.g., McLennan et al.,
1993; Cullers, 2000; Condie et al., 2001; Roser et al., 2002;
Perri et al., 2013; Sinisi et al., 2014), has proved to be an

effective and reliable proxy of provenance also during intense
weathering (e.g., Mongelli et al., 2014a, 2016). Similarly to the
Eu/Eu∗ proxy, the Sm/Nd ratio reflects chemical differentiation,
since only minor fractionation of Sm and Nd occurs during
intense tropical weathering (Viers and Wasserburg, 2004) and,
as a consequence, the Sm/Nd ratio has been profitably used
to determine parental affinities for evolved alterites (Mongelli
et al., 2014a, 2016). In the Eu/Eu∗ vs. Sm/Nd binary diagram
(Figure 11), both the CP and MP subsets show large similarity
and fall close to the average cratonic sediment suggesting
that the Variscan basement, which patently was the source
of the Messinian alluvial deposits, was also the source of the
Cretaceous alterites.

Such evidence implies that during the Cenomanian-Turonian
interval a wide region north of Sardinia (in pre-drift coordinates)
underwent strong uplift and emergence that caused the erosive
elision of the Mesozoic carbonatic shelf (at least, 1.5–2 km thick),
leading to the exposition and dismantling of the underlying
basement. In Nurra the pre-bauxite sequence was eroded down
to the Oxfordian dolostone, causing the elision of about 400m
of carbonatic succession. The chrono-stratigraphic gap matches
that of Nerthe in Provence (Masse and Philip, 1976), where
more than 600m of lower Cretaceous deposits were eroded
(Guyonnet-Benaize et al., 2010). From this match can be
argued that north Sardinia was located on the prolongation of
the Durancian isthmus where Turonian bauxite is widespread
(Laville, 1981; Combes, 1990). This well known structural high
developed between the Vocontian basin to the north and

FIGURE 11 | Eu/Eu* vs. Sm/Nd binary plot showing average standard lithologies. Circles are CP and MP palaeosols. Felsic volcanics and Cratonic sediments in

Condie (1993); PAAS and Andesite in Taylor and McLennan (1985); GLOSS in Plank and Langmuir (1998).
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the South Provencal basin in the south (Masse and Fenerci-
Masse, 2013). The trigger for the uplift was recently referred
to a wide restraining zone, which caused N–S shortening and
long wave E–W crustal folding during the left lateral motion
between Iberia and Europe along a huge wrench fault (Schreiber
et al., 2011). Eastward, across the Ligure-Piemontese Ocean this
fault acted as a trench-trench transform fault separating two
oceanic domains with opposite subduction polarity (Figure 12;
Carmignani et al., 1995; Oggiano et al., 2009). In any case,
the uplift was limited to the carbonate cover, hence no bauxite
lying directly on basement rocks is known in the Durancian
isthmus. And yet, between Sardinia and Provence, there must
have been a ridge, with exposed basement, which fed with Al-
rich debris the continental plains and the bordering basins.
The relics of this structural relief (“Massif Meridional;” Hennuy,
2003) are to be found in the allochthonous slices of basement
in the Maure Massive and in basement outcrops buried in the
Ligure-Provencal basin (Fournier et al., 2016). Such transpressive
ridge faced the beginning subduction of the Ligure-Piemontese
Ocean beneath the European plate (Carmignani et al., 1995;
Argnani, 2009; Oggiano et al., 2009) and was more elevated—and
independent—compared to the Durancian rise (Figure 12). The

occurrence of severely uplifted portions of the south European
margin are also in agreement with the south Variscan provenance
of detrital zircons in both proximal and distal Upper Cretaceous
flysches in “Alpine Corsica” (Lin et al., 2018) and in western
Liguria (Mueller et al., 2018), respectively. However, the latter
authors, disregarding the Cretaceous left lateral motion between
Iberia and Europe, refer the uplift, which should have caused the
complete elision of the thick Mesozoic cover—and this is not the
case—to a lithospheric bulge involving the Var-Maures Massif
(i.e., the Durancian isthmus). This bulge is thought caused by
the down-bending of the south European margin while it was
approaching the Alpin2e accretionary wedge.

