Supplementary Material

Evaluation of Antimicrobial Activity of Triphala Constituents and Nanoformulation.

Ziad Omran^{1, 9}, Ammar Bader¹, Amalia Porta², Thierry Vandamme³, Nicolas Anton³, Zeyad Alehaideb⁴, Hamdi El-Said⁵, Hani Faidah^{5, 6}, Abulrahman Essa⁷, Antonio Vassallo^{8,*} and Majed Halwani^{9, *}

¹ 1College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia

² Dipartimento di Farmacia, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy

³ University of Strasbourg, Faculty of Pharmacy, Strasbourg, France

⁴ Department of Medical Genomics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

⁵ Department of Medical Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia

⁶ Al-Noor Specialist Hospital, Makah City, Saudi Arabia

⁷ Research Centre, King Fahd Armed Forces Hospitals, Jeddah, Saudi Arabia

⁸ Dipartimento di Scienze, Università degli Studi della Basilicata, Italy

⁹ King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

* Equal contributing authors

Correspondence should be addressed to Antonio Vassallo; <u>antonio.vassallo@unibas.it</u> and Majed Halwani; <u>majed.halwani@gmail.com</u>

Contents

Figure S1. ¹H NMR spectrum of TAE by maceration (CD₃OD, 600 MHz).

Figure S2. ¹H NMR spectrum of TAE by UE (CD₃OD, 600 MHz).

Figure S3. ¹H NMR spectrum of TAE by MAE (CD₃OD, 600 MHz).

Figure S4. HMBC NMR spectrum of TAE (CD₃OD, 600 MHz).

Figure S5. HSQC NMR spectrum of TAE (CD₃OD, 600 MHz).

Figure S6. ¹H NMR spectrum of phyllemblin (CD₃OD, 600 MHz).

Figure S7. ¹H NMR spectrum of gallic acid (CD₃OD, 600 MHz).

Figure S8. ¹H NMR spectrum of cinnamic acid (CD₃OD, 600 MHz).

Figure S9. ¹H NMR spectrum of 1,3,6-tri-*O*-galloyl-β-D-glucose (CD₃OD, 600 MHz).

Figure S10. ¹H NMR spectrum of 1,2,3,6-tetra-*O*-galloyl-β-glucose (CD₃OD, 600 MHz).

Figure S11. ¹H NMR spectrum of 1,2,3,4,6-penta-*O*-galloyl-β-D-glucose (CD₃OD, 600 MHz).

Figure S12. ¹H NMR spectrum of p-coumaric acid (CD₃OD, 600 MHz).

Figure S13. ¹H NMR spectrum of chebulinic acid (CD₃OD, 600 MHz).

Figure S1. ¹H NMR spectrum of TAE by maceration (CD₃OD, 600 MHz).

Figure S2. ¹H NMR spectrum of TAE by UE (CD₃OD, 600 MHz).

Figure S3. ¹H NMR spectrum of TAE by MAE (CD₃OD, 600 MHz).

Figure S4. HMBC NMR spectrum of TAE (CD₃OD, 600 MHz).

f1 (ppm)

Figure S5. HSQC NMR spectrum of TAE (CD₃OD, 600 MHz).

f1 (ppm)

Figure S6. ¹H NMR spectrum of phyllemblin (CD₃OD, 600 MHz).

Figure S7. ¹H NMR spectrum of gallic acid (CD₃OD, 600 MHz).

Figure S10. ¹H NMR spectrum of 1,2,3,6-tetra-*O*-galloyl-β-glucose (CD₃OD, 600 MHz).

Figure S12. ¹H NMR spectrum of p-coumaric acid (CD₃OD, 600 MHz).