To define the degree of weathering of the basement exposed
over this structural high is not easy; in fact mantled alterites
on the Variscan basement have been hardly spared by the post-
Cretaceous erosion, where the protection due to transgressive
covers is lacking.

Some residual alterites mantling the Variscan basement,
nevertheless, are preserved around the Massif Central; they
were classically assigned to the Tertiary (e.g., the siderolithic
formation), but palaeomagnetic and thermochronological dating
revealed a Cretaceous age (Thiry et al., 2006). Such alterites

FIGURE 12 | Palaeogeographic sketch of Turonian Europe. In the schematic cross section VB, Vocontian Basin; ID, Durancian Isthmus; SPB, South Provencal Basin;

TR, Transpressive Belt; NWS, North Western Sardinia and Corsica. The dotted line refers to the base level.
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mostly consist of kaolinite and Fe oxy-hydroxides rich paleosols
(Simon-Coinçon et al., 2000). A similar, already weathered,
material partially contributed to feed the alluvial deposits that
evolved into mature palaeosols and then into bauxite over the
Upper Cretaceous calcareous palaeosurface (Combes et al., 1993)
of Sardinia.

Paleoclimate proxies, including the Ba/Sr ratio and the
Na2O/K2O molar ratio (Retallack, 1997; Retallack et al., 2001;
Sheldon, 2006) support a not negligible water/rock ratio also
during the formation of the Messinian deposits. The Ba/Sr
ratio is largely used as leaching proxy during weathering since
Sr is significantly more soluble than Ba, and Ba/Sr values >2
indicate acidic/leached conditions under wet climate, and in
the Messinian upper subset the average value of this proxy
is 4.42. Similarly the Na2O/K2O index, the proxy measuring
the salinization of a palaeosol, is decidedly low (average value
0.17) excluding a dry climate coupled with intense evapo-
transpirative condition.

These evidences do not meet the dry Messinian hypothesis
(Suc and Bessais, 1990) and suggest a long interval of sub-
tropical, wet climate during this age. How long this time span
was, in the absence of a continental fossil record, is difficult to
establish. In any case it is reasonable to argue that the lower
alterite in the alluvial sequence matches one of the dry late
Tortonian-early Messinian intervals predating the MSC in the
Apennines (Bertini and Menichetti, 2015) and in Southern Spain
(Casas-Gallego et al., 2015). The upper palaeosol, indicative of
more wet subtropical climate reflects a time span wide enough to
encompass the entire MSC, considering that so thick, kaolinite-
enriched, paleosols take a few hundred thousand years to be
formed (Thiry et al., 2006; Bronger, 2007).

At the Messinian-Pliocene boundary a more seasonal,
temperate climate with alternating dry and wet periods prevailed
in western Mediterranean (Bertini and Martinetto, 2008). Soil
formation was hindered by prevailing erosional dynamics during
dry intervals (Günster and Skowronek, 2001). One of these, in
north-western Sardinia, could be referred to the gravelly deposit
that covers the Messinian alterite.

CONCLUSIONS

Some interesting consequences rise from the comparison of
the geochemical and mineralogical features of CP and MP
weathering products:

i. given that the two different alterites sheared a common source,
any difference in chemical and mineralogical feature are to

be referred to different weathering paths and, ultimately, to
different climates;

ii. during the Cenomanian and Turonian, the Variscan basement
was exposed along a possible transpressive belt located
between the South Provencal basin and Sardinia;

iii. the dismantling of this ridge supplied kaolinite-rich material
to the emerged Sardinian carbonate platform, where it was
converted into a mature palaeosol and, after a long lasting
period of alteration driven bymonsoonal climate, into bauxite;

iv. as for the Messinian alterites, the base of the alluvial
sequence—possibly late Tortonian-early-Messinian—shows
pedogenic clays dominated by illite, palygorskite, and
oxidative conditions, which are indicative of dry warm
climate, similar to that of actual savannah; conversely the
Messinian upper palaeosol yields an unexpected weathering
trend toward 2:1 clay minerals and, at less extent, gibbsite that
are suggestive of an evolution toward more severe weathering
in a wet climate;

v. MP and CP palaeosols shared similar alteration in the
first stages of the weathering path but MP, despite strong
Al enrichment, never ended in lateritic soils, and bauxite.
Though unexpectedly wet the climate was not warm enough
to generate ferrallitic alteration.
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